JP2003282105A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JP2003282105A
JP2003282105A JP2002085431A JP2002085431A JP2003282105A JP 2003282105 A JP2003282105 A JP 2003282105A JP 2002085431 A JP2002085431 A JP 2002085431A JP 2002085431 A JP2002085431 A JP 2002085431A JP 2003282105 A JP2003282105 A JP 2003282105A
Authority
JP
Japan
Prior art keywords
water
fuel cell
hot water
fuel
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002085431A
Other languages
Japanese (ja)
Other versions
JP3994324B2 (en
Inventor
Shunsuke Oga
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002085431A priority Critical patent/JP3994324B2/en
Publication of JP2003282105A publication Critical patent/JP2003282105A/en
Application granted granted Critical
Publication of JP3994324B2 publication Critical patent/JP3994324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generating system rationally preventing the freezing of water in a variety of circulation passages. <P>SOLUTION: This fuel cell power generating system is equipped with a fuel cell body 10 generating electricity and heat energy based on the electrochemical reaction of fuel gas obtained by steam reforming of hydrocarbon base raw fuel and air acting as an oxidizing agent; a fuel reforming apparatus 20; a cooling apparatus 50 of a fuel cell; a water recovery apparatus 30 recovering water in the exhaust gas of the fuel cell and combustion exhaust gas in a fuel reformer; a water treatment device 35 purifying the recovered water; and a hot water storing tank 60 storing part of the heat energy as hot water, and in order to prevent the freezing of water inside the apparatuses and the devices, freezing preventing piping 70 is furthermore installed in at least a part in the cooling apparatus 50, the water recovery apparatus 30, and the water treatment device 35. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、炭化水素系原燃
料を水蒸気改質して得られた燃料ガスと酸化剤ガス(空
気)との電気化学反応に基づいて電気および熱エネルギ
ーを発生する燃料電池と、前記熱エネルギーの一部を温
水として貯える貯湯槽とを備える燃料電池発電装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel for producing electricity and heat energy based on an electrochemical reaction between a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel and an oxidant gas (air). The present invention relates to a fuel cell power generator that includes a battery and a hot water storage tank that stores a part of the thermal energy as hot water.

【0002】[0002]

【従来の技術】燃料電池発電装置に組み込まれる燃料電
池としては、電解質の種類、改質原料の種類等によって
異なる種々のタイプがあるが、例えば、固体高分子膜を
電解質として用い、その運転温度が約80℃と比較的低
いタイプの燃料電池として、固体高分子電解質型燃料電
池がよく知られている。
2. Description of the Related Art There are various types of fuel cells incorporated in a fuel cell power generator, which vary depending on the type of electrolyte, the type of reforming raw material, and the like. For example, a solid polymer membrane is used as an electrolyte and its operating temperature is A solid polymer electrolyte fuel cell is well known as a fuel cell of a relatively low temperature of about 80 ° C.

【0003】この固体高分子電解質型燃料電池は、リン
酸型燃料電池と同様に、例えばメタンガス(都市ガス)
等の炭化水素系原燃料を水蒸気改質して得られた燃料ガ
ス中の水素と空気中の酸素とを、燃料電池の燃料極およ
び空気極にそれぞれ供給し、電気化学反応に基づいて発
電を行うものである。
This solid polymer electrolyte fuel cell is similar to the phosphoric acid fuel cell, for example, methane gas (city gas).
Hydrogen in the fuel gas and oxygen in the air obtained by steam reforming a hydrocarbon-based raw fuel such as is supplied to the fuel electrode and air electrode of the fuel cell, respectively, to generate electricity based on an electrochemical reaction. It is something to do.

【0004】また、原燃料を燃料ガスへ改質するに際し
ては、原燃料に水蒸気を加え燃料改質器で触媒により改
質を促進する方法が採られているが、改質を定常的に行
なうには所要の水蒸気量を定常的に補給する必要があ
り、水蒸気の供給装置には、これに対応した水を常時補
給する必要がある。なお、使用する水は高純度の水であ
ることが必要であり、イオン交換式の水処理装置で不純
物を除去したイオン交換水が用いられるのが通例であ
る。
Further, when reforming raw fuel into fuel gas, a method is adopted in which steam is added to raw fuel to promote reforming by a catalyst in a fuel reformer, but reforming is carried out constantly. It is necessary to constantly replenish the required amount of water vapor, and it is necessary to constantly replenish the water vapor supply device with water corresponding thereto. The water used must be highly pure water, and ion-exchanged water from which impurities have been removed by an ion-exchange water treatment device is usually used.

【0005】一方、燃料電池の電気化学反応では発電生
成水が生じ、また燃料改質器では吸熱反応である水蒸気
改質反応を定常的に行なうための触媒加熱用の燃焼に伴
い燃焼生成水が生じるが、これらの生成水は通常の水道
水に比べて不純物が少なく、これらの生成水を原水とし
て用いれば、水処理装置の負荷を軽減することができる
ため、回収水タンクおよび排ガス冷却器を付加して、こ
れらの生成水を回収して改質水蒸気発生用の供給水とす
る方法が、通常採用されている。
On the other hand, power generation water is generated in the electrochemical reaction of the fuel cell, and in the fuel reformer, combustion water is generated with combustion for heating the catalyst for constantly performing the steam reforming reaction which is an endothermic reaction. However, these generated waters have less impurities than ordinary tap water, and if these generated waters are used as raw water, it is possible to reduce the load on the water treatment device. A method in which these generated waters are additionally collected and used as feed water for generating reformed steam is usually adopted.

【0006】また、燃料電池の電気化学反応では反応に
伴って熱が発生し、この排熱エネルギーの一部は、貯湯
槽に温水として貯え、給湯もしくは暖房に供される。
Further, in the electrochemical reaction of the fuel cell, heat is generated along with the reaction, and a part of this exhaust heat energy is stored as hot water in the hot water storage tank and used for hot water supply or heating.

【0007】図3は、都市ガスを原燃料とする従来の固
体高分子電解質型燃料電池発電装置の一例を示す系統図
である。
FIG. 3 is a system diagram showing an example of a conventional solid polymer electrolyte fuel cell power generator using city gas as a raw fuel.

【0008】図3において、模式的に示した燃料電池1
0は、燃料極10aと空気極10bとを有する単位セル
を複数個重ねる毎に冷却管または冷却溝を有する図示し
ない冷却板を配設,積層することにより構成されてい
る。
A fuel cell 1 schematically shown in FIG.
0 is configured by disposing and stacking a cooling plate or a cooling plate (not shown) having a cooling groove each time a plurality of unit cells having the fuel electrode 10a and the air electrode 10b are stacked.

【0009】原燃料はまず改質用水蒸気とともに改質器
11に供給され、以下の反応により、水素と一酸化炭素
に改質される。
The raw fuel is first supplied to the reformer 11 together with the reforming steam, and is reformed into hydrogen and carbon monoxide by the following reaction.

【0010】CH4+H2O→3H2+CO (吸熱反応) その後、この改質ガスは、CO変成器12に供給され、
以下の反応により、改質ガス中の―酸化炭素は1%程度
まで低減される。
CH 4 + H 2 O → 3H 2 + CO (Endothermic reaction) Thereafter, this reformed gas is supplied to the CO shift converter 12,
By the following reaction, carbon dioxide in the reformed gas is reduced to about 1%.

【0011】CO+H2O→H2+CO2 (発熱反応) その後、さらにCO除去器13に供給され、以下の反応
により、改質ガス中の一酸化炭素は100ppm程度まで低減
された後、燃料電池の燃料極10aに供給される。
CO + H 2 O → H 2 + CO 2 (exothermic reaction) After that, the carbon monoxide in the reformed gas is further supplied to the CO remover 13, and the carbon monoxide in the reformed gas is reduced to about 100 ppm by the following reaction. Is supplied to the fuel electrode 10a.

【0012】CO+1/2O2→CO2 (発熱反応) 上記の如く、改質器11において改質反応を行う場合、
水蒸気を供給する必要があり、固体高分子型燃料電池発
電装置では、その熱源として改質器11の燃焼排ガスの
顕熱,CO変成器12及びCO除去器13の反応熱を利
用するのが一般的である。そのため、ポンプ54にて供
給される改質用水を、CO変成器12,CO除去器1
3,水蒸気発生器14の各反応器を直列に順次流すため
の改質用水蒸気供給ライン15を設け、前記各反応器か
ら熱を受けて水蒸気とし、この水蒸気と原燃料とを混合
して、改質用水蒸気供給ライン15から改質器11へ導
入する構成としている。なお、図3においては、CO変
成器12,CO除去器13への前記改質用水の通流ライ
ンを省略している。
CO + 1 / 2O 2 → CO 2 (exothermic reaction) As described above, when the reforming reaction is carried out in the reformer 11,
It is necessary to supply water vapor, and in the polymer electrolyte fuel cell power generator, it is common to use the sensible heat of the combustion exhaust gas of the reformer 11 and the reaction heat of the CO shift converter 12 and the CO remover 13 as its heat source. Target. Therefore, the reforming water supplied by the pump 54 is supplied to the CO shift converter 12 and the CO remover 1.
3, a reforming steam supply line 15 for sequentially flowing each reactor of the steam generator 14 in series is provided, receives heat from each of the reactors to be steam, and mixes the steam with the raw fuel, It is configured to be introduced from the reforming steam supply line 15 to the reformer 11. Note that, in FIG. 3, the flow line of the reforming water to the CO shift converter 12 and the CO remover 13 is omitted.

【0013】又、上記の各反応器は触媒による化学反応
を行うため、燃料電池発電装置の起動時には、適正な温
度に予め昇温する必要がある。各反応器の適正な温度は
以下のとおりである。改質器:500〜700℃、CO変成
器:200〜300℃、CO除去器:100〜250゜Cである。
Further, since each of the above reactors performs a chemical reaction by a catalyst, it is necessary to raise the temperature to an appropriate temperature in advance when the fuel cell power generator is started. The proper temperature of each reactor is as follows. Reformer: 500 to 700 ° C, CO shifter: 200 to 300 ° C, CO remover: 100 to 250 ° C.

【0014】このため、改質器11は、燃料電池の排水
素供給ライン19から供給される水素を改質器内に設置
されているバーナで燃焼させることで、通常時は加熱さ
れているが、起動時には原燃料をバーナで燃焼させるこ
とにより昇温している。また、改質器の燃焼排ガスによ
り水蒸気発生器14も昇温している。一方、CO変成器
12とCO除去器13とは、それぞれが個々に備える図
示しない電気ヒータにより昇温している。前記バーナに
は、燃焼空気ブロア18により、燃焼用空気が導入され
る。
Therefore, the reformer 11 is normally heated by burning the hydrogen supplied from the exhaust hydrogen supply line 19 of the fuel cell with the burner installed in the reformer. During startup, the temperature is raised by burning the raw fuel with a burner. The steam generator 14 is also heated by the combustion exhaust gas from the reformer. On the other hand, each of the CO shift converter 12 and the CO remover 13 is heated by an electric heater (not shown) provided individually. Combustion air is introduced into the burner by a combustion air blower 18.

【0015】都市ガスは、都市ガス昇圧ブロア17によ
り、まず脱硫器16へ導入され、都市ガス内に含まれる
硫黄成分が除去された後、改質器11の触媒反応器へ導
入され、前記燃焼排ガスにより熱の供給を受けながら改
質され、水素リッチな燃料ガスとなる。
The city gas is first introduced into the desulfurizer 16 by the city gas pressurization blower 17 to remove the sulfur component contained in the city gas, and then introduced into the catalytic reactor of the reformer 11 for the combustion. It is reformed while being supplied with heat by the exhaust gas and becomes a hydrogen-rich fuel gas.

【0016】次に、図3における燃料電池の冷却水系機
器50および回収水系機器30について以下に述べる。
冷却水系機器50は、電池冷却水冷却器51と、カソー
ドオフガス冷却器52と、燃焼排ガスの排ガス冷却器5
3と、純水タンク55と、電池冷却水循環ポンプ54、
その他配管等を含む。
Next, the cooling water system device 50 and the recovery water system device 30 of the fuel cell in FIG. 3 will be described below.
The cooling water system device 50 includes a battery cooling water cooler 51, a cathode off-gas cooler 52, and an exhaust gas cooler 5 for combustion exhaust gas.
3, a pure water tank 55, a battery cooling water circulation pump 54,
Including other piping.

【0017】燃料電池10は、前述のように約80℃で
運転され、前記電池冷却水循環ポンプ54によって、純
水タンク55から通流される水によって冷却され、電池
冷却水冷却器51によって除熱される。電池冷却水冷却
器51には、図3には図示しない貯湯槽に接続される循
環水導出ライン56から供給される、例えば約50℃の
水が導入され、ここで電池冷却水を冷却した水は、その
後、カソードオフガス冷却器52および燃焼排ガスの排
ガス冷却器53を経由して、例えば約60℃に昇温され
て、循環水導出ライン57から前記貯湯槽に還流する。
前記純水タンク55には、液面計が設けてあり、液面が
下限に到達した際には、後述する回収水が、水処理装置
35を介して、間歇的に補給される。
As described above, the fuel cell 10 is operated at about 80 ° C., cooled by the cell cooling water circulation pump 54 by the water flowing from the pure water tank 55, and removed by the cell cooling water cooler 51. . The battery cooling water cooler 51 is supplied with water of, for example, about 50 ° C., which is supplied from a circulating water outlet line 56 connected to a hot water storage tank (not shown in FIG. 3). After that, the temperature is raised to, for example, about 60 ° C. via the cathode off-gas cooler 52 and the exhaust gas cooler 53 for the combustion exhaust gas, and is returned to the hot water storage tank from the circulating water outlet line 57.
A liquid level gauge is provided in the pure water tank 55, and when the liquid level reaches the lower limit, recovered water, which will be described later, is intermittently supplied through the water treatment device 35.

【0018】次に、回収水系機器30について述べる。
回収水系機器30は、回収水タンク31と、回収水ポン
プ33と、回収水冷却器34等からなる。前記回収水タ
ンク31の上部には、カソードオフガス冷却器52およ
び燃焼排ガスの排ガス冷却器53により冷却されたオフ
空気および燃焼排ガスが導入され、空気およびガス中の
含有水分を、上部に設けた散水装置から冷却水を散布す
ることにより凝縮して、回収水タンク31の下部に回収
する。この回収水を、回収水冷却器34により冷却し
て、前記散水装置に導入する。この散水装置の後段に
は、ラシヒリング等の充填層を備えた冷却水直接接触式
凝縮器を設ける場合もある。
Next, the recovered water system device 30 will be described.
The recovered water system device 30 includes a recovered water tank 31, a recovered water pump 33, a recovered water cooler 34, and the like. Off-air and combustion exhaust gas cooled by a cathode off-gas cooler 52 and a combustion exhaust gas exhaust gas cooler 53 are introduced to the upper part of the recovered water tank 31, and the water content in the air and the gas is sprayed on the upper part. The cooling water is sprayed from the device to be condensed and collected in the lower part of the collected water tank 31. The recovered water is cooled by the recovered water cooler 34 and introduced into the sprinkler. In some cases, a cooling water direct contact condenser equipped with a packed bed such as Raschig rings may be provided at the subsequent stage of this water sprinkler.

【0019】上記回収水は、前述のように、水処理装置
で純化され補給水として用いられる。なお、回収水タン
ク31の下部にも液面計が設けられ、回収水タンク内の
水が不足した場合には、補給水として市水が供給され
る。
As described above, the recovered water is purified by the water treatment device and used as makeup water. A liquid level gauge is also provided below the collected water tank 31, and when the water in the collected water tank is insufficient, city water is supplied as makeup water.

【0020】[0020]

【発明が解決しようとする課題】ところで、前述のよう
な従来の燃料電池発電装置においては、下記のような問
題点があった。
By the way, the above-mentioned conventional fuel cell power generator has the following problems.

【0021】上述のように、各種の水の循環経路を有す
る燃料電池発電装置を寒冷地の屋外等の低温環境下に設
置した場合に、一定時間以上装置を停止した場合、循環
経路内の水が凍結し、運転不能もしくは配管・装置等に
破損が生ずる問題があった。
As described above, when the fuel cell power generator having various water circulation paths is installed in a low temperature environment such as outdoors in a cold region and the apparatus is stopped for a certain time or longer, the water in the circulation path is However, there was a problem that it could freeze up and damage the pipes and equipment.

【0022】さらに、燃料電池を停止しない場合であっ
ても、水処理装置経由で純水タンクに供給される補給水
の供給は、前述のように間歇的であるために、水処理装
置およびその関連配管は、燃料電池の排熱が供給されな
いために、凍結するおそれがある。通常、凍結防止の場
合、例えば配管に加熱用電気ヒータを巻く方法や、燃料
電池の排熱を直接的に加熱に用いる等の方法が考えられ
るが、前記方法は、エネルギーの消費上、合理的ではな
い。
Further, even when the fuel cell is not stopped, the supply of makeup water supplied to the pure water tank via the water treatment device is intermittent as described above. The related piping may be frozen because exhaust heat of the fuel cell is not supplied. Usually, in the case of freeze prevention, for example, a method of winding an electric heater for heating around the pipe or a method of directly using exhaust heat of the fuel cell for heating can be considered, but the method is rational in terms of energy consumption. is not.

【0023】この発明は、上記問題点を解消するために
なされたもので、この発明の課題は、各種の循環経路内
の水の凍結防止を合理的に行なうことが可能な燃料電池
発電装置を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell power generator capable of rationally preventing water from freezing in various circulation paths. To provide.

【0024】[0024]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明においては、炭化水素系原燃料を水蒸気
改質して得られた燃料ガスと酸化剤ガスとしての空気と
の電気化学反応に基づいて電気および熱エネルギーを発
生する燃料電池本体と、燃料改質系機器と、燃料電池の
冷却水系機器と、燃料電池の排空気および燃料改質器の
燃焼排ガス中の水を回収する回収水系機器と、回収水純
化用の水処理装置と、前記熱エネルギーの一部を温水と
して貯える貯湯槽とを備える燃料電池発電装置におい
て、前記諸機器および装置内の水の凍結防止を図るため
に、前記貯湯槽内の温水を、前記冷却水系機器,回収水
系機器,水処理装置のうちの少なくとも一部に通流する
凍結防止用配管を備えたものとする(請求項1の発
明)。
In order to solve the above-mentioned problems, in the present invention, an electrochemical reaction of a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel and air as an oxidant gas Fuel cell main body that generates electricity and thermal energy based on reaction, fuel reforming system equipment, cooling water system equipment of fuel cell, exhaust air of fuel cell and water in combustion exhaust gas of fuel reformer In a fuel cell power generator including a recovered water system device, a water treatment device for purifying recovered water, and a hot water storage tank that stores a part of the thermal energy as hot water, in order to prevent water from freezing in the devices and the device. Furthermore, it is assumed that the hot water in the hot water storage tank is provided with an antifreezing pipe for flowing through at least a part of the cooling water system device, the recovery water system device, and the water treatment device (the invention of claim 1).

【0025】上記構成によれば、後述する実施態様によ
り、燃料電池の排熱としての貯湯槽内の温水を用いて、
合理的な凍結防止を図ることができる。
According to the above-mentioned configuration, according to the embodiment described later, hot water in the hot water storage tank is used as exhaust heat of the fuel cell,
Reasonable protection against freezing can be achieved.

【0026】前記請求項1の発明の実施態様としては、
下記請求項2ないし5の発明が好ましい。即ち、前記請
求項1記載の燃料電池発電装置において、前記凍結防止
用配管は、前記貯湯槽上部から温水を導出し、前記冷却
水系機器,回収水系機器,水処理装置のうちの少なくと
も一部に通流した後、貯湯槽下部に還流する構成とする
(請求項2の発明)。
As an embodiment of the invention of claim 1,
The inventions of claims 2 to 5 below are preferable. That is, in the fuel cell power generator according to claim 1, the antifreezing pipe draws hot water from the upper part of the hot water storage tank and is provided in at least a part of the cooling water system device, the recovered water system device, and the water treatment device. After flowing through, it is configured to flow back to the lower part of the hot water storage tank (the invention of claim 2).

【0027】貯湯槽の温水が、需要家に使用される場
合、貯湯槽の下部から市水(水道水)が供給され、この
水道水が有する圧力によって、貯湯槽の上部の温水(例
えば、70℃)が押出されて給湯される。従って、凍結
防止用に供給された水が、前述のように、貯湯槽下部の
水道水供給領域に還流しても、貯湯槽の上部空間の温水
は、温度的な影響を殆んど受けることなく保持され、合
理的な凍結防止を図ることができる。
When hot water in the hot water storage tank is used by a customer, city water (tap water) is supplied from the lower portion of the hot water storage tank, and the hot water in the upper portion of the hot water storage tank (for example, 70 (° C) is extruded to supply hot water. Therefore, even if the water supplied for freezing is returned to the tap water supply area at the lower part of the hot water storage tank as described above, the hot water in the upper space of the hot water storage tank is hardly affected by temperature. It is retained without any damage and rational freeze prevention can be achieved.

【0028】また、前記請求項1記載の燃料電池発電装
置において、前記凍結防止用配管は、前記貯湯槽中間部
から温水を導出し、前記冷却水系機器,回収水系機器,
水処理装置のうちの少なくとも一部に通流した後、前記
冷却水系機器における電池冷却水冷却器,カソードオフ
ガス冷却器および燃焼排ガスの排ガス冷却器に通流し
て、前記燃料電池の熱エネルギーにより加熱して貯湯槽
上部に還流する構成とする(請求項3の発明)。
Further, in the fuel cell power generator according to the first aspect, the antifreezing pipe draws hot water from the middle part of the hot water storage tank, and the cooling water system device, the recovered water system device,
After flowing through at least a part of the water treatment device, it flows through a battery cooling water cooler, a cathode off-gas cooler and a combustion exhaust gas exhaust gas cooler in the cooling water system equipment, and is heated by the thermal energy of the fuel cell. Then, the water is returned to the upper part of the hot water storage tank (the invention of claim 3).

【0029】この場合は、前記燃料電池の運転を行なっ
ていることが前提となるが、凍結防止用に供給された水
が、燃料電池の排熱で昇温するので、排熱を有効に利用
して合理的な凍結防止を図ることができる。なお、前記
燃料電池の運転を行なわない場合には、貯湯槽下部に還
流するように、配管回路を切り替える構成とすることも
できる。
In this case, it is premised that the fuel cell is in operation, but since the water supplied for freezing rises in temperature due to the exhaust heat of the fuel cell, the exhaust heat can be used effectively. Therefore, rational freeze prevention can be achieved. When the fuel cell is not operated, the piping circuit may be switched so that the fuel cell is returned to the lower part of the hot water tank.

【0030】さらに、前記請求項1または2に記載の燃
料電池発電装置において、前記凍結防止用配管は、前記
貯湯槽から導出する温水を、前記冷却水系機器と回収水
系機器とに直列に通流し、前記水処理装置には、前記二
つの機器とは並列に通流する構成とし、前記各並列配管
路には、それぞれ開閉弁もしくは流量制御弁を備えたも
のとする(請求項4の発明)。
Further, in the fuel cell power generator according to claim 1 or 2, the antifreezing pipe allows hot water derived from the hot water storage tank to flow in series to the cooling water system device and the recovered water system device. The water treatment device is configured to flow in parallel with the two devices, and each of the parallel pipelines is provided with an on-off valve or a flow control valve (invention of claim 4). .

【0031】前述のように、前記燃料電池の運転を行な
っている場合には、水処理装置とその関連配管のみが凍
結する可能性がある。従って、水処理装置と、前記冷却
水系機器および回収水系機器とを分けて、凍結防止用配
管を構成することにより、必要に応じて、凍結防止機能
を運用する合理的な運転が可能となる。
As described above, when the fuel cell is operating, only the water treatment device and its associated pipes may freeze. Therefore, by dividing the water treatment device and the cooling water system device and the recovery water system device and configuring the antifreezing pipe, it is possible to perform a rational operation of operating the antifreezing function as necessary.

【0032】さらにまた、必要に応じたきめ細かな凍結
防止運転を行なう観点から、下記請求項5の発明が好ま
しい。即ち、請求項4に記載の燃料電池発電装置におい
て、前記各並列配管路には、それぞれ温度センサを設
け、この温度センサの計測値に基づき、前記開閉弁もし
くは流量制御弁を介して、前記温水通流量を制御する制
御装置を備えたものとする。
Furthermore, the invention of claim 5 is preferable from the viewpoint of performing fine antifreeze operation as necessary. That is, in the fuel cell power generator according to claim 4, a temperature sensor is provided in each of the parallel pipelines, and the hot water is passed through the on-off valve or the flow control valve based on the measurement value of the temperature sensor. It shall be equipped with a control device that controls the flow rate.

【0033】[0033]

【発明の実施の形態】図面に基づき、本発明の実施例に
ついて以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】図1は、この発明に関わる実施例を示す系
統図であり、図3と同じ機能を有する部材には同一の番
号を付して説明を省略する。
FIG. 1 is a system diagram showing an embodiment according to the present invention. Members having the same functions as those in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.

【0035】図1においては、発電装置100と、図3
において図示を省略した貯湯槽60と、この貯湯槽60
と発電装置の一部とを、凍結防止配管70で接続した系
統図を示し、図1における発電装置100は、図3に示
した系統を機能別に大きく分類してブロック的に示し、
システムにおける詳細な結合関係を省略して示す。上記
に基づき、発電装置100は、燃料電池本体10と、改
質系機器20と、回収水系機器30と、水処理装置35
と、冷却水系機器50と、その他補機40とからなるも
のとして示す。
In FIG. 1, the power generator 100 and FIG.
A hot water storage tank 60 not shown in FIG.
And a part of the power generator are connected by an antifreezing pipe 70, and the power generator 100 in FIG. 1 shows the system shown in FIG.
Detailed connection relationships in the system are omitted. Based on the above, the power generation device 100 includes the fuel cell body 10, the reforming system device 20, the recovered water system device 30, and the water treatment device 35.
And the cooling water system device 50 and other auxiliary devices 40.

【0036】図1において、凍結防止用配管70は、貯
湯槽60の上部から温水を導出し、前記冷却水系機器5
0,回収水系機器30,水処理装置35の少なくとも一
部の近傍、もしくは、一部に接して設けた配管(74
b,74a,73a)に通流した後、貯湯槽60下部に
還流する構成となし、さらに、貯湯槽上部から導出する
温水は、前記回収水系機器30と冷却水系機器50とに
直列に通流し、前記水処理装置35には、前記二つの機
器とは並列に通流するように構成される。また、前記各
並列配管路74および73には、それぞれ、開閉弁もし
くは流量制御弁76および75が設けられている。
In FIG. 1, the antifreezing pipe 70 draws hot water from the upper portion of the hot water storage tank 60, and the cooling water system equipment 5
0, the recovered water system device 30, and the pipe (74 provided near or in contact with at least a part of the water treatment device 35).
b, 74a, 73a) and then is returned to the lower part of the hot water storage tank 60. Further, the hot water discharged from the upper part of the hot water storage tank flows through the recovered water system device 30 and the cooling water system device 50 in series. The water treatment device 35 is configured to flow in parallel with the two devices. Further, on-off valves or flow rate control valves 76 and 75 are provided on the parallel piping lines 74 and 73, respectively.

【0037】貯湯槽60の下方には、例えば、深夜電力
利用の電気ヒータやガス焚きバーナーなどの補助熱源6
1が設けられ、給湯が不足の際に、熱供給されるように
構成されている。給湯を使用する場合には、前述のよう
に、貯湯槽の下部から市水が供給され、この市水圧力に
よって、貯湯槽の上部の温水が給湯される。従って、前
記74b,74a,73a部に凍結防止用に供給された
水が、前述のように貯湯槽下部に還流しても、貯湯槽6
0の上部空間の温水は、温度的な影響を殆んど受けるこ
となく保持され、合理的な凍結防止を図ることができ
る。なお、凍結防止用の温水は、ポンプ72により供給
されるが、凍結防止配管のみの小流量の通流のため、こ
のポンプ容量は極めて小さいものでよい。また、前記補
助熱源61が稼動している場合には、貯湯槽60内で、
水の密度勾配に基づく水の駆動力が発生するので、ポン
プ72の動力は、その分、軽減される。
Below the hot water storage tank 60, for example, an auxiliary heat source 6 such as an electric heater or a gas-fired burner that uses late-night power.
1 is provided so that heat is supplied when the hot water supply is insufficient. When using hot water supply, as described above, city water is supplied from the lower part of the hot water storage tank, and hot water in the upper part of the hot water storage tank is supplied by this city water pressure. Therefore, even if the water supplied to the portions 74b, 74a, 73a for preventing freezing flows back to the lower part of the hot water storage tank as described above, the hot water storage tank 6
The hot water in the upper space of 0 is retained without being affected by temperature, and it is possible to prevent the freezing reasonably. The hot water for freezing prevention is supplied by the pump 72, but the pump capacity may be extremely small because only a small flow rate flows through the antifreezing pipe. Further, when the auxiliary heat source 61 is operating, in the hot water storage tank 60,
Since the driving force of water based on the density gradient of water is generated, the power of the pump 72 is reduced accordingly.

【0038】また、図1において、燃料電池の運転を行
なっている場合には、水処理装置とその関連配管のみが
凍結する可能性があるので、例えば、前記各並列配管路
73および74における73aおよび74aの所定の場
所に、それぞれ、図示しない温度センサを設け、この温
度センサの計測値に基づき、開閉弁もしくは流量制御弁
75もしくは76を介して凍結防止用の温水通流量を制
御する図示しない制御装置を設けることにより、合目的
な凍結防止運転が実施できる。
Further, in FIG. 1, when the fuel cell is in operation, there is a possibility that only the water treatment device and its associated pipes may freeze, so that, for example, 73a in each of the parallel pipe paths 73 and 74. And 74a are provided with temperature sensors (not shown) at predetermined locations, respectively, and the flow rate of hot water for freezing prevention is not shown, which is controlled based on the measured value of the temperature sensor via the on-off valve or the flow control valve 75 or 76. Providing a control device enables proper antifreeze operation.

【0039】次に、図2の実施例について述べる。図2
は、主に請求項3の発明に関わる実施例を示す系統図で
あり、図1と同じ機能を有する部材には同一の番号を付
して説明を省略する。図2の実施例において、凍結防止
用配管70aは、貯湯槽60の中間部から図2の部番5
6aで示すラインに、ポンプ58により温水を導出し、
この温水をライン56aから分岐して、回収水系機器3
0と冷却水系機器50とに直列に通流し、前記水処理装
置35には、前記二つの機器とは並列に通流した後、ラ
イン56aに戻して、さらに前記冷却水系機器50にお
ける電池冷却水冷却器,カソードオフガス冷却器および
燃焼排ガスの排ガス冷却器(図3における部番51,5
2,53)に通流して、燃料電池の熱エネルギーにより
加熱して貯湯槽60の上部に還流する構成としている。
Next, the embodiment shown in FIG. 2 will be described. Figure 2
Is a systematic diagram mainly showing an embodiment relating to the invention of claim 3, and the members having the same functions as those in FIG. In the embodiment shown in FIG. 2, the anti-freezing pipe 70a is arranged from the middle portion of the hot water storage tank 60 to the part number 5 shown in FIG.
The hot water is drawn out by the pump 58 to the line indicated by 6a,
This warm water is branched from the line 56a to collect the recovered water system device 3
0 and the cooling water system device 50 in series, and the water treatment device 35 flows in parallel with the two devices, and then returns to the line 56a to further cool the battery cooling water in the cooling water system device 50. Cooler, cathode off-gas cooler, and exhaust gas cooler for combustion exhaust gas (part numbers 51, 5 in FIG. 3
2, 53) and is heated by the thermal energy of the fuel cell to be returned to the upper part of the hot water storage tank 60.

【0040】図2の実施例によれば、図1の実施例に比
較して、図1のポンプ72が不要となり、装置の簡略化
と動力の低減を図ることができる。
According to the embodiment of FIG. 2, as compared with the embodiment of FIG. 1, the pump 72 of FIG. 1 is not required, so that the apparatus can be simplified and the power can be reduced.

【0041】[0041]

【発明の効果】上記のとおり、この発明によれば、炭化
水素系原燃料を水蒸気改質して得られた燃料ガスと酸化
剤ガスとしての空気との電気化学反応に基づいて電気お
よび熱エネルギーを発生する燃料電池本体と、燃料改質
系機器と、燃料電池の冷却水系機器と、燃料電池の排空
気および燃料改質器の燃焼排ガス中の水を回収する回収
水系機器と、回収水純化用の水処理装置と、前記熱エネ
ルギーの一部を温水として貯える貯湯槽とを備える燃料
電池発電装置において、前記諸機器および装置内の水の
凍結防止を図るために、前記貯湯槽内の温水を、前記冷
却水系機器,回収水系機器,水処理装置のうちの少なく
とも一部に通流する凍結防止用配管を備えたものとした
ので、各種の循環経路内の水の凍結防止を、的確かつエ
ネルギ消費量を節減して、合理的に行なうことができ
る。
As described above, according to the present invention, electric and thermal energy is generated based on an electrochemical reaction between a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel and air as an oxidant gas. Fuel cell main body, fuel reforming system equipment, fuel cell cooling water system equipment, recovered water system equipment that collects water in the exhaust air of the fuel cell and combustion exhaust gas of the fuel reformer, and purified purified water In a fuel cell power generator including a water treatment device for water and a hot water storage tank for storing a part of the thermal energy as hot water, hot water in the hot water storage tank is provided in order to prevent freezing of water in the devices and equipment. Is provided with an anti-freezing pipe that flows through at least a part of the cooling water system device, the recovered water system device, and the water treatment device, so that it is possible to accurately prevent the freezing of water in various circulation paths. Save energy consumption It is possible in reasonably performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の燃料電池発電装置の実施例を示す系
統図
FIG. 1 is a system diagram showing an embodiment of a fuel cell power generator of the present invention.

【図2】この発明の燃料電池発電装置の異なる実施例を
示す系統図
FIG. 2 is a system diagram showing another embodiment of the fuel cell power generator of the present invention.

【図3】従来の燃料電池発電装置の一例を示す系統図FIG. 3 is a system diagram showing an example of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

10:燃料電池本体、20:改質系機器、30:回収水
系機器、35:水処理装置、50:冷却水系機器、6
0:貯湯槽、70:凍結防止用配管、75,76:開閉
弁もしくは流量制御弁、100:発電装置。
10: fuel cell main body, 20: reforming system device, 30: recovered water system device, 35: water treatment device, 50: cooling water system device, 6
0: hot water storage tank, 70: antifreeze piping, 75, 76: open / close valve or flow control valve, 100: power generator.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系原燃料を水蒸気改質して得ら
れた燃料ガスと酸化剤ガスとしての空気との電気化学反
応に基づいて電気および熱エネルギーを発生する燃料電
池本体と、燃料改質系機器と、燃料電池の冷却水系機器
と、燃料電池の排空気および燃料改質器の燃焼排ガス中
の水を回収する回収水系機器と、回収水純化用の水処理
装置と、前記熱エネルギーの一部を温水として貯える貯
湯槽とを備える燃料電池発電装置において、 前記諸機器および装置内の水の凍結防止を図るために、
前記貯湯槽内の温水を、前記冷却水系機器,回収水系機
器,水処理装置のうちの少なくとも一部に通流する凍結
防止用配管を備えたことを特徴とする燃料電池発電装
置。
1. A fuel cell main body that generates electricity and thermal energy based on an electrochemical reaction between a fuel gas obtained by steam reforming a hydrocarbon-based raw fuel and air as an oxidant gas, and a fuel reformer. Quality system equipment, cooling water system equipment for fuel cells, recovered water system equipment for recovering exhaust air of fuel cells and water in combustion exhaust gas of a fuel reformer, water treatment device for purifying recovered water, and the thermal energy In a fuel cell power generator including a hot water storage tank for storing a part of the above as hot water, in order to prevent water from freezing in the above-mentioned various devices and devices,
A fuel cell power generator comprising: a pipe for freezing, which allows hot water in the hot water storage tank to flow through at least a part of the cooling water system device, the recovery water system device, and the water treatment device.
【請求項2】 請求項1記載の燃料電池発電装置におい
て、前記凍結防止用配管は、前記貯湯槽上部から温水を
導出し、前記冷却水系機器,回収水系機器,水処理装置
のうちの少なくとも一部に通流した後、貯湯槽下部に還
流する構成としたことを特徴とする燃料電池発電装置。
2. The fuel cell power generator according to claim 1, wherein the antifreezing pipe draws hot water from the upper part of the hot water storage tank, and at least one of the cooling water system device, the recovered water system device, and the water treatment device. A fuel cell power generator characterized in that the fuel cell power generator is configured to flow back to the lower part of the hot water storage tank after flowing into the section.
【請求項3】 請求項1記載の燃料電池発電装置におい
て、前記凍結防止用配管は、前記貯湯槽中間部から温水
を導出し、前記冷却水系機器,回収水系機器,水処理装
置のうちの少なくとも一部に通流した後、前記冷却水系
機器における電池冷却水冷却器,カソードオフガス冷却
器および燃焼排ガスの排ガス冷却器に通流して、前記燃
料電池の熱エネルギーにより加熱して貯湯槽上部に還流
する構成としたことを特徴とする燃料電池発電装置。
3. The fuel cell power generator according to claim 1, wherein the antifreezing pipe draws hot water from the middle part of the hot water storage tank, and at least one of the cooling water system device, the recovered water system device, and the water treatment device. After passing through a part, it is passed through a battery cooling water cooler, a cathode off-gas cooler and a combustion exhaust gas exhaust gas cooler in the cooling water system device, heated by the thermal energy of the fuel cell and returned to the upper part of the hot water tank. A fuel cell power generator having the above structure.
【請求項4】 請求項1または2に記載の燃料電池発電
装置において、前記凍結防止用配管は、前記貯湯槽から
導出する温水を、前記冷却水系機器と回収水系機器とに
直列に通流し、前記水処理装置には、前記二つの機器と
は並列に通流する構成とし、前記各並列配管路には、そ
れぞれ開閉弁もしくは流量制御弁を備えたことを特徴と
する燃料電池発電装置。
4. The fuel cell power generator according to claim 1, wherein the antifreezing pipe allows hot water derived from the hot water storage tank to flow in series to the cooling water system device and the recovered water system device. The fuel cell power generator, wherein the water treatment device is configured to flow in parallel with the two devices, and each of the parallel pipelines is provided with an on-off valve or a flow control valve.
【請求項5】 請求項4に記載の燃料電池発電装置にお
いて、前記各並列配管路には、それぞれ温度センサを設
け、この温度センサの計測値に基づき、前記開閉弁もし
くは流量制御弁を介して、前記温水通流量を制御する制
御装置を備えたことを特徴とする燃料電池発電装置。
5. The fuel cell power generator according to claim 4, wherein each of the parallel pipes is provided with a temperature sensor, and the temperature sensor is used to transmit the temperature sensor through the on-off valve or the flow control valve. A fuel cell power generator comprising a controller for controlling the hot water flow rate.
JP2002085431A 2002-03-26 2002-03-26 Fuel cell power generator Expired - Fee Related JP3994324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002085431A JP3994324B2 (en) 2002-03-26 2002-03-26 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085431A JP3994324B2 (en) 2002-03-26 2002-03-26 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2003282105A true JP2003282105A (en) 2003-10-03
JP3994324B2 JP3994324B2 (en) 2007-10-17

Family

ID=29232402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085431A Expired - Fee Related JP3994324B2 (en) 2002-03-26 2002-03-26 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3994324B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048654A (en) * 2005-08-11 2007-02-22 Kyocera Corp Power generator
JP2010272343A (en) * 2009-05-21 2010-12-02 Aisin Seiki Co Ltd Fuel cell system
EP2479826A1 (en) 2011-01-21 2012-07-25 Aisin Seiki Kabushiki Kaisha Fuel cell system
WO2021166451A1 (en) 2020-02-21 2021-08-26 パナソニックIpマネジメント株式会社 Exhaust heat recovery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048654A (en) * 2005-08-11 2007-02-22 Kyocera Corp Power generator
JP2010272343A (en) * 2009-05-21 2010-12-02 Aisin Seiki Co Ltd Fuel cell system
EP2479826A1 (en) 2011-01-21 2012-07-25 Aisin Seiki Kabushiki Kaisha Fuel cell system
WO2021166451A1 (en) 2020-02-21 2021-08-26 パナソニックIpマネジメント株式会社 Exhaust heat recovery system

Also Published As

Publication number Publication date
JP3994324B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
KR100525538B1 (en) Solid high polymer type fuel cell power generating device
JPH10330101A (en) Hydrogen-manufacturing apparatus and method therefor
JP3416653B2 (en) Polymer electrolyte fuel cell power generator
JP2013105612A (en) Fuel cell system and method for controlling fuel cell system
JP2003282114A (en) Stopping method of fuel cell power generating device
KR102044766B1 (en) High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
JP2017068913A (en) Fuel battery system
JP2005166283A (en) Hydrogen manufacturing device for fuel cell
JP2003282105A (en) Fuel cell power generating system
JP2001313053A (en) Fuel cell system
JP3906083B2 (en) Solid polymer fuel cell power generator
JP2005063697A (en) Fuel cell power generating system
JP4968984B2 (en) Fuel cell reformer
JP2005093127A (en) Fuel cell cogeneration system and its operation method
JP2003288936A (en) Fuel cell power generating system and its operation method
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP5502521B2 (en) Fuel cell system
EP1816695B1 (en) Combined heat and power plant
JP5102511B2 (en) Fuel cell system
JP2006179346A (en) Fuel cell power generation system and its operation method
JP2002100382A (en) Fuel cell power generator
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JP4161264B2 (en) Fuel cell power generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP4072725B2 (en) Operation method of fuel cell power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees