JP3699055B2 - Equipment for decomposing gaseous organic compounds - Google Patents

Equipment for decomposing gaseous organic compounds Download PDF

Info

Publication number
JP3699055B2
JP3699055B2 JP2002098981A JP2002098981A JP3699055B2 JP 3699055 B2 JP3699055 B2 JP 3699055B2 JP 2002098981 A JP2002098981 A JP 2002098981A JP 2002098981 A JP2002098981 A JP 2002098981A JP 3699055 B2 JP3699055 B2 JP 3699055B2
Authority
JP
Japan
Prior art keywords
electrolyzed water
decomposition
test
ultraviolet
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002098981A
Other languages
Japanese (ja)
Other versions
JP2003290622A (en
Inventor
一志 木村
友之 内藤
高宏 寺嶋
誉子 中藤
恒造 新田
真二 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP2002098981A priority Critical patent/JP3699055B2/en
Priority to CNB021555478A priority patent/CN100551467C/en
Priority to KR10-2002-0082589A priority patent/KR100509400B1/en
Priority to CA2419857A priority patent/CA2419857C/en
Priority to AU2003200768A priority patent/AU2003200768B2/en
Priority to EP08020159A priority patent/EP2022560A3/en
Priority to EP03251880A priority patent/EP1350561A3/en
Priority to US10/397,166 priority patent/US7364710B2/en
Publication of JP2003290622A publication Critical patent/JP2003290622A/en
Application granted granted Critical
Publication of JP3699055B2 publication Critical patent/JP3699055B2/en
Priority to US11/405,428 priority patent/US7722830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス状有機化合物の分解装置に関する。
【0002】
【従来の技術】
トリクロロエチレン、テトラクロロエチレンなどの有機化合物はその優れた溶解力により、半導体関連分野、金属油分洗浄分野、ドライクリーニング分野などで洗浄剤、溶剤として長年にわたり使用されてきた。
しかし、近年、これら塩素系有機化合物の中に発ガン性物質が存在することが分かり、その有害性が社会的に問題視され、排出規制されるに至っている。従って、これら塩素系有機化合物を過去に多量に使用・排出してきた事業所においては、敷地内及び周辺の土壌汚染・地下汚染が深刻な問題になっている。
また、汚染ガスがある種の有機化合物を含有すると、悪臭を発して環境が悪化することもある。
【0003】
通常、土壌を浄化するには、土壌ガスを吸引し、これに含有される有機化合物を活性炭で吸着除去して回収していた。このため、高濃度且つ広範囲に汚染された場所では、大がかりな活性炭による吸着装置が必要になり、設備コスト負担とランニングコストが問題になっている。
また、土壌ガスに含有される有機化合物を活性炭のみにより吸着・除去しようとすると、活性炭を頻繁に交換する必要があり、活性炭の交換作業、再生処理、廃棄などに係わる手間と費用が莫大になって、土壌浄化を行う上での企業負担が非常に大きくなっている。
【0004】
ところで、紫外線を照射して有機化合物を分解する技術が従来公知であり、例えば、半導体ウェハの表面洗浄では、エキシマランプなどにより高エネルギーの紫外線(波長172nm)を照射して表面の有機化合物を分解している。このような高エネルギーの紫外線を照射すると、有機化合物はきわめて短時間で分解される。ところが、エキシマランプはけた外れに高価であって、設備コストが莫大となり、電力消費量もきわめて多いので、土壌ガスの浄化に利用するのは実用的でない。
【0005】
また、廉価な低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプから紫外線を照射して有機化合物を分解しようとすると、中間生成物として塩化水素、ハロ酢酸など反応性の不安定な物質が発生し、これを安定した物質まで分解するのに非常に時間がかかる。
そこで、有機塩素化合物を含有するガスに、波長300nm以下の紫外線を含む紫外線を照射して塩素原子を有する反応中間体まで分解し、さらに微生物処理を施して反応中間体を分解する有機塩素化合物の分解方法が特開平8−24335号公報に開示されている。
しかし、微生物処理は環境に優しいという点では優れているが、管理が難しく、分解速度が非常に遅いので処理に時間がかかり、特に、高濃度汚染には対応できないという問題がある。
【0006】
【発明が解決しようとする課題】
この発明は、有機化合物を含む汚染ガスを効率よく短時間で分解することができ、紫外線分解によって発生する中間生成物の処理が容易であり、設備コスト及びランニングコストが低廉で済むガス状有機化合物の分解装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明のガス状有機化合物の分解装置は、有機化合物を含有する汚染ガスに、波長300nm未満の紫外線を照射すると共に、酸性電解水供給パイプ及びアルカリ電解水供給パイプがそれぞれバルブを介して接続され、強アルカリ電解水及び強酸性電解水を選択的に噴霧して前記有機化合物を分解する紫外線分解ユニットと、前記酸性電解水供給パイプ及び前記アルカリ電解水供給パイプそれぞれバルブを介して接続され、前記有機化合物が分解されて生成された中間生成物に、強アルカリ電解水及び強酸性電解水を選択的に噴霧して、前記中間生成物を中和し分解する中間生成物処理装置とを備える。
汚染ガスに含まれる有機化合物は紫外線照射によりその化学結合が分され、強酸性電解水及び強アルカリ電解水により、分解反応が促進される。また有機化合物が分解した結果生成する複数の中間生成物は、紫外線照射により不安定なラジカル状態で混在すると考えられる。これらの不安定なガス状中間生成物は、強酸性電解水や強アルカリ電解水の噴霧による接触によって、ガス洗浄されると共に中和され、或いは分解され、より安定で無害な物質に変化させることができる。また、汚染ガスに噴霧する強アルカリ電解水や強酸性電解水は人体に無害であり、排水が環境を汚染する心配は全くない。
【0008】
中間生成物処理装置を紫外線分解ユニットの中間部に接続して、該紫外線分解ユニット内の汚染ガスに強アルカリ電解水及び強酸性電解水を選択的に噴霧しても、中間生成物処理装置を紫外線分解ユニットの下流に接続して、該紫外線分解ユニットを通過した汚染ガスに強アルカリ電解水及び強酸性電解水を選択的に噴霧しても良い。
中間生成物処理装置を紫外線分解ユニットの下流に接続した場合には、紫外線分解ユニット内の汚染ガスに、強アルカリ電解水及び/又は強酸性電解水を噴霧することもある。
この構成によって、紫外線による有機化合物の分解が促進され、処理時間が短縮される。紫外線分解ユニットに噴霧される強アルカリ電解水及び強酸性電解水は、中間生成物処理装置において噴霧される強アルカリ電解水及び強酸性電解水と同時に生成されるので、コスト増大は抑えられる。
【0009】
紫外線分解ユニットは、内部に紫外線照射ランプを設置した分解セルより成り、該分解セルの周壁にガス入口が、分解セルの直径に沿って汚染ガスを吹き込むように形成されることもある。これにより、汚染ガスが分解セルの内面に沿って移動しにくくなり、汚染ガスの分解セル中における滞留時間が長くなると共に、紫外線の照射強度が強まって、分解効率が向上する。
紫外線照射ランプとしては、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、アマルガムランプ、ハロゲンランプ、エキシマランプなどを使用できる。
【0010】
この場合、汚染ガスに均一に紫外線が照射されるように、複数の前記紫外線照射ランプを、分解セルの上面に等間隔で吊り下げると良い。紫外線強度は照射距離に反比例するので、紫外線照射ランプ間の距離は100mm以下、好ましくは20mm以下とする。
また、比較的短波長の紫外線が減衰するのを防ぐために、紫外線照射ランプは、保護管が波長172nm以上の紫外線を80%以上透過する合成石英ガラスを素材としたものであることが望ましい。
紫外線ランプはできるだけ細いものを使用するのが好ましく、保護筒の直径が6mm〜20mm程度の細管を使用する。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
ガス状有機化合物の分解装置は、汚染土壌から有機化合物を含む汚染ガスを吸引するガス吸引装置に連結され、図1に示すように、汚染ガスが導入される紫外線分解ユニット1と、紫外線分解ユニット1の下流に接続されたスクラバ2より成る中間生成物処理装置と、スクラバ2の下流に接続された活性炭吸着ユニット3と、電解水生成装置4とを備える。
【0012】
電解水生成装置4は、オキシライザーメディカCL(商品名、株式会社三浦電子製)を使用し、電解水生成装置4によって、塩化ナトリウム、塩化カリウム、塩化マグネシウム等の水溶性電解質を含む水を電気分解すると、陽極側からは強酸性電解水が、陰極側からは強アルカリ電解水がそれぞれ取り出される。
このようにして得られた強酸性電解水及び強アルカリ電解水は、人体に無害なので、機能水として汚染ガスに接触させても環境を汚染する心配はない。
【0013】
紫外線分解ユニット1は、ステンレス製パイプの内部に、低圧水銀ランプ5(図2,図3)より成る紫外線照射ランプを複数設置した分解セル6を2筒直列に接続して構成される。
低圧水銀ランプ5は、保護管として波長172nm以上の紫外線を80%以上透過する合成石英ガラスを用いたものであり、消費電力13Wで、波長が254nmの紫外線及び185nmの紫外線を照射する。
また、低圧水銀ランプ5は、図2に示すように、分解セル6の上面から吊り下げられ、分解セル6の上面中央に1灯配置され、残りは上面周縁部に等間隔で配置されている。
【0014】
汚染ガスは、図3に示すように、一方の分解セル6の周壁上部において、直径の一端に形成されたガス入口7から導入され、他方の分解セル6の周壁上部において、直径の一端に形成されたガス出口8から取り出される。
そして、電解水生成装置4の陽極側と紫外線分解ユニット1の各分解セル6とは酸性電解水供給パイプ9で接続され、分解セル6と酸性電解水供給パイプ9との接続部分に設置されたバルブを開くと、分解セル6中に強酸性電解水が噴霧されるようになっている。
さらに、電解水生成装置4の陰極側と紫外線分解ユニット1の各分解セル6とはアルカリ電解水供給パイプ10で接続され、分解セル6とアルカリ電解水供給パイプ10との接続部分に設置されたバルブを開くと、分解セル6中に強アルカリ電解水が噴霧されるようになっている。
【0015】
スクラバ2の上下部には、ポンプ12を有する循環パイプ11の両端が接続され、紫外線分解ユニット1を通過してスクラバ2の下部に流入したガスは、ポンプ12で循環パイプ11内を押し上げられて、スクラバ2の上部に戻され、スクラバ2中を循環するようになっている。
また、スクラバ2にはpH測定装置25が設けられ、このpH測定装置25によってスクラバ2内に流入した汚染ガスのpHを測定できるようになっている。さらに、循環パイプ11は、それぞれバルブを介して酸性電解水供給パイプ9及びアルカリ電解水供給パイプ10と接続され、pH測定装置25で測定された汚染ガスのpHに応じてバルブを開放することにより、スクラバ2中を循環するガスに強酸性電解水及び強アルカリ電解水が選択的に噴霧され、ガス中に含まれる中間生成物を中和し分解するようになっている。
【0016】
また、スクラバ2から延びる排水路13には排水中和タンク14が設置されると共に、排水中和タンク14に酸性電解水供給パイプ9及びアルカリ電解水供給パイプ10がそれぞれバルブを介して接続され、排水中和タンク14に貯留された排水に強アルカリ電解水又は強酸性電解水を添加して中和した後、排出するようになっている。
活性炭吸着ユニット3には活性炭フィルタが内蔵され、スクラバ2を通過したガスに含有される微少な残留化合物はここで吸着除去される。
また、活性炭吸着ユニット3には、ポンプ15を有する排気パイプ16が接続され、活性炭フィルタを通過した清浄なガスが排気されるようになっている。
【0017】
このガス状有機化合物の分解装置は次のように使用される。
土壌から吸引された有機化合物を含む汚染ガスを、ガス入口7を通して紫外線分解ユニット1内へその直径に沿って導入し、電解水生成装置4で生成された強酸性電解水、強アルカリ電解水のいずれか、又は両方を電解セル6内へ噴霧して、汚染ガスと接触させると共に、低圧水銀ランプ5を点灯して汚染ガスに紫外線を照射する。
すると、汚染ガスに含有される有機化合物が紫外線照射によって分解され、強酸性電解水及び/又は強アルカリ電解水により、分解反応が促進される。
【0018】
紫外線分解ユニット1を通過してガス出口8から取り出された汚染ガス中には、有機化合物が分解された結果発生する中間生成物が含有されており、この中間生成物を含む汚染ガスがスクラバ2へ流入する。
スクラバ2へ流入した汚染ガスは、pH測定装置25によってpHが測定されると共に、循環パイプ11を通って一定時間スクラバ2内を循環する。そして、循環パイプ11を通過する際に、pH測定装置25で測定されたpHに応じて、汚染ガスに強酸性電解水又は強アルカリ電解水が噴霧されて、汚染ガスに含有される中間生成物が中和される。
【0019】
汚染ガスに含まれる有機化合物によっては、中間生成物を含む汚染ガスが中性を示すこともあるので、この場合は、強酸性電解水と強アルカリ電解水を同時に噴霧して、中間生成物を分解する。
また、紫外線分解ユニット1を通過した後に僅かに残っている有機化合物も、強酸性電解水や強アルカリ電解水を噴霧することによって、さらに分解が進む。分解されなかった中間生成物の一部、或いは、中和によって生成された副生成物の一部は噴霧された電解水に溶解されて、排水路13へ排出される。
【0020】
スクラバ2から排水路13へ排出される水は酸性又はアルカリ性を帯びていることが多いため、排水中和タンク14内において強アルカリ電解水又は強酸性電解水を添加して中和した後、外部へ排出する。
スクラバ2内を一体時間循環したガスは、活性炭吸着ユニット3へ流入し、僅かに残留している中間生成物及び有機化合物を活性炭フィルタで吸着除去した後、外界へ排気される。
【0021】
なお、紫外線分解ユニット1を中間生成物処理装置として利用することもある。この場合は、各電解セル6にpH測定装置25を設け、pH測定装置25で測定されたpHに応じて、接続された酸性電解水供給パイプ9及びアルカリ電解水供給パイプ10から強酸性電解水及び強アルカリ電解水を選択して噴霧し、紫外線分解ユニット1内の汚染ガスに含まれる中間生成物を中和し分解する。そして、中和のために噴霧した強酸性電解水や強アルカリ電解水が、汚染ガスに含有される有機化合物を分解することにもなる。この時、紫外線分解ユニット1の下流にスクラバ2を設置しても、設置しなくても良い。
また、紫外線分解ユニット1に酸性電解水供給パイプ9及びアルカリ電解水供給パイプ10を接続せず、紫外線のみによって紫外線分解ユニット1中の汚染ガスに含有される有機化合物を分解し、その後、スクラバ2内に強アルカリ電解水及び強酸性電解水を選択的に噴霧しても良い。
【0022】
(実施例)
図1に示すガス状有機化合物の分解装置において、分解セル6の直径を200mm、長さを600mmとして、低圧水銀ランプ5を7灯セットした。そして、紫外線分解ユニット1に、トリクロロエチレン(以下、TCEと称する)を含む汚染ガスを導入すると共に、pH2.1〜2.4の強酸性電解水を毎分100ml噴霧した。
また、スクラバ2には、pH11.0の強アルカリ電解水を毎分1l噴霧し、流量12.5l/minの流量で汚染ガスを循環させた。
【0023】
試験1では、TCE濃度50ppmの汚染ガスを、風量400l/minで紫外線分解ユニット1のガス入口7に吹き込み、▲1▼紫外線分解ユニット1の直前、▲2▼紫外線分解ユニット1とスクラバ2の間、▲3▼スクラバ2と活性炭吸着ユニット3の間、▲4▼活性炭吸着ユニット3の後の4個所で、10分経過後及び30分経過後に、TCE濃度、塩化水素濃度、ホスゲン濃度、塩素濃度、オゾン濃度を測定し、その結果を図4に示す。また、スクラバ2内のpHを試験開始時、10分経過後、30分経過後に測定した結果を図5に示す。
【0024】
また、試験2において、TCE濃度100ppmの汚染ガスを、風量400l/minでガス入口7に吹き込み、試験1と同じように、▲1▼、▲2▼、▲3▼、▲4▼の4個所で、10分経過後及び30分経過後に、TCE濃度、塩化水素濃度、ホスゲン濃度、塩素濃度、オゾン濃度を測定し、スクラバ2内のpHを試験開始時、10分経過後、30分経過後に測定し、その結果をそれぞれ図6及び図7に示す。
試験1及び試験2の結果から、汚染ガスに含有されるTCEは紫外線照射によって殆ど分解され、残った有機化合物もスクラバ2を循環する間に非常に低い濃度まで分解されることがわかった。
また、紫外線照射により有機化合物を分解した結果発生する中間生成物は、スクラバ2内で大半が中和され、スクラバ2を通過したガス中に含まれるきわめて微少な有機化合物及び中間生成物も活性炭吸着ユニット3で完全に吸着除去されることがわかった。
【0025】
さらに、試験3乃至試験9では、紫外線分解ユニット1を用いて、有機化合物の内、7大悪臭物質と称される硫化水素、アセトアルデヒド、ピリジン、アンモニア、トリメチルアミン、酢酸、メチルメルカプタンの7種類について、濃度10ppmの汚染ガスを、風量400l/minでガス入口7に吹き込み、試験1と同じように、▲1▼、▲2▼、▲3▼、▲4▼の4個所で有機化合物濃度を計測し、▲2▼、▲3▼、▲4▼の3個所で中間生成物濃度を測定した。
試験3では、硫化水素(HS)を含む汚染ガスについて分解試験を行い、スクラバ2へ強アルカリ電解水を噴霧し、試験開始直後、10分後、30分後、50分後及び90分後に濃度測定を行った。
図8にHS濃度の経時変化を、図9に中間生成物として生成されるSO濃度及びオゾン濃度の経時変化をそれぞれ示す。
【0026】
試験4では、アセトアルデヒド(CHCOH)を含有する汚染ガスを流し、スクラバ2へ強酸性電解水を噴霧し、試験開始直後、10分後、30分後及び50分後に濃度測定を行った。図10にアセトアルデヒド濃度を、図11に中間生成物として予想される酢酸(CH3COOH)濃度及びオゾン濃度を示す。なお、中間生成物として酢酸を予想したが、図11からわかるように、実際には紫外線分解ユニット1を通過後の汚染ガスに酢酸はほとんど含まれていないので、酢酸の中和分解を考慮する必要はないものと思われる。
【0027】
試験5は、ピリジン(CN)を含む汚染ガスをガス入口7に吹き込み、スクラバ2へ強酸性電解水を噴霧し、試験開始直後、10分後、30分後及び50分後に濃度測定を行った。図12にピリジン濃度を、図13に中間生成物として予想されるNOx濃度及びオゾン濃度を示す。
試験6では、アンモニア(NH)を含有する汚染ガスをガス入口7へ導入し、スクラバ2へ強酸性電解水を噴霧し、試験開始直後、10分後、30分後及び50分後に濃度測定を行った。図14にアンモニア濃度を、図15に中間生成物として予想されるNOx濃度及びオゾン濃度を示す。
【0028】
試験7では、トリメチルアミン((CHN)を含有する汚染ガスを流し、スクラバ2へ強酸性電解水を噴霧し、試験開始直後、10分後、30分後及び50分後に濃度測定を行った。図16にトリメチルアミン濃度を、図17に中間生成物として予想されるNOx濃度及びオゾン濃度を示す。なお、中間生成物としてアンモニアが予想されるが、トリメチルアミンとの区別がしにくく、濃度を測定することができなかった。
また、試験5乃至試験7では、中間生成物としてNOxを予想したが、紫外線分解ユニット1を通過後の汚染ガスにほとんどNOxが含まれていないので、その中和分解は考慮しなくても良いと思われる。
【0029】
試験8では、酢酸(CHCOOH)を含有する汚染ガスをガス入口7へ導入し、スクラバ2へ強アルカリ電解水を噴霧し、試験開始直後、10分後、30分後及び50分後に濃度測定を行った。図18に酢酸濃度を、図19に中間生成物として発生したオゾン濃度を示す。
試験9では、メチルメルカプタン(CHSH)を含有する汚染ガスをガス入口7へ導入し、スクラバ2へ強アルカリ電解水を噴霧し、試験開始直後、10分後、30分後及び50分後に濃度測定を行った。図20にメチルメルカプタン濃度を、図21に中間生成物として予想されるSO濃度、HS濃度及びオゾン濃度を示す。なお、この試験でも、中間生成物として予想されたHSは、紫外線ユニット1を通過後のガスから検出されなかった。
試験3乃至試験9の結果から、本発明の分解装置により悪臭物質もほとんど分解処理できることがわかった。
【0030】
試験10では、紫外線の有機化合物分解効果を調べるため、図22に示すように、気体混合槽17の下流に、紫外線ランプ18を上面から10本吊り下げた容積180lの試験セル19を設置すると共に、試験セル19の上流側と下流側とにそれぞれVOCモニタ20を設置した試験装置を用意し、この装置にTCE濃度50ppmの汚染ガスを100l/min、200l/min、300l/min、400l/minで連続的に供給した。そして、紫外線ランプ18を10本点灯したパターン1,7本点灯したパターン2,6本点灯したパターン3,3本点灯したパターン4,1本点灯したパターン5において、紫外線分解ユニット2’の上流側と下流側でTCE濃度を計測した結果を図23に示す。また、TCE分解率を(1−下流濃度/上流濃度)×100%の式で求めて図24に示す。
【0031】
試験11では、TCEに代えてテトラクロロエチレン(PCE)を用いた以外は試験10と同様にして実験を行い、PCE濃度を計測した結果を図25に、PCE分解率を図26にそれぞれ示す。
試験12は、TCEに代えてcis−1,2−ジクロロエチレン(cis−1,2−DCE)を用いた以外は試験10と同様にして実験を行い、cis−1,2−DCE濃度を計測した結果を図27に、cis−1,2−DCE分解率を図28にそれぞれ示す。
【0032】
また、試験13では、TCEに代えてモノクロロエチレンを用いた以外は試験10と同様にして実験を行い、モノクロロエチレン濃度を計測した結果を図29に、モノクロロエチレン分解率を図30にそれぞれ示す。
試験14は、TCEに代えて酢酸エチルを用いた以外は試験10と同様にして実験を行い、酢酸エチル濃度を計測した結果を図31に、酢酸エチル分解率を図32にそれぞれ示す。
試験15では、TCEに代えてトルエンを用いたトルエン濃度50ppmのガスを、試験10と同様の試験装置に100l/minで供給し、トルエン濃度を計測した結果を図33に示す。
試験10乃至試験15の結果から、試験流量が少ない方が紫外線夜分解率が高く、また、塩素数の多いテトラクロロエチレンは紫外線によって分解されやすく、塩素を持たない酢酸エチルやトルエンは紫外線で分解されにくいことがわかった。
【0033】
強アルカリ電解水、強酸性電解水、その混合水を噴霧して紫外線を照射した時の分解促進効果を調べるために、試験16を行った。試験16では、図34に示すように、出力30Wで波長254nmの紫外線を照射する紫外線ランプ18を、内径120mm、高さ1300mmの試験セル19内に設置し、TCEガスと希釈用空気とを混合したガスを試験セル19に3l/minの流量で導入した。また、アトマイザー21を用いて、強酸性電解水、強アリカル電解水、強酸性電解水と強アルカリ電解水とを1:1で混ぜた混合水、水道水のいずれかを試験セル19内へ10l/minで噴霧し、TCE濃度が安定した後、紫外線ランプ18の点灯と消灯を繰り返し、試験セルの下流に形成された採取口22から採取したガスのTCE濃度を10分間隔で測定した。その結果及びTCE分解率を図35に示す。
試験16の結果から、強酸性電解水、強アリカル電解水、強酸性電解水と強アルカリ電解水の混合水を噴霧すると、水道水を噴霧した場合に比べて明らかに分解効率が高まることがわかった。
【0034】
試験17では、図36及び図37に示すような試験装置を用いる。この試験装置は、上面に交換可能な紫外線ランプ18が吊り下げられた試験セル19を有する。試験セル19の周壁下部には、直径に沿ってガスを導入する第1のガス入口7aが形成されると共に、接線に沿ってガスを導入する第2のガス入口7bが形成され、試験セル19の周壁上部には、直径に沿ってガスを取り出す第1のガス出口8aが形成されると共に、接線に沿ってガスを取り出す第2のガス出口8bが形成されている。
【0035】
そして、保護筒付きで波長185nmの紫外線及び波長254nmの紫外線を照射する出力13Wの紫外線ランプ18、或いは、保護筒無しで波長185nmの紫外線及び波長254nmの紫外線を照射する出力40Wの紫外線ランプ18を用い、TCE濃度50ppmのガスを、流量100l/min、200l/min、300l/min、400l/minで、第1のガス入口7aから第1のガス出口8aに至る流路▲1▼に通した場合と、第2のガス入口7bから第2のガス出口8bに至る流路▲2▼に通した場合について、試験セル19の上流側及び下流側のTCE濃度を測定し、TCE分解率を求めた。その結果を図38に示す。
【0036】
試験17の結果から、汚染ガスをセル内へその直径に沿って断面中心に向かって導入すると、接線方向に沿って導入する場合に比べて分解効率が高いことがわかった。
これは、ガスをセルの接線方向に導入すると、ガスがセルの壁面に沿って流れるため、紫外線照射強度が弱くなると共に、セル内へ滞留する時間が短くなってしまうためと考えられる。
【0037】
図39には、試験18乃至試験20に用いる試験装置を示す。この試験装置は、紫外線ランプ18を収納した内径45mm、長さ500mm、容積800mlの試験セル19に、試験ガスの入ったテドラーバッグ23を接続し、ポンプ24で一定の濃度になるまでガスを吸引して試験セル19に導入した。そして、紫外線ランプ18を20分間点灯して、ガス濃度の変化をVOCセンサ20で観測した。紫外線ランプ18として、波長185nmの紫外線と波長254nmの紫外線を照射する東芝製GLS6UN、波長254nmの紫外線を照射する東芝製GLS6UJ及び波長300nm以上の紫外線を照射するブラックライト(ミヤタエレバム製)を用い、当初のガス濃度が10ppmの場合と100ppmの場合について試験を行った。
【0038】
試験18では、試験ガスとしてトリクロロエチレンを用い、当初のガス濃度を10ppmとした時のTCE濃度を図40の(イ)に、100ppmとした時のTCE濃度を図40の(ロ)に示す。
試験19は、試験としてテトラクロロエチレンを用い、当初のガス濃度を10ppmとした時のPCE濃度を図41の(イ)に、100ppmとした時のPCE濃度を図41の(ロ)に示す。
試験20では、試験ガスとしてcis−1,2−ジクロロエチレンを用い、当初のガス濃度を10ppmとした時のcis−1,2−DCE濃度を図42の(イ)に、100ppmとした時のcis−1,2−DCE濃度を図42の(ロ)に示す。
試験18乃至試験20の結果から、紫外線の波長が300nm以上であると、ブランク測定の値とほぼ同様の濃度変化しかせず、有機化合物は分解されないことがわかった。
【0039】
試験21では、化学兵器用毒ガスであるイペリット(ClCHCHS)の紫外線分解効果の可能性を検証した。波長185nmの紫外線及び波長254nmの紫外線を照射する紫外線ランプを500mlのデュランビン内に設置し、イペリット擬剤としてクロロメチルメチルスルフィド(ClCHSCH,以下、CMMSと称する)が収納されたテドラーバッグをこのデュランビンに接続し、別に接続したポンプで吸引してデュランビン内の空気をCMMSに置換した。その後、紫外線ランプを点灯して、CMMS濃度を測定し、その結果を図43に示す。
試験21により、分解速度はそれほど速くないものの、紫外線照射によってイペリットの擬剤も半分程度まで分解できることがわかった。
【0040】
【発明の効果】
請求項1乃至3に係る発明によれば、汚染ガスに含まれる有害な有機化合物を、波長300nm未満の比較的高エネルギーの紫外線と選択的に噴霧される強アルカリ電解水及び強酸性電解水とで分解し、その結果発生する不安定な中間生成物を強アルカリ電解水及び強酸性電解水で中和し分解するので、処理時間が短くて済み、それほど大がかりな装置も必要としない。
また、紫外線照射では分解しきれない有機化合物も、強アルカリ電解水や強酸性電解水を噴霧することによって、より低レベルまで分解することができる。さらに、強アルカリ電解水や強酸性電解水は人体に無害なので、環境を汚染する心配がない。
【0041】
請求項4に係る発明によれば、紫外線分解ユニットにおける有機化合物の分解が促進されて、いっそう処理時間を短縮できる。
請求項5に係る発明によれば、汚染ガスが分解セル内に滞留する時間が長くなると共に、汚染ガスに対する紫外線照射強度が強くなるため、分解効率がさらに向上する。
請求項6に係る発明によれば、汚染ガスへ均一に、且つ、高い強度で紫外線が照射されるので、有機化合物分解効率が良い。
請求項7に係る発明によれば、波長の短い紫外線が保護筒で遮断されずに汚染ガスに照射されるので、有機化合物を短時間で分解できる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すガス状有機化合物の分解装置の概略図
【図2】分解セルの側断面図
【図3】分解セルの平断面図
【図4】試験1における汚染濃度測定結果を示す図
【図5】試験1におけるpH測定結果を示す図
【図6】試験2における汚染濃度測定結果を示す図
【図7】試験2におけるpH測定結果を示す図
【図8】試験3における有機化合物濃度の経時変化を示す図
【図9】試験3における中間生成物濃度の経時変化を示す図
【図10】試験4における有機化合物濃度の経時変化を示す図
【図11】試験4における中間生成合物濃度の経時変化を示す図
【図12】試験5における有機化合物濃度の経時変化を示す図
【図13】試験5における中間生成物濃度の経時変化を示す図
【図14】試験6における有機化合物濃度の経時変化を示す図
【図15】試験6における有機化合物濃度の経時変化を示す図
【図16】試験7における有機化合物濃度の経時変化を示す図
【図17】試験7における中間生成物濃度の経時変化を示す図
【図18】試験8における有機化合物濃度の経時変化を示す図
【図19】試験8における中間生成物濃度の経時変化を示す図
【図20】試験9における有機化合物濃度の経時変化を示す図
【図21】試験9における中間生成物濃度の経時変化を示す図
【図22】試験10乃至試験15に用いた試験装置の概略図
【図23】試験10におけるTCE濃度の測定結果を示す図
【図24】試験10におけるTCE分解率の計算結果を示す図
【図25】試験11におけるPCE濃度の測定結果を示す図
【図26】試験11におけるPCE分解率の計算結果を示す図
【図27】試験12におけるcis−1,2−DCE濃度の測定結果を示す図
【図28】試験12におけるcis−1,2−DCE分解率の計算結果を示す図
【図29】試験13におけるモノクロロベンゼン濃度の測定結果を示す図
【図30】試験13におけるモノクロロベンゼン分解率の計算結果を示す図
【図31】試験14における酢酸エチル濃度の測定結果を示す図
【図32】試験14における酢酸エチル分解率の計算結果を示す図
【図33】試験15におけるトルエン濃度の測定結果を示す図
【図34】試験16に用いた試験装置の概略図
【図35】試験16で測定したTCE濃度及びTCE分解率を示す図
【図36】試験17に用いた試験セルの側断面図
【図37】試験17に用いた試験セルの平断面図
【図38】試験17におけるTCE分解率を示す図
【図39】試験18乃至試験20に用いた装置の概略図
【図40】試験18におけるTCE濃度の経時変化を示す図
【図41】試験19におけるPCE濃度の経時変化を示す図
【図42】試験20におけるcis−1,2−DCE濃度の経時変化を示す図
【図43】試験21におけるCMMS濃度の変化を示す図
【符号の説明】
1 紫外線分解ユニット
2 スクラバ
3 活性炭吸着ユニット
4 電解水生成装置
5 低圧水銀ランプ
6 分解セル
7 ガス入口
8 ガス出口
9 酸性電解水供給パイプ
10 アルカリ電解水供給パイプ
11 循環パイプ
12 ポンプ
13 排水路
14 排水中和タンク
15 ファン
16 排気パイプ
17 混合気槽
18 紫外線ランプ
19 試験セル
20 VOCセンサ
21 アトマイザ
22 採取口
23 テドラーバッグ
24 ポンプ
25 pH測定装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for decomposing gaseous organic compounds.
[0002]
[Prior art]
Organic compounds such as trichlorethylene and tetrachlorethylene have been used for many years as cleaning agents and solvents in the fields of semiconductors, metal oil cleaning, dry cleaning and the like due to their excellent dissolving power.
However, in recent years, it has been found that carcinogenic substances are present in these chlorinated organic compounds, and their harmfulness is regarded as a social problem and emission control has been brought about. Therefore, in business establishments that have used and discharged a large amount of these chlorinated organic compounds in the past, soil contamination and underground contamination in and around the site have become serious problems.
Moreover, when a pollutant gas contains a certain organic compound, a bad odor is emitted and the environment may be deteriorated.
[0003]
Usually, in order to purify the soil, the soil gas is sucked and the organic compounds contained therein are removed by adsorption with activated carbon. For this reason, a large-scale adsorbing device using activated carbon is required in a high-concentration and wide-area contaminated area, and the equipment cost burden and running cost are problematic.
In addition, if the organic compounds contained in the soil gas are to be adsorbed / removed only by activated carbon, it is necessary to frequently replace the activated carbon, resulting in enormous labor and costs associated with activated carbon replacement, regeneration, disposal, etc. As a result, the corporate burden of soil remediation has become very large.
[0004]
By the way, a technique for decomposing an organic compound by irradiating ultraviolet rays is conventionally known. For example, in the surface cleaning of a semiconductor wafer, an organic compound on the surface is decomposed by irradiating high-energy ultraviolet rays (wavelength 172 nm) with an excimer lamp or the like. doing. When irradiated with such high energy ultraviolet rays, the organic compound is decomposed in a very short time. However, the excimer lamp is extremely expensive, the equipment cost is enormous, and the power consumption is very large. Therefore, it is not practical to use it for the purification of soil gas.
[0005]
In addition, when an organic compound is decomposed by irradiating ultraviolet rays from an inexpensive low-pressure mercury lamp, medium-pressure mercury lamp, or high-pressure mercury lamp, reactive unstable substances such as hydrogen chloride and haloacetic acid are generated as intermediate products. It takes a very long time to decompose it into a stable substance.
Therefore, an organic chlorine compound that decomposes a reaction intermediate having chlorine atoms by irradiating a gas containing an organic chlorine compound with ultraviolet light including ultraviolet light having a wavelength of 300 nm or less, and further decomposes the reaction intermediate by microbial treatment. A decomposition method is disclosed in JP-A-8-24335.
However, although microbial treatment is excellent in terms of environmental friendliness, it is difficult to manage and the degradation rate is very slow, so that treatment takes time, and in particular, there is a problem that it cannot cope with high concentration contamination.
[0006]
[Problems to be solved by the invention]
The present invention is a gaseous organic compound that can decompose pollutant gas containing an organic compound efficiently and in a short time, can easily treat an intermediate product generated by ultraviolet decomposition, and can be reduced in equipment cost and running cost. It is an object of the present invention to provide a decomposition apparatus.
[0007]
[Means for Solving the Problems]
The apparatus for decomposing gaseous organic compounds of the present invention irradiates pollutant gases containing organic compounds with ultraviolet light having a wavelength of less than 300 nm. In addition, the acidic electrolyzed water supply pipe and the alkaline electrolyzed water supply pipe are connected via valves, respectively, to selectively spray strong alkaline electrolyzed water and strong acidic electrolyzed water. An ultraviolet decomposition unit for decomposing the organic compound; Said Acidic electrolyzed water supply pipe and Said Alkaline electrolyzed water supply pipe of Respectively In An intermediate that is connected through a valve and selectively sprays strongly alkaline electrolyzed water and strongly acidic electrolyzed water onto an intermediate product formed by decomposing the organic compound to neutralize and decompose the intermediate product. A product processing apparatus.
Organic compounds contained in polluted gases are separated by UV irradiation. Solution And The decomposition reaction is accelerated by the strong acidic electrolyzed water and the strong alkaline electrolyzed water. Also , A plurality of intermediate products generated as a result of decomposition of the organic compound are considered to be mixed in an unstable radical state by ultraviolet irradiation. These unstable gaseous intermediate products are gas-washed, neutralized, or decomposed by contact with sprays of strongly acidic electrolyzed water or strongly alkaline electrolyzed water to convert them into more stable and harmless substances. Can do. Moreover, strong alkaline electrolyzed water and strong acid electrolyzed water sprayed on the polluted gas are harmless to the human body, and there is no concern that the drainage pollutes the environment.
[0008]
Even if the intermediate product treatment apparatus is connected to the middle part of the ultraviolet decomposition unit and the strong alkaline electrolyzed water and the strong acidic electrolyzed water are selectively sprayed on the pollutant gas in the ultraviolet decomposition unit, the intermediate product treatment apparatus can be used. Strong alkaline electrolyzed water and strong acid electrolyzed water may be selectively sprayed on the polluted gas that is connected downstream of the ultraviolet decomposition unit and passes through the ultraviolet decomposition unit.
When the intermediate product treatment apparatus is connected downstream of the ultraviolet decomposition unit, strong alkaline electrolyzed water and / or strong acidic electrolyzed water may be sprayed on the contaminated gas in the ultraviolet decomposition unit.
With this configuration, the decomposition of the organic compound by ultraviolet rays is promoted, and the processing time is shortened. The strong alkaline electrolyzed water and strong acidic electrolyzed water sprayed on the ultraviolet decomposition unit are generated at the same time as the strong alkaline electrolyzed water and strong acidic electrolyzed water sprayed in the intermediate product treatment apparatus, so that an increase in cost can be suppressed.
[0009]
The ultraviolet decomposition unit includes a decomposition cell in which an ultraviolet irradiation lamp is installed, and a gas inlet may be formed in a peripheral wall of the decomposition cell so as to blow a contaminated gas along the diameter of the decomposition cell. This makes it difficult for the pollutant gas to move along the inner surface of the decomposition cell, increases the residence time of the pollutant gas in the decomposition cell, increases the irradiation intensity of ultraviolet rays, and improves the decomposition efficiency.
As the ultraviolet irradiation lamp, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an amalgam lamp, a halogen lamp, an excimer lamp, or the like can be used.
[0010]
In this case, a plurality of the ultraviolet irradiation lamps may be suspended from the upper surface of the decomposition cell at equal intervals so that the pollutant gas is uniformly irradiated with ultraviolet rays. Since the ultraviolet intensity is inversely proportional to the irradiation distance, the distance between the ultraviolet irradiation lamps is 100 mm or less, preferably 20 mm or less.
In order to prevent the ultraviolet rays having a relatively short wavelength from being attenuated, it is desirable that the ultraviolet irradiation lamp is made of synthetic quartz glass whose protective tube transmits 80% or more of ultraviolet rays having a wavelength of 172 nm or more.
It is preferable to use a UV lamp that is as thin as possible, and a protective tube with a diameter of about 6 mm to 20 mm is used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The apparatus for decomposing gaseous organic compounds is connected to a gas suction apparatus for sucking pollutant gas containing organic compounds from contaminated soil, and as shown in FIG. 1 is provided with an intermediate product processing apparatus composed of a scrubber 2 connected downstream of 1, an activated carbon adsorption unit 3 connected downstream of the scrubber 2, and an electrolyzed water generating apparatus 4.
[0012]
The electrolyzed water generating device 4 uses an oxidizer Medica CL (trade name, manufactured by Miura Denshi Co., Ltd.), and the electrolyzed water generating device 4 electrically supplies water containing a water-soluble electrolyte such as sodium chloride, potassium chloride, and magnesium chloride. When decomposed, strong acidic electrolyzed water is taken out from the anode side, and strong alkaline electrolyzed water is taken out from the cathode side.
The strongly acidic electrolyzed water and strong alkaline electrolyzed water obtained in this way are harmless to the human body, so there is no concern of contaminating the environment even if they are brought into contact with contaminated gases as functional water.
[0013]
The ultraviolet decomposition unit 1 is configured by connecting two decomposition cells 6 in series with a plurality of ultraviolet irradiation lamps composed of low-pressure mercury lamps 5 (FIGS. 2 and 3) inside a stainless steel pipe.
The low-pressure mercury lamp 5 uses synthetic quartz glass that transmits 80% or more of ultraviolet rays having a wavelength of 172 nm or more as a protective tube, and irradiates ultraviolet rays having a wavelength of 254 nm and 185 nm with a power consumption of 13 W.
Further, as shown in FIG. 2, the low-pressure mercury lamp 5 is suspended from the upper surface of the decomposition cell 6, one lamp is disposed at the center of the upper surface of the decomposition cell 6, and the rest are disposed at equal intervals on the peripheral edge of the upper surface. .
[0014]
As shown in FIG. 3, the contaminated gas is introduced from a gas inlet 7 formed at one end of the diameter at the upper peripheral wall of one decomposition cell 6, and formed at one end of the diameter at the upper peripheral wall of the other decomposition cell 6. The gas outlet 8 is taken out.
Then, the anode side of the electrolyzed water generating device 4 and each decomposition cell 6 of the ultraviolet decomposition unit 1 are connected by an acidic electrolyzed water supply pipe 9 and installed at a connection portion between the decomposition cell 6 and the acidic electrolyzed water supply pipe 9. When the valve is opened, strong acidic electrolyzed water is sprayed into the decomposition cell 6.
Further, the cathode side of the electrolyzed water generating device 4 and each decomposition cell 6 of the ultraviolet decomposition unit 1 are connected by an alkaline electrolyzed water supply pipe 10 and installed at a connection portion between the decomposition cell 6 and the alkaline electrolyzed water supply pipe 10. When the valve is opened, strong alkaline electrolyzed water is sprayed into the decomposition cell 6.
[0015]
Both ends of a circulation pipe 11 having a pump 12 are connected to the upper and lower portions of the scrubber 2, and the gas that has passed through the ultraviolet decomposition unit 1 and flows into the lower portion of the scrubber 2 is pushed up in the circulation pipe 11 by the pump 12. It is returned to the upper part of the scrubber 2 and circulates in the scrubber 2.
The scrubber 2 is provided with a pH measuring device 25, and the pH of the contaminated gas flowing into the scrubber 2 can be measured by the pH measuring device 25. Furthermore, the circulation pipe 11 is connected to the acidic electrolyzed water supply pipe 9 and the alkaline electrolyzed water supply pipe 10 via valves, respectively, and opens the valve according to the pH of the pollutant gas measured by the pH measuring device 25. Strongly acidic electrolyzed water and strong alkaline electrolyzed water are selectively sprayed on the gas circulating in the scrubber 2 to neutralize and decompose the intermediate product contained in the gas.
[0016]
In addition, a drainage neutralization tank 14 is installed in the drainage channel 13 extending from the scrubber 2, and an acid electrolyzed water supply pipe 9 and an alkaline electrolyzed water supply pipe 10 are connected to the drainage neutralization tank 14 through valves, respectively. The wastewater stored in the wastewater neutralization tank 14 is neutralized by adding strong alkaline electrolyzed water or strong acid electrolyzed water, and then discharging the water.
An activated carbon filter is built in the activated carbon adsorption unit 3, and minute residual compounds contained in the gas that has passed through the scrubber 2 are adsorbed and removed here.
Further, an exhaust pipe 16 having a pump 15 is connected to the activated carbon adsorption unit 3 so that clean gas that has passed through the activated carbon filter is exhausted.
[0017]
This apparatus for decomposing gaseous organic compounds is used as follows.
A polluted gas containing an organic compound sucked from the soil is introduced along the diameter into the ultraviolet decomposition unit 1 through the gas inlet 7, and the strongly acidic electrolyzed water and strong alkaline electrolyzed water generated by the electrolyzed water generating device 4 are used. Either or both are sprayed into the electrolysis cell 6 to come into contact with the contaminated gas, and the low-pressure mercury lamp 5 is turned on to irradiate the contaminated gas with ultraviolet rays.
Then, the organic compound contained in the polluted gas is decomposed by ultraviolet irradiation, and the decomposition reaction is promoted by the strong acidic electrolyzed water and / or the strong alkaline electrolyzed water.
[0018]
The contaminated gas taken out from the gas outlet 8 after passing through the ultraviolet decomposition unit 1 contains an intermediate product generated as a result of the decomposition of the organic compound, and the contaminated gas containing the intermediate product is removed from the scrubber 2. Flow into.
The polluted gas that has flowed into the scrubber 2 is measured for pH by the pH measuring device 25 and circulates in the scrubber 2 through the circulation pipe 11 for a predetermined time. Then, when passing through the circulation pipe 11, the strongly acidic electrolyzed water or the strongly alkaline electrolyzed water is sprayed on the contaminated gas according to the pH measured by the pH measuring device 25, and the intermediate product contained in the contaminated gas. Is neutralized.
[0019]
Depending on the organic compound contained in the pollutant gas, the pollutant gas containing the intermediate product may be neutral. In this case, spray the strong acid electrolyzed water and strong alkaline electrolyzed water at the same time to remove the intermediate product. Decompose.
Further, the organic compound remaining slightly after passing through the ultraviolet decomposition unit 1 is further decomposed by spraying strong acidic electrolyzed water or strong alkaline electrolyzed water. Part of the intermediate product that has not been decomposed or part of the by-product generated by neutralization is dissolved in the sprayed electrolyzed water and discharged to the drainage channel 13.
[0020]
Since the water discharged from the scrubber 2 to the drainage channel 13 is often acidic or alkaline, it is neutralized by adding strong alkaline electrolyzed water or strong acidic electrolyzed water in the wastewater neutralization tank 14 and then externally. To discharge.
The gas that has been circulated through the scrubber 2 for an integral time flows into the activated carbon adsorption unit 3 and adsorbs and removes slightly remaining intermediate products and organic compounds with an activated carbon filter, and then is exhausted to the outside.
[0021]
The ultraviolet decomposition unit 1 may be used as an intermediate product processing apparatus. In this case, each electrolysis cell 6 is provided with a pH measuring device 25, and the strongly acidic electrolyzed water is supplied from the connected acidic electrolyzed water supply pipe 9 and alkaline electrolyzed water supply pipe 10 according to the pH measured by the pH measuring device 25. And strong alkaline electrolyzed water is selected and sprayed to neutralize and decompose the intermediate product contained in the contaminated gas in the ultraviolet decomposition unit 1. And the strongly acidic electrolyzed water and strong alkaline electrolyzed water sprayed for neutralization will also decompose | disassemble the organic compound contained in pollution gas. At this time, the scrubber 2 may or may not be installed downstream of the ultraviolet decomposition unit 1.
Moreover, the acidic electrolyzed water supply pipe 9 and the alkaline electrolyzed water supply pipe 10 are not connected to the ultraviolet decomposition unit 1, but the organic compound contained in the pollutant gas in the ultraviolet decomposition unit 1 is decomposed only by ultraviolet rays, and then the scrubber 2 Strong alkaline electrolyzed water and strong acidic electrolyzed water may be selectively sprayed inside.
[0022]
(Example)
In the gaseous organic compound decomposition apparatus shown in FIG. 1, the decomposition cell 6 has a diameter of 200 mm and a length of 600 mm, and seven low-pressure mercury lamps 5 are set. Then, a contaminated gas containing trichlorethylene (hereinafter referred to as TCE) was introduced into the ultraviolet decomposition unit 1, and 100 ml of strongly acidic electrolyzed water having a pH of 2.1 to 2.4 was sprayed per minute.
The scrubber 2 was sprayed with 1 liter of strong alkaline electrolyzed water having a pH of 11.0 per minute, and polluted gas was circulated at a flow rate of 12.5 l / min.
[0023]
In Test 1, a pollutant gas having a TCE concentration of 50 ppm was blown into the gas inlet 7 of the ultraviolet decomposition unit 1 at an air volume of 400 l / min, and (1) immediately before the ultraviolet decomposition unit 1 and (2) between the ultraviolet decomposition unit 1 and the scrubber 2. , (3) Between the scrubber 2 and the activated carbon adsorption unit 3, (4) TCE concentration, hydrogen chloride concentration, phosgene concentration, chlorine concentration after 10 minutes and 30 minutes after the activated carbon adsorption unit 3 The ozone concentration was measured, and the result is shown in FIG. Moreover, the result of having measured the pH in the scrubber 2 at the start of the test, 10 minutes later, and 30 minutes later is shown in FIG.
[0024]
In Test 2, a pollutant gas with a TCE concentration of 100 ppm was blown into the gas inlet 7 at an air volume of 400 l / min. As in Test 1, there were four points (1), (2), (3), and (4). Then, after 10 minutes and 30 minutes, TCE concentration, hydrogen chloride concentration, phosgene concentration, chlorine concentration, ozone concentration are measured, and the pH in the scrubber 2 is measured at the start of the test, after 10 minutes, and after 30 minutes. The measurement results are shown in FIGS. 6 and 7, respectively.
From the results of Test 1 and Test 2, it was found that TCE contained in the pollutant gas was almost decomposed by ultraviolet irradiation, and the remaining organic compounds were also decomposed to a very low concentration while circulating through the scrubber 2.
In addition, most of the intermediate products generated as a result of decomposing organic compounds by UV irradiation are neutralized in the scrubber 2, and the extremely small organic compounds and intermediate products contained in the gas that has passed through the scrubber 2 are also adsorbed by activated carbon. It was found that unit 3 was completely removed by adsorption.
[0025]
Furthermore, in Test 3 to Test 9, using the ultraviolet decomposition unit 1, among the seven kinds of organic compounds, hydrogen sulfide, acetaldehyde, pyridine, ammonia, trimethylamine, acetic acid and methyl mercaptan, which are called seven major malodorous substances, Contaminated gas with a concentration of 10 ppm was blown into the gas inlet 7 at an air flow rate of 400 l / min, and the organic compound concentration was measured at four locations (1), (2), (3), and (4) as in Test 1. , (2), (3), (4), the intermediate product concentration was measured.
In test 3, hydrogen sulfide (H 2 A decomposition test was performed on the contaminated gas containing S), and strong alkaline electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after starting the test, after 10 minutes, 30 minutes, 50 minutes and 90 minutes.
H in FIG. 2 The change in S concentration over time is shown in FIG. 2 The time-dependent changes in concentration and ozone concentration are shown respectively.
[0026]
In test 4, acetaldehyde (CH 3 Contaminated gas containing COH) was flowed, and strongly acidic electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after starting the test, after 10 minutes, after 30 minutes and after 50 minutes. FIG. 10 shows the acetaldehyde concentration, and FIG. 11 shows the acetic acid (CH3COOH) concentration and ozone concentration expected as intermediate products. Although acetic acid was predicted as an intermediate product, as can be seen from FIG. 11, since the acetic acid is hardly contained in the contaminated gas after passing through the ultraviolet decomposition unit 1, neutralization decomposition of acetic acid is considered. There seems to be no need.
[0027]
Test 5 consists of pyridine (C 5 H 5 Contaminated gas containing N) was blown into the gas inlet 7 and strong acidic electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after starting the test, after 10 minutes, after 30 minutes and after 50 minutes. FIG. 12 shows the pyridine concentration, and FIG. 13 shows the NOx concentration and the ozone concentration expected as intermediate products.
In test 6, ammonia (NH 3 ) Was introduced into the gas inlet 7 and strongly acidic electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after starting the test, after 10 minutes, after 30 minutes and after 50 minutes. FIG. 14 shows ammonia concentration, and FIG. 15 shows NOx concentration and ozone concentration expected as intermediate products.
[0028]
In test 7, trimethylamine ((CH 3 ) 3 A polluted gas containing N) was flowed, and strongly acidic electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after starting the test, after 10 minutes, after 30 minutes and after 50 minutes. FIG. 16 shows the trimethylamine concentration, and FIG. 17 shows the NOx concentration and the ozone concentration expected as intermediate products. In addition, although ammonia was expected as an intermediate product, it was difficult to distinguish from trimethylamine, and the concentration could not be measured.
In tests 5 to 7, NOx was predicted as an intermediate product. However, since NOx is hardly contained in the polluted gas after passing through the ultraviolet decomposition unit 1, the neutralization decomposition need not be considered. I think that the.
[0029]
In test 8, acetic acid (CH 3 A contaminated gas containing COOH) was introduced into the gas inlet 7, and strong alkaline electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after starting the test, after 10 minutes, 30 minutes and 50 minutes. FIG. 18 shows the acetic acid concentration, and FIG. 19 shows the ozone concentration generated as an intermediate product.
In Test 9, methyl mercaptan (CH 3 Contaminated gas containing SH) was introduced into the gas inlet 7, sprayed with strong alkaline electrolyzed water on the scrubber 2, and the concentration was measured immediately after starting the test, after 10 minutes, 30 minutes and 50 minutes. FIG. 20 shows the methyl mercaptan concentration, and FIG. 21 shows the SO expected as an intermediate product. 2 Concentration, H 2 S concentration and ozone concentration are shown. In this test, H expected as an intermediate product 2 S was not detected from the gas after passing through the ultraviolet unit 1.
From the results of Test 3 to Test 9, it was found that malodorous substances can be almost decomposed by the decomposition apparatus of the present invention.
[0030]
In the test 10, in order to investigate the organic compound decomposition effect of ultraviolet rays, as shown in FIG. 22, a test cell 19 having a volume of 180 l with 10 ultraviolet lamps 18 suspended from the upper surface is installed downstream of the gas mixing tank 17. A test apparatus having VOC monitors 20 installed on the upstream side and the downstream side of the test cell 19 is prepared, and a contaminated gas with a TCE concentration of 50 ppm is added to this apparatus at 100 l / min, 200 l / min, 300 l / min, 400 l / min. Continuously fed. Then, in the pattern in which 10 UV lamps 18 are lit, 1 in 7 lit patterns, 2 in 6 lit patterns, 3 in 3 lit patterns, 4 in 1 lit pattern 5, the upstream side of the UV decomposition unit 2 ' The results of measuring the TCE concentration on the downstream side are shown in FIG. Further, the TCE decomposition rate is obtained by the equation of (1−downstream concentration / upstream concentration) × 100% and shown in FIG.
[0031]
In Test 11, an experiment was performed in the same manner as in Test 10 except that tetrachloroethylene (PCE) was used instead of TCE. The results of measuring the PCE concentration are shown in FIG. 25, and the PCE decomposition rate is shown in FIG.
Test 12 was conducted in the same manner as Test 10 except that cis-1,2-dichloroethylene (cis-1,2-DCE) was used instead of TCE, and the cis-1,2-DCE concentration was measured. The results are shown in FIG. 27 and the cis-1,2-DCE decomposition rate is shown in FIG.
[0032]
In Test 13, an experiment was performed in the same manner as in Test 10 except that monochloroethylene was used instead of TCE. The results of measuring the monochloroethylene concentration are shown in FIG. 29, and the monochloroethylene decomposition rate is shown in FIG.
Test 14 was performed in the same manner as Test 10 except that ethyl acetate was used in place of TCE. The results of measuring the ethyl acetate concentration are shown in FIG. 31 and the ethyl acetate decomposition rate is shown in FIG.
In Test 15, a gas having a toluene concentration of 50 ppm using toluene instead of TCE was supplied to a test apparatus similar to Test 10 at 100 l / min, and the result of measuring the toluene concentration is shown in FIG.
From the results of Test 10 to Test 15, the lower the test flow rate, the higher the ultraviolet night decomposition rate, tetrachlorethylene with a large number of chlorines is easily decomposed by ultraviolet rays, and ethyl acetate and toluene that do not contain chlorine are difficult to be decomposed by ultraviolet rays. I understand.
[0033]
In order to investigate the decomposition promoting effect when spraying strong alkaline electrolyzed water, strongly acidic electrolyzed water, or a mixed water thereof and irradiating with ultraviolet rays, test 16 was performed. In test 16, as shown in FIG. 34, an ultraviolet lamp 18 that irradiates ultraviolet light having an output of 30 W and a wavelength of 254 nm is installed in a test cell 19 having an inner diameter of 120 mm and a height of 1300 mm, and TCE gas and dilution air are mixed. The introduced gas was introduced into the test cell 19 at a flow rate of 3 l / min. Further, using the atomizer 21, either strong acidic electrolyzed water, strong alkaline electrolyzed water, mixed water obtained by mixing strong acidic electrolyzed water and strong alkaline electrolyzed water 1: 1, or tap water is supplied into the test cell 19 by 10 l. After spraying at / min and the TCE concentration was stabilized, the ultraviolet lamp 18 was repeatedly turned on and off, and the TCE concentration of the gas collected from the sampling port 22 formed downstream of the test cell was measured at 10 minute intervals. The results and the TCE decomposition rate are shown in FIG.
From the results of Test 16, it is clear that spraying strongly acidic electrolyzed water, strong alkaline electrolyzed water, mixed water of strong acid electrolyzed water and strongly alkaline electrolyzed water clearly increases the decomposition efficiency compared to the case of spraying tap water. It was.
[0034]
In the test 17, a test apparatus as shown in FIGS. 36 and 37 is used. This test apparatus has a test cell 19 on which an exchangeable ultraviolet lamp 18 is suspended. A first gas inlet 7a for introducing gas along the diameter and a second gas inlet 7b for introducing gas along the tangent are formed at the lower peripheral wall of the test cell 19, and the test cell 19 is formed. A first gas outlet 8a for extracting gas along the diameter is formed at the upper portion of the peripheral wall, and a second gas outlet 8b for extracting gas along the tangent is formed.
[0035]
Then, an ultraviolet lamp 18 with an output of 13 W that irradiates ultraviolet rays with a wavelength of 185 nm and an ultraviolet wavelength of 254 nm with a protective cylinder, or an ultraviolet lamp 18 with an output of 40 W that irradiates ultraviolet rays with a wavelength of 185 nm and ultraviolet rays with a wavelength of 254 nm without a protective cylinder. Used, a gas having a TCE concentration of 50 ppm was passed through the flow path (1) from the first gas inlet 7a to the first gas outlet 8a at flow rates of 100 l / min, 200 l / min, 300 l / min, and 400 l / min. And the TCE concentration on the upstream side and the downstream side of the test cell 19 are measured for the case of passing through the flow path (2) from the second gas inlet 7b to the second gas outlet 8b, and the TCE decomposition rate is obtained. It was. The result is shown in FIG.
[0036]
From the results of Test 17, it was found that when the contaminated gas was introduced into the cell along the diameter thereof toward the center of the cross section, the decomposition efficiency was higher than when introduced along the tangential direction.
This is presumably because when the gas is introduced in the tangential direction of the cell, the gas flows along the wall surface of the cell, so that the ultraviolet irradiation intensity is weakened and the time for staying in the cell is shortened.
[0037]
FIG. 39 shows a test apparatus used for Test 18 to Test 20. In this test apparatus, a Tedlar bag 23 containing test gas is connected to a test cell 19 having an inner diameter of 45 mm, a length of 500 mm, and a volume of 800 ml containing an ultraviolet lamp 18, and a pump 24 sucks the gas until a constant concentration is obtained. The test cell 19 was introduced. Then, the ultraviolet lamp 18 was turned on for 20 minutes, and the change in gas concentration was observed with the VOC sensor 20. As the ultraviolet lamp 18, Toshiba GLS6UN that irradiates ultraviolet light with a wavelength of 185 nm and ultraviolet light with a wavelength of 254 nm, Toshiba GLS6UJ that irradiates ultraviolet light with a wavelength of 254 nm, and a black light (manufactured by Miyata Elevum) that irradiates ultraviolet light with a wavelength of 300 nm or more are used. The test was conducted for a gas concentration of 10 ppm and 100 ppm.
[0038]
In Test 18, trichlorethylene is used as the test gas, and the TCE concentration when the initial gas concentration is 10 ppm is shown in FIG. 40 (a), and the TCE concentration when 100ppm is shown in FIG. 40 (b).
Test 19 uses tetrachlorethylene as a test. FIG. 41 (a) shows the PCE concentration when the initial gas concentration is 10 ppm, and FIG. 41 (b) shows the PCE concentration when it is 100 ppm.
In Test 20, cis-1,2-dichloroethylene was used as a test gas, and the cis-1,2-DCE concentration when the initial gas concentration was 10 ppm was shown in FIG. The -1,2-DCE concentrations are shown in FIG.
From the results of Test 18 to Test 20, it was found that when the wavelength of the ultraviolet light was 300 nm or more, the concentration did not change substantially the same as the blank measurement value, and the organic compound was not decomposed.
[0039]
In Test 21, Yperit (ClCH), a poison gas for chemical weapons. 2 CH 2 ) 2 The possibility of the ultraviolet decomposition effect of S) was verified. An ultraviolet lamp that irradiates ultraviolet rays having a wavelength of 185 nm and 254 nm was placed in 500 ml of durambin, and chloromethyl methyl sulfide (ClCH 2 SCH 3 , Hereinafter referred to as CMMS) was connected to this durambin and sucked with a separately connected pump to replace the air in durumbin with CMMS. Thereafter, the UV lamp was turned on to measure the CMMS concentration, and the result is shown in FIG.
Test 21 showed that although the degradation rate was not so fast, the yperit mimetic could be degraded to about half by ultraviolet irradiation.
[0040]
【The invention's effect】
According to the inventions according to claims 1 to 3, harmful organic compounds contained in the polluted gas are converted into relatively high energy ultraviolet rays having a wavelength of less than 300 nm. Strongly alkaline electrolyzed water and strong acid electrolyzed water selectively sprayed with The resulting unstable intermediate product is neutralized and decomposed with strong alkaline electrolyzed water and strongly acidic electrolyzed water, so that the treatment time is short and a large-scale apparatus is not required.
An organic compound that cannot be decomposed by ultraviolet irradiation can be decomposed to a lower level by spraying strong alkaline electrolyzed water or strongly acidic electrolyzed water. Furthermore, strong alkaline electrolyzed water and strongly acidic electrolyzed water are harmless to the human body, so there is no fear of polluting the environment.
[0041]
According to the invention which concerns on Claim 4, decomposition | disassembly of the organic compound in an ultraviolet decomposition unit is accelerated | stimulated, and processing time can be shortened further.
According to the fifth aspect of the invention, the time during which the pollutant gas stays in the decomposition cell is lengthened, and the intensity of ultraviolet irradiation with respect to the pollutant gas is increased, so that the decomposition efficiency is further improved.
According to the sixth aspect of the present invention, the pollutant gas is irradiated with ultraviolet rays uniformly and with high intensity, so that the organic compound decomposition efficiency is good.
According to the seventh aspect of the invention, since the ultraviolet light having a short wavelength is irradiated to the contaminated gas without being blocked by the protective cylinder, the organic compound can be decomposed in a short time.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for decomposing gaseous organic compounds showing an embodiment of the present invention.
FIG. 2 is a sectional side view of a decomposition cell.
FIG. 3 is a cross-sectional plan view of a decomposition cell
FIG. 4 is a diagram showing the measurement results of contamination concentration in Test 1
FIG. 5 is a diagram showing pH measurement results in Test 1
FIG. 6 is a diagram showing the result of measuring the contamination concentration in Test 2
FIG. 7 is a diagram showing pH measurement results in Test 2
FIG. 8 is a graph showing the change over time of the organic compound concentration in Test 3.
FIG. 9 is a graph showing the change over time in the intermediate product concentration in Test 3.
FIG. 10 is a graph showing the change over time in the organic compound concentration in Test 4.
FIG. 11 is a graph showing the change over time in the concentration of intermediate product compounds in Test 4.
FIG. 12 is a graph showing the change over time in the organic compound concentration in Test 5.
FIG. 13 is a graph showing the change over time in the intermediate product concentration in Test 5.
FIG. 14 is a graph showing changes with time in organic compound concentration in Test 6;
FIG. 15 is a graph showing changes with time in organic compound concentration in Test 6;
FIG. 16 is a graph showing changes with time in organic compound concentration in Test 7;
FIG. 17 is a graph showing the change over time in the intermediate product concentration in Test 7;
FIG. 18 is a graph showing the change over time in the organic compound concentration in Test 8.
FIG. 19 is a graph showing the change over time in the intermediate product concentration in Test 8.
FIG. 20 is a graph showing the change over time in organic compound concentration in Test 9;
FIG. 21 is a graph showing the change over time in the intermediate product concentration in Test 9.
FIG. 22 is a schematic diagram of a test apparatus used in Test 10 to Test 15.
FIG. 23 is a graph showing measurement results of TCE concentration in Test 10;
FIG. 24 is a diagram showing a calculation result of a TCE decomposition rate in Test 10;
FIG. 25 is a diagram showing measurement results of PCE concentration in Test 11;
FIG. 26 is a diagram showing the calculation result of the PCE decomposition rate in Test 11;
FIG. 27 is a graph showing measurement results of cis-1,2-DCE concentration in Test 12;
FIG. 28 is a diagram showing calculation results of cis-1,2-DCE decomposition rate in Test 12;
FIG. 29 is a graph showing measurement results of monochlorobenzene concentration in Test 13;
FIG. 30 is a diagram showing the calculation result of the monochlorobenzene decomposition rate in Test 13;
FIG. 31 is a graph showing measurement results of ethyl acetate concentration in Test 14;
FIG. 32 is a graph showing the calculation result of the ethyl acetate decomposition rate in Test 14;
FIG. 33 is a graph showing the measurement results of toluene concentration in Test 15;
FIG. 34 is a schematic diagram of a test apparatus used in Test 16.
FIG. 35 is a graph showing the TCE concentration and TCE decomposition rate measured in Test 16;
FIG. 36 is a side sectional view of a test cell used in Test 17.
FIG. 37 is a cross-sectional plan view of the test cell used in Test 17
FIG. 38 is a graph showing the TCE decomposition rate in Test 17
FIG. 39 is a schematic diagram of an apparatus used for Test 18 to Test 20.
FIG. 40 is a graph showing the change over time in the TCE concentration in Test 18;
FIG. 41 is a graph showing the change over time in the PCE concentration in Test 19;
FIG. 42 is a graph showing the change over time in the cis-1,2-DCE concentration in Test 20;
FIG. 43 is a graph showing changes in CMMS concentration in Test 21.
[Explanation of symbols]
1 UV decomposition unit
2 Scrubber
3 Activated carbon adsorption unit
4 Electrolyzed water generator
5 Low pressure mercury lamp
6 Disassembly cell
7 Gas inlet
8 Gas outlet
9 Acidic electrolyzed water supply pipe
10 Alkaline electrolyzed water supply pipe
11 Circulation pipe
12 Pump
13 Drainage channel
14 Wastewater neutralization tank
15 fans
16 Exhaust pipe
17 Mixture tank
18 UV lamp
19 Test cell
20 VOC sensor
21 Atomizer
22 Sampling port
23 Tedlar Bag
24 pump
25 pH measuring device

Claims (7)

有機化合物を含有する汚染ガスに、波長300nm未満の紫外線を照射すると共に、酸性電解水供給パイプ及びアルカリ電解水供給パイプがそれぞれバルブを介して接続され、強アルカリ電解水及び強酸性電解水を選択的に噴霧して前記有機化合物を分解する紫外線分解ユニットと、前記酸性電解水供給パイプ及び前記アルカリ電解水供給パイプそれぞれバルブを介して接続され、前記有機化合物が分解されて生成された中間生成物に、強アルカリ電解水及び強酸性電解水を選択的に噴霧して前記中間生成物を中和し分解する中間生成物処理装置とを備えたことを特徴とするガス状有機化合物の分解装置。Irradiate ultraviolet rays with a wavelength of less than 300 nm to polluted gases containing organic compounds, and acid electrolyzed water supply pipes and alkaline electrolyzed water supply pipes are connected via valves, respectively, to select strong alkaline electrolyzed water and strong acidic electrolyzed water manner and the spray to the organic compound decomposing ultraviolet cracking unit, connected via a valve to each of the acidic electrolytic water supply pipe and the alkaline electrolytic water supply pipe, an intermediate of the organic compound is generated is decomposed Decomposing a gaseous organic compound characterized by comprising an intermediate product treatment device for neutralizing and decomposing the intermediate product by selectively spraying the product with strong alkaline electrolyzed water and strong acidic electrolyzed water apparatus. 前記中間生成物処理装置を前記紫外線分解ユニットの中間部に設け請求項1に記載のガス状有機化合物の分解装置。The gaseous organic compound decomposition apparatus according to claim 1, wherein the intermediate product treatment apparatus is provided in an intermediate portion of the ultraviolet decomposition unit. 前記中間生成物処理装置を前記紫外線分解ユニットの下流に接続し請求項1に記載のガス状有機化合物の分解装置。The gaseous organic compound decomposition apparatus according to claim 1, wherein the intermediate product processing apparatus is connected downstream of the ultraviolet decomposition unit. 前記紫外線分解ユニット内の汚染ガスに、強アルカリ電解水及び/又は強酸性電解水が噴霧される請求項3に記載のガス状有機化合物の分解装置。  4. The apparatus for decomposing a gaseous organic compound according to claim 3, wherein strongly alkaline electrolyzed water and / or strongly acidic electrolyzed water is sprayed on the contaminated gas in the ultraviolet decomposition unit. 紫外線分解ユニットは、内部に紫外線照射ランプを設置した分解セルより成り、該分解セルの周壁にガス入口が、前記分解セルの直径に沿って汚染ガスを吹き込むように形成された請求項1乃至4のいずれかに記載のガス状有機化合物の分解装置。  5. The ultraviolet decomposition unit includes a decomposition cell having an ultraviolet irradiation lamp installed therein, and a gas inlet is formed in a peripheral wall of the decomposition cell so as to blow a contaminated gas along the diameter of the decomposition cell. The decomposition apparatus of the gaseous organic compound in any one of. 複数の前記紫外線照射ランプが、前記分解セルの上面に等間隔で吊り下げられた請求項5に記載のガス状有機化合物の分解装置。  The gaseous organic compound decomposition apparatus according to claim 5, wherein the plurality of ultraviolet irradiation lamps are suspended from the upper surface of the decomposition cell at equal intervals. 前記紫外線照射ランプは、保護管が波長172nm以上の紫外線を80%以上透過する合成石英ガラスを素材としたものである請求項5又は6に記載のガス状有機化合物の分解装置。  7. The apparatus for decomposing a gaseous organic compound according to claim 5, wherein the ultraviolet irradiation lamp is made of synthetic quartz glass whose protective tube transmits 80% or more of ultraviolet rays having a wavelength of 172 nm or more.
JP2002098981A 2002-03-28 2002-04-01 Equipment for decomposing gaseous organic compounds Expired - Fee Related JP3699055B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002098981A JP3699055B2 (en) 2002-04-01 2002-04-01 Equipment for decomposing gaseous organic compounds
CNB021555478A CN100551467C (en) 2002-03-28 2002-12-05 The decomposer of organic compound
KR10-2002-0082589A KR100509400B1 (en) 2002-03-28 2002-12-23 System for decomposing organic compound
CA2419857A CA2419857C (en) 2002-03-28 2003-02-26 System for decomposing organic compound
AU2003200768A AU2003200768B2 (en) 2002-03-28 2003-02-28 System for decomposing organic compound
EP08020159A EP2022560A3 (en) 2002-03-28 2003-03-25 System for decomposing organic compound
EP03251880A EP1350561A3 (en) 2002-03-28 2003-03-25 System for decomposing organic compound
US10/397,166 US7364710B2 (en) 2002-03-28 2003-03-27 System for decomposing organic compound
US11/405,428 US7722830B2 (en) 2002-03-28 2006-04-18 System for decomposing organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098981A JP3699055B2 (en) 2002-04-01 2002-04-01 Equipment for decomposing gaseous organic compounds

Publications (2)

Publication Number Publication Date
JP2003290622A JP2003290622A (en) 2003-10-14
JP3699055B2 true JP3699055B2 (en) 2005-09-28

Family

ID=29240713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098981A Expired - Fee Related JP3699055B2 (en) 2002-03-28 2002-04-01 Equipment for decomposing gaseous organic compounds

Country Status (1)

Country Link
JP (1) JP3699055B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211704A (en) * 2004-01-27 2005-08-11 Koken Ltd Continuous air cleaning apparatus
JP2011036772A (en) * 2009-08-10 2011-02-24 Omega:Kk Mechanism for deodorizing and cleaning voc gas
US8890771B2 (en) 2010-01-06 2014-11-18 Apple Inc. Transparent electronic device
CN102688513B (en) * 2011-03-24 2014-03-12 清华大学 Harmful substance removal device and air purification device adopting harmful substance removal device
CN106268237A (en) * 2016-10-20 2017-01-04 湖南野森环保科技有限责任公司 A kind of high-concentration industrial waste gas purification discharge tower
WO2020262478A1 (en) * 2019-06-28 2020-12-30 ウシオ電機株式会社 Gas treatment method and gas treatment device

Also Published As

Publication number Publication date
JP2003290622A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
US7722830B2 (en) System for decomposing organic compound
JP4222786B2 (en) Deodorizing / purifying method and apparatus for exhaust or smoke
US6716399B2 (en) Apparatus for decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds
CA2350697C (en) Apparatus for treating gas containing substance to be decomposed and method of treating its gas
US6538170B2 (en) Polluted soil remediation apparatus, polluted soil remediation method, pollutant degrading apparatus and pollutant degrading method
JP3699055B2 (en) Equipment for decomposing gaseous organic compounds
KR100502946B1 (en) Method of treating substance to be degraded and its apparatus
US20020036174A1 (en) Purifying apparatus for contaminated water and ground water and method thereof
JPH09234338A (en) Photolysis of organochlorine compound
WO2002060820A2 (en) Photooxidation water treatment device
JP3688651B2 (en) Liquid organic compound decomposition equipment
JP3739169B2 (en) Organochlorine compound decomposition equipment
JP3501764B2 (en) Repair device and method for soil containing contaminants
JPH11192418A (en) Treatment of waste gas containing organic solvent and device therefor
JP3466965B2 (en) Method for decomposing halogenated aliphatic hydrocarbon compound or aromatic halogenated hydrocarbon compound, apparatus used therefor, method for purifying exhaust gas, and apparatus used therefor
JP2005103519A (en) Method and apparatus for decomposing pollutant
JP2001062288A (en) Method and device for decomposing pollutant
JP2004114005A (en) Method of purifying polluted water
JP2001246222A (en) Deodorizing apparatus
JP2004188396A (en) Decomposition method for decomposing material, and decomposition apparatus used therefor
JPH11114362A (en) Treatment of discharged gas and soot and device therefor
JP2005305312A (en) Multistage treatment apparatus for polluted water
JP2004351280A (en) Contaminated water purification method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Ref document number: 3699055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees