JP2003286631A - High bulk density flame-resistant fiber spun yarn woven fabric and carbon fiber spun yarn woven fabric, and method for producing them - Google Patents

High bulk density flame-resistant fiber spun yarn woven fabric and carbon fiber spun yarn woven fabric, and method for producing them

Info

Publication number
JP2003286631A
JP2003286631A JP2002091449A JP2002091449A JP2003286631A JP 2003286631 A JP2003286631 A JP 2003286631A JP 2002091449 A JP2002091449 A JP 2002091449A JP 2002091449 A JP2002091449 A JP 2002091449A JP 2003286631 A JP2003286631 A JP 2003286631A
Authority
JP
Japan
Prior art keywords
spun yarn
flame
woven fabric
bulk density
yarn woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002091449A
Other languages
Japanese (ja)
Other versions
JP3934974B2 (en
Inventor
Shintaro Tanaka
慎太郎 田中
Yusuke Takami
祐介 高見
Kenji Shimazaki
賢司 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2002091449A priority Critical patent/JP3934974B2/en
Publication of JP2003286631A publication Critical patent/JP2003286631A/en
Application granted granted Critical
Publication of JP3934974B2 publication Critical patent/JP3934974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high bulk density flame-retardant fiber spun yarn woven fabric which is flexible, has an excellent property for passing through a process having the curves of rollers, or the like, and can be stored in a scroll-like shape, and to provide a carbon fiber spun yarn woven fabric which is flexible and thin and has a low electric resistance value in the thickness direction. <P>SOLUTION: The high bulk density flame-resistance fiber spun yarn woven fabric is characterized by having a flame-resistance fiber content of ≥90 wt.% and a bulk density of 0.6 to 1.1 g/cm<SP>3</SP>, when a load of 2.8 kPa is added in the thickness direction, and the carbon fiber spun yarn woven fabric is characterized by having a thickness of 0.1 to 0.5 mm, a bending resistance of 5 to 25 mNcm, and a bulk density of 0.35 to 0.6 g/cm<SP>3</SP>, when a load of 2.8 kPa is added in the thickness direction. Methods for producing these woven fabrics are also provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、柔軟で折れしわが
発生しにくい高嵩密度耐炎繊維紡績糸織物、及び厚さ方
向の電気抵抗値が低く、固体高分子型燃料電池用ガス拡
散電極に好適に用いられる炭素繊維紡績糸織物、並びに
それらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high bulk density flame-resistant fiber spun yarn fabric that is flexible and does not easily cause creases, and a gas diffusion electrode for a polymer electrolyte fuel cell that has a low electric resistance value in the thickness direction. The present invention relates to a carbon fiber spun yarn fabric that is preferably used, and a method for producing the same.

【0002】[0002]

【従来の技術】通電性、ガス拡散性を有し、化学的安定
性に優れた特性を有するシート状の炭素材料を、燃料電
池用のガス拡散電極として用いる応用開発が進められて
いる。中でも固体高分子型燃料電池は、ガス拡散電極、
高分子電解質膜、セパレータを接合したセルを、用途に
応じて数十〜数百枚積層する必要があることから、燃料
電池を小型化するためには、薄く、強度の高い炭素材料
が求められている。また、燃料電池内において、ガス拡
散電極の表面に担持された触媒にて生じた電子は、ガス
拡散電極を厚さ方向に通過して、反対側のセパレータへ
と移動する。このため、ガス拡散電極には厚さ方向の通
電性が高いことも求められている。
2. Description of the Related Art Application and development of a sheet-like carbon material having electric conductivity, gas diffusivity and excellent chemical stability as a gas diffusion electrode for a fuel cell is under way. Among them, polymer electrolyte fuel cells are gas diffusion electrodes,
Since it is necessary to stack several tens to several hundreds of cells bonded with a polymer electrolyte membrane and a separator depending on the application, a thin and high-strength carbon material is required to miniaturize a fuel cell. ing. Further, in the fuel cell, electrons generated by the catalyst carried on the surface of the gas diffusion electrode pass through the gas diffusion electrode in the thickness direction and move to the separator on the opposite side. Therefore, the gas diffusion electrode is also required to have high electrical conductivity in the thickness direction.

【0003】従来、このような炭素材料としては、炭素
成形体、炭素繊維織物等が知られている。
Conventionally, as such a carbon material, a carbon molded body, a carbon fiber woven fabric and the like have been known.

【0004】炭素成形体は、シート状で高嵩密度であ
り、表面平滑性が高く、比較的電気抵抗値の低い材料で
ある。これは例えば、炭素繊維チョップを抄造した後、
フェノール樹脂等でバインディング、シート化し、更に
これを炭素化することにより得られる炭素繊維強化炭素
製シート(C/Cペーパー)に代表される(特許第25
84497号公報、特開昭63−222078号公報な
ど)。
The carbon molding is a sheet-like material having a high bulk density, a high surface smoothness, and a relatively low electric resistance value. This is, for example, after making a carbon fiber chop,
It is represented by a carbon fiber reinforced carbon sheet (C / C paper) obtained by binding and sheeting with a phenol resin or the like and then carbonizing the sheet (Patent No. 25).
No. 84497, JP-A No. 63-222078, etc.).

【0005】しかし、この炭素成形体は、金型を用いた
プレス成形によって成形されるため、厚さ精度と表面平
滑性に優れている反面、柔軟性に乏しいという問題があ
った。このため、ローラー等の曲げを必要とする工程を
通すことが出来ず、長いシートを必要とする用途には使
用できなかった。また保管時にも巻物状に出来ないた
め、適当な寸法に裁断せざるを得ず、巻物で使用する場
合よりも無駄が生じやすいという問題があった。また、
この炭素成形体は脆性が高く、運搬や加工の際に生じる
衝撃等により、容易に破損が起きるという問題があっ
た。さらに、比較的電気抵抗値が低いとはいうものの炭
素化度の低い樹脂が存在したり、使用する炭素繊維の繊
維長が短く、厚さ方向を向いた繊維が少ないために、電
極材料として用いるには電気抵抗値が高いという問題も
あった。
However, since this carbon molded body is molded by press molding using a mold, it has excellent thickness accuracy and surface smoothness, but has a problem of poor flexibility. For this reason, it was not possible to pass through a process requiring bending such as a roller, and it could not be used for applications requiring a long sheet. Further, since it cannot be formed into a roll shape even during storage, it has no choice but to cut it into an appropriate size, which is more wasteful than when it is used as a roll. Also,
This carbon molded body has a high brittleness and has a problem that it is easily damaged by an impact generated during transportation or processing. In addition, since there is a resin with a low carbonization degree even though it has a relatively low electric resistance value, or the carbon fiber used has a short fiber length and few fibers oriented in the thickness direction, it is used as an electrode material. Also had the problem of high electrical resistance.

【0006】この炭素成形体に比較して、炭素繊維織物
は柔軟で取扱いやすい炭素材料である。炭素繊維織物に
は、フィラメント織物(特開平4−281037号公
報、特開平7−118988号公報など)と、紡績糸織
物(特開平10−280246号公報など)がある。こ
れらは、巻物状にできる程度に柔らかく、保管や連続的
に用いる際に取り扱い性が良いことがその特徴として挙
げられる。
Compared with this carbon molded body, the carbon fiber woven fabric is a carbon material which is soft and easy to handle. Carbon fiber woven fabrics include filament woven fabrics (JP-A-4-281037, JP-A-7-118988, etc.) and spun yarn fabrics (JP-A-10-280246, etc.). These are characterized in that they are soft enough to be rolled and have good handleability during storage or continuous use.

【0007】フィラメント織物は、種々のフィラメント
数の炭素繊維束を用いて織物の形態にしたものである。
このフィラメント織物を構成する炭素繊維のほとんど
は、その繊維軸方向が織物面方向と平行であるため、織
物面方向の電気抵抗値は低いが、厚さ方向の電気抵抗値
は高いという問題がある。
The filament woven fabric is formed by using carbon fiber bundles having various numbers of filaments.
Most of the carbon fibers that make up this filament woven fabric have a low electrical resistance value in the fabric surface direction, but a high electrical resistance value in the thickness direction, because the fiber axis direction is parallel to the woven surface direction. .

【0008】紡績糸織物は、炭素繊維の前駆体である耐
炎繊維を紡績糸織物とし、これを炭素化することによっ
て得る。この炭素繊維紡績糸織物は、一般的にフィラメ
ント織物に比べ柔軟である。また、紡績糸には撚りがか
かっているため、例えば二枚の平板電極で挟んで厚さ方
向に通電した場合、両電極に接する単繊維の数がフィラ
メント織物よりも多く、結果として厚さ方向の通電性に
優れた材料を得る事ができる。また、製造コストも比較
的安価である。
The spun yarn woven fabric is obtained by carbonizing the spun yarn woven fabric using flame resistant fibers which are the precursors of carbon fibers. The carbon fiber spun yarn woven fabric is generally softer than the filament woven fabric. Further, since the spun yarn is twisted, for example, when sandwiched between two flat plate electrodes and energized in the thickness direction, the number of single fibers in contact with both electrodes is larger than that of the filament woven fabric, and as a result, in the thickness direction. It is possible to obtain a material having excellent electrical conductivity. Also, the manufacturing cost is relatively low.

【0009】しかしながら、このような利点を有する炭
素繊維紡績糸織物も、従来のものは固体高分子型燃料電
池用ガス拡散電極として用いるには嵩密度が低く、未だ
厚さ方向の電気抵抗値が十分に低いものではなかった。
However, the carbon fiber spun yarn woven fabric having such advantages is also low in bulk density for use as a gas diffusion electrode for a polymer electrolyte fuel cell, and still has an electric resistance value in the thickness direction. It wasn't low enough.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するために行われたものであり、その目的は柔軟
で、ローラー等の曲げを有する工程の通過性に優れ、巻
物状に保管することができ、炭素繊維紡績糸織物の前駆
体として有用な高嵩密度耐炎繊維紡績糸織物を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its purpose is to provide flexibility, passability in a process having a bending such as a roller, and a roll shape. It is an object of the present invention to provide a high bulk density flame resistant fiber spun yarn fabric that can be stored and is useful as a precursor of a carbon fiber spun yarn fabric.

【0011】また本発明の目的は、柔軟であることに加
え、薄く、しかも厚さ方向の電気抵抗値が低い固体高分
子型燃料電池の電極材料として好適な炭素繊維紡績糸織
物を提供することにある。
Another object of the present invention is to provide a carbon fiber spun yarn fabric suitable as an electrode material for a polymer electrolyte fuel cell, which is thin and has a low electric resistance in the thickness direction in addition to being flexible. It is in.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明は、以下に記載するものである。
The present invention which solves the above-mentioned problems is described below.

【0013】〔1〕 耐炎繊維含有率が90質量%以上
であり、かつ厚さ方向に2.8kPaの荷重を負荷した
ときの嵩密度が0.6〜1.1g/cm3であることを
特徴とする高嵩密度耐炎繊維紡績糸織物。
[1] The flame resistant fiber content is 90% by mass or more, and the bulk density is 0.6 to 1.1 g / cm 3 when a load of 2.8 kPa is applied in the thickness direction. High bulk density flame resistant fiber spun yarn woven fabric featuring.

【0014】〔2〕 りん含有率が100〜500pp
mである〔1〕記載の高嵩密度耐炎繊維紡績糸織物。
[2] Phosphorus content is 100 to 500 pp
The high-bulk-density flame-resistant fiber spun yarn woven fabric according to [1], which is m.

【0015】〔3〕 限界酸素指数(LOI)が30〜
60である〔1〕または〔2〕記載の高嵩密度耐炎繊維
紡績糸織物。
[3] Limiting oxygen index (LOI) is 30 to
The high bulk density flame-resistant fiber spun yarn woven fabric according to [1] or [2], which is 60.

【0016】〔4〕 引張強度が10N/cm以上であ
る〔1〕〜〔3〕のいずれか1項に記載の高嵩密度耐炎
繊維紡績糸織物。
[4] The high bulk density flame resistant spun yarn woven fabric according to any one of [1] to [3], which has a tensile strength of 10 N / cm or more.

【0017】〔5〕 耐炎繊維がポリアクリロニトリル
系耐炎繊維である〔1〕〜〔4〕のいずれか1項に記載
の高嵩密度耐炎繊維紡績糸織物。
[5] The high bulk density flame resistant fiber spun yarn woven fabric according to any one of [1] to [4], wherein the flame resistant fiber is a polyacrylonitrile flame resistant fiber.

【0018】〔6〕 耐炎繊維の比重が1.30〜1.
39である〔1〕〜〔5〕のいずれか1項に記載の高嵩
密度耐炎繊維紡績糸織物。
[6] The specific gravity of the flame resistant fiber is 1.30 to 1.
39. The high bulk density flame resistant fiber spun yarn woven fabric according to any one of [1] to [5], which is 39.

【0019】〔7〕 耐炎繊維含有率が90質量%以上
である耐炎繊維紡績糸織物に、温度200〜360℃、
圧力1〜100MPaの条件で圧縮処理を行うことを特
徴とする〔1〕〜〔6〕のいずれか1項に記載の高嵩密
度耐炎繊維紡績糸織物の製造方法。
[7] Flame resistant fiber spun yarn fabric having a flame resistant fiber content of 90% by mass or more, at a temperature of 200 to 360 ° C.
The method for producing a high bulk density flame resistant spun yarn woven fabric according to any one of [1] to [6], wherein the compression treatment is performed under a pressure of 1 to 100 MPa.

【0020】〔8〕 厚さ方向に2.8kPaの荷重を
負荷したときの圧縮処理後の耐炎繊維紡績糸織物の嵩密
度が、0.6〜1.1g/cm3である〔7〕記載の高
嵩密度耐炎繊維紡績糸織物の製造方法。
[8] Description of [7], wherein the bulk density of the flame resistant spun yarn fabric after compression treatment when a load of 2.8 kPa is applied in the thickness direction is 0.6 to 1.1 g / cm 3. A method for producing a high bulk density flame-resistant fiber spun yarn woven fabric.

【0021】[0021]

〔9〕 厚さ方向に2.8kPaの荷重を
負荷したときの嵩密度が0.35〜0.6g/cm3
厚さが0.1〜0.5mmであって、かつ剛軟度が5〜
25mNcmであることを特徴とする炭素繊維紡績糸織
物。
[9] The bulk density when a load of 2.8 kPa is applied in the thickness direction is 0.35 to 0.6 g / cm 3 ,
The thickness is 0.1 to 0.5 mm and the bending resistance is 5 to
A carbon fiber spun yarn woven fabric, which is 25 mNcm.

【0022】〔10〕 引張強度が1N/cm以上であ
[10] Tensile strength is 1 N / cm or more

〔9〕記載の炭素繊維紡績糸織物。The carbon fiber spun yarn woven fabric according to [9].

【0023】〔11〕 厚さ方向に10kPaの荷重を
負荷したときの厚さ方向の電気抵抗値が4mΩ以下であ
[11] The electrical resistance value in the thickness direction is 4 mΩ or less when a load of 10 kPa is applied in the thickness direction.

〔9〕または〔10〕記載の炭素繊維紡績糸織物。The carbon fiber spun yarn woven fabric according to [9] or [10].

【0024】〔12〕 炭素微粉末発生量が25mg/
g以下である
[12] Carbon fine powder generation amount is 25 mg /
g or less

〔9〕〜〔11〕のいずれか1項記載の炭
素繊維紡績糸織物。
The carbon fiber spun yarn woven fabric according to any one of [9] to [11].

【0025】〔13〕 〔1〕〜〔6〕のいずれか1項
に記載の高嵩密度耐炎繊維紡績糸織物を、不活性ガス雰
囲気下で1000℃以上の温度で処理することを特徴と
する炭素繊維紡績糸織物の製造方法。
[13] The high bulk density flame resistant fiber spun yarn woven fabric according to any one of [1] to [6] is treated at a temperature of 1000 ° C. or higher under an inert gas atmosphere. A method for producing a carbon fiber spun yarn fabric.

【0026】[0026]

【発明の実施の形態】本発明の高嵩密度耐炎繊維紡績糸
織物は、高嵩密度で柔軟な織物とするために、耐炎繊維
含有率を90質量%以上とする。耐炎繊維とは、プリカ
ーサ繊維を耐炎化処理することによって得られる繊維を
いう。耐炎繊維含有率は95質量%以上であることが好
ましく、さらには98.5質量%以上であることが最適
である。耐炎繊維以外の成分が少ないほど高嵩密度耐炎
繊維紡績糸織物は柔軟性が高い傾向にある。また、高嵩
密度耐炎繊維紡績糸織物を炭化した場合に得られる炭素
繊維紡績糸織物も耐炎繊維以外の成分が少ないほど柔軟
なものとなる傾向にある。
BEST MODE FOR CARRYING OUT THE INVENTION The high bulk density flame resistant fiber spun yarn woven fabric of the present invention has a flame resistant fiber content of 90% by mass or more in order to obtain a high bulk density and flexible woven fabric. The flame resistant fiber means a fiber obtained by subjecting the precursor fiber to a flame resistance treatment. The flame resistant fiber content is preferably 95% by mass or more, and more preferably 98.5% by mass or more. The smaller the amount of components other than the flame resistant fiber, the higher the bulk density flame resistant fiber spun yarn woven fabric tends to be. Further, a carbon fiber spun yarn woven fabric obtained by carbonizing a high bulk density flame resistant spun yarn woven fabric tends to be softer as the amount of components other than the flame resistant fiber is smaller.

【0027】本発明の高嵩密度耐炎繊維紡績糸織物は、
厚さ方向に2.8kPaの荷重を負荷したときの嵩密度
が0.6〜1.1g/cm3である。嵩密度は0.62
〜1.08g/cm3が好ましく、0.65〜0.1.
05g/cm3がより好ましい。嵩密度がこの範囲外で
ある場合、引張強度等の物性と柔軟性のバランスを確保
することができない。特に嵩密度が0.6g/cm3
満の場合、嵩高くなるために織物の賦形性が低下する。
さらに本発明の高嵩密度耐炎繊維紡績糸織物を炭素化し
て得た炭素繊維紡績糸織物を、燃料電池用ガス拡散電極
として用いた場合には、嵩密度が低いと通電性が低下
し、嵩密度が高いとガス拡散が困難となり、電池性能低
下の原因となる。
The high bulk density flame resistant spun yarn woven fabric of the present invention comprises:
The bulk density is 0.6 to 1.1 g / cm 3 when a load of 2.8 kPa is applied in the thickness direction. Bulk density is 0.62
Preferably ~1.08g / cm 3, 0.65~0.1.
05 g / cm 3 is more preferable. When the bulk density is out of this range, it is impossible to secure the balance between physical properties such as tensile strength and flexibility. In particular, when the bulk density is less than 0.6 g / cm 3 , the bulkiness is increased and the shapeability of the woven fabric is deteriorated.
Furthermore, when the carbon fiber spun yarn fabric obtained by carbonizing the high bulk density flame-resistant fiber spun yarn fabric of the present invention is used as a gas diffusion electrode for a fuel cell, when the bulk density is low, the electrical conductivity is lowered, and If the density is high, gas diffusion becomes difficult, which causes deterioration of battery performance.

【0028】高嵩密度耐炎繊維紡績糸織物の厚さは0.
1〜0.5mmであることが好ましい。
The high bulk density flame resistant fiber spun yarn fabric has a thickness of 0.
It is preferably 1 to 0.5 mm.

【0029】高嵩密度耐炎繊維紡績糸織物は、りん含有
率を100〜500ppmとすることが好ましい。より
好ましくは120〜450ppm、最も好ましくは15
0〜350ppmである。りんを含有することにより、
紡績糸織物の加工性が向上し、耐熱酸化性が高められ
る。りん含有率が100ppm未満の場合、耐熱酸化性
が低くなるため高温圧縮処理により繊維強度が低下し、
高嵩密度耐炎繊維紡績糸織物の強度が低下する傾向にあ
る。りん含有率が500ppmを超える場合にも、繊維
の脆性が高くなるため、耐炎繊維紡績糸織物の強度が低
下する傾向にある。
The high bulk density flame resistant spun yarn woven fabric preferably has a phosphorus content of 100 to 500 ppm. More preferably 120 to 450 ppm, most preferably 15
It is 0 to 350 ppm. By containing phosphorus,
The processability of the spun yarn fabric is improved and the thermal oxidation resistance is enhanced. When the phosphorus content is less than 100 ppm, the thermal oxidation resistance is low and the fiber strength is lowered by the high temperature compression treatment.
The strength of the high bulk density flame resistant spun yarn woven fabric tends to decrease. Even when the phosphorus content exceeds 500 ppm, the brittleness of the fiber becomes high, so that the strength of the flame resistant spun yarn woven fabric tends to decrease.

【0030】高嵩密度耐炎繊維紡績糸織物は、臨界酸素
指数(以下LOI)が30〜60であることが好まし
く、33〜55がより好ましく、35〜50が最も好ま
しい。
The high bulk density flame-resistant fiber spun yarn woven fabric preferably has a critical oxygen index (LOI) of 30 to 60, more preferably 33 to 55, and most preferably 35 to 50.

【0031】高嵩密度耐炎繊維紡績糸織物の引張強度は
10N/cm以上であることが好ましく、さらには10
〜40N/cm、より好ましくは15〜35N/cm、
最も好ましくは20〜30N/cmである。引張強度が
低い場合、充分な強度が得られず、取り扱い性に劣る。
また、単位断面積当たりの引張強度としては4〜16M
Paであることが好ましく、より好ましくは6〜15M
Pa、最も好ましくは8〜14MPaであることであ
る。用いる耐炎繊維の比重や、りん含有率を調整するこ
とによってこの範囲の引張強度とすることができる。
The high bulk density flame resistant fiber spun yarn woven fabric preferably has a tensile strength of 10 N / cm or more, more preferably 10 N / cm or more.
-40 N / cm, more preferably 15-35 N / cm,
Most preferably, it is 20 to 30 N / cm. When the tensile strength is low, sufficient strength cannot be obtained and the handleability is poor.
Further, the tensile strength per unit cross-sectional area is 4 to 16M.
Pa is preferable, and 6 to 15 M is more preferable.
Pa, most preferably 8 to 14 MPa. The tensile strength in this range can be obtained by adjusting the specific gravity of the flame resistant fiber used and the phosphorus content.

【0032】以下、本発明の高嵩密度耐炎繊維紡績糸織
物の製造方法について説明する。
The method for producing the high bulk density flame resistant spun fiber woven fabric of the present invention will be described below.

【0033】耐炎繊維の原料となるプリカーサ繊維とし
ては、ポリアクリロニトリル系、ピッチ系、カイノール
系、レーヨン系などのプリカーサ繊維として従来公知の
いずれの繊維でも用いることができる。強力の高い紡績
糸織物とするためには、強伸度の高いポリアクリロニト
リル系繊維が最も好適である。
As the precursor fiber which is a raw material of the flame resistant fiber, any fiber known as a precursor fiber such as polyacrylonitrile type, pitch type, kinol type and rayon type precursor fiber can be used. Polyacrylonitrile-based fibers having a high strength and elongation are most suitable for producing a high-strength spun yarn fabric.

【0034】製造原料のプリカーサ繊維としてポリアク
リロニトリル系繊維を用いる場合には、アクリロニトリ
ルモノマー単位を90〜98質量%、コモノマー単位を
2〜10質量%含有するものが好ましい。コモノマーと
しては、アクリル酸メチルエステル、アクリルアミド、
イタコン酸等のビニルモノマーが例示できる。
When a polyacrylonitrile fiber is used as the precursor fiber as a raw material for production, it is preferable that the polyacrylonitrile fiber contains 90 to 98% by mass of acrylonitrile monomer unit and 2 to 10% by mass of comonomer unit. As comonomers, acrylic acid methyl ester, acrylamide,
Vinyl monomers such as itaconic acid can be exemplified.

【0035】プリカーサ繊維の繊度は、0.6〜3.3
dtexが好ましく、特に0.7〜3.0dtexの範
囲が好ましい。繊度が0.6dtex未満の場合は、後
に述べる耐炎化処理時に蓄熱切断が生じ易く、繊度が
3.3dtexを超える場合は、耐炎化処理に長時間を
要し、耐炎繊維の強度が劣化する傾向にある。
The fineness of the precursor fiber is 0.6 to 3.3.
dtex is preferable, and a range of 0.7 to 3.0 dtex is particularly preferable. When the fineness is less than 0.6 dtex, heat storage cutting is likely to occur during the flameproofing treatment described later, and when the fineness exceeds 3.3 dtex, the flameproofing treatment requires a long time and the strength of the flameproof fiber tends to deteriorate. It is in.

【0036】耐炎繊維は、プリカーサ繊維を空気中、高
温で処理することにより環化反応を生じさせ、酸素結合
量を増加させて不融化、難燃化させる耐炎化処理によっ
て得ることができる。より具体的には、例えばポリアク
リロニトリル系繊維を、空気中、初期耐炎化温度220
〜250℃で10分間耐炎化処理後、昇温速度0.2〜
0.9℃/分で、最高温度250〜280℃まで加熱
し、この温度で5〜30分間保持する。
The flame-resistant fiber can be obtained by a flame-proofing treatment in which the precursor fiber is treated in air at a high temperature to cause a cyclization reaction to increase the amount of oxygen bonds to make it infusible and flame-retardant. More specifically, for example, a polyacrylonitrile-based fiber is used in the air at an initial flame resistance temperature of 220.
~ After heating treatment at 250 ° C for 10 minutes, temperature rising rate is 0.2 ~
Heat at a maximum temperature of 250-280 ° C at 0.9 ° C / min and hold at this temperature for 5-30 minutes.

【0037】このようにして得られる耐炎繊維は、臨界
酸素指数(以下LOI)が30〜60であることが好ま
しく、33〜55がより好ましく、35〜50が最も好
ましい。
The flame-resistant fiber thus obtained preferably has a critical oxygen index (LOI) of 30 to 60, more preferably 33 to 55, and most preferably 35 to 50.

【0038】耐炎繊維の比重は、1.30〜1.39で
あることが好ましい。さらには1.33〜1.39がよ
り好ましく、1.35〜1.39が最も好ましい。耐炎
繊維の比重が1.30未満の場合、炭素化後に炭素微粉
末が生じ易く、また、得られる炭素繊維紡績糸織物の強
度も低下する傾向にある。耐炎繊維比重が1.39を超
える場合、耐炎繊維の単繊維強度及び伸度が低下し、耐
炎繊維を用いて紡績糸織物とする際の加工性が低下する
傾向にある。また、圧縮処理時の繊維間膠着が起こりに
くくなり、炭素化時に織物の厚さが増加する傾向にあ
る。
The specific gravity of the flame resistant fiber is preferably 1.30 to 1.39. Furthermore, 1.33 to 1.39 are more preferable, and 1.35 to 1.39 are the most preferable. If the specific gravity of the flame resistant fiber is less than 1.30, fine carbon powder is likely to be generated after carbonization, and the strength of the obtained carbon fiber spun yarn woven fabric tends to decrease. When the specific gravity of the flame resistant fiber exceeds 1.39, the single fiber strength and the elongation of the flame resistant fiber are lowered, and the workability of the spun yarn fabric using the flame resistant fiber tends to be lowered. In addition, inter-fiber sticking during compression is less likely to occur, and the thickness of the woven fabric tends to increase during carbonization.

【0039】耐炎繊維は、その繊度が0.8〜4.4d
texが好ましく、1.0〜3.3dtexの範囲がよ
り好ましい。繊度がこの範囲外では繊維切れが生じ易
く、最終的に炭素繊維紡績糸織物にした場合に炭素微紛
末が生じ易い傾向にある。繊度は、原料のプリカーサ繊
維の繊度、耐炎化処理時のリラックス条件等により調節
できる。
The flame resistant fiber has a fineness of 0.8 to 4.4 d.
tex is preferable, and the range of 1.0 to 3.3 dtex is more preferable. If the fineness is out of this range, fiber breakage is likely to occur, and carbon fine powder tends to be easily produced in the case of finally producing a carbon fiber spun yarn fabric. The fineness can be adjusted by the fineness of the precursor fiber as a raw material, the relaxation condition at the time of flameproofing treatment, and the like.

【0040】このようにして得た耐炎繊維は、定長カッ
トまたはトウリアクターでバイアスカットしてステープ
ルとする。
The flame-resistant fibers thus obtained are stapled by constant length cutting or bias cutting with a tow reactor.

【0041】紡績糸とするための耐炎繊維のステープル
としては、耐炎繊維ステープルのクリンプ率が8〜16
%であることが好ましい。クリンプ率が8%未満の場
合、繊維同士の絡み合いが少ないため、紡績時に糸切れ
を生じ易い。クリンプ率が16%を超える場合、単繊維
強度が低下し、紡績が難しい。
As a staple of flame resistant fiber for forming a spun yarn, the crimp ratio of the flame resistant fiber staple is 8 to 16.
% Is preferable. When the crimping rate is less than 8%, the fibers are less entangled with each other, so that the yarn is easily broken during spinning. If the crimp ratio exceeds 16%, the strength of the single fiber is lowered and spinning is difficult.

【0042】ステープルのクリンプ数は2.4〜5.5
ヶ/cmの範囲が好ましい。クリンプ数が2.4ヶ/c
m未満の場合、紡績時に糸切れを生じ易い。クリンプ数
が5.5ヶ/cmを超える場合、単繊維強度が低下した
り、クリンプ加工時に繊維切れが生じたりする傾向にあ
る。
The number of crimps of the staple is 2.4 to 5.5.
The range of pcs / cm is preferable. 2.4 crimps / c
If it is less than m, yarn breakage is likely to occur during spinning. If the number of crimps is more than 5.5 / cm, the single fiber strength tends to be low, or the fibers may be broken during crimping.

【0043】耐炎繊維ステープルの標準状態の強度は8
〜40mN/dtexの範囲が好ましい。同じく標準状
態での伸度は8〜30%であることが好ましい。強度が
8mN/dtex未満の場合および伸度が8%未満の場
合には、耐炎繊維紡績糸織物製造時の加工性が低下する
傾向にある。
The standard strength of the flame resistant fiber staple is 8
A range of -40 mN / dtex is preferred. Similarly, the elongation in the standard state is preferably 8 to 30%. When the strength is less than 8 mN / dtex and the elongation is less than 8%, the workability during the production of the flame resistant spun yarn woven fabric tends to decrease.

【0044】耐炎繊維ステープルの結節強度は5〜15
mN/dtexの範囲が好ましい。同じく結節伸度は5
〜10%の範囲が好ましい。結節強度が5mN/dte
x未満の場合および結節伸度が5%未満の場合には、耐
炎繊維紡績糸織物製造時の加工性が低下し、更に得られ
る耐炎繊維紡績糸織物の強度が低下する傾向にある。
The knot strength of the flame resistant fiber staple is 5 to 15
A range of mN / dtex is preferred. Similarly, the nodule elongation is 5
The range of 10% is preferable. Nodule strength is 5 mN / dte
When it is less than x or when the knot elongation is less than 5%, the workability during the production of the flame-resistant spun fiber fabric tends to decrease, and the strength of the flame-resistant spun fiber fabric obtained tends to decrease.

【0045】次に、上記耐炎繊維ステープルを用いて単
糸もしくは双糸で構成された紡績糸を作製する。
Next, a spun yarn composed of a single yarn or a double yarn is produced by using the flame resistant fiber staple.

【0046】耐炎繊維紡績糸の上撚り及び下撚り数は2
00〜900回/mが好ましい。撚り数が200回/m
未満の場合、繊維の収束性が低い為、圧縮処理によって
より薄く、嵩密度の高い耐炎繊維紡績糸織物を得る事が
出来るが、紡績糸の強度が低い為、織物加工が困難とな
る。撚り数が900回/mを超える場合、繊維の収束性
が高過ぎる為、圧縮処理によって目標とする嵩密度の耐
炎繊維紡績糸織物が得られにくい。
The number of upper and lower twists of the flame resistant spun yarn is 2
It is preferably from 00 to 900 times / m. Number of twists is 200 times / m
When it is less than the above value, the flame-storing property of the fiber is low, and thus it is possible to obtain a flame-resistant fiber spun yarn woven fabric which is thinner and has a high bulk density by the compression treatment, but the woven fabric processing is difficult due to the low strength of the spun yarn. When the number of twists exceeds 900 turns / m, the fiber convergence is too high, and it is difficult to obtain a flame resistant spun yarn woven fabric having a target bulk density by compression treatment.

【0047】耐炎繊維紡績糸の太さは15〜40番手が
好ましい。太さが15番手を超える場合、得られる織物
は厚くなりやすく、圧縮処理によって目標とする嵩密度
の耐炎繊維紡績糸織物が得られにくい。太さが40番手
未満の場合、紡績糸の強度が低い為、織物加工が困難と
なる。
The thickness of the flame-resistant spun yarn is preferably 15-40. When the thickness exceeds 15th, the resulting woven fabric tends to be thick, and it is difficult to obtain a flame resistant spun yarn woven fabric having a target bulk density by compression treatment. If the thickness is less than 40 count, the strength of the spun yarn is low and it becomes difficult to process the woven fabric.

【0048】次に、この耐炎繊維紡績糸を製織して、耐
炎繊維紡績糸織物を作製する。織り形態については平織
り、綾織り、朱子織りのいずれでもよいが、薄く、目ず
れの少ない織物を得る為には平織りが好ましい。
Next, the flame-resistant fiber spun yarn is woven to prepare a flame-resistant fiber spun yarn woven fabric. The weave form may be plain weave, twill weave, or satin weave, but plain weave is preferred in order to obtain a thin woven fabric with less misalignment.

【0049】耐炎繊維紡績糸織物の織密度は、経緯共に
8〜24本/cmが好ましい。織り密度が8本/cm未
満の場合、織物の賦形性の低下や目付斑を生ずる。24
本/cmを超える場合、圧縮処理によって目標とする嵩
密度の耐炎繊維紡績糸織物が得られにくい。
The woven density of the flame resistant spun yarn woven fabric is preferably 8 to 24 yarns / cm for both the warp and weft. If the weave density is less than 8 yarns / cm, the formability of the woven fabric may be deteriorated and the fabric may have unevenness. 24
If the number of fibers / cm is higher than the value, it is difficult to obtain a flame-resistant spun yarn woven fabric having a target bulk density by the compression treatment.

【0050】耐炎繊維紡績糸織物の目付は100〜30
0g/m2が好ましい。目付が100g/m2未満の場
合、炭素化後の炭素繊維紡績糸織物の強度が低く、取り
扱い性が低下する。また、繊維同志の接点が少なくなる
ため、厚さ方向の電気抵抗値が高くなってしまうという
難点がある。目付が300g/m2を超える場合、薄く
なりにくい。このような高目付の耐炎繊維紡績糸織物を
炭素化しても、得られるのはせいぜい180g/m2
炭素繊維紡績糸織物であり、固体高分子型燃料電池に適
した薄さの炭素繊維紡績糸織物にならないことが多い。
また、厚さ方向の電気抵抗値も高くなる傾向にある。ま
た、目付が高すぎることからガス拡散が困難となり、電
池性能低下の原因となる。
The fabric weight of the flame resistant spun yarn fabric is 100 to 30.
0 g / m 2 is preferred. When the basis weight is less than 100 g / m 2 , the strength of the carbon fiber spun yarn woven fabric after carbonization is low and the handleability is deteriorated. In addition, since the number of contacts between fibers decreases, the electrical resistance in the thickness direction increases. When the basis weight is more than 300 g / m 2 , it is difficult to be thin. Even if such a flame-retardant fiber spun yarn fabric with a high basis weight is carbonized, a carbon fiber spun yarn fabric of 180 g / m 2 is obtained at most, and a carbon fiber spun fabric having a thinness suitable for a polymer electrolyte fuel cell is obtained. Often does not become a thread fabric.
Also, the electric resistance value in the thickness direction tends to increase. Further, since the basis weight is too high, gas diffusion becomes difficult, which causes deterioration of battery performance.

【0051】耐炎繊維紡績糸織物の、厚さ方向に2.8
kPaの荷重を負荷したときの厚さは0.4〜0.8m
mが好ましい。厚さが0.8mmを超える場合、圧縮処
理によって目標とする嵩密度の耐炎繊維紡績糸織物が得
られにくい。
2.8 in the thickness direction of the flame resistant spun yarn fabric.
The thickness when applying a load of kPa is 0.4 to 0.8 m.
m is preferred. When the thickness exceeds 0.8 mm, it is difficult to obtain a flame resistant spun yarn woven fabric having a target bulk density by the compression treatment.

【0052】本発明の高嵩密度耐炎繊維紡績糸織物のり
ん含有率を上記の範囲とするには、下記のりん系有機化
合物を、プリカーサ繊維の紡糸時もしくは耐炎化処理後
に付着させる。
In order to set the phosphorus content of the high bulk density flame resistant fiber spun yarn fabric of the present invention within the above range, the following phosphorus-based organic compounds are attached during the spinning of the precursor fiber or after the flame resistance treatment.

【0053】りん系有機化合物としては、アルキル基又
はアリル基を有するホスフォネート又はホスフェート、
具体的にはトリブチルホスフォネート((C493
4)、トリヒドロキシエチルホスフェート((HOC
2CH23PO4)、トリセチルホスフェート((C16
333PO4)等が例示できる。また、これらのりん系
有機化合物に、アニオン系、カチオン系、又はノニオン
系分散剤を混合してもよい。
As the phosphorus-based organic compound, a phosphonate or phosphate having an alkyl group or an allyl group,
Specifically, tributylphosphonate ((C 4 H 9 ) 3 P
O 4 ), trihydroxyethyl phosphate ((HOC
H 2 CH 2) 3 PO 4 ), tri cetyl phosphate ((C 16
H 33 ) 3 PO 4 ) and the like can be exemplified. Further, anionic, cationic, or nonionic dispersants may be mixed with these phosphorus-based organic compounds.

【0054】その付着量は紡績糸織物加工後の耐炎繊維
紡績糸織物の状態で0.5〜1.5質量%が好ましく、
また、同じく耐炎繊維紡績糸織物のりん含有率で100
〜500ppmとなるよう付着させるのが好ましい。よ
り好ましくは120〜450ppm、最も好ましくは1
50〜350ppmである。
The amount of adhesion is preferably 0.5 to 1.5% by mass in the state of the flame-resistant spun yarn woven fabric after processing the spun yarn woven fabric,
Also, the phosphorus content of the flame resistant spun yarn fabric is 100
It is preferable to attach it so that the concentration becomes about 500 ppm. More preferably 120 to 450 ppm, most preferably 1
It is 50 to 350 ppm.

【0055】りん含有率が100ppm未満の場合、耐
炎繊維の耐熱酸化性が低くなる傾向にあり、繊維が酸化
劣化を起こしやすく、高嵩密度耐炎繊維紡績糸織物の強
度が著しく低下する傾向にある。りん含有率が500p
pmを超える場合には、繊維の脆性が高くなる傾向にあ
り、耐炎繊維紡績糸織物の強度劣化を生じやすい。ま
た、炭素化後にロール状に巻いた場合幅方向に折れしわ
が発生する傾向が強まり、強度の低下や巻姿が悪くなる
傾向にある。また、繊維の脆性が高い場合には炭素化後
に炭素微粉末が発生しやすい。
When the phosphorus content is less than 100 ppm, the heat resistant oxidation resistance of the flame resistant fiber tends to be low, the fiber is prone to oxidative deterioration, and the strength of the high bulk density flame resistant fiber spun yarn woven fabric tends to be remarkably reduced. . Phosphorus content is 500p
If it exceeds pm, the brittleness of the fiber tends to be high, and the strength deterioration of the flame-resistant fiber spun yarn fabric is likely to occur. In addition, when it is wound into a roll after carbonization, the tendency for creases to be generated in the width direction increases, and the strength tends to decrease and the winding shape tends to deteriorate. In addition, when the brittleness of the fiber is high, carbon fine powder is likely to be generated after carbonization.

【0056】また、下記の圧縮処理を行う前に耐炎繊維
紡績糸織物にカルボキシメチルセルロース等の樹脂を少
量付着させてもよいが、付着させないことが好ましい。
樹脂を付着させることにより嵩密度の高い耐炎繊維紡績
糸織物を得ることができるが、一方炭素化後の炭素繊維
紡績糸織物の剛性と脆性が高くなる傾向にある。樹脂の
付着量は多くとも10質量%とする。樹脂の付着量の多
い耐炎繊維紡績糸織物を炭素化して得た炭素繊維紡績糸
織物では、剛軟度が高くなり、ロール状に巻いた場合に
折れて幅方向に折れしわが発生しやすく、しわ部分の強
度が低下する傾向にあり、巻姿も悪くなりやすい。
A small amount of resin such as carboxymethyl cellulose may be attached to the flame-resistant fiber spun yarn fabric before performing the following compression treatment, but it is preferable not to attach it.
A flame-resistant fiber spun yarn woven fabric having a high bulk density can be obtained by attaching a resin, but on the other hand, the carbon fiber spun yarn woven fabric after carbonization tends to have higher rigidity and brittleness. The resin adhesion amount is at most 10% by mass. In the carbon fiber spun yarn fabric obtained by carbonizing the flame-resistant fiber spun yarn fabric with a large amount of resin adhered, the bending resistance becomes high, and when it is wound in a roll, it tends to break and crease in the width direction, The strength of the wrinkled part tends to decrease, and the winding shape tends to deteriorate.

【0057】本発明の高嵩密度耐炎繊維紡績糸織物は、
上記の耐炎繊維紡績糸織物に圧縮処理を行うことにより
得ることができる。
The high bulk density flame-resistant fiber spun yarn fabric of the present invention comprises
It can be obtained by performing compression treatment on the above flame resistant spun fiber fabric.

【0058】圧縮処理は、上記のようにして得られる耐
炎繊維含有率が90質量%以上の低嵩密度の耐炎繊維紡
績糸織物に、温度200〜360℃、圧力1〜100M
Paの条件で圧縮処理を行う。
The compression treatment is carried out on the low bulk density flame-resistant fiber spun yarn fabric having a flame-resistant fiber content of 90% by mass or more obtained as described above, at a temperature of 200 to 360 ° C. and a pressure of 1 to 100 M.
The compression process is performed under the condition of Pa.

【0059】圧縮処理温度は、200〜360℃である
が、さらには220〜320℃、最も好ましくは240
〜280℃で処理することが好ましい。圧縮処理温度が
200℃未満の場合、耐炎繊維同士の膠着が不充分であ
り、炭素化時に厚さの復元が大きく、本発明のような嵩
密度の高い炭素繊維紡績糸織物を得ることが出来ない。
圧縮処理温度が360℃を超える場合、りん含有率を本
発明の範囲内で最大にしても処理時の単繊維の酸化劣化
が著しい。このものを炭素化しても、強度が低く、炭素
微粉末が発生しやすいため、取り扱い性が悪く、好まし
くない。なお、酸化劣化を防ぐために、窒素等の不活性
ガス雰囲気下で圧縮処理を行うことが好ましい。
The compression treatment temperature is 200 to 360 ° C., further 220 to 320 ° C., and most preferably 240.
It is preferred to treat at ~ 280 ° C. When the compression treatment temperature is lower than 200 ° C., the flame-resistant fibers are not sufficiently stuck to each other, the thickness is largely restored during carbonization, and a carbon fiber spun yarn fabric having a high bulk density as in the present invention can be obtained. Absent.
When the compression treatment temperature exceeds 360 ° C., even if the phosphorus content is maximized within the range of the present invention, the oxidative deterioration of the single fiber during the treatment is remarkable. Even if this product is carbonized, its strength is low and carbon fine powder is liable to be generated, resulting in poor handleability, which is not preferable. In order to prevent oxidative deterioration, it is preferable to perform the compression treatment in an atmosphere of an inert gas such as nitrogen.

【0060】圧縮処理圧力は、1〜100MPaである
が、さらには2〜50MPa、最も好ましくは3〜20
MPaとすることが好ましい。圧縮処理圧力が1MPa
未満の場合は圧縮効果が低く、目標とする嵩密度の耐炎
繊維紡績糸織物を得ることが出来ない。また、圧縮処理
圧力が100MPaを超える場合、単繊維の損傷が生
じ、得られる高嵩密度耐炎繊維紡績糸織物の強度低下が
起きる。その結果、炭素化時において、連続炭素化処理
が困難になる。
The compression treatment pressure is 1 to 100 MPa, more preferably 2 to 50 MPa, most preferably 3 to 20 MPa.
It is preferably set to MPa. Compression processing pressure is 1MPa
If it is less than the above range, the compression effect is low, and it is not possible to obtain a flame-resistant spun yarn woven fabric having a target bulk density. Further, when the compression treatment pressure exceeds 100 MPa, the single fiber is damaged, and the strength of the obtained high bulk density flame resistant fiber spun yarn woven fabric occurs. As a result, continuous carbonization becomes difficult during carbonization.

【0061】耐炎繊維紡績糸織物の圧縮処理時間は、上
記条件において好ましくは3分間以内、より好ましくは
0.1秒〜1分間である。3分間よりも長時間圧縮処理
を行っても、厚さ低減効果はそれほど変わらない。圧縮
処理時間が短いほど繊維の損傷を抑制することができ
る。
The compression treatment time of the flame-resistant fiber spun yarn woven fabric is preferably 3 minutes or less, more preferably 0.1 second to 1 minute under the above conditions. Even if the compression treatment is performed for a time longer than 3 minutes, the thickness reduction effect does not change so much. The shorter the compression treatment time, the more the damage to the fibers can be suppressed.

【0062】本発明の製造方法では、圧縮処理後の高嵩
密度耐炎繊維紡績糸織物の厚さ方向に2.8kPaの荷
重を負荷したときの嵩密度が0.6〜1.1g/cm3
となるように上記の条件を適宜選択して圧縮処理を行
う。圧縮処理を施すには、ホットプレスやカレンダーロ
ーラー等を用いることが好ましい。
In the production method of the present invention, the bulk density when the load of 2.8 kPa is applied in the thickness direction of the high bulk density flame resistant spun yarn fabric after compression treatment is 0.6 to 1.1 g / cm 3.
The above conditions are appropriately selected so that the compression processing is performed. To perform the compression treatment, it is preferable to use a hot press, a calendar roller or the like.

【0063】このようにして得られた本発明の高嵩密度
耐炎繊維紡績糸織物は、高嵩密度でありながら薄く、柔
軟で折れしわが発生しにくいので、炭素繊維紡績糸織物
の原料となるのはもちろん、それ自体を耐炎性のシート
状物として用いることができる。本発明の高嵩密度耐炎
繊維紡績糸織物は、熱に弱い成分が少ないため、高温の
条件下でも安定的に使用することができる。例えば、摩
擦材としての機能や耐炎性を付与するための、構造体の
被覆用シート材などの用途に好適に用いることができ
る。
The high bulk density flame-resistant fiber spun yarn woven fabric of the present invention thus obtained is a raw material for the carbon fiber spun yarn woven fabric because it has a high bulk density, is thin, is flexible and hardly causes creases. Of course, it can be used as a flame resistant sheet. The high bulk density flame-resistant fiber spun yarn woven fabric of the present invention has few components vulnerable to heat, and thus can be stably used even under high temperature conditions. For example, it can be suitably used for applications such as a sheet material for covering a structure for imparting a function as a friction material and flame resistance.

【0064】本発明の炭素繊維紡績糸織物は、厚さ方向
に2.8kPaの荷重を負荷したときの嵩密度が0.3
5〜0.6g/cm3であるが、0.37〜0.55g
/cm3が好ましく、0.40〜0.50g/cm3であ
ることが最も好ましい。嵩密度がこの範囲外である場
合、燃料電池用ガス拡散電極として用いたときに電気抵
抗とガスの透過性とのバランスを確保することができな
い。すなわち、嵩密度が0.35g/cm3未満の場合
には通電性が低下し、嵩密度が0.6g/cm3を超え
る場合にはガス拡散が困難となり、電池性能低下の原因
となる。
The carbon fiber spun yarn fabric of the present invention has a bulk density of 0.3 when a load of 2.8 kPa is applied in the thickness direction.
5 to 0.6 g / cm 3 , but 0.37 to 0.55 g
/ Cm 3 is preferable, and 0.40 to 0.50 g / cm 3 is most preferable. If the bulk density is outside this range, it is not possible to secure a balance between electric resistance and gas permeability when used as a gas diffusion electrode for a fuel cell. That is, when the bulk density is less than 0.35 g / cm 3 , the electrical conductivity is lowered, and when the bulk density is more than 0.6 g / cm 3 , gas diffusion becomes difficult, which causes a decrease in battery performance.

【0065】また、本発明の炭素繊維紡績糸織物は、厚
さを0.1〜0.5mmとする。この範囲内では燃料電
池用ガス拡散電極として好適に用いることができる。目
付は60〜180g/m2の範囲が好ましい。
The carbon fiber spun yarn fabric of the present invention has a thickness of 0.1 to 0.5 mm. Within this range, it can be suitably used as a gas diffusion electrode for a fuel cell. The basis weight is preferably in the range of 60 to 180 g / m 2 .

【0066】本発明の炭素繊維紡績糸織物の剛軟度は、
5〜25mNcmである。好ましくは6〜15mNc
m、最適には7〜13mNcmの範囲である。剛軟度が
5mNcm未満の炭素繊維紡績糸織物は、本発明の嵩密
度、厚さの範囲内では実際的ではない。剛軟度が25m
Ncmを超える場合、剛直すぎることからローラーに通
すことが出来ず、連続的な加工が困難である為、取り扱
い性が悪い。また、炭素化後にロール状に巻いた場合、
幅方向に折れしわが発生し、強度の低下や巻姿が悪くな
る。
The bending resistance of the carbon fiber spun yarn fabric of the present invention is
It is 5 to 25 mNcm. Preferably 6 to 15 mNc
m, optimally in the range of 7 to 13 mNcm. A carbon fiber spun yarn fabric having a bending resistance of less than 5 mNcm is not practical within the range of the bulk density and thickness of the present invention. Hardness is 25m
If it exceeds Ncm, it cannot be passed through the roller because it is too rigid, and continuous processing is difficult, resulting in poor handleability. When wound in a roll after carbonization,
Folds and wrinkles occur in the width direction, resulting in reduced strength and poor winding.

【0067】本発明の炭素繊維紡績糸織物の、厚さ方向
に10kPaの荷重を負荷したときの厚さ方向電気抵抗
値は、通電材料として用いる場合は、4.0mΩ以下が
好ましい。さらには3.5mΩ以下が好ましく、最も好
ましくは3.0mΩ以下である。厚さ方向の電気抵抗値
が4.0mΩを超える場合、通電材料として用いた場合
の抵抗値が高くなり発熱するため、炭素材料の脆化が起
こる傾向がある。
The electric resistance value in the thickness direction of the carbon fiber spun yarn woven fabric of the present invention when a load of 10 kPa is applied in the thickness direction is preferably 4.0 mΩ or less when used as a current-carrying material. Further, it is preferably 3.5 mΩ or less, and most preferably 3.0 mΩ or less. When the electric resistance value in the thickness direction exceeds 4.0 mΩ, the resistance value when used as a current-carrying material increases and heat is generated, so that the carbon material tends to be embrittled.

【0068】炭素繊維紡績糸織物の引張強度は1N/c
m以上が好ましい。より好ましくは1〜10N/cmの
範囲である。引張強度が1N/cm未満の場合、連続的
な加工等で炭素繊維紡績糸織物自体に張力をかける場合
に破断し易く、取り扱い性が悪くなる傾向がある。ま
た、断面積あたりの引張強力は、0.3〜4MPaであ
ることが好ましく、さらには1〜3.5MPaがより好
ましく、1.5〜3MPaの範囲が最も好ましい。
The tensile strength of the carbon fiber spun yarn fabric is 1 N / c.
m or more is preferable. The range is more preferably 1 to 10 N / cm. When the tensile strength is less than 1 N / cm, the carbon fiber spun yarn fabric itself tends to be broken and tends to be poor in handleability when tension is applied to the carbon fiber spun yarn fabric itself. Further, the tensile strength per cross-sectional area is preferably 0.3 to 4 MPa, more preferably 1 to 3.5 MPa, and most preferably 1.5 to 3 MPa.

【0069】炭素繊維紡績糸織物の炭素微粉末発生量は
25mg/g以下が望ましい。23mg/g以下がより
好ましく、さらに20mg/g以下が好ましい。炭素微
粉末発生量は、実施例記載の方法により測定した値をい
う。炭素繊維紡績糸織物の加工時に炭素微粉末が発生す
ると、加工工程でのトラブル発生、品質ムラ、工程環境
の汚染の原因となる。更に、炭素微粉末は導電性を有し
ているので、周囲に飛散した場合、電子機器の故障や、
コンセントのショート等の原因となる。本発明では繊維
の脆化を抑えることにより、炭素微粉末発生量を減少さ
せることができる。
The carbon fine powder generation amount of the carbon fiber spun yarn woven fabric is preferably 25 mg / g or less. It is more preferably 23 mg / g or less, further preferably 20 mg / g or less. The amount of carbon fine powder generated refers to a value measured by the method described in Examples. If carbon fine powder is generated during the processing of the carbon fiber spun yarn fabric, it may cause troubles in the processing process, uneven quality, and pollution of the process environment. Furthermore, since carbon fine powder has conductivity, if it scatters into the surroundings, it may cause damage to electronic equipment,
It may cause a short-circuit of the outlet. In the present invention, the generation of carbon fine powder can be reduced by suppressing the brittleness of the fiber.

【0070】また、本発明の炭素繊維紡績糸織物は、本
発明の嵩密度耐炎繊維紡績糸織物を、不活性ガス雰囲気
下で1000℃以上の温度で処理することにより製造す
ることができる。
The carbon fiber spun yarn woven fabric of the present invention can be produced by treating the bulk density flame resistant fiber woven spun yarn fabric of the present invention in an inert gas atmosphere at a temperature of 1000 ° C. or higher.

【0071】炭素化は、窒素、ヘリウム、アルゴン等の
不活性雰囲気下、好ましくは1000〜2500℃で行
う。なお、昇温下で炭素化する場合の昇温速度は200
℃/分以下が好ましく、170℃/分以下がより好まし
い。昇温速度が200℃/分を超える場合、結晶子の成
長速度は向上するが、繊維強度が低下し、炭素微粉末が
多量に発生する。
Carbonization is carried out in an inert atmosphere of nitrogen, helium, argon or the like, preferably at 1000 to 2500 ° C. In addition, the rate of temperature increase in the case of carbonization at elevated temperature is 200
C./minute or less is preferable, and 170.degree. C./minute or less is more preferable. When the heating rate exceeds 200 ° C./min, the crystallite growth rate is improved, but the fiber strength is reduced and a large amount of fine carbon powder is generated.

【0072】最高温度での滞留時間は30分間以内が好
ましく、0.5〜20分程度がより好ましい。
The residence time at the maximum temperature is preferably within 30 minutes, more preferably about 0.5 to 20 minutes.

【0073】炭素化時の厚さ変化率は20%以下が好ま
しい。20%を超える場合、上記範囲の嵩密度を有する
本発明の炭素繊維紡績糸織物が得られにくい。
The rate of change in thickness during carbonization is preferably 20% or less. When it exceeds 20%, it is difficult to obtain the carbon fiber spun yarn woven fabric of the present invention having the bulk density in the above range.

【0074】このようにして得られた本発明の炭素繊維
紡績糸織物は、高嵩密度でありながら柔軟であり、容易
に紙巻に巻くことが可能なものである。さらに厚さ方向
の電気抵抗値が低いので、燃料電池ガス拡散電極用の炭
素繊維紡績糸織物として極めて適したものである。
The carbon fiber spun yarn woven fabric of the present invention thus obtained has a high bulk density, is flexible, and can be easily wound into a paper wrap. Furthermore, since the electric resistance value in the thickness direction is low, it is extremely suitable as a carbon fiber spun yarn fabric for a fuel cell gas diffusion electrode.

【0075】[0075]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明はこれら実施例に限定されるものでは
ない。なお、各物性の測定は次の方法によった。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In addition, each physical property was measured by the following methods.

【0076】(1)耐炎繊維比重 溶剤置換法(溶剤:アセトン)により測定した。(1) Specific gravity of flame resistant fiber It was measured by a solvent substitution method (solvent: acetone).

【0077】(2)耐炎繊維物性 標準状態の強度、伸度、結節強度、結節伸度はJIS
L 1015により測定した。
(2) Physical properties of flame resistant fiber JIS standard strength, elongation, knot strength, knot elongation
It was measured by L 1015.

【0078】(3)厚さ 直径30mmの円形圧板で2.8kPaの荷量を負荷し
たときの厚さを測定した。
(3) Thickness A circular pressure plate having a diameter of 30 mm was used to measure the thickness when a load of 2.8 kPa was applied.

【0079】(4)目付 200mm×250mmの紡績糸織物を120℃で1時
間真空乾燥した後の質量値より算出した。
(4) It was calculated from the mass value of a spun yarn fabric having a basis weight of 200 mm × 250 mm, which was vacuum dried at 120 ° C. for 1 hour.

【0080】(5)嵩密度 上記の目付と厚さより算出した。(5) Bulk density It was calculated from the above basis weight and thickness.

【0081】(6)りん系有機化合物付着量 1〜10gの耐炎繊維紡績糸織物を120℃で1時間真
空乾燥した後質量を測定し、そのもののりん系有機化合
物をソックスレー抽出法(溶剤:エタノール/ベンゼン)
により抽出した。抽出物の質量を耐炎繊維紡績糸織物の
質量で除し、得られた値を百分率で表した。
(6) Phosphorus-based organic compound A flame-resistant fiber spun yarn fabric with an attached amount of 1 to 10 g was vacuum-dried at 120 ° C. for 1 hour and then weighed, and the phosphorus-based organic compound was extracted by the Soxhlet extraction method (solvent: ethanol. /benzene)
It was extracted by. The mass of the extract was divided by the mass of the flame resistant spun yarn fabric, and the obtained value was expressed as a percentage.

【0082】(7)耐炎繊維含有率 上記りん系有機化合物付着量から以下の式を用いて算出
した。 耐炎繊維含有率(質量%)=100−りん系有機化合物
付着量(質量%)−樹脂付着量(質量%) (8)りん含有率 耐炎繊維紡績糸織物を750℃で灰化し、残渣を王水で
溶解して希釈した後、その一定量に発色液(メタバナジ
ン酸アンモニウム)を加えて吸光度を測定し、標準液と
の吸光度比から求めた。
(7) Flame-resistant fiber content It was calculated from the above-mentioned phosphorus-based organic compound adhesion amount using the following formula. Flame-resistant fiber content (mass%) = 100-phosphorus organic compound adhesion amount (mass%)-resin adhesion amount (mass%) (8) Phosphorus content flame-resistant fiber spun yarn woven fabric is ashed at 750 ° C and residue is removed. After dissolving with water and diluting, a color developing solution (ammonium metavanadate) was added to a certain amount of the solution to measure the absorbance, and the absorbance was determined from the absorbance ratio with the standard solution.

【0083】(9)臨界酸素指数(LOI) JIS K 7201にしたがって測定した。(9) Critical oxygen index (LOI) It was measured according to JIS K 7201.

【0084】(10)紡績糸織物の引張強度 幅25.4mm、長さ120mm以上のサンプルを、チ
ャック間距離100mmの治具に固定し、速度30mm
/minで引っ張った時の破断強度を求めた。10mm
幅に換算した値を引張強度1として単位N/cmで示
し、単位断面積当たりに換算した値を引張強度2として
単位MPaで示した。
(10) Tensile strength of spun yarn fabric A sample having a width of 25.4 mm and a length of 120 mm or more is fixed to a jig having a chuck distance of 100 mm and a speed of 30 mm.
The breaking strength when pulled at a speed of / min was determined. 10 mm
The value converted into the width was shown as a tensile strength of 1 in N / cm, and the value converted per unit cross-sectional area was shown as a tensile strength of 2 in MPa.

【0085】(11)炭素微粉末発生量 300mlのビーカー中に25℃に温度調整した水/エ
タノール(90/10容量基準)液200mlを入れ、
更にこの溶液に、炭素繊維紡績糸織物(10mm×5m
mにカット)の1gを入れ、ラボラン型回転子(長さ3
0mm、直径8mm)で10分間撹拌する。その後、撹
拌した炭素繊維紡績糸織物をステンレス製金網(8メッ
シュ)で濾別し、濾液中の炭素微粉末をメンブレンフィ
ルター(孔径6μm)で分離し、その重量を測定した。
この値から炭素繊維紡績糸織物単位重量当たりの炭素微
粉末発生量(mg/g)を算出した。
(11) 200 ml of water / ethanol (90/10 volume basis) liquid whose temperature was adjusted to 25 ° C. was placed in a beaker having a generation amount of carbon fine powder of 300 ml,
Furthermore, in this solution, carbon fiber spun yarn fabric (10 mm × 5 m
Put 1 g of m (cut to m) into a laboran type rotor (length 3
Stir for 10 minutes at 0 mm, diameter 8 mm). Then, the stirred carbon fiber spun yarn woven fabric was filtered by a stainless wire mesh (8 mesh), the carbon fine powder in the filtrate was separated by a membrane filter (pore size 6 μm), and the weight was measured.
From this value, the carbon fine powder generation amount (mg / g) per unit weight of the carbon fiber spun yarn woven fabric was calculated.

【0086】(12)剛軟度 JIS L 1096記載の方法(B法)に準拠して測
定した。
(12) Stiffness was measured according to the method described in JIS L 1096 (method B).

【0087】(13)柔軟性 幅W(mm)のスリット上に、長さ100mm、幅2
5.4mmの紡績糸織物を長さ方向がスリットと垂直に
なるように配置し、幅2mmの金属ブレードで紡績糸織
物をスリット間に深さ15mmまで3mm/秒の速さで
押し込む時の最大荷重を測定し、その値を柔軟性とし
た。なお、スリット幅Wは、紡績糸織物の厚さt(m
m)に対し、以下の範囲で調整する。
(13) 100 mm in length and 2 in width on a slit having a flexible width W (mm)
A 5.4 mm spun yarn fabric is arranged so that its length direction is perpendicular to the slits, and a metal blade with a width of 2 mm pushes the spun yarn fabric up to a depth of 15 mm at a speed of 3 mm / sec. The load was measured and the value was taken as the flexibility. The slit width W is the thickness t (m of the spun yarn fabric.
For m), adjust within the following range.

【0088】W/t=10〜12 (14)厚さ方向電気抵抗値 2枚の50mm角(厚さ10mm)の金メッキした電極
で紡績糸織物の両面を全面接触するように挟み、荷重1
0kPaを厚さ方向にかけた時の厚さ方向電気抵抗値を
測定した。
W / t = 10 to 12 (14) Electric resistance value in the thickness direction Two 50 mm square (10 mm thick) gold-plated electrodes are sandwiched so that both surfaces of the spun yarn fabric are in contact with each other, and a load of 1 is applied.
The electrical resistance value in the thickness direction was measured when 0 kPa was applied in the thickness direction.

【0089】(15)厚さ変化率 高嵩密度耐炎繊維紡績糸織物の厚さ(Ta)と、炭素化
後の炭素繊維紡績糸織物の厚さ(Tb)より、以下の式
を用いて算出した。
(15) Thickness change rate Calculated using the following formula from the thickness (Ta) of the high bulk density flame resistant spun yarn woven fabric and the thickness (Tb) of the carbon fiber spun yarn woven fabric after carbonization. did.

【0090】 厚さ変化率(%)=(Tb−Ta)/Ta×100 (16)折れしわ数 直径76.2mmの紙管に、長さ5m、幅800mmの
炭素繊維紡績糸織物を厚さ方向に9.8N/cmの線圧
をかけながら長さ方向に巻く。再び広げて、目視により
しわ数を数え、1m当りに換算した。
Thickness change rate (%) = (Tb−Ta) / Ta × 100 (16) Folded crease number A paper fiber tube having a diameter of 76.2 mm is coated with a carbon fiber spun yarn fabric having a length of 5 m and a width of 800 mm. Winding in the length direction while applying a linear pressure of 9.8 N / cm in the direction. It was spread again, the number of wrinkles was visually counted, and the number was converted to per 1 m.

【0091】[参考例1](圧縮処理前の耐炎繊維紡績
糸織物1の作製) コモノマーとしてアクリル酸メチルを含有するポリアク
リロニトリル系繊維(繊度1.7dtex、アクリロニ
トリルモノマー97質量%)を空気中、初期耐炎化温度
230℃にて10分間処理後、温度勾配0.5℃/分で
260℃まで昇温した後、この温度で7分間処理した。
得られた繊度2.3dtex、比重1.37の耐炎繊維
にりん系有機化合物(トリヒドロキシエチルホスフェー
ト/ポリオキシエチレン)を1.0質量%付着させ、ク
リンプ処理後51mmに定長カットした結果、クリンプ
数3.5ヶ/cm、クリンプ率11%、強度23mN/
dtex、伸度23%、結節強度14mN/dtex、
結節伸度8%の耐炎繊維ステープルを得た。この比重
1.37の耐炎繊維ステープルを紡績し、上撚り数40
0回/m、下撚り数400回/mの34番手双糸を得
た。次に、この耐炎繊維紡績糸を製織し、織密度が経緯
共に16本/cm、目付200g/m2、厚さ0.50
mm、嵩密度0.40g/cm3、燐含有率325pp
m、平織りの耐炎繊維紡績糸織物1を作製した。
Reference Example 1 (Preparation of Flame-Resistant Fiber Spun Yarn Woven Fabric 1 Before Compression Treatment) Polyacrylonitrile fiber containing methyl acrylate as a comonomer (fineness: 1.7 dtex, acrylonitrile monomer: 97% by mass) in air, After the initial flameproofing temperature of 230 ° C. for 10 minutes, the temperature was raised to 260 ° C. at a temperature gradient of 0.5 ° C./minute, and then the temperature was maintained for 7 minutes.
1.0 mass% of a phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) was attached to the obtained flame-retardant fiber having a fineness of 2.3 dtex and a specific gravity of 1.37, and a fixed length was cut to 51 mm after crimping. Crimp number 3.5 / cm, crimp rate 11%, strength 23mN /
dtex, elongation 23%, knot strength 14 mN / dtex,
A flame resistant fiber staple having a knot elongation of 8% was obtained. This flame-resistant fiber staple with a specific gravity of 1.37 was spun and the number of twists was 40
A 34th-count twin yarn having 0 times / m and lower twist number of 400 times / m was obtained. Next, this flame-resistant fiber spun yarn was woven, and the weaving density was 16 yarns / cm in both warp and weft, a basis weight of 200 g / m 2 , and a thickness of 0.50.
mm, bulk density 0.40 g / cm 3 , phosphorus content 325 pp
A plain weave flame-resistant fiber spun yarn woven fabric 1 was produced.

【0092】[参考例2](圧縮処理前の耐炎繊維紡績
糸織物2の作製) 参考例1の耐炎化処理時の温度勾配を0.5℃/分か
ら、0.7℃/分に変更した以外は参考例1と同様の処
理を行った。得られた繊維は繊度2.3dtex、比重
1.33の耐炎繊維であり、長さ51mm、クリンプ数
3.8ヶ/cm、クリンプ率14%、強度25mN/d
tex、伸度25%、結節強度16mN/dtex、結
節伸度11%の耐炎繊維ステープルを得た。この比重
1.33の耐炎繊維ステープルを紡績し、上撚り数40
0回/m、下撚り数400回/mの34番手双糸を得
た。次に、この耐炎繊維紡績糸を製織し、織密度が経緯
共に16本/cm、目付200g/m2、厚さ0.50
mm、嵩密度0.40g/cm3、燐含有率322pp
m、平織りの耐炎繊維紡績糸織物2を作製した。
Reference Example 2 (Preparation of Flame-Resistant Fiber Spun Yarn Woven Fabric 2 Before Compression Treatment) The temperature gradient during the flame-proof treatment of Reference Example 1 was changed from 0.5 ° C./min to 0.7 ° C./min. The same treatment as in Reference Example 1 was performed except for the above. The obtained fiber is a flame resistant fiber having a fineness of 2.3 dtex and a specific gravity of 1.33, and has a length of 51 mm, a crimp number of 3.8 / cm, a crimp rate of 14% and a strength of 25 mN / d.
A flame resistant fiber staple having a tex, an elongation of 25%, a knot strength of 16 mN / dtex, and a knot elongation of 11% was obtained. This flame-resistant fiber staple with a specific gravity of 1.33 was spun and the number of twists was 40
A 34th-count twin yarn having 0 times / m and lower twist number of 400 times / m was obtained. Next, this flame-resistant fiber spun yarn was woven, and the weaving density was 16 yarns / cm in both warp and weft, a basis weight of 200 g / m 2 , and a thickness of 0.50.
mm, bulk density 0.40 g / cm 3 , phosphorus content 322 pp
A plain weave flame-resistant fiber spun yarn woven fabric 2 was produced.

【0093】[参考例3](圧縮処理前の耐炎繊維紡績
糸織物3の作製) 参考例1の耐炎化処理時の最高温度を260℃から、2
70℃に変更した以外は参考例1と同様の処理を行っ
た。得られた繊維は繊度2.3dtex、比重1.38
の耐炎繊維であり、長さ51mm、クリンプ数3.7ヶ
/cm、クリンプ率13%、強度22mN/dtex、
伸度19%、結節強度13mN/dtex、結節伸度5
%の耐炎繊維ステープルを得た。この比重1.38の耐
炎繊維ステープルを紡績し、上撚り数400回/m、下
撚り数400回/mの34番手双糸を得た。次に、この
耐炎繊維紡績糸を製織し、織密度が経緯共に16本/c
m、目付200g/m2、厚さ0.50mm、嵩密度
0.40g/cm3、燐含有率321ppm、平織りの
耐炎繊維紡績糸織物3を作製した。
Reference Example 3 (Preparation of Flame-Resistant Fiber Spun Yarn Woven Fabric 3 Before Compression Treatment) The maximum temperature during flame-resistant treatment of Reference Example 1 was changed from 260 ° C. to 2
The same treatment as in Reference Example 1 was performed except that the temperature was changed to 70 ° C. The obtained fiber has a fineness of 2.3 dtex and a specific gravity of 1.38.
Flame resistant fiber, length 51 mm, crimp number 3.7 / cm, crimp rate 13%, strength 22 mN / dtex,
Elongation 19%, knot strength 13 mN / dtex, knot elongation 5
% Flame resistant fiber staples were obtained. This flame-resistant fiber staple having a specific gravity of 1.38 was spun to obtain a 34th-twisted yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m. Next, this flame resistant fiber spun yarn is woven and the weaving density is 16 yarns / c
m, basis weight 200 g / m 2 , thickness 0.50 mm, bulk density 0.40 g / cm 3 , phosphorus content 321 ppm, plain weave flame-resistant fiber spun yarn woven fabric 3 was prepared.

【0094】[参考例4](圧縮処理前の耐炎繊維紡績
糸織物4の作製) 参考例1の耐炎化処理時の温度勾配を0.5℃/分か
ら、0.7℃/分に変更し、最高温度を260℃から、
255℃に変更した以外は参考例1と同様の処理を行っ
た。得られた繊維は繊度2.3dtex、比重1.28
の耐炎繊維であり、長さ51mm、クリンプ数3.8ヶ
/cm、クリンプ率13%、強度30mN/dtex、
伸度18%、結節強度17mN/dtex、結節伸度1
1%の耐炎繊維ステープルを得た。この比重1.28の
耐炎繊維ステープルを紡績し、上撚り数400回/m、
下撚り数400回/mの34番手双糸を得た。次に、こ
の耐炎繊維紡績糸を製織し、織密度が経緯共に16本/
cm、目付200g/m2、厚さ0.50mm、嵩密度
0.40g/cm3、燐含有率326ppm、平織りの
耐炎繊維紡績糸織物4を作製した。
Reference Example 4 (Preparation of Flame-Resistant Fiber Spun Yarn Woven Fabric 4 Before Compression Treatment) The temperature gradient during the flame-proof treatment of Reference Example 1 was changed from 0.5 ° C./min to 0.7 ° C./min. , The maximum temperature from 260 ℃,
The same treatment as in Reference Example 1 was performed except that the temperature was changed to 255 ° C. The obtained fiber has a fineness of 2.3 dtex and a specific gravity of 1.28.
Flame resistant fiber, length 51 mm, crimp number 3.8 / cm, crimp rate 13%, strength 30 mN / dtex,
Elongation 18%, knot strength 17 mN / dtex, knot elongation 1
1% flame resistant fiber staples were obtained. This flame-resistant fiber staple having a specific gravity of 1.28 is spun, and the number of twists is 400 times / m,
A 34th count twine having a lower twist number of 400 times / m was obtained. Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 yarns in both warp and weft.
cm, basis weight 200 g / m 2 , thickness 0.50 mm, bulk density 0.40 g / cm 3 , phosphorus content 326 ppm, and plain weave flame-resistant fiber spun yarn woven fabric 4 was prepared.

【0095】[参考例5](圧縮処理前の耐炎繊維紡績
糸織物5の作製) 参考例1のりん系有機化合物(トリヒドロキシエチルホ
スフェート/ポリオキシエチレン)付着量を1.0質量
%から、0.6質量%に変更した以外は参考例1と同様
の処理を行った。得られた繊維は繊度2.3dtex、
比重1.38の耐炎繊維であり、長さ51mm、クリン
プ数3.7ヶ/cm、クリンプ率13%、強度23mN
/dtex、伸度24%、結節強度14mN/dte
x、結節伸度10%の耐炎繊維ステープルを得た。この
耐炎繊維ステープルを紡績し、上撚り数400回/m、
下撚り数400回/mの34番手双糸を得た。次に、こ
の耐炎繊維紡績糸を製織し、織密度が経緯共に16本/
cm、目付200g/m2、厚さ0.50mm、嵩密度
0.40g/cm3、燐含有率261ppm、平織りの
耐炎繊維紡績糸織物5を作製した。
Reference Example 5 (Preparation of Flame-Resistant Fiber Spun Yarn Fabric 5 Before Compression Treatment) The phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) adhesion amount of Reference Example 1 was changed from 1.0% by mass to The same treatment as in Reference Example 1 was performed except that the content was changed to 0.6% by mass. The obtained fiber has a fineness of 2.3 dtex,
Flame resistant fiber with a specific gravity of 1.38, length 51 mm, crimp number 3.7 / cm, crimp rate 13%, strength 23 mN
/ Dtex, elongation 24%, knot strength 14mN / dte
x, a flame resistant fiber staple having a knot elongation of 10% was obtained. This flame resistant fiber staple is spun, and the number of twists is 400 times / m,
A 34th count twine having a lower twist number of 400 times / m was obtained. Next, this flame-resistant fiber spun yarn is woven, and the weaving density is 16 yarns in both warp and weft.
cm, basis weight 200 g / m 2 , thickness 0.50 mm, bulk density 0.40 g / cm 3 , phosphorus content 261 ppm, plain weave flame-resistant fiber spun yarn woven fabric 5 was prepared.

【0096】[参考例6](圧縮処理前の耐炎繊維紡績
糸織物6の作製) 参考例1のりん系有機化合物(トリヒドロキシエチルホ
スフェート/ポリオキシエチレン)付着量を1.0質量
%から、1.4質量%に変更した以外は参考例1と同様
の処理を行った。得られた繊維は繊度2.3dtex、
比重1.38の耐炎繊維であり、長さ51mm、クリン
プ数3.5ヶ/cm、クリンプ率12%、強度22mN
/dtex、伸度25%、結節強度14mN/dte
x、結節伸度10%の耐炎繊維ステープルを得た。
Reference Example 6 (Preparation of Flame-Resistant Fiber Spun Yarn Woven Fabric 6 Before Compression Treatment) The phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) adhesion amount of Reference Example 1 was changed from 1.0% by mass to The same treatment as in Reference Example 1 was performed except that the amount was changed to 1.4% by mass. The obtained fiber has a fineness of 2.3 dtex,
Flame resistant fiber with a specific gravity of 1.38, length 51 mm, crimp number 3.5 / cm, crimp rate 12%, strength 22 mN
/ Dtex, elongation 25%, knot strength 14mN / dte
x, a flame resistant fiber staple having a knot elongation of 10% was obtained.

【0097】この耐炎繊維ステープルを紡績し、上撚り
数400回/m、下撚り数400回/mの34番手双糸
を得た。次に、この耐炎繊維紡績糸を製織し、織密度が
経緯共に16本/cm、目付200g/m2、厚さ0.
50mm、嵩密度0.40g/cm3、燐含有率490
ppm、平織りの耐炎繊維紡績糸織物6を作製した。
This flame-resistant fiber staple was spun to obtain a 34th-twisted yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m. Next, this flame-resistant fiber spun yarn was woven, and the weaving density was 16 yarns / cm in both warp and weft, a basis weight of 200 g / m 2 , and a thickness of 0.
50 mm, bulk density 0.40 g / cm 3 , phosphorus content 490
A plain weave flame resistant fiber spun yarn woven fabric 6 was produced.

【0098】[参考例7](圧縮処理前の耐炎繊維紡績
糸織物7の作製) 参考例1のりん系有機化合物(トリヒドロキシエチルホ
スフェート/ポリオキシエチレン)付着量を1.0質量
%から、0.1質量%に変更した以外は参考例1と同様
の処理を行った。得られた繊維は繊度2.3dtex、
比重1.38の耐炎繊維であり、長さ51mm、クリン
プ数3.5ヶ/cm、クリンプ率11%、強度23mN
/dtex、伸度21%、結節強度14mN/dte
x、結節伸度9%の耐炎繊維ステープルを得た。この耐
炎繊維ステープルを紡績し、上撚り数400回/m、下
撚り数400回/mの34番手双糸を得た。次に、この
耐炎繊維紡績糸を製織し、織密度が経緯共に16本/c
m、目付200g/m2、厚さ0.50mm、嵩密度
0.40g/cm3、燐含有率41ppm、平織りの耐
炎繊維紡績糸織物7を作製した。
Reference Example 7 (Preparation of Flame-Resistant Fiber Spun Yarn Fabric 7 Before Compression Treatment) The phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) adhesion amount of Reference Example 1 was changed from 1.0 mass% to The same treatment as in Reference Example 1 was performed except that the content was changed to 0.1% by mass. The obtained fiber has a fineness of 2.3 dtex,
Flame resistant fiber with a specific gravity of 1.38, length 51 mm, crimp number 3.5 / cm, crimp rate 11%, strength 23 mN
/ Dtex, elongation 21%, knot strength 14mN / dte
x, a flame-resistant fiber staple having a knot elongation of 9% was obtained. This flame-resistant fiber staple was spun to obtain a 34th-twisted yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m. Next, this flame resistant fiber spun yarn is woven and the weaving density is 16 yarns / c
A plain weave flame-resistant fiber spun yarn woven fabric 7 having m, basis weight of 200 g / m 2 , thickness of 0.50 mm, bulk density of 0.40 g / cm 3 , phosphorus content of 41 ppm was prepared.

【0099】[参考例8](圧縮処理前の耐炎繊維紡績
糸織物8の作製) 参考例1のりん系有機化合物(トリヒドロキシエチルホ
スフェート/ポリオキシエチレン)付着量を1.0質量
%から、2.0質量%に変更した以外は参考例1と同様
の処理を行った。得られた繊維は繊度2.3dtex、
比重1.38の耐炎繊維であり、長さ51mm、クリン
プ数3.5ヶ/cm、クリンプ率12%、強度21mN
/dtex、伸度18%、結節強度13mN/dte
x、結節伸度9%の耐炎繊維ステープルを得た。この耐
炎繊維ステープルを紡績し、上撚り数400回/m、下
撚り数400回/mの34番手双糸を得た。次に、この
耐炎繊維紡績糸を製織し、織密度が経緯共に16本/c
m、目付200g/m2、厚さ0.50mm、嵩密度
0.40g/cm3、燐含有率843ppm、平織りの
耐炎繊維紡績糸織物7を作製した。
Reference Example 8 (Preparation of Flame-Resistant Fiber Spun Yarn Fabric 8 Before Compression Treatment) The phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) adhesion amount of Reference Example 1 was changed from 1.0% by mass to The same treatment as in Reference Example 1 was performed except that the content was changed to 2.0% by mass. The obtained fiber has a fineness of 2.3 dtex,
Flame-resistant fiber with a specific gravity of 1.38, length 51 mm, crimp number 3.5 / cm, crimp rate 12%, strength 21 mN
/ Dtex, elongation 18%, knot strength 13mN / dte
x, a flame-resistant fiber staple having a knot elongation of 9% was obtained. This flame-resistant fiber staple was spun to obtain a 34th-twisted yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m. Next, this flame resistant fiber spun yarn is woven and the weaving density is 16 yarns / c
m, basis weight 200 g / m 2 , thickness 0.50 mm, bulk density 0.40 g / cm 3 , phosphorus content 843 ppm, and plain weave flame-resistant fiber spun yarn woven fabric 7 was prepared.

【0100】[実施例1] (高嵩密度耐炎繊維紡績糸織物の作製)参考例1の耐炎
繊維紡績糸織物に温度330℃、圧力5MPaの条件
下、空気中で1分間圧縮処理を施したところ、目付20
0g/m2、厚さ0.25mm、嵩密度0.80g/c
3、耐炎繊維含有率99.0%、引張強度27N/c
mの高嵩密度耐炎繊維紡績糸織物を得た。LOIは40
であった。また、紙巻に容易に巻きつけることができ、
巻姿も良好であった。物性を表1に示す。
[Example 1] (Preparation of high bulk density flame-resistant fiber spun yarn woven fabric) The flame-resistant fiber spun yarn woven fabric of Reference Example 1 was subjected to compression treatment in air at a temperature of 330 ° C and a pressure of 5 MPa for 1 minute. By the way, basis weight 20
0 g / m 2 , thickness 0.25 mm, bulk density 0.80 g / c
m 3 , flame resistant fiber content 99.0%, tensile strength 27 N / c
m high bulk density flame resistant spun yarn woven fabric was obtained. LOI is 40
Met. Also, it can be easily wrapped around a paper roll,
The winding appearance was also good. The physical properties are shown in Table 1.

【0101】(炭素繊維紡績糸織物の作製)この高嵩密
度耐炎繊維紡績糸織物を窒素ガス雰囲気下、常温より昇
温勾配120℃/分で1900℃まで昇温した後、この
温度で2分間処理して目付120g/m2、厚さ0.2
7mm、嵩密度0.44g/cm3、引張強度5.8N
/cm、剛軟度10mNcm、電気抵抗値2.3mΩ、
炭素微粉末発生量19mg/gの炭素繊維紡績糸織物を
得た。炭素化時の厚さ変化率は8%であった。紙管に巻
いたときの折れしわ数は0ケ/mであり、巻姿は良好で
あった。物性を表1に併せて示す。
(Production of carbon fiber spun yarn woven fabric) This high bulk density flame-resistant fiber spun yarn woven fabric was heated from room temperature to 1900 ° C. at a temperature rising gradient of 120 ° C./min for 2 minutes at this temperature. Treated to have a fabric weight of 120 g / m 2 , thickness of 0.2
7 mm, bulk density 0.44 g / cm 3 , tensile strength 5.8 N
/ Cm, bending resistance of 10 mNcm, electric resistance of 2.3 mΩ,
A carbon fiber spun yarn woven fabric having a carbon fine powder generation amount of 19 mg / g was obtained. The rate of change in thickness during carbonization was 8%. The number of creases when wound on a paper tube was 0 / m, and the winding appearance was good. The physical properties are also shown in Table 1.

【0102】[0102]

【表1】 [Table 1]

【0103】[実施例2〜8]参考例1の圧縮前の耐炎
繊維紡績糸織物1を用いる代わりに、参考例2〜8の圧
縮前の耐炎繊維紡績糸織物を用いて、高嵩密度耐炎繊維
紡績糸織物および炭素繊維紡績糸織物を作製した。それ
ぞれの物性を表1に併せて示す。
Examples 2 to 8 Instead of using the flame-resistant fiber spun yarn fabric 1 of Reference Example 1 before compression, the flame-resistant fiber spun yarn fabric of Reference Examples 2 to 8 before compression was used to obtain high bulk density flame resistance. A fiber spun yarn woven fabric and a carbon fiber spun yarn woven fabric were produced. The respective physical properties are also shown in Table 1.

【0104】[実施例9〜14]参考例1の圧縮前の耐
炎繊維紡績糸織物を用い、圧縮条件のみを実施例1の温
度330℃、圧力5MPaの条件から、表2に記載する
条件に変更した以外は実施例1と同様に行い、高嵩密度
耐炎繊維紡績糸織物および炭素繊維紡績糸織物を作製し
た。それぞれの物性を表2に併せて示す。
[Examples 9 to 14] The flame-resistant spun yarn fabric before compression of Reference Example 1 was used, and the compression conditions were changed from the conditions of the temperature of 330 ° C and the pressure of 5 MPa of Example 1 to the conditions shown in Table 2. A high bulk density flame resistant spun yarn woven fabric and a carbon fiber spun yarn woven fabric were produced in the same manner as in Example 1 except that the changes were made. Table 2 also shows the respective physical properties.

【0105】[0105]

【表2】 [Table 2]

【0106】[実施例15]参考例1の圧縮前の耐炎繊
維紡績糸織物1を用意し、この耐炎繊維紡績糸織物1を
カルボキシメチルセルロース(CMC)水溶液に浸漬、
乾燥して、CMC樹脂付着量3.0質量%の圧縮前の耐
炎繊維紡績糸織物を得た。この耐炎繊維紡績糸織物に温
度330℃、圧力5MPaの条件下、空気中で1分間圧
縮を施したところ、目付206g/m2、厚さ0.22
mm、嵩密度0.91g/cm3、耐炎繊維含有率9
6.0%、引張強度18N/cmの高嵩密度耐炎繊維紡
績糸織物を得た。
[Example 15] A flame-resistant fiber spun yarn woven fabric 1 before compression of Reference Example 1 was prepared, and the flame-resistant fiber spun yarn woven fabric 1 was dipped in an aqueous solution of carboxymethyl cellulose (CMC),
It was dried to obtain a flame-resistant spun yarn fabric before compression having a CMC resin attachment amount of 3.0% by mass. This flame-resistant spun fiber fabric was compressed in air at a temperature of 330 ° C. and a pressure of 5 MPa for 1 minute to give a fabric weight of 206 g / m 2 and a thickness of 0.22.
mm, bulk density 0.91 g / cm 3 , flame resistant fiber content 9
A high bulk density flame resistant spun yarn woven fabric having 6.0% and a tensile strength of 18 N / cm was obtained.

【0107】この高嵩密度耐炎繊維紡績糸織物を窒素ガ
ス雰囲気下、常温より昇温勾配120℃/分で1900
℃まで昇温した後、この温度で2分間処理して目付12
0g/m2、厚さ0.23mm、嵩密度0.52g/c
3、引張強度0.5N/cm、剛軟度88mNcm、
電気抵抗値7.2mΩ、炭素微粉末発生量78mg/g
の炭素繊維紡績糸織物を得た。炭素化時の厚さ変化率は
5%であった。柔軟性は52gと優れており、紙巻に巻
きつけることができた。ただし、紙管に巻いたときの折
れしわ数は31ケ/mと多目であった。
This high bulk density flame resistant spun yarn woven fabric was heated to 1900 at a temperature rising gradient of 120 ° C./minute from room temperature in a nitrogen gas atmosphere.
After raising the temperature to ℃
0 g / m 2 , thickness 0.23 mm, bulk density 0.52 g / c
m 3 , tensile strength 0.5 N / cm, bending resistance 88 mNcm,
Electric resistance value 7.2 mΩ, carbon fine powder generation amount 78 mg / g
A carbon fiber spun yarn woven fabric of was obtained. The rate of change in thickness during carbonization was 5%. The flexibility was excellent at 52 g, and it could be wrapped around a paper roll. However, the number of creases when wound around a paper tube was 31 / m, which was large.

【0108】[比較例1]実施例15のCMC樹脂付着
量を3.0質量%から、12.0質量%に変更した以外
は、実施例15と同様に行い、高嵩密度耐炎繊維紡績糸
織物および炭素繊維紡績糸織物を作製した。得られた高
嵩密度耐炎繊維紡績糸織物は硬く、紙巻に巻くことがで
きないものであった。また、得られた炭素繊維紡績糸織
物は、電気抵抗値が14.7mΩと高く、柔軟性も16
3gと劣ったものであり、紙管に巻いたときの折れしわ
数は39ヶ/mと多く、巻姿も不良であった。
[Comparative Example 1] A high bulk density flame resistant fiber spun yarn was prepared in the same manner as in Example 15 except that the amount of CMC resin deposited in Example 15 was changed from 3.0% by mass to 12.0% by mass. Fabrics and carbon fiber spun yarn fabrics were made. The resulting high bulk density flame resistant spun yarn fabric was hard and could not be wrapped in a paper wrap. Further, the obtained carbon fiber spun yarn woven fabric has a high electric resistance value of 14.7 mΩ and a flexibility of 16
It was inferior to 3 g, the number of creases when wound on a paper tube was as large as 39 pieces / m, and the winding shape was also poor.

【0109】[0109]

【発明の効果】本発明によれば、高嵩密度でありながら
柔軟で取り扱い性に優れた高嵩密度耐炎繊維紡績糸織物
を得ることができる。本発明の高嵩密度耐炎繊維紡績糸
織物は、耐炎繊維以外の成分が少なく、炭素化して高嵩
密度の炭素繊維紡績糸織物とするのに適したものであ
る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a high bulk density flame resistant spun yarn woven fabric which has a high bulk density but is flexible and easy to handle. INDUSTRIAL APPLICABILITY The high bulk density flame-resistant fiber spun yarn woven fabric according to the present invention has few components other than the flame resistant fibers and is suitable for carbonization into a high bulk density carbon fiber spun yarn woven fabric.

【0110】また本発明により、柔軟でローラー等の曲
げを有する工程の通過性に優れ、巻物状に保管すること
ができる炭素繊維紡績糸織物を得ることができる。本発
明の炭素繊維紡績糸織物は、薄く、厚さ方向の電気抵抗
値が低いので、固体高分子型燃料電池の電極材料として
好適である。
Further, according to the present invention, it is possible to obtain a carbon fiber spun yarn woven fabric which is flexible and has an excellent passability in a step of bending such as a roller and which can be stored in a roll form. Since the carbon fiber spun yarn fabric of the present invention is thin and has a low electric resistance value in the thickness direction, it is suitable as an electrode material for a polymer electrolyte fuel cell.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成15年1月10日(2003.1.1
0)
[Submission date] January 10, 2003 (2003.1.1
0)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0099[Correction target item name] 0099

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0099】[参考例8](圧縮処理前の耐炎繊維紡績
糸織物8の作製) 参考例1のりん系有機化合物(トリヒドロキシエチルホ
スフェート/ポリオキシエチレン)付着量を1.0質量
%から、2.0質量%に変更した以外は参考例1と同様
の処理を行った。得られた繊維は繊度2.3dtex、
比重1.38の耐炎繊維であり、長さ51mm、クリン
プ数3.5ヶ/cm、クリンプ率12%、強度21mN
/dtex、伸度18%、結節強度13mN/dte
x、結節伸度9%の耐炎繊維ステープルを得た。この耐
炎繊維ステープルを紡績し、上撚り数400回/m、下
撚り数400回/mの34番手双糸を得た。次に、この
耐炎繊維紡績糸を製織し、織密度が経緯共に16本/c
m、目付200g/m2、厚さ0.50mm、嵩密度
0.40g/cm3、燐含有率843ppm、平織りの
耐炎繊維紡績糸織物を作製した。
Reference Example 8 (Preparation of Flame-Resistant Fiber Spun Yarn Fabric 8 Before Compression Treatment) The phosphorus-based organic compound (trihydroxyethyl phosphate / polyoxyethylene) adhesion amount of Reference Example 1 was changed from 1.0% by mass to The same treatment as in Reference Example 1 was performed except that the content was changed to 2.0% by mass. The obtained fiber has a fineness of 2.3 dtex,
Flame-resistant fiber with a specific gravity of 1.38, length 51 mm, crimp number 3.5 / cm, crimp rate 12%, strength 21 mN
/ Dtex, elongation 18%, knot strength 13mN / dte
x, a flame-resistant fiber staple having a knot elongation of 9% was obtained. This flame-resistant fiber staple was spun to obtain a 34th-twisted yarn having an upper twist number of 400 times / m and a lower twist number of 400 times / m. Next, this flame resistant fiber spun yarn is woven and the weaving density is 16 yarns / c
m, basis weight 200 g / m 2 , thickness 0.50 mm, bulk density 0.40 g / cm 3 , phosphorus content 843 ppm, and plain weave flame-resistant fiber spun yarn woven fabric 8 was prepared.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0102[Correction target item name] 0102

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0102】[0102]

【表1】 [Table 1]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0105[Correction target item name] 0105

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0105】[0105]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島崎 賢司 静岡県駿東郡長泉町上土狩234 東邦テナ ックス株式会社内 Fターム(参考) 4L048 AA05 AA46 AA47 AB01 BA01 BA02 CA01 CA06 CA13 DA24 EB05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenji Shimazaki             Toho Tena 234 Uechikari, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture             X Co., Ltd. F-term (reference) 4L048 AA05 AA46 AA47 AB01 BA01                       BA02 CA01 CA06 CA13 DA24                       EB05

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 耐炎繊維含有率が90質量%以上であ
り、かつ厚さ方向に2.8kPaの荷重を負荷したとき
の嵩密度が0.6〜1.1g/cm3であることを特徴
とする高嵩密度耐炎繊維紡績糸織物。
1. The flame resistant fiber content is 90% by mass or more, and the bulk density when a load of 2.8 kPa is applied in the thickness direction is 0.6 to 1.1 g / cm 3. High bulk density flame resistant spun yarn woven fabric.
【請求項2】 りん含有率が100〜500ppmであ
る請求項1記載の高嵩密度耐炎繊維紡績糸織物。
2. The high bulk density flame-resistant fiber spun yarn woven fabric according to claim 1, which has a phosphorus content of 100 to 500 ppm.
【請求項3】 限界酸素指数(LOI)が30〜60で
ある請求項1または2記載の高嵩密度耐炎繊維紡績糸織
物。
3. The high bulk density flame resistant fiber spun yarn woven fabric according to claim 1, which has a limiting oxygen index (LOI) of 30 to 60.
【請求項4】 引張強度が10N/cm以上である請求
項1〜3のいずれか1項に記載の高嵩密度耐炎繊維紡績
糸織物。
4. The high bulk density flame resistant spun yarn woven fabric according to claim 1, which has a tensile strength of 10 N / cm or more.
【請求項5】 耐炎繊維がポリアクリロニトリル系耐炎
繊維である請求項1〜4のいずれか1項に記載の高嵩密
度耐炎繊維紡績糸織物。
5. The high bulk density flame resistant fiber spun yarn woven fabric according to claim 1, wherein the flame resistant fiber is a polyacrylonitrile flame resistant fiber.
【請求項6】 耐炎繊維の比重が1.30〜1.39で
ある請求項1〜5のいずれか1項に記載の高嵩密度耐炎
繊維紡績糸織物。
6. The high bulk density flame resistant fiber spun yarn woven fabric according to claim 1, wherein the specific gravity of the flame resistant fiber is 1.30 to 1.39.
【請求項7】 耐炎繊維含有率が90質量%以上である
耐炎繊維紡績糸織物に、温度200〜360℃、圧力1
〜100MPaの条件で圧縮処理を行うことを特徴とす
る請求項1〜6のいずれか1項に記載の高嵩密度耐炎繊
維紡績糸織物の製造方法。
7. A flame-resistant fiber spun yarn fabric having a flame-resistant fiber content of 90% by mass or more, at a temperature of 200 to 360 ° C. and a pressure of 1.
The method for producing a high bulk density flame-resistant fiber spun yarn fabric according to any one of claims 1 to 6, wherein the compression treatment is performed under a condition of -100 MPa.
【請求項8】 厚さ方向に2.8kPaの荷重を負荷し
たときの圧縮処理後の耐炎繊維紡績糸織物の嵩密度が、
0.6〜1.1g/cm3である請求項7記載の高嵩密
度耐炎繊維紡績糸織物の製造方法。
8. The bulk density of the flame-resistant fiber spun yarn fabric after compression treatment when a load of 2.8 kPa is applied in the thickness direction,
The method for producing a high bulk density flame resistant spun yarn woven fabric according to claim 7, which has a density of 0.6 to 1.1 g / cm 3 .
【請求項9】 厚さ方向に2.8kPaの荷重を負荷し
たときの嵩密度が0.35〜0.6g/cm3、厚さが
0.1〜0.5mmであって、かつ剛軟度が5〜25m
Ncmであることを特徴とする炭素繊維紡績糸織物。
9. A bulk density of 0.35 to 0.6 g / cm 3 when a load of 2.8 kPa is applied in the thickness direction, a thickness of 0.1 to 0.5 mm, and bending resistance. Degree 5-25m
A carbon fiber spun yarn woven fabric, which is Ncm.
【請求項10】 引張強度が1N/cm以上である請求
項9記載の炭素繊維紡績糸織物。
10. The carbon fiber spun yarn woven fabric according to claim 9, which has a tensile strength of 1 N / cm or more.
【請求項11】 厚さ方向に10kPaの荷重を負荷し
たときの厚さ方向の電気抵抗値が4mΩ以下である請求
項9または10記載の炭素繊維紡績糸織物。
11. The carbon fiber spun yarn woven fabric according to claim 9, which has an electric resistance value in the thickness direction of 4 mΩ or less when a load of 10 kPa is applied in the thickness direction.
【請求項12】 炭素微粉末発生量が25mg/g以下
である請求項9〜11のいずれか1項記載の炭素繊維紡
績糸織物。
12. The carbon fiber spun yarn woven fabric according to claim 9, wherein the amount of carbon fine powder generated is 25 mg / g or less.
【請求項13】 請求項1〜6のいずれか1項に記載の
高嵩密度耐炎繊維紡績糸織物を、不活性ガス雰囲気下で
1000℃以上の温度で処理することを特徴とする炭素
繊維紡績糸織物の製造方法。
13. A carbon fiber spinning characterized in that the high bulk density flame resistant spun fiber yarn fabric according to any one of claims 1 to 6 is treated at a temperature of 1000 ° C. or higher under an inert gas atmosphere. A method for manufacturing a yarn fabric.
JP2002091449A 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof Expired - Fee Related JP3934974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091449A JP3934974B2 (en) 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091449A JP3934974B2 (en) 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Publications (2)

Publication Number Publication Date
JP2003286631A true JP2003286631A (en) 2003-10-10
JP3934974B2 JP3934974B2 (en) 2007-06-20

Family

ID=29236528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091449A Expired - Fee Related JP3934974B2 (en) 2002-03-28 2002-03-28 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Country Status (1)

Country Link
JP (1) JP3934974B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054554A1 (en) * 2003-12-01 2005-06-16 Kureha Corporation Carbon fiber spun yarn and woven fabric thereof
JP2012202003A (en) * 2011-03-25 2012-10-22 Toho Tenax Co Ltd Carbon fiber yarn fabric, carbon fiber precursor yarn fabric, and method for manufacturing the carbon fiber yarn fabric
CN113646473A (en) * 2019-03-28 2021-11-12 赛峰航空器发动机 Control of the positioning and continuity of the yarn in a loom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054554A1 (en) * 2003-12-01 2005-06-16 Kureha Corporation Carbon fiber spun yarn and woven fabric thereof
US7610743B2 (en) 2003-12-01 2009-11-03 Kureha Corporation Carbon fiber spun yarn and woven fabric thereof
JP2012202003A (en) * 2011-03-25 2012-10-22 Toho Tenax Co Ltd Carbon fiber yarn fabric, carbon fiber precursor yarn fabric, and method for manufacturing the carbon fiber yarn fabric
CN113646473A (en) * 2019-03-28 2021-11-12 赛峰航空器发动机 Control of the positioning and continuity of the yarn in a loom

Also Published As

Publication number Publication date
JP3934974B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP3868903B2 (en) Carbon fiber sheet and manufacturing method thereof
CA2189352C (en) Flexible ignition resistant biregional fiber, articles made from biregional fibers, and method of manufacture
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP3976580B2 (en) High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
JP2007100241A (en) Carbon fiber-mixed oxidized fiber felt, carbon fiber felt and method for producing them
JP2003286631A (en) High bulk density flame-resistant fiber spun yarn woven fabric and carbon fiber spun yarn woven fabric, and method for producing them
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2005240224A (en) High-density nonwoven fabric of flame-resistant fiber, nonwoven fabric of carbon fiber, and method for producing them
JP4282964B2 (en) Carbon fiber woven fabric
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP4632043B2 (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt, and production method thereof
JP4582905B2 (en) Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP3442061B2 (en) Flat carbon fiber spun yarn woven structural material
JP4138510B2 (en) Polyacrylonitrile-based carbon fiber sheet and method for producing the same
JP2003064539A (en) Carbon fiber fabric and method for producing the same
JP3993151B2 (en) Method for producing carbon fiber woven fabric and method for producing gas diffusion layer material for polymer electrolyte fuel cell
JP2007039843A (en) Spun yarn of thermoplastic fiber-mixed oxidized fiber and method for producing woven fabric of oxidized fiber and woven fabric of carbon fiber
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JP2004084136A (en) Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell
JP2004084147A (en) Carbonaceous fiber woven cloth
JP2003166168A (en) Oxidized fiber structure, carbon fiber structure, and method for producing them
JP2005097752A (en) Carbon fiber woven or knitted fabric, method for producing the same and gas diffusion layer substrate for fuel cell using the same woven or knitted fabric
JP4446848B2 (en) Conductive nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees