JP2003282034A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2003282034A
JP2003282034A JP2002079161A JP2002079161A JP2003282034A JP 2003282034 A JP2003282034 A JP 2003282034A JP 2002079161 A JP2002079161 A JP 2002079161A JP 2002079161 A JP2002079161 A JP 2002079161A JP 2003282034 A JP2003282034 A JP 2003282034A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
aqueous secondary
container
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002079161A
Other languages
Japanese (ja)
Other versions
JP4088757B2 (en
Inventor
Shiro Kato
史朗 加藤
Takae Yokouchi
香江 横内
Shizukuni Yada
静邦 矢田
Hiroyuki Tajiri
博幸 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002079161A priority Critical patent/JP4088757B2/en
Publication of JP2003282034A publication Critical patent/JP2003282034A/en
Application granted granted Critical
Publication of JP4088757B2 publication Critical patent/JP4088757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery, which is flat-shaped, has the thickness less than 12 mm, and has a large capacity of 30 Wh or more as well as a volume energy density of 180 Wh/l to realize a high weight energy density. <P>SOLUTION: In the non-aqueous secondary battery which houses a positive electrode, a negative electrode, a separator, and non-aqueous electrolyte containing lithium salt in a battery container, and which is flat-shaped, has the thickness less than 12 mm, and has a large energy capacity of 30 Wh or more, and the volume energy density of 180 Wh/l or more, the battery container is provided with a part consisting of aluminum or of an alloy mainly composed of aluminum as the major constituting member. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
関し、特に、蓄電システム用非水系二次電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery for a power storage system.

【0002】[0002]

【従来の技術】近年、省資源を目指したエネルギーの有
効利用及び地球環境問題の観点から、深夜電力貯蔵及び
太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電シ
ステム、電気自動車のための蓄電システム等が注目を集
めている。例えば、特開平6−86463号公報には、
エネルギー需要者に最適条件でエネルギーを供給できる
システムとして、発電所から供給される電気、ガスコー
ジェネレーション、燃料電池、蓄電池等を組み合わせた
トータルシステムが提案されている。このような蓄電シ
ステムに用いられる二次電池は、エネルギー容量が10
Wh以下の携帯機器用小型二次電池と異なり、容量が大
きい大型のものが必要とされる。このため、上記の蓄電
システムでは、複数の二次電池を直列に積層し、電圧が
例えば50〜400Vの組電池として用いるのが常であ
り、ほとんどの場合、鉛電池を用いていた。
2. Description of the Related Art In recent years, from the viewpoint of effective use of energy and resource saving for the purpose of resource saving and global environmental problems, a distributed power storage system for home use for electric power storage of late night electric power storage and solar power generation Power storage systems are attracting attention. For example, in Japanese Patent Laid-Open No. 6-86463,
As a system capable of supplying energy to energy consumers under optimum conditions, a total system combining electricity supplied from a power plant, gas cogeneration, a fuel cell, a storage battery, etc. has been proposed. The secondary battery used in such a power storage system has an energy capacity of 10
Unlike a small secondary battery for mobile devices of Wh or less, a large one having a large capacity is required. Therefore, in the above-described power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of, for example, 50 to 400 V. In most cases, lead batteries have been used.

【0003】一方、携帯機器用小型二次電池の分野で
は、小型及び高容量のニーズに応えるべく、新型電池と
してニッケル水素電池、リチウム二次電池の開発が進展
し、180Wh/l以上の体積エネルギー密度を有する
電池が市販されている。特に、リチウムイオン電池は、
350Wh/lを超える体積エネルギー密度の可能性を
有すること、及び、安全性、サイクル特性等の信頼性が
金属リチウムを負極に用いたリチウム二次電池に比べ優
れることから、その市場を飛躍的に延ばしている。
On the other hand, in the field of small secondary batteries for portable equipment, nickel hydrogen batteries and lithium secondary batteries have been developed as new type batteries to meet the needs of small size and high capacity, and volume energy of 180 Wh / l or more has been developed. Batteries having a density are commercially available. Especially, the lithium-ion battery
Since it has a volume energy density of more than 350 Wh / l, and is superior in reliability such as safety and cycle characteristics to a lithium secondary battery using metallic lithium as a negative electrode, its market is dramatically increased. It has been postponed.

【0004】これを受け、蓄電システム用大型電池の分
野においても、高エネルギー密度電池の候補として、リ
チウムイオン電池をターゲットとし、リチウム電池電力
貯蔵技術研究組合(LIBES)等で精力的に開発が進
められている。
In response to this, even in the field of large batteries for power storage systems, lithium ion batteries are targeted as a candidate for high energy density batteries, and vigorous development is underway at the lithium battery power storage technology research association (LIBES) and the like. Has been.

【0005】これら大型リチウムイオン電池のエネルギ
ー容量は、100Whから400Wh程度であり、体積
エネルギー密度は、200〜300Wh/lと携帯機器
用小型二次電池並のレベルに達している。その形状は、
直径50mm〜70mm、長さ250mm〜450mm
の円筒型、厚さ35mm〜50mmの角形又は長円角形
等の扁平角柱形が代表的なものである。
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, which is about the same level as small secondary batteries for portable devices. Its shape is
Diameter 50mm-70mm, Length 250mm-450mm
The cylindrical type, the flat type having a thickness of 35 mm to 50 mm, the oblong rectangular type, or the like having a thickness of 35 mm to 50 mm is typical.

【0006】しかし、このような大型リチウムイオン電
池は、高エネルギー密度が得られるものの、一般的にそ
の電池設計が携帯機器用小型電池の延長線上にあること
から、直径又は厚さが携帯機器用小型電池の3倍以上の
円筒型、角型等の電池形状とされる。この場合には、充
放電時の電池の内部抵抗によるジュール発熱、或いはリ
チウムイオンの出入りによって活物質のエントロピーが
変化することによる電池の内部発熱により、電池内部に
熱が蓄積されやすい。このため、電池内部の温度と電池
表面付近の温度差が大きく、これに伴って内部抵抗が偏
在し、その結果、充電量、電圧のばらつきを生じ易い。
また、この種の電池は複数個を組電池にして用いるた
め、システム内での電池の設置位置によっても蓄熱され
やすさが異なって各電池間のばらつきが生じ、組電池全
体の正確な制御が困難になる。更には、高率充放電時等
に放熱が不十分な為、電池温度が上昇し、電池にとって
好ましくない状態におかれることから、電解液の分解等
による寿命の低下、更には電池の熱暴走の誘起など信頼
性、特に、安全性に問題が残されていた。
However, although such a large lithium-ion battery can obtain a high energy density, its battery design is generally on the extension line of a small battery for portable devices, so that the diameter or thickness for portable devices is large. The battery has a cylindrical shape, a rectangular shape, or the like that is three times or more that of a small battery. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to internal resistance of the battery during charging / discharging, or internal heat generation of the battery due to change in entropy of the active material due to entry and exit of lithium ions. For this reason, there is a large difference between the temperature inside the battery and the temperature near the surface of the battery, and the internal resistance is unevenly distributed along with this, and as a result, variations in the charge amount and voltage are likely to occur.
Further, since a plurality of batteries of this type are used as an assembled battery, the easiness of heat storage also varies depending on the installation position of the batteries in the system, and variations among the batteries occur, thus ensuring accurate control of the entire assembled battery. It will be difficult. Furthermore, since the heat dissipation is insufficient during high-rate charging / discharging, etc., the battery temperature rises and the battery is placed in an unfavorable state, which shortens the service life due to decomposition of the electrolyte, and also causes thermal runaway of the battery. However, there was a problem with reliability, especially safety.

【0007】上記問題を解決する目的でWO99/60
652号公報には、正極、負極、セパレータ、及びリチ
ウム塩を含む非水系電解質を電池容器内に収容した扁平
形状の非水系二次電池であって、前記非水系二次電池
は、その厚さが12mm未満の扁平形状であり、そのエ
ネルギー容量が30Wh以上且つ体積エネルギー密度が
180Wh/l以上の非水系二次電池が開示されてい
る。前記電池は独特の電池形状(扁平形状)により、実
用化の障壁となる上記蓄熱に起因する信頼性、安全性の
問題点を解決する事を提案している。
In order to solve the above problems, WO99 / 60
No. 652 is a flat non-aqueous secondary battery in which a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt are housed in a battery container, and the non-aqueous secondary battery has a thickness Discloses a non-aqueous secondary battery having a flat shape of less than 12 mm, an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more. It is proposed that the battery has a unique battery shape (flat shape) to solve the problems of reliability and safety due to the heat storage, which is a barrier to practical use.

【0008】ところで、一般に電池容器では、物が衝突
する等の外部からの衝撃に耐え、且つ、電池容器内に収
納される電極を挟持しガスが発生した場合にこれを押さ
え込むという機能を奏するように、電池サイズ、電池形
状、電池の使用環境等に応じて材質、形状等の選択が行
われる。特に大型電池では、小型電池と異なり、電池の
信頼性、安全性を確保するために、電池容器の設計、つ
まり材質、形状等の決定が特に重要となる。例えば電池
形状を角型にする場合には、円筒型の電池に比べて平板
状部分の耐圧性が低いことから高強度の材料が必要とな
るため、電池容器の材質としてステンレス或いは鉄が一
般に用いられている。
By the way, generally, a battery container has a function of withstanding an external impact such as a collision of an object, and holding an electrode housed in the battery container to hold down an electrode when gas is generated. In addition, the material, shape, and the like are selected according to the battery size, the battery shape, the environment in which the battery is used, and the like. Especially for a large battery, unlike a small battery, in order to secure the reliability and safety of the battery, the design of the battery container, that is, the determination of the material, the shape, etc., is particularly important. For example, when the battery shape is rectangular, a high-strength material is required because the flat plate portion has lower pressure resistance than a cylindrical battery, so stainless steel or iron is generally used as the material of the battery container. Has been.

【0009】しかしながら、上記のような厚さが12m
m未満の大容量(30Wh以上)扁平形状の大型電池で
は、大きな面積の平板状部材が存し、角型或いは円筒型
電池に比べ、電池全体に対する電池容器材料の体積の占
める割合が大きくなる。したがって、このような薄型扁
平形状の電池において電池容器にステンレス或いは鉄を
用いた場合には、電池総重量に対し、電池容器重量の閉
める比率が高くなるという問題があった。すなわち、従
来の扁平形状の電池は、高い体積エネルギー密度を実現
し得るにも関わらず、重量エネルギー密度が極度に低下
するという問題を有していた。
However, the thickness as described above is 12 m.
In a large flat battery having a large capacity (30 Wh or more) of less than m, a flat plate-shaped member having a large area exists, and the ratio of the volume of the battery container material to the entire battery is larger than that of the prismatic or cylindrical battery. Therefore, in such a thin and flat battery, when stainless steel or iron is used for the battery container, there is a problem that the ratio of the weight of the battery container to the total battery weight is high. That is, the conventional flat-shaped battery has a problem that the weight energy density is extremely lowered although the high volume energy density can be realized.

【0010】そこで、電池容器にアルミニウム系材料を
用いれば容器重量を約3分の1に減少でき、上記重量エ
ネルギー密度の低下を抑制できる。但し、底容器、及び
上蓋共に純度の高いアルミニウムを用いると、レーザ溶
接性が低下する、外部応力により変形し易い等の問題が
あった。又底容器、上蓋共にレーザ溶接性の高いアルミ
ニウム合金を用いた場合、材料硬度が高くなり、小さい
R(曲率半径)での絞り加工が困難となり、電池全体で
の内部有効体積が上げにくい等の問題があった。
Therefore, if an aluminum-based material is used for the battery container, the container weight can be reduced to about one-third, and the decrease in the weight energy density can be suppressed. However, when high-purity aluminum is used for both the bottom container and the upper lid, there are problems that the laser weldability is deteriorated and the aluminum is easily deformed by external stress. Further, when an aluminum alloy having a high laser weldability is used for both the bottom container and the top lid, the material hardness becomes high, it becomes difficult to draw with a small R (radius of curvature), and it is difficult to increase the internal effective volume of the entire battery. There was a problem.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、厚さ
が12mm未満の扁平形状である非水系二次電池におい
て、高容量、高体積エネルギー密度、及び高重量エネル
ギー密度を兼ね備えた非水系二次電池を提供することに
ある。
An object of the present invention is to provide a non-aqueous secondary battery having a flat shape with a thickness of less than 12 mm and having a high capacity, a high volume energy density and a high weight energy density. To provide a secondary battery.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するため、下記の非水系二次電池を提供する。
To achieve the above object, the present invention provides the following non-aqueous secondary battery.

【0013】項1.正極、負極、セパレータ、及びリチ
ウム塩を含む非水系電解質を電池容器内に収容し、厚さ
が12mm未満の扁平形状であり、そのエネルギー容量
が30Wh以上且つ体積エネルギー密度が180Wh/
l以上である非水系二次電池において、前記電池容器
が、平板形状の上蓋および絞り加工を施した底容器より
構成され、前記上蓋がアルミニウム合金からなる部分を
主要部材として備え、前記底容器が高純度のアルミニウ
ム金属からなる部分を主要部材として備えていることを
特徴とする非水系二次電池。
Item 1. A positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt are housed in a battery container and have a flat shape with a thickness of less than 12 mm, and the energy capacity thereof is 30 Wh or more and the volume energy density is 180 Wh /
In the non-aqueous secondary battery of 1 or more, the battery container is composed of a flat plate-shaped upper lid and a drawn bottom container, and the upper lid is provided with a portion made of an aluminum alloy as a main member, and the bottom container is A non-aqueous secondary battery, which is provided with a portion made of high-purity aluminum metal as a main member.

【0014】項2.前記電池容器における底容器が、9
9重量%以上のAl成分を含有する高純度のアルミニウ
ムで構成されている項1に記載の非水系二次電池。
Item 2. The bottom container in the battery container is 9
Item 2. The non-aqueous secondary battery according to item 1, which is composed of high-purity aluminum containing 9% by weight or more of an Al component.

【0015】項3.前記電池容器における上蓋が、0.
5重量%〜2.0重量%のMn成分を含有するアルミニ
ウム合金で構成されている項2に記載の非水系二次電
池。
Item 3. The upper lid of the battery container is 0.
Item 3. The non-aqueous secondary battery according to item 2, which is composed of an aluminum alloy containing 5 wt% to 2.0 wt% of Mn component.

【0016】項4.前記電池容器における上蓋が、0.
02重量%〜0.8重量%のMg成分を含有するアルミ
ニウム合金で構成されている請求項3に記載の非水系二
次電池。
Item 4. The upper lid of the battery container is 0.
The non-aqueous secondary battery according to claim 3, which is composed of an aluminum alloy containing 02 wt% to 0.8 wt% Mg component.

【0017】項5.前記電池容器内の圧力が大気圧未満
である項1から4のいずれかに記載の非水系二次電池。
Item 5. Item 5. The non-aqueous secondary battery according to any one of Items 1 to 4, wherein the pressure inside the battery container is less than atmospheric pressure.

【0018】項6.前記電池容器内の圧力が、少なくと
も1回充電された後に前記電池容器内の圧力を大気圧未
満にした状態で最終封口されることにより、大気圧未満
にされた項5に記載の非水系二次電池。
Item 6. Item 6. The non-aqueous secondary battery according to item 5, wherein the pressure inside the battery container is kept below atmospheric pressure by finally sealing after the pressure inside the battery container is kept below atmospheric pressure after being charged at least once. Next battery.

【0019】項7.前記電池容器内の圧力が、8.66
×104Pa以下である項1から6のいずれかに記載の
非水系二次電池。
Item 7. The pressure in the battery container is 8.66.
Item 7. The non-aqueous secondary battery according to any one of Items 1 to 6, which has a pressure of 10 4 Pa or less.

【0020】項8.前記負極が、リチウムをドープおよ
び脱ドープ可能な物質を含む項1から7のいずれかに記
載の非水系二次電池。
Item 8. Item 8. The non-aqueous secondary battery according to any one of Items 1 to 7, wherein the negative electrode contains a substance capable of doping and dedoping lithium.

【0021】項9.前記正極が、マンガン酸化物を含む
項1から8のいずれかに記載の非水系二次電池。
Item 9. Item 9. The non-aqueous secondary battery according to any one of Items 1 to 8, wherein the positive electrode contains manganese oxide.

【0022】項10.前記扁平形状の表裏面の形状が矩
形である項1から9のいずれかに記載の非水系二次電
池。
Item 10. Item 10. The non-aqueous secondary battery according to any one of Items 1 to 9, wherein the front and back surfaces of the flat shape are rectangular.

【0023】項11.前記電池容器の板厚が0.2mm
以上1mm以下である項1から10のいずれかに記載の
非水系二次電池。
Item 11. The thickness of the battery container is 0.2 mm
Item 11. The non-aqueous secondary battery according to any one of Items 1 to 10, which is 1 mm or less.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態に係る
非水系二次電池について図面を参照しながら説明する。
図1は、本実施形態の一例である扁平な矩形(ノート
型)の蓄電システム用非水系二次電池の平面図及び側面
図を示す図であり、図2は、図1に示す電池の内部に収
納される電極積層体を示す側面図である。
BEST MODE FOR CARRYING OUT THE INVENTION A non-aqueous secondary battery according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a plan view and a side view of a flat rectangular (notebook type) non-aqueous secondary battery for an electricity storage system, which is an example of the present embodiment, and FIG. 2 is an internal view of the battery shown in FIG. 1. It is a side view which shows the electrode laminated body accommodated in.

【0025】図1及び図2に示すように、本実施の形態
の非水系二次電池は、上蓋1及び底容器2からなる電池
容器と、前記電池容器の中に収納されている複数の正極
101a、負極101b、101c、及びセパレータ1
04からなる電極積層体とを備えている。本実施形態の
ような扁平型非水系二次電池の場合、正極101a、負
極101b(又は積層体の両外側に配置された負極10
1c)は、例えば、図2に示すように、セパレータ10
4を介して交互に配置されて積層されるが、本発明は、
この配置に特に限定されず、積層数等は、必要とされる
容量等に応じて種々の変更が可能である。また、図1及
び図2に示す非水系二次電池の形状は、例えば縦300
mm×横210mm×厚さ6mmであり、正極101a
にLiMn24、負極101b、101cに炭素材料を
用いるリチウム二次電池の場合、例えば、蓄電システム
に用いることができる。
As shown in FIGS. 1 and 2, the non-aqueous secondary battery according to the present embodiment has a battery container including an upper lid 1 and a bottom container 2, and a plurality of positive electrodes contained in the battery container. 101a, negative electrodes 101b and 101c, and separator 1
And an electrode laminated body of No. 04. In the case of the flat non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 10 arranged on both outer sides of the laminate).
1c) is, for example, as shown in FIG.
4 are alternately arranged and laminated, but the present invention is
The arrangement is not particularly limited, and the number of layers and the like can be variously changed according to the required capacity and the like. The shape of the non-aqueous secondary battery shown in FIG. 1 and FIG.
mm × width 210 mm × thickness 6 mm, positive electrode 101a
In the case of a lithium secondary battery in which LiMn 2 O 4 is used for the negative electrode and a carbon material is used for the negative electrodes 101b and 101c, the lithium secondary battery can be used, for example, in a power storage system.

【0026】また、図1に示すように、電池容器の上蓋
1には、正極端子3及び負極端子4が上蓋1と絶縁され
た状態で取り付けられており、正極端子3に図2に示す
各正極101aの正極集電体105aが電気的に接続さ
れるとともに、負極端子4に各負極101b、101c
の負極集電体105bが電気的に接続されている。
Further, as shown in FIG. 1, a positive electrode terminal 3 and a negative electrode terminal 4 are attached to the upper lid 1 of the battery container in a state of being insulated from the upper lid 1, and each of the positive electrode terminals 3 shown in FIG. The positive electrode current collector 105a of the positive electrode 101a is electrically connected, and each of the negative electrodes 101b and 101c is connected to the negative electrode terminal 4.
The negative electrode current collector 105b is electrically connected.

【0027】上蓋1及び底容器2は、図1中の拡大図に
示したA点、つまり上蓋1の周縁部を溶かし込んで底容
器2と溶接することにより電池容器を構成している。該
溶接方法としては、例えば、レーザ溶接、アーク溶接、
抵抗溶接等が挙げられる。そのうち、溶接面積が小さく
エネルギーを集中できるため容器の変形歪みや周辺への
熱影響が小さい点から、レーザ溶接が好ましい。上蓋1
には、電解液の注液口5が開けられており、電解液注液
後、例えば、アルミニウム−変成ポリプロピレンラミネ
ートフィルムからなる封口フィルム6を用いて封口され
る。
The upper lid 1 and the bottom container 2 form a battery container by melting point A shown in the enlarged view of FIG. 1, that is, the peripheral portion of the upper lid 1 and welding it to the bottom container 2. Examples of the welding method include laser welding, arc welding,
Resistance welding etc. are mentioned. Among them, laser welding is preferable because the welding area is small and energy can be concentrated, so that deformation distortion of the container and thermal influence on the surroundings are small. Top lid 1
The liquid electrolyte injection port 5 is opened, and after the electrolyte is injected, a sealing film 6 made of, for example, an aluminum-modified polypropylene laminate film is used for sealing.

【0028】正極101aに用いられる正極活物質とし
ては、リチウム系の正極材料であれば、特に限定され
ず、リチウム複合コバルト酸化物、リチウム複合ニッケ
ル酸化物、リチウム複合マンガン酸化物、或いはこれら
の混合物、更にはこれら複合酸化物に異種金属元素を一
種以上添加した系等を用いることができ、高電圧、高容
量の電池が得られることから、好ましい。また、大型リ
チウム系二次電池の実用化において最重点課題である安
全性を重視する場合、熱分解温度が高いマンガン酸化物
を主体とする正極を用いることが好ましい。このマンガ
ン酸化物としてはLiMn24に代表されるリチウム複
合マンガン酸化物、更にはこれら複合酸化物に異種金属
元素を一種以上添加した系、さらにはリチウムを量論比
よりも過剰にしたLi1+xMn2-y4が挙げられる。
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof. Further, a system in which one or more different metal elements are added to these composite oxides can be used, and a high-voltage, high-capacity battery can be obtained, which is preferable. In addition, in the case of placing importance on safety, which is the most important issue in the practical application of a large-sized lithium secondary battery, it is preferable to use a positive electrode mainly composed of manganese oxide having a high thermal decomposition temperature. As the manganese oxide, a lithium composite manganese oxide typified by LiMn 2 O 4 , a system in which one or more kinds of different metal elements are added to these composite oxides, and Li in which the amount of lithium is more than the stoichiometric ratio are used. 1 + x Mn 2-y O 4 may be mentioned.

【0029】負極101b、101cに用いられる負極
活物質としては、リチウム系の負極材料であれば、特に
限定されず、リチウムをドープ及び脱ドープ可能な材料
であることが、安全性、サイクル寿命などの信頼性が向
上し好ましい。リチウムをドープ及び脱ドープ可能な材
料としては、公知のリチウムイオン電池の負極材として
使用されている黒鉛系物質、炭素系物質、錫酸化物系、
ケイ素酸化物系等の金属酸化物、或いはポリアセン系有
機半導体に代表される導電性高分子等が挙げられる。特
に、安全性の観点からは、150℃前後の発熱が小さい
ポリアセン系物質及びこれを含む材料が好ましい。
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and it is a material capable of doping and dedoping lithium, such as safety and cycle life. This is preferable because it improves reliability. As a material capable of doping and dedoping lithium, a graphite-based material, a carbon-based material, a tin oxide-based material used as a negative electrode material of a known lithium-ion battery,
Examples thereof include metal oxides such as silicon oxides, and conductive polymers represented by polyacene organic semiconductors. In particular, from the viewpoint of safety, a polyacene-based substance that generates little heat at around 150 ° C. and a material containing the same are preferable.

【0030】セパレータ104の構成は、特に限定され
るものではないが、単層又は複層のセパレータを用いる
ことができ、少なくとも1枚は不織布を用いることが好
ましく、この場合、サイクル特性が向上する。また、セ
パレータ104の材質も、特に限定されるものではない
が、例えばポリエチレン、ポリプロピレンなどのポリオ
レフィン、ポリアミド、クラフト紙、ガラス、セルロー
ス系材料等が挙げられ、電池の耐熱性、安全性設計に応
じ適宜決定される。これらの中では、ポリエチレン、ポ
リプロピレンなどが、コスト、含水量などの観点から好
ましい。また、セパレータ104としてポリエチレンま
たはポリプロピレンを用いる場合には、セパレータの目
付量は、好ましくは5〜30g/m2程度であり、より好まし
くは5〜20g/m2程度であり、さらに好ましくは5〜20g/m2
程度である。セパレータの目付量が、30g/m2を超える場
合には、セパレータが厚くなりすぎたり、また気孔率が
低下し、電池の内部抵抗が高くなるので、好ましくな
い。これに対し、セパレータの目付量が5g/m2未満の場
合には、実用的な強度が得られないので、やはり好まし
くない。
The structure of the separator 104 is not particularly limited, but a single-layer or multi-layer separator can be used, and it is preferable to use at least one non-woven fabric. In this case, cycle characteristics are improved. . The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamide, kraft paper, glass, and cellulosic materials, and the like, depending on the heat resistance and safety design of the battery. It is decided as appropriate. Among these, polyethylene, polypropylene and the like are preferable from the viewpoint of cost, water content and the like. In the case of using polyethylene or polypropylene as the separator 104, basis weight of the separator is preferably about 5 to 30 g / m 2, more preferably about 5 to 20 g / m 2, more preferably 5 to 20 g / m 2
It is a degree. If the basis weight of the separator exceeds 30 g / m 2 , the separator becomes too thick, the porosity decreases, and the internal resistance of the battery increases, which is not preferable. On the other hand, when the weight per unit area of the separator is less than 5 g / m 2 , practical strength cannot be obtained, which is also not preferable.

【0031】本発明の二次電池の電解質としては、公知
のリチウム塩を含む非水系電解質を使用することがで
き、正極材料、負極材料、充電電圧等の使用条件により
適宜決定され、より具体的にはLiPF6、LiBF4
LiClO4等のリチウム塩を、プロピレンカーボネー
ト、エチレンカーボネート、ジエチルカーボネート、ジ
メチルカーボネート、メチルエチルカーボネート、ジメ
トキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸
メチル、或いはこれら2種以上の混合溶媒等の有機溶媒
に溶解したもの等が例示される。また、電解液の濃度は
特に限定されるものではないが、一般的に0.5mol
/lから2mol/lが実用的であり、この電解液は当
然のことながら、水分が100ppm以下のものを用い
ることが好ましい。なお、本明細書で使用する非水系電
解質とは、非水系電解液、有機電解液を含む概念を意味
するものであり、また、ゲル状又は固体の電解質も含む
概念を意味するものである。
As the electrolyte of the secondary battery of the present invention, a known non-aqueous electrolyte containing a lithium salt can be used, which is appropriately determined depending on the use conditions such as the positive electrode material, the negative electrode material and the charging voltage. Is LiPF 6 , LiBF 4 ,
A lithium salt such as LiClO 4 is added to an organic solvent such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or a mixed solvent of two or more of these. Examples include dissolved substances. The concentration of the electrolytic solution is not particularly limited, but is generally 0.5 mol.
/ L to 2 mol / l is practical, and as a matter of course, it is preferable to use an electrolyte having a water content of 100 ppm or less. The non-aqueous electrolyte used in the present specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also a concept including a gel or solid electrolyte.

【0032】上記のように構成された非水系二次電池
は、家庭用蓄電システム(夜間電力貯蔵、コージェネレ
ション、太陽光発電等)、電気自動車等の蓄電システム
等に用いることができ、大容量且つ高エネルギー密度を
有することができる。この場合、エネルギー容量は、好
ましくは30Wh以上、より好ましくは50Wh以上で
あり、且つエネルギー密度は、好ましくは180Wh/
l以上、より好ましくは200Wh/lである。エネル
ギー容量が30Wh未満の場合、或いは、体積エネルギ
ー密度が180Wh/l未満の場合は、蓄電システムに
用いるには容量が小さく、充分なシステム容量を得るた
めに電池の直並列数を増やす必要があること、また、コ
ンパクトな設計が困難となることから蓄電システム用と
しては好ましくない。
The non-aqueous secondary battery configured as described above can be used in a power storage system for home (night power storage, cogeneration, solar power generation, etc.), a power storage system for electric vehicles, etc. It can have a capacity and a high energy density. In this case, the energy capacity is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh /
1 or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or the volume energy density is less than 180 Wh / l, the capacity is small for use in a power storage system, and it is necessary to increase the number of series-parallel batteries to obtain a sufficient system capacity. In addition, it is difficult to make a compact design, which is not preferable for a power storage system.

【0033】本実施形態の非水系二次電池は、扁平形状
をしており、その厚さは12mm未満、より好ましくは
10mm未満である。厚さの下限については電極の充填
率、電池サイズ(薄くなれば同容量を得るためには面積
が大きくなる)を考慮した場合、2mm以上が実用的で
ある。電池の厚さが12mm以上になると、電池内部の
発熱を充分に外部に放熱することが難しくなること、或
いは電池内部と電池表面付近での温度差が大きくなり、
内部抵抗が異なる結果、電池内での充電量、電圧のばら
つきが大きくなる。なお、具体的な厚さは、電池容量、
エネルギー密度に応じて適宜決定されるが、期待する放
熱特性が得られる最大厚さで設計するのが、好ましい。
The non-aqueous secondary battery of this embodiment has a flat shape, and its thickness is less than 12 mm, more preferably less than 10 mm. The lower limit of the thickness is practically 2 mm or more in consideration of the filling rate of the electrodes and the battery size (the smaller the area, the larger the area for obtaining the same capacity). When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the surface of the battery becomes large,
As a result of the different internal resistances, variations in the amount of charge and voltage in the battery become large. The specific thickness is the battery capacity,
The thickness is appropriately determined according to the energy density, but it is preferable to design with the maximum thickness that can obtain expected heat dissipation characteristics.

【0034】また、本実施形態の非水系二次電池は、例
えば、電池容器の扁平形状の表裏面が角形、円形、長円
形等の種々の形状とすることができ、角形の場合は、一
般に矩形であるが、三角形、六角形等の多角形とするこ
ともできる。さらに、肉厚の薄い円筒等の筒形にするこ
ともできる。筒形の場合は、筒の肉厚がここでいう厚さ
となる。また、製造の容易性の観点から、電池の扁平形
状の表裏面が矩形であり、図1に示すようなノート型の
形状が好ましい。
Further, in the non-aqueous secondary battery of this embodiment, for example, the flat shape of the battery container may have various shapes such as a square shape, a circular shape, and an oval shape. Although it is a rectangle, it may be a polygon such as a triangle or a hexagon. Further, it may be formed in a tubular shape such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness here. Further, from the viewpoint of ease of manufacturing, the flat shape of the battery has a rectangular front and back surfaces, and a notebook shape as shown in FIG. 1 is preferable.

【0035】本実施形態では、電池容器が平板形状の上
蓋及び絞り加工を施した底容器より構成され、前記上蓋
1がアルミニウム合金からなる部分を主要部材として備
え、前記底容器2が高純度のアルミニウム金属からなる
部分を主要部材として備えている。必ずしも電池容器全
体をアルミニウム系材料で構成する必要はなく、アルミ
ニウム系材料からなる部分を主要構成部材として備えて
いればよい。但し、後述する本発明の効果を十分に奏す
るためには、電池容器全体の80%以上がアルミニウム
系材料で構成されるのが好ましく、90%以上とすると
より好ましい。
In this embodiment, the battery container is composed of a flat plate-shaped upper lid and a drawn bottom container, the upper lid 1 is provided with a portion made of an aluminum alloy as a main member, and the bottom container 2 is of high purity. It has a portion made of aluminum metal as a main member. The entire battery container does not necessarily have to be made of an aluminum-based material, and may be provided with a portion made of an aluminum-based material as a main constituent member. However, in order to sufficiently exert the effects of the present invention described later, it is preferable that 80% or more of the entire battery container is made of an aluminum-based material, and more preferably 90% or more.

【0036】電池容器の底容器材料としては、Al成分
の含有量が99重量%以上である高純度アルミニウムに
より構成されていることが好ましく、99.5%以上が
より好ましい。Al成分含有量が99%未満と低く、M
n、Cu成分等の比率が高いと、機械的強度は高まるが
伸び率が下がってしまう。その場合、絞り加工で切れが
発生し、深く絞ることが難しい。又、電池としてのエネ
ルギー密度を高めるため、各コーナー部のRを小さく設
計する場合、伸びにくい材料では絞り加工で切れやクラ
ックが発生する可能性が高い。この観点から絞り加工を
施す電池底容器の材料としては、Al成分含有量が99
重量%以上である伸び率の高い高純度アルミニウムを主
要部材とすることが望ましい。
The bottom container material of the battery container is preferably made of high-purity aluminum having an Al component content of 99% by weight or more, and more preferably 99.5% or more. Al component content is as low as less than 99%, M
When the ratio of n and Cu components is high, the mechanical strength is increased but the elongation rate is decreased. In that case, a cutting occurs in the drawing process, and it is difficult to draw deeply. Further, when the R of each corner is designed to be small in order to increase the energy density of the battery, there is a high possibility that a material that is difficult to stretch will be broken or cracked by drawing. From this viewpoint, as a material for the battery bottom container to be drawn, the Al component content is 99
It is desirable to use high-purity aluminum having a high elongation percentage of not less than wt% as the main component.

【0037】電池容器の上蓋に使用するアルミニウム合
金材料としては、例えばSi,Fe,Cu,Mn,M
g,Cr,Zn,Tiなどのうちから選ばれた、1種又
は2種以上の金属とアルミニウムとの合金を用いること
ができる。Al−Mn系合金の成分においては、Mn成
分の含有量を0.5重量%〜2.0重量%にするのが好
ましい。Mn成分が0.5重量%より少なくなると、機
械的強度および大型での剛性が低くなる。又、成形性及
びレーザ溶接特性が低下してしまう。一方、2.0重量
%を越えても、強度の向上効果はそれほど増加せず、粗
い金属間化合物の発現によるひび割れの可能性が高くな
る。また、Mg−Al系合金におけるMg成分の含有量
は、0.02重量%〜0.8重量%にするのが好まし
い。Mg成分が0.8重量%以上になると、電池容器を
レーザ溶接する場合に、クラックやホール等の溶接不良
を起こしやすくなる。
The aluminum alloy material used for the upper lid of the battery container is, for example, Si, Fe, Cu, Mn, M.
An alloy of one or more metals selected from g, Cr, Zn, Ti, etc. and aluminum can be used. With respect to the components of the Al-Mn alloy, the content of the Mn component is preferably 0.5% by weight to 2.0% by weight. If the Mn component is less than 0.5% by weight, the mechanical strength and the rigidity in a large size will be low. In addition, the formability and the laser welding characteristics are deteriorated. On the other hand, even if it exceeds 2.0% by weight, the effect of improving the strength does not increase so much and the possibility of cracking due to the appearance of a coarse intermetallic compound increases. The content of the Mg component in the Mg-Al alloy is preferably 0.02% by weight to 0.8% by weight. When the Mg component is 0.8% by weight or more, welding defects such as cracks and holes are likely to occur when laser welding the battery container.

【0038】上記のように、電池容器において、アルミ
ニウム合金より成る上蓋と高純度アルミニウムより成る
底容器とを組み合わせることにより、電池として、機械
的強度、レーザ溶接性、及び高エネルギー密度を併せ持
つことが可能となる。
As described above, by combining the upper container made of an aluminum alloy and the bottom container made of high-purity aluminum in the battery container, the battery can have both mechanical strength, laser weldability and high energy density. It will be possible.

【0039】電池容器を構成する上蓋1及び底容器2の
厚さは、電池の用途、電池ケースの材質等により適宜決
定され、特に限定されるものではないが、好ましくは、
その電池表面積の80%以上の部分の厚さ(電池容器を
構成する一番面積が広い部分の厚さ)が0.2mm以上
である。厚さが0.2mm未満では、電池の製造に必要
な強度が得られないという問題があり、この観点から、
より好ましくは厚さを0.3mm以上であり、更に、好
ましくは0.4mm以上である。同部分の厚さは、1m
m以下であることが望ましい。この厚さが1mmを超え
ると、電極面を押さえ込む力は大きくなるが、電池の内
容積が減少し十分な容量が得られないこと、或いは、重
量が重くなることから望ましくなく、この観点からより
好ましくは0.7mm以下である。
The thicknesses of the upper lid 1 and the bottom container 2 constituting the battery container are appropriately determined depending on the use of the battery, the material of the battery case, etc., and are not particularly limited, but preferably,
The thickness of 80% or more of the surface area of the battery (the thickness of the widest part of the battery container) is 0.2 mm or more. If the thickness is less than 0.2 mm, there is a problem that the strength required for battery production cannot be obtained. From this viewpoint,
The thickness is more preferably 0.3 mm or more, and further preferably 0.4 mm or more. The thickness of the same part is 1m
It is preferably m or less. If this thickness exceeds 1 mm, the force to press down the electrode surface becomes large, but it is not desirable because the internal volume of the battery decreases and sufficient capacity cannot be obtained, or the weight becomes heavy. It is preferably 0.7 mm or less.

【0040】上記のように、電池容器をアルミニウム或
いはアルミニウムを主体とする合金で構成し、非水系二
次電池の厚さを12mm未満に設計することにより、こ
の電池が30Wh以上の大容量且つ180Wh/lの高
エネルギー密度を有する場合に高率充放電が行われたと
きであっても、優れた放熱特性を実現し、電池温度の上
昇を抑制することができる。従って、内部発熱による電
池の蓄熱を低減することができ、その結果、電池の熱暴
走も抑止することが可能となり、信頼性、安全性に優れ
た非水系二次電池を提供することができる。特に、本実
施形態では、電池容器がアルミニウム系材料で構成され
ているため、従来のように電池容器をステンレス等で構
成したものに比べ、電池容器を軽量化することができ、
これにより電池全体の軽量化を図ることができる。その
結果、電池厚さ、電池表面積により異なるが、ステンレ
スを用いる場合に比べて、重量エネルギー密度を、1.
2〜1.5倍程度に向上させることができる。
As described above, the battery container is made of aluminum or an alloy mainly composed of aluminum, and the thickness of the non-aqueous secondary battery is designed to be less than 12 mm, so that this battery has a large capacity of 30 Wh or more and 180 Wh. Even when high-rate charging / discharging is performed in the case of having a high energy density of 1 / l, excellent heat dissipation characteristics can be realized and an increase in battery temperature can be suppressed. Therefore, heat storage of the battery due to internal heat generation can be reduced, and as a result, thermal runaway of the battery can be suppressed, and a non-aqueous secondary battery excellent in reliability and safety can be provided. In particular, in the present embodiment, since the battery container is made of an aluminum-based material, it is possible to reduce the weight of the battery container as compared with a conventional battery container made of stainless steel or the like,
This makes it possible to reduce the weight of the entire battery. As a result, although it depends on the battery thickness and the battery surface area, the weight energy density is 1.
It can be improved about 2 to 1.5 times.

【0041】一方、一般的な形状である大型角型電池、
或いは円筒型電池等で電池容器を例えばステンレス製の
ものからアルミニウム系材料に変えた場合には、電池全
体に対する電池容器材料の体積の占める割合が扁平形状
の電池に比べて小さいことから、重量エネルギー密度の
向上は多くとも1.2倍程度である。
On the other hand, a large rectangular battery having a general shape,
Alternatively, when the battery container of a cylindrical battery or the like is changed from, for example, stainless steel to an aluminum-based material, the volume ratio of the battery container material to the entire battery is smaller than that of the flat battery, and therefore the weight energy is reduced. The density improvement is about 1.2 times at most.

【0042】このように、厚さが12mm未満の扁平形
状で、30Wh以上の大容量且つ180Wh/l以上の
高エネルギー密度を有する非水二次電池において、電池
容器にアルミニウム或いはアルミニウムを主体とする合
金を適用する効果は極めて大きい。
As described above, in a non-aqueous secondary battery having a flat shape with a thickness of less than 12 mm, a large capacity of 30 Wh or more and a high energy density of 180 Wh / l or more, aluminum or aluminum is mainly used as a battery container. The effect of applying the alloy is extremely large.

【0043】ところで、電池容器に一般使用されるステ
ンレス、鉄に比べ、アルミニウム或いはアルミニウムを
主体とする合金を用いた場合、電極面を挟持し押圧する
力が弱くなることから、内部抵抗が大きくなったり、或
いは、サイクル寿命が低下して電池性能に影響を与える
ことがある。特に、厚さが8mm以下の電池において高
体積エネルギー密度を得るためには、電池容器を構成す
る材料の厚さを薄くする必要があるが、このようにする
と上記した電池特性の低下が生じやすくなる。これらの
問題に対しては、次に説明するように電池内を大気圧未
満になるようにして封口することにより、アルミニウム
或いはアルミニウムを主体とする合金を電池容器に用い
ても、電池容器厚さを増加させることなく、ステンレ
ス、鉄と同等の特性が得られることを見出した。
By the way, in the case of using aluminum or an alloy mainly composed of aluminum, as compared with stainless steel and iron which are generally used for the battery container, the force for sandwiching and pressing the electrode surface is weakened, so that the internal resistance is increased. Or, the cycle life may be shortened to affect the battery performance. In particular, in order to obtain a high volumetric energy density in a battery having a thickness of 8 mm or less, it is necessary to reduce the thickness of the material forming the battery container. However, if this is done, the above-mentioned deterioration of the battery characteristics tends to occur. Become. To solve these problems, as described below, by sealing the inside of the battery so that the pressure is less than atmospheric pressure, even if aluminum or an alloy mainly containing aluminum is used for the battery container, It was found that the characteristics equivalent to stainless steel and iron can be obtained without increasing the value.

【0044】完成後の電池の内部圧力が大気圧未満にな
るようにするためには、正極101a、負極101b、
101c、セパレータ104及び非水系電解質を電池容
器内に収容し、電池容器内の圧力を大気圧未満にした状
態で電池容器の最終封口工程を行う。この最終封口工程
は、少なくとも一回の充電操作の後に行うことが好まし
い。これは、1回目の充電初期に電解液の分解により内
部にガスが発生することがあり、この場合に、充電操作
を行わずに大気圧未満で最終封口工程を行うと、その後
の1回目の充電操作により電池内部が加圧状態(大気圧
以上)になり、電池の厚みが厚くなったり、電池の内部
抵抗及び容量がばらつき、安定したサイクル特性が得ら
れない場合があるからである。特に、負極に黒鉛、正極
にリチウム複合酸化物を用いた液系の電解質を用いる場
合は、ガスが発生しやすい。
In order to keep the internal pressure of the completed battery below atmospheric pressure, the positive electrode 101a, the negative electrode 101b,
101c, the separator 104 and the non-aqueous electrolyte are housed in the battery container, and the final sealing process of the battery container is performed in a state where the pressure inside the battery container is less than atmospheric pressure. This final sealing step is preferably performed after at least one charging operation. This is because gas may be generated inside the electrolyte due to decomposition of the electrolytic solution at the initial stage of the first charging, and in this case, if the final sealing step is performed below atmospheric pressure without performing the charging operation, the subsequent first sealing This is because the inside of the battery becomes pressurized (atmospheric pressure or higher) due to the charging operation, the thickness of the battery becomes thick, and the internal resistance and capacity of the battery vary, so that stable cycle characteristics may not be obtained. In particular, when a liquid electrolyte using graphite for the negative electrode and lithium composite oxide for the positive electrode is used, gas is easily generated.

【0045】この充電操作は、電池に用いられる正極材
料、負極材料、セパレータ、電解液等の種類、これらの
材料の含水率及び不純物、電池が使用される電圧等に応
じて種々の条件を採用することができるが、例えば電池
の使用電圧まで4〜8時間率程度の速度で充電し、また
必要に応じて定電圧を印加し、さらに通常の下限電圧ま
で8時間率程度の速度で放電してもよく、この充電操作
の後に最終封口工程を行う。また、電池の容量以下の充
電操作のみを行った後に封口してもよく、或いは2回以
上の充放電を繰り返した後に封口する等の種々の充電操
作も可能であるが、充放電操作完了後の電池の内圧を大
気圧未満に維持することが肝要である。
For this charging operation, various conditions are adopted depending on the types of positive electrode material, negative electrode material, separator, electrolytic solution, etc. used in the battery, the water content and impurities of these materials, the voltage at which the battery is used, etc. However, for example, the battery is charged up to the working voltage at a rate of about 4 to 8 hours, a constant voltage is applied if necessary, and further discharged to the normal lower limit voltage at a rate of about 8 hours. Alternatively, a final sealing step is performed after this charging operation. Further, it may be sealed after performing only the charging operation less than the capacity of the battery, or various charging operations such as sealing after repeating charging / discharging twice or more are possible. It is important to keep the internal pressure of the battery below below atmospheric pressure.

【0046】このように、本実施形態では、充電操作を
行ってガスを発生させた後に、ガス抜きを施し最終封口
工程を大気圧未満で行うことにより、アルミニウム或い
はアルミニウムを主体とする合金を電池容器に用いる場
合に起きやすい容器が膨れてしまうという問題を解決す
ることができる。この場合、1回目の充電操作を行うと
きは、電池内部の圧力については特に限定されないが、
電池内を大気圧未満にして行うことが好ましい。
As described above, in the present embodiment, after the charging operation is performed to generate the gas, the gas is vented and the final sealing step is performed at a pressure lower than atmospheric pressure, so that aluminum or an alloy mainly containing aluminum is used for the battery. It is possible to solve the problem that the container tends to swell when used as a container. In this case, when performing the first charging operation, the pressure inside the battery is not particularly limited,
It is preferable to carry out the inside of the battery under atmospheric pressure.

【0047】また、電池内部を大気圧未満にする方法は
特に限定されないが、具体的には、以下のようにして行
うことができる。
The method for keeping the inside of the battery below atmospheric pressure is not particularly limited, but specifically, it can be carried out as follows.

【0048】まず、図2に示すように、正極101a、
負極101b、101c及びセパレータ104を積層し
て得られた電極積層体等を上蓋1及び底容器2内に収容
した後、上蓋1及び底容器2の外周部を溶接する。次
に、図1に示す注液口5から電解液を電池容器内に注入
する。続いて、仮封口のため、前述のアルミニウム−変
性ポリプロピレンラミネートフィルム、アルミニウム−
変性ポリエチレンラミネートフィルムに代表される熱融
着型で水分透過率の低い封口フィルム6を用いて注液口
5を一旦封口し、その後、上記のように少なくとも1回
充電した後に封口フィルム6を外す。なお、仮封口の方
法は、上記した例に限定されるものではなく、例えばね
じ等を用いて注入口5を一時的に封口してもよく、ま
た、水分を除去した状態、例えば空気を遮断した環境下
又は露点が−40℃以下のドライ雰囲気下の場合、封口
せずに上記の充電操作を行ってもよい。
First, as shown in FIG. 2, the positive electrode 101a,
After accommodating an electrode laminated body or the like obtained by laminating the negative electrodes 101b and 101c and the separator 104 in the upper lid 1 and the bottom container 2, the outer peripheral portions of the upper lid 1 and the bottom container 2 are welded. Next, the electrolytic solution is injected into the battery container through the injection port 5 shown in FIG. Then, for temporary sealing, the above-mentioned aluminum-modified polypropylene laminate film, aluminum-
The injection port 5 is once sealed using a heat-sealing type sealing film 6 having a low water permeability, which is represented by a modified polyethylene laminate film, and then the sealing film 6 is removed after charging at least once as described above. . Note that the temporary sealing method is not limited to the above-described example, and the inlet 5 may be temporarily sealed by using, for example, a screw or the like, and a state in which moisture is removed, for example, air is shut off. In the above environment or in a dry atmosphere having a dew point of −40 ° C. or lower, the above charging operation may be performed without sealing.

【0049】次に、最終封口工程として、封口フィルム
6を熱融着する。なお、最終封口工程に用いられる方法
は、封口フィルムの熱融着に限定されるものではなく、
金属板又は箔を溶接したり、若しくは、電池容器にコッ
クを取り付けて電池内を所定の圧力(大気圧未満)に減
圧した後、コックを閉じる等してもよい。
Next, as the final sealing step, the sealing film 6 is heat-sealed. The method used in the final sealing step is not limited to heat-sealing the sealing film,
The metal plate or foil may be welded, or the cock may be closed after the cock is attached to the battery container to reduce the pressure in the battery to a predetermined pressure (less than atmospheric pressure).

【0050】なお、上記の最終封口工程では、電池内の
圧力を大気圧未満に設定しているが、8.66×104
Pa(650Torr)以下にすることが好ましく、
7.33×104Pa(550Torr)以下に設定す
ることがより好ましい。この圧力は、最終的に完成した
電池に要求される内部圧力に応じて決定される。この注
入口5を形成する部分は、電池の外周部分5mmを除
く、表裏面のいずれかにあることが好ましい。図1に示
す扁平型形状の場合、上蓋1内に配置した正極端子3及
び負極端子4との間にあるデッドスペース内に設けるこ
とが、スペースの有効利用によるエネルギー密度確保の
点からより好ましい。又、最終封口工程後、上記金属製
電池容器において、正負極外部端子以外の部分を絶縁性
のフィルム等で覆うことが好ましい。なぜなら、電池を
スタック状に配置させるモジュール等を想定した場合や
通常のハンドリングにおいて、両極外部端子と金属容器
との接触による外部短絡を防止できるからである。
In the final sealing step described above, the pressure inside the battery is set to be less than atmospheric pressure, but 8.66 × 10 4
Pa (650 Torr) or less is preferable,
It is more preferable to set it to not more than 7.33 × 10 4 Pa (550 Torr). This pressure is determined according to the internal pressure required for the finally completed battery. It is preferable that the portion forming the injection port 5 is on either the front surface or the back surface except the outer peripheral portion 5 mm of the battery. In the case of the flat shape shown in FIG. 1, it is more preferable to provide it in a dead space between the positive electrode terminal 3 and the negative electrode terminal 4 arranged in the upper lid 1 from the viewpoint of ensuring the energy density by effectively utilizing the space. In addition, after the final sealing step, in the metal battery container, it is preferable to cover parts other than the positive and negative electrode external terminals with an insulating film or the like. This is because it is possible to prevent an external short circuit due to contact between the both-pole external terminals and the metal container when a module or the like in which batteries are arranged in a stack is assumed or in normal handling.

【0051】[0051]

【実施例】以下、本発明の実施例を示し、本発明をさら
に具体的に説明する。
EXAMPLES The present invention will now be described more specifically by showing examples of the present invention.

【0052】実施例 (1)LiMn24100重量部、アセチレンブラック
8重量部、ポリビニリデンフルオライド(PVDF)3
重量部をN−メチルピロリドン(NMP)100重量部
と混合し正極合材スラリーを得た。前記スラリーを集電
体となる厚さ20μmのアルミ箔の両面に塗布、乾燥し
た後、プレスを行い正極を得た。図3の(a)は正極の
説明図である。本実施例において正極101aの塗布面
積(W1×W2)は、262.5×192mm2であ
り、20μmの集電体の両面に110μmの厚さで塗布
されている。その結果、電極厚さtは240μmとなっ
ている。また、電極の短辺側には電極材料が塗布されて
いない正極集電片106aが設けられ、その中央に直径
3mmの穴が形成されている。
Example (1) 100 parts by weight of LiMn 2 O 4 , 8 parts by weight of acetylene black, polyvinylidene fluoride (PVDF) 3
Part by weight was mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied on both sides of an aluminum foil having a thickness of 20 μm to be a current collector, dried and then pressed to obtain a positive electrode. FIG. 3A is an explanatory diagram of the positive electrode. In this embodiment, the positive electrode 101a has a coating area (W1 × W2) of 262.5 × 192 mm 2 and is coated on both sides of a 20 μm current collector with a thickness of 110 μm. As a result, the electrode thickness t is 240 μm. Further, the short side of the electrode is provided with a positive electrode collector piece 106a to which no electrode material is applied, and a hole having a diameter of 3 mm is formed in the center thereof.

【0053】(2)黒鉛化メソカーボンマイクロビーズ
(MCMB、大阪ガスケミカル製、品番6−28)10
0重量部、PVDF10重量部をNMP90重量部と混
合し、負極合材スラリーを得た。前記スラリーを集電体
となる厚さ14μmの銅箔の両面に塗布、乾燥した後、
プレスを行い、負極を得た。図3の(b)は負極の説明
図である。負極101bの塗布面積(W1×W2)は、
267×195mm2であり、14μmの集電体の両面
に90μmの厚さで塗布されている。その結果、電極厚
さtは194μmとなっている。また、電極の短辺側に
は電極材料が塗布されていない負極集電片106bが設
けられ、その中央に直径3mmの穴が形成されている。
更に、同様の手法で片面だけに塗布し、それ以外は同様
の方法で厚さ104μmの片面電極を作成した。片面電
極は(3)項の電極積層体における両外側に配置される
(図2中101c)。
(2) Graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemicals, product number 6-28) 10
0 parts by weight and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. After coating the slurry on both sides of a copper foil having a thickness of 14 μm as a current collector and drying,
It pressed and the negative electrode was obtained. FIG. 3B is an explanatory diagram of the negative electrode. The coating area (W1 × W2) of the negative electrode 101b is
It is 267 × 195 mm 2 , and is applied to both sides of a 14 μm current collector in a thickness of 90 μm. As a result, the electrode thickness t is 194 μm. Further, a negative electrode current collector piece 106b not coated with an electrode material is provided on the short side of the electrode, and a hole having a diameter of 3 mm is formed in the center thereof.
Further, a single-sided electrode having a thickness of 104 μm was prepared by applying the composition on only one surface by the same method and by otherwise performing the same method. The single-sided electrodes are arranged on both outer sides of the electrode laminate of item (3) (101c in FIG. 2).

【0054】(3)図2に示すように、上記(1)項で
得られた正極8枚、負極9枚(内片面2枚)をセパレー
タA104a(レーヨン系、目付12.6g/m2)とセ
パレータB104b(ポリエチレン製微孔膜;目付1
3.3g/m2)とを合わせたセパレータ104を介し
て交互に積層し、さらに、電池容器との絶縁のために外
側の負極101cの更に外側にセパレーターB104a
を配置し、電極積層体を作成した。なお、セパレータ1
04は、セパレータA104aが正極側に、セパレータ
B104bが負極側になるように配置した。
(3) As shown in FIG. 2, 8 sheets of the positive electrode and 9 sheets of the negative electrode (2 sheets on one side on the inner side) obtained in the above item (1) were used as a separator A104a (rayon system, basis weight 12.6 g / m 2 ). And separator B104b (polyethylene microporous membrane; basis weight 1
3.3 g / m 2 ) and the separator B 104 a is further laminated on the outer side of the outer negative electrode 101 c for insulation with the battery container.
Was placed to prepare an electrode laminate. In addition, the separator 1
No. 04 was arranged such that the separator A 104a was on the positive electrode side and the separator B 104b was on the negative electrode side.

【0055】(4)電池容器を構成する底容器2は、図
4に示すように、厚さ0.5mmの高純度アルミニウム
1050(JIS H 4000による記号)製薄板
(Al純度99.50%以上)を、絞り加工により深さ
5mm、四隅の角R3でトレー状に作製した。上蓋1
は、厚さ0.5mmのMn−Al系合金3003製薄板
を、平板より打抜き作製した。また、図4に示すよう
に、上蓋1には、アルミニウム製の正極端子3及び銅製
の負極端子4(頭部6mmφ、先端M3のねじ部)を取
り付けた。正極端子3及び負極端子4は、テフロン(登
録商標)製ガスケットにより上蓋1と絶縁した。
(4) As shown in FIG. 4, the bottom container 2 constituting the battery container is a thin plate (Al purity 99.50% or more) made of high-purity aluminum 1050 (symbol according to JIS H 4000) having a thickness of 0.5 mm. ) Was drawn into a tray with a depth of 5 mm and four corners R3. Top lid 1
Is a thin plate made of Mn-Al alloy 3003 having a thickness of 0.5 mm, which is punched from a flat plate. Further, as shown in FIG. 4, a positive electrode terminal 3 made of aluminum and a negative electrode terminal 4 made of copper (a head portion of 6 mmφ and a screw portion of the tip M3) were attached to the upper lid 1. The positive electrode terminal 3 and the negative electrode terminal 4 were insulated from the upper lid 1 by a Teflon (registered trademark) gasket.

【0056】(5)上記(3)項で作成した電極積層体
の各正極集電片106aの穴に正極端子3のねじ部を挿
通するとともに、各負極集電片106bの穴に負極端子
4のねじ部を挿通し、それぞれ、アルミニウム製及び銅
製のナットを締結した後、電極積層体を絶縁テープで上
蓋1に固定し、図1で示す上蓋1と底容器2フランジ部
との重なり部Aを、全周に亘り上蓋からレーザー溶接し
た。その後、注液口5(6mmφ)から電解液としてエ
チレンカーボネートとジエチルカーボネートを1:1重
量比で混合した溶媒に1mol/lの濃度にLiPF6
を溶解した溶液を注液した。続いて、大気圧下で仮止め
用のボルトを用いて注液口5を一旦封口した。
(5) The screw portion of the positive electrode terminal 3 is inserted into the hole of each positive electrode current collector piece 106a of the electrode laminate prepared in the above (3), and the negative electrode terminal 4 is inserted into the hole of each negative electrode current collector piece 106b. After inserting the screw part of each of them and fastening a nut made of aluminum and a nut made of copper, respectively, the electrode laminated body is fixed to the upper lid 1 with an insulating tape, and the overlapping portion A of the upper lid 1 and the flange portion of the bottom container 2 shown in FIG. Was laser-welded from the top cover over the entire circumference. Then, from a liquid injection port 5 (6 mmφ), a solvent prepared by mixing ethylene carbonate and diethyl carbonate at a 1: 1 weight ratio as an electrolytic solution was added with LiPF 6 at a concentration of 1 mol / l.
The solution in which was dissolved was injected. Subsequently, the liquid injection port 5 was temporarily closed under atmospheric pressure using a temporary fixing bolt.

【0057】(6)この電池を5Aの電流で4.2Vま
で充電した後、4.2Vの定電圧を印加する定電流定電
圧充電を8時間行い、続いて、5Aの定電流で3.0V
まで放電した。
(6) This battery was charged to a voltage of 4.2 V with a current of 5 A, and then a constant-current constant-voltage charge for applying a constant voltage of 4.2 V was performed for 8 hours, followed by a constant current of 5 A for 3. 0V
Discharged up to.

【0058】(7)電池に取り付けられた仮止め用ボル
トを取り外し、4.00×104Pa(300Tor
r)の減圧下で、12mmφに打ち抜いた厚さ0.08
mmのアルミ箔−変性ポリプロピレンラミネートフィル
ムからなる封口フィルム6を、温度250〜350℃、
圧力98.1〜294kPa(1〜3kg/cm2)、
加圧時間5〜10秒の条件で熱融着することにより、注
液口5を最終封口し、厚さ6mm扁平形状のノート型電
池を得た。合計10セルの試作を実施したが、液漏れは
発生しなかった。
(7) The temporary fixing bolt attached to the battery was removed, and 4.00 × 10 4 Pa (300 Tor)
Under reduced pressure of r), thickness 0.08 punched to 12 mmφ
mm of the aluminum foil-modified polypropylene laminated film, the sealing film 6, the temperature 250 ~ 350 ℃,
Pressure 98.1 to 294 kPa (1 to 3 kg / cm 2 ),
The liquid injection port 5 was finally sealed by heat fusion under a pressurizing time of 5 to 10 seconds to obtain a flat battery having a thickness of 6 mm. A trial production of 10 cells in total was carried out, but no liquid leakage occurred.

【0059】続いて、この電池を5Aの電流で4.2V
まで充電し、その後4.2Vの定電圧を印加する定電流
定電圧充電を8時間行い、続いて、5Aの定電流で3.
0Vまで放電し、容量を確認した。これにより算出され
た放電容量は27Ahであった。この電池のエネルギー
容量は100Wh,体積エネルギー密度は265Wh/
l、重量エネルギー密度は140Wh/Kgであった。
なお、10Aの定電流で放電した場合、放電容量は、2
4.9Ahであった。
Subsequently, this battery was fed with a current of 5 A to 4.2 V
Charging is performed for up to 8 hours, and then a constant current constant voltage charging in which a constant voltage of 4.2 V is applied is performed for 8 hours, followed by a constant current of 5 A for 3.
It was discharged to 0 V and the capacity was confirmed. The discharge capacity calculated by this was 27 Ah. This battery has an energy capacity of 100 Wh and a volume energy density of 265 Wh /
1, and the weight energy density was 140 Wh / Kg.
When discharged with a constant current of 10 A, the discharge capacity is 2
It was 4.9 Ah.

【0060】比較例1 底容器2、上蓋1共に厚さ0.5mmの純度の高いアル
ミニウム1050製薄板を用いる以外は上記実施例と同
様にして電池を組み立てたが、レーザ溶接時に一部のセ
ルで小さなクラックが発生したためか、試作10セル中
2セルにおいて柱液工程時微量の液漏れが確認された。
又、同様の電池を用いて高さ1.9mよりコンクリート
面への落下試験を実施したところ、一部の電池でフラン
ジ角部が大きく変形し開口寸前の状態となってしまっ
た。以上のことより、底容器2、上蓋1ともに厚さ0.
5mmのアルミニウム1050薄板材料を使用した場
合、レーザ溶接時の気密性と使用時の機械的強度に問題
があった。
Comparative Example 1 A battery was assembled in the same manner as in the above Example except that both the bottom container 2 and the top lid 1 were made of a highly pure aluminum 1050 thin plate having a thickness of 0.5 mm. Probably because of a small crack generated in 2 cells, a small amount of liquid leakage was confirmed during the column liquid process in 2 cells out of the 10 prototype cells.
In addition, when a drop test was performed on a concrete surface from a height of 1.9 m using the same battery, the flange corners of some of the batteries were greatly deformed and were in a state of being on the verge of opening. From the above, both the bottom container 2 and the top lid 1 have a thickness of 0.
When a 5 mm aluminum 1050 thin plate material was used, there was a problem in airtightness during laser welding and mechanical strength during use.

【0061】比較例2 底容器2、上蓋1共に厚さ0.5mmのアルミニウム合
金3003製薄板を用いる以外は上記実施例と同様にし
て電池を組み立てるため、実施例と同様に、深さ5m
m、角部R2で底容器の絞り加工を計10セル分実施し
た。しかし、10個中1個の容器で、角部近傍に小さな
孔が発見された。よって、上記合金を使用する場合に
は、もう少しRを大きく取る必要があった。但し、Rを
大きく設計すると電池全体での内部有効体積が減少し、
電池としてのエネルギー密度が低下してしまうという問
題があった。
Comparative Example 2 A battery was assembled in the same manner as in the above-described example except that both the bottom container 2 and the upper lid 1 were made of a thin plate made of aluminum alloy 3003 having a thickness of 0.5 mm.
The bottom container was squeezed for a total of 10 cells at m and corner R2. However, a small hole was found near the corner in 1 of 10 containers. Therefore, when the above alloy is used, it is necessary to increase R a little more. However, if R is designed to be large, the internal effective volume of the entire battery will decrease,
There is a problem that the energy density of the battery decreases.

【0062】[0062]

【発明の効果】以上から明らかな通り、本発明によれ
ば、厚さが12mm未満の扁平形状であり、30Wh以
上の大容量且つ180Wh/l以上の体積エネルギー密
度を有する扁平型非水二次電池において、電池容器に上
蓋にはアルミニウム合金を底容器には高純度アルミニウ
ムを組み合わせて主要構成部材として備えることによ
り、電池容器の軽量化を図ることができ、その結果、大
面積扁平形状にも関わらず、高い重量エネルギー密度を
実現する非水系二次電池を提供することができる。又上
記アルミ系材料の組合せにより、機械的強度とレーザ溶
接性を上蓋に持たせ、かつ底容器の絞りを小さいRで深
く加工できることから、より高い体積エネルギー密度の
電池設計が可能となる。
As is apparent from the above, according to the present invention, a flat non-aqueous secondary having a flat shape with a thickness of less than 12 mm, a large capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more. In the battery, the weight of the battery container can be reduced by combining the battery container with an aluminum alloy for the upper lid and the high-purity aluminum for the bottom container as main constituent members, and as a result, even for a large area flat shape. Regardless, it is possible to provide a non-aqueous secondary battery that realizes a high weight energy density. Further, by combining the above aluminum-based materials, the upper lid can be provided with mechanical strength and laser weldability, and the bottom container can be deeply processed with a small radius R, so that a battery design with a higher volume energy density becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である蓄電システム用非水
系二次電池の平面図及び側面図を示す図である。
FIG. 1 is a diagram showing a plan view and a side view of a non-aqueous secondary battery for a power storage system according to an embodiment of the present invention.

【図2】図1に示す電池の内部に収納される電極積層体
の構成を示す側面図である。
FIG. 2 is a side view showing a configuration of an electrode laminated body housed inside the battery shown in FIG.

【図3】図2に示す積層体を構成する正極、負極、及び
セパレータの平面図である。
FIG. 3 is a plan view of a positive electrode, a negative electrode, and a separator that form the laminated body shown in FIG.

【図4】図1に示す電池の上蓋及び底容器を分離した状
態で示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which an upper lid and a bottom container of the battery shown in FIG. 1 are separated.

【符号の説明】[Explanation of symbols]

1 上蓋 2 底容器 3 正極端子 4 負極端子 5 注液口 6 封口フィルム 101a 正極(両面) 101b 負極(両面) 101c 負極(片面) 104 セパレータ 105a 正極集電体 105b 負極集電体 106a 正極集電片 106b 負極集電片 1 Top cover 2 bottom containers 3 Positive terminal 4 Negative electrode terminal 5 Injection port 6 sealing film 101a Positive electrode (both sides) 101b Negative electrode (both sides) 101c Negative electrode (one side) 104 separator 105a Positive electrode current collector 105b Negative electrode current collector 106a Positive electrode current collector piece 106b Negative electrode current collector piece

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢田 静邦 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 (72)発明者 田尻 博幸 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 5H011 AA03 BB05 CC06 DD03 KK01 KK04 5H029 AJ03 AK03 AL07 AM03 AM05 AM07 BJ03 CJ16 DJ02 DJ16 EJ01 HJ04 HJ15 HJ19 5H050 AA08 BA17 CA09 CB08 FA17 HA19    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shizukuni Yada             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Kansai Research Institute of Technology (72) Inventor Hiroyuki Tajiri             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Within Osaka Gas Co., Ltd. F term (reference) 5H011 AA03 BB05 CC06 DD03 KK01                       KK04                 5H029 AJ03 AK03 AL07 AM03 AM05                       AM07 BJ03 CJ16 DJ02 DJ16                       EJ01 HJ04 HJ15 HJ19                 5H050 AA08 BA17 CA09 CB08 FA17                       HA19

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、セパレータ、及びリチウム
塩を含む非水系電解質を電池容器内に収容し、厚さが1
2mm未満の扁平形状であり、そのエネルギー容量が3
0Wh以上且つ体積エネルギー密度が180Wh/l以
上である非水二次電池において、前記電池容器が、平板
形状の上蓋および絞り加工を施した底容器より構成さ
れ、前記上蓋がアルミニウム合金からなる部分を主要部
材として備え、前記底容器が高純度のアルミニウムから
なる部分を主要部材として備えていることを特徴とする
非水系二次電池。
1. A positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt are contained in a battery container and have a thickness of 1
It has a flat shape of less than 2 mm and its energy capacity is 3
In a non-aqueous secondary battery having a volume energy density of 0 Wh or more and a volume energy density of 180 Wh / l or more, the battery container is composed of a flat plate-shaped top cover and a drawn bottom container, and the top cover is made of an aluminum alloy. A non-aqueous secondary battery provided as a main member, wherein the bottom container is provided with a portion made of high-purity aluminum as a main member.
【請求項2】 前記電池容器における底容器が、99重
量%以上のAl成分を含有する高純度のアルミニウムで
構成されている請求項1に記載の非水系二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the bottom container of the battery container is made of high-purity aluminum containing 99% by weight or more of an Al component.
【請求項3】 前記電池容器における上蓋が、0.5重
量%〜2.0重量%のMn成分を含有するアルミニウム
合金で構成されている請求項2に記載の非水系二次電
池。
3. The non-aqueous secondary battery according to claim 2, wherein the upper lid of the battery container is made of an aluminum alloy containing 0.5 wt% to 2.0 wt% of Mn component.
【請求項4】 前記電池容器における上蓋が、0.02
重量%〜0.8重量%のMg成分を含有するアルミニウ
ム合金で構成されている請求項3に記載の非水系二次電
池。
4. The upper lid of the battery container is 0.02.
The non-aqueous secondary battery according to claim 3, wherein the non-aqueous secondary battery is composed of an aluminum alloy containing a Mg component in a weight percentage of 0.8 wt%.
【請求項5】 前記電池容器内の圧力が大気圧未満であ
る請求項1から4のいずれかに記載の非水系二次電池。
5. The non-aqueous secondary battery according to claim 1, wherein the pressure inside the battery container is less than atmospheric pressure.
【請求項6】 前記電池容器内の圧力が、少なくとも1
回充電された後に前記電池容器内の圧力を大気圧未満に
した状態で最終封口されることにより、大気圧未満にさ
れた請求項5に記載の非水系二次電池。
6. The pressure inside the battery container is at least 1.
The non-aqueous secondary battery according to claim 5, wherein the non-aqueous secondary battery is made to have a pressure lower than atmospheric pressure by being finally sealed after being charged once and having a pressure in the battery container lower than atmospheric pressure.
【請求項7】 前記電池容器内の圧力が、8.66×1
4Pa以下である請求項1から6のいずれかに記載の
非水系二次電池。
7. The pressure inside the battery container is 8.66 × 1.
The non-aqueous secondary battery according to any one of claims 1 to 6, which has a pressure of 0 4 Pa or less.
【請求項8】 前記負極が、リチウムをドープおよび脱
ドープ可能な物質を含む請求項1から7のいずれかに記
載の非水系二次電池。
8. The non-aqueous secondary battery according to claim 1, wherein the negative electrode contains a substance capable of doping and dedoping lithium.
【請求項9】 前記正極が、マンガン酸化物を含む請求
項1から8のいずれかに記載の非水系二次電池。
9. The non-aqueous secondary battery according to claim 1, wherein the positive electrode contains manganese oxide.
【請求項10】 前記扁平形状の表裏面の形状が矩形で
ある請求項1から9のいずれかに記載の非水系二次電
池。
10. The non-aqueous secondary battery according to claim 1, wherein the top and bottom surfaces of the flat shape are rectangular.
【請求項11】 前記電池容器の板厚が0.2mm以上
1mm以下である請求項1から10のいずれかに記載の
非水系二次電池。
11. The non-aqueous secondary battery according to claim 1, wherein the battery container has a plate thickness of 0.2 mm or more and 1 mm or less.
JP2002079161A 2002-03-20 2002-03-20 Non-aqueous secondary battery Expired - Fee Related JP4088757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079161A JP4088757B2 (en) 2002-03-20 2002-03-20 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079161A JP4088757B2 (en) 2002-03-20 2002-03-20 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2003282034A true JP2003282034A (en) 2003-10-03
JP4088757B2 JP4088757B2 (en) 2008-05-21

Family

ID=29228742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079161A Expired - Fee Related JP4088757B2 (en) 2002-03-20 2002-03-20 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4088757B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950823A (en) * 1995-06-01 1997-02-18 Ricoh Co Ltd Secondary battery
JPH10284014A (en) * 1997-04-01 1998-10-23 Furukawa Electric Co Ltd:The Sheath-can for sealing angular lithium secondary battery made of aluminum alloy
JP2000129384A (en) * 1998-10-23 2000-05-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for secondary battery case, its manufacture, and secondary battery case
JP2000260478A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2000294202A (en) * 1999-04-02 2000-10-20 Toshiba Battery Co Ltd Thin battery
JP2001035466A (en) * 1999-07-15 2001-02-09 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2001243953A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2001243980A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950823A (en) * 1995-06-01 1997-02-18 Ricoh Co Ltd Secondary battery
JPH10284014A (en) * 1997-04-01 1998-10-23 Furukawa Electric Co Ltd:The Sheath-can for sealing angular lithium secondary battery made of aluminum alloy
JP2000129384A (en) * 1998-10-23 2000-05-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for secondary battery case, its manufacture, and secondary battery case
JP2000260478A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2000294202A (en) * 1999-04-02 2000-10-20 Toshiba Battery Co Ltd Thin battery
JP2001035466A (en) * 1999-07-15 2001-02-09 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2001243953A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2001243980A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP4088757B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP3997370B2 (en) Non-aqueous secondary battery
CN108598296A (en) Improve the secondary cell of energy density
WO2005013408A1 (en) Lithium ion secondary cell
JP5236199B2 (en) Non-aqueous secondary battery
JP4562304B2 (en) Method for producing non-aqueous secondary battery
JP4009803B2 (en) Non-aqueous secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP4092543B2 (en) Non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JP4428796B2 (en) Non-aqueous secondary battery
JP4601109B2 (en) Non-aqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP2004296325A (en) Nonaqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2002245991A (en) Non-aqueous secondary battery
JP4688305B2 (en) Non-aqueous secondary battery
JP4168263B2 (en) Non-aqueous secondary battery
JP4025944B2 (en) Organic electrolyte battery for power storage system
JP4859277B2 (en) Non-aqueous secondary battery
JP4088757B2 (en) Non-aqueous secondary battery
JP4288472B2 (en) Non-aqueous secondary battery
JP2007141523A (en) Lithium ion battery
JP4594540B2 (en) Non-aqueous secondary battery charge / discharge method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170307

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees