JP4594540B2 - Non-aqueous secondary battery charge / discharge method - Google Patents

Non-aqueous secondary battery charge / discharge method Download PDF

Info

Publication number
JP4594540B2
JP4594540B2 JP2001054158A JP2001054158A JP4594540B2 JP 4594540 B2 JP4594540 B2 JP 4594540B2 JP 2001054158 A JP2001054158 A JP 2001054158A JP 2001054158 A JP2001054158 A JP 2001054158A JP 4594540 B2 JP4594540 B2 JP 4594540B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
aqueous secondary
capacity
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001054158A
Other languages
Japanese (ja)
Other versions
JP2002260743A (en
Inventor
和哉 栗山
肇 木下
史朗 加藤
静邦 矢田
治夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2001054158A priority Critical patent/JP4594540B2/en
Publication of JP2002260743A publication Critical patent/JP2002260743A/en
Application granted granted Critical
Publication of JP4594540B2 publication Critical patent/JP4594540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池の充放電方法に関し、特に、蓄電システム用非水系二次電池の充放電方法に関するものである。
【0002】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特開平6−86463号公報には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、電圧が例えば50〜400Vの組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0003】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べ優れることから、その市場を飛躍的に延ばしている。
【0004】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、リチウムイオン電池をターゲットとし、リチウム電池電力貯蔵技術研究組合(LIBES)等で精力的に開発が進められている。
【0005】
これら大型リチウムイオン電池のエネルギー容量は、100Whから400Wh程度であり、体積エネルギー密度は、200〜300Wh/lと携帯機器用小型二次電池並のレベルに達している。その形状は、直径50mm〜70mm、長さ250mm〜450mmの円筒型、厚さ35mm〜50mmの角形又は長円角形等の扁平角柱形が代表的なものである。
【0006】
しかし、これら大型リチウムイオン電池は、高エネルギー密度が得られるものの、その電池設計が携帯機器用小型電池の延長にあることから、直径又は厚さが携帯機器用小型電池の3倍以上の円筒型、角型等の電池形状とされる。この場合には、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りによって活物質のエントロピーが変化することによる電池の内部発熱により、電池内部に熱が蓄積されやすい。このため、電池内部の温度と電池表面付近の温度差が大きく、これに伴って内部抵抗が異なる。その結果、充電量、電圧のバラツキを生じ易い。また、この種の電池は複数個を組電池にして用いるため、システム内での電池の設置位置によっても蓄熱されやすさが異なって各電池間のバラツキが生じ、組電池全体の正確な制御が困難になる。更には、高率充放電時等に放熱が不十分な為、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解等による寿命の低下、更には電池の熱暴走の誘起など信頼性、特に、安全性に問題が残されていた。
【0007】
上記問題を解決する目的でW099/60652号、特開2000-251940号、特開2000-251941号、特開2000-260478号、特開2000-260477号の各公報には、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、前記非水系二次電池は、その厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池が開示されている。該電池は独特の電池形状(扁平形状)により、実用化の障壁となる上記蓄熱に起因する信頼性、安全性の問題点を解決することを提案している。
【0008】
【発明が解決しようとする課題】
一般に蓄電システムにおいては、大型電池は小型二次電池と異なり、蓄えうる全容量すべてを充放電するのではなく、平均的に蓄えうる全容量の70%程度を充放電するように設計される。リチウム電池電力貯蔵技術研究組合(LIBES)においても、蓄電システム用大型電池のサイクル特性評価には放電深度70%でテストが行われている。しかし、蓄電システム用大型電池においては、例えば、3500サイクルを超える優れたサイクル寿命(小型二次電池の場合数百サイクル〜1000サイクル)、10年間相当の信頼性等小型二次電池を大きく上回る耐久性が要求されており、より長いサイクル寿命を有する大型二次電池が希求されている。
【0009】
本発明の目的は、30Wh以上の大容量且つ180Wh/l以上の体積エネルギー密度を有し、その厚さが12mm未満の扁平形状の非水系二次電池に適用し得るサイクル寿命に優れた充放電方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するため、正極、負極、セパレータ、およびリチウム塩を含む非水系電解質を電池容器内に収容し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上および体積エネルギー密度が180Wh/l以上である非水系二次電池の充放電方法であって、前記非水系二次電池の最大作動電圧範囲をV2〜V1(V2>V1)とし、初期状態における前記最大作動電圧範囲で得られる放電容量をCとするとき、V1またはV1近くまで放電された前記非水系二次電池を、充電時に、前記放電容量Cに対して所定の容量C´(ただし、C´≦0.8C)が充電されるまで充電を行い、充電後、所定の容量C´の範囲で放電を行い、これを繰り返すことを特徴とする非水系二次電池の充放電方法を提供するものである。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態に係る非水系二次電池について図面を参照しながら説明する。図1は、本発明の一実施形態に係る扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図であり、図2は、図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【0012】
図1及び図2に示すように、本実施形態の非水系二次電池は、上蓋1及び底容器2からなる電池容器と、該電池容器の中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。本実施の形態のような扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図2に示すように、セパレータ104を介して交互に配置されて積層されるが、本発明は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。また、図1及び図2に示す非水系二次電池の形状は、例えば縦300mm×横210mm×厚さ6mmであり、正極101aにLiMn24、負極101b、101cに炭素材料を用いるリチウム二次電池の場合、例えば、蓄電システムに用いることができる。
【0013】
各正極101aの正極集電体105aは、正極端子3に電気的に接続され、同様に、各負極101b、101cの負極集電体105bは、負極端子4に電気的に接続されている。正極端子3及び負極端子4は、電池容器すなわち上蓋1と絶縁された状態で取り付けられている。
【0014】
上蓋1及び底容器2は、図1中の拡大図に示したA点で全周を上蓋を溶かし込み、溶接されている。上蓋1には、電解液の注液口5が開けられており、電解液注液後、例えば、アルミニウム−変成ポリプロピレンラミネートフィルムからなる封口フィルム6を用いて封口される。最終封口工程は、少なくとも一回の充電操作の後に行うことがより好ましい。封口フィルム6による最終封口工程後の電池容器内の圧力は、大気圧未満であることが好ましく、更に好ましくは8.66×104Pa(650Torr)以下、特に好ましくは7.33×104(550Torr)以下である。これは、内圧が大気圧以上の場合、電池が設計厚みより大きくなり易く、或いは電池の厚みのばらつきが大きくなり易く、更には電池の内部抵抗及び容量がばらつきやすくなるからである。この圧力は、使用するセパレータ、電解液の種類、電池容器の材質及び厚み、電池の形状等を加味して決定されるものである。
【0015】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、高電圧、高容量の電池が得られることから、好ましい。また、大型リチウム系二次電池の実用化において最重点課題である安全性を重視する場合、熱分解温度が高いマンガン酸化物が好ましい。このマンガン酸化物としてはLiMn24に代表されるリチウム複合マンガン酸化物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系、さらにはリチウムを量論比よりも過剰にしたLi1+xMn2-y4等が挙げられる。特に、本発明は上記マンガン酸化物を主体とする正極を用いる場合、その効果が大きい。
【0016】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物、或いはポリアセン系有機半導体に代表される導電性高分子等が挙げられる。
【0017】
セパレータ104の構成は、特に限定されるものではないが、単層又は複層のセパレータを用いることができ、少なくとも1枚は不織布を用いることが好ましく、この場合、サイクル特性が向上する。また、セパレータ104の材質も、特に限定されるものではないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス、セルロース系材料等が挙げられ、電池の耐熱性、安全性設計に応じ適宜決定される。
【0018】
本実施形態の非水系二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF6、LiBF4、LiClO4等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、該電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0019】
上記のように構成された非水系二次電池は、家庭用蓄電システム(夜間電力貯蔵、コージェネレ-ション、太陽光発電等)、電気自動車等の蓄電システム等に用いることができ、大容量且つ高エネルギー密度を有することができる。この場合、エネルギー容量は、好ましくは30Wh以上、より好ましくは50Wh以上であり、且つエネルギー密度は、好ましくは180Wh/l以上、より好ましくは200Wh/lである。エネルギー容量が30Wh未満の場合、或いは、体積エネルギー密度が180Wh/l未満の場合は、蓄電システムに用いるには容量が小さく、充分なシステム容量を得るために電池の直並列数を増やす必要があること、また、コンパクトな設計が困難となることから蓄電システム用としては好ましくない。
【0020】
本実施形態の非水系二次電池は、扁平形状をしており、その厚さは12mm未満、より好ましくは10mm未満である。厚さの下限については電極の充填率、電池サイズ(薄くなれば同容量を得るためには面積が大きくなる)を考慮した場合、2mm以上が実用的である。電池の厚さが12mm以上になると、電池内部の発熱を充分に外部に放熱することが難しくなり、或いは電池内部と電池表面付近での温度差が大きくなり、内部抵抗が異なる結果、電池内での充電量、電圧のバラツキが大きくなる。なお、具体的な厚さは、電池容量、エネルギー密度に応じて適宜決定されるが、期待する放熱特性が得られる最大厚さで設計するのが、好ましい。
【0021】
また、本実施形態の非水系二次電池の形状としては、例えば、扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点から、電池の扁平形状の表裏面が矩形であり、図1に示すようなノート型の形状が好ましい。
【0022】
電池容器となる上蓋1及び底容器2に用いられる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、鉄、ステンレス鋼、アルミニウム等が一般的であり、実用的である。また、電池容器の厚さも電池の用途、形状或いは電池ケースの材質により適宜決定され、特に限定されるものではない。好ましくは、その電池表面積の80%以上の部分の厚さ(電池容器を構成する一番面積が広い部分の厚さ)が0.2mm以上である。上記厚さが0.2mm未満では、電池の製造に必要な強度が得られないことから望ましくなく、この観点から、より好ましくは0.3mm以上である。また、同部分の厚さは、1mm以下であることが望ましい。この厚さが1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し充分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0023】
上記のように、非水系二次電池の厚さを12mm未満に設計することにより、例えば、該電池が30Wh以上の大容量且つ180Wh/lの高エネルギー密度を有する場合、高率充放電時等においても、優れた放熱特性を実現し、電池温度の上昇を抑制することができる。従って、内部発熱による電池の蓄熱が低減され、結果として電池の熱暴走も抑止することが可能となり信頼性、安全性に優れた非水系二次電池を提供することができる。
【0024】
以下に、本発明に係る非水系二次電池の充放電方法について説明する。上記非水系二次電池は、最大作動電圧範囲をV2〜V1(V2>V1)とし、初期状態におけるこの最大作動電圧範囲で得られる放電容量をCとするとき、V1を基準とし0.8C以下の容量範囲で充放電を行うことによりサイクル寿命を改善することが可能である。作動上限電圧V2は、正極材料、負極材料、電解液等の電池設計、電池の使用環境等を考慮し決定されるものであり、一般に、技術資料、カタログ等において定格充電電圧、標準充電電圧等と称されるものである。例えば、正極にLiMn24、LiCoO2等のリチウム複合酸化物、負極に黒鉛系材料を用いた場合、V2は4.3V〜4.0Vとなる。また、作動下限電圧V1は、一般に放電終止電圧と呼ばれる電圧であり、例えば、正極にLiMn24、LiCoO2等のリチウム複合酸化物、負極に黒鉛系材料を用いた場合、V1は3.3V〜2.5Vとなる。最大作動電圧範囲V2〜V1(V2>V1)は、一般に繰り返し充放電を行なっても顕著な電池劣化が引き起こされないとされている最大電圧範囲である。上記最大作動電圧範囲で得られる最大容量Cは、作動上限電圧で電圧(例えば、定電圧)を印可し、充電電流が充分に小さくなるまで充電した後、例えば8時間率以上の低レートで作動下限電圧V1まで放電するときに得られる容量である。この最大容量Cについては、極度に内部抵抗の大きい電池を除き、0.2C(5時間率)程度の電流値で測定することにより、実用的な値を求めることができる。
【0025】
本発明に係る非水系二次電池の充放電方法は、最大作動電圧範囲をV2〜V1(V2>V1)とし、初期状態におけるこの電圧範囲で得られる最大容量をCとするとき、V1を基準とし0.8C以下の容量範囲で充放電を行うことを特徴とする。
【0026】
一般に電池の充放電は作動上限電圧V2を基準に行われる。すなわち、電池は充電を途中で終了しない限り、作動上限電圧V2にて満充電され、V2を基準に最大容量Cの100%あるいはそれ以下での容量が放電により取り出される。蓄電システム用の電池の場合、定格容量を保証する為、電池のサイクル劣化を見込んだ電池選定を行う。すなわち、通常は、作動上限電圧V2を基準に、0.7C以下程度の容量範囲で充放電されることになる。しかし、本発明においては作動下限電圧V1を基準とし0.8C以下の容量範囲で充放電するのであり、これにより、上記従来の作動上限電圧V2を基準に充放電する場合に比べサイクル寿命が改善されることを見出した。作動下限電圧V1を基準に充放電する容量は0.8C以下であり、好ましくは0.7C以下である。この充放電容量は電池のサイクル劣化率、使用環境等を考慮して決定されるものであり、0.8C以下であれば特に限定されない。充放電する容量が0.8Cを超える場合は、従来のV2を基準とした充放電に比べ、大幅なサイクル寿命の改善は見られない。但し、本発明の充放電方法においては、基本的な充放電動作が、作動下限電圧V1を基準に0.8C以下の容量で行なわれればよく、サイクル寿命に大きな影響のない程度であれば充放電容量が0.8Cを超えてもよい。充放電容量が0.8Cを超える割合が、例えば1000サイクルの内200回以下、好ましくは100回以下程度であれば、サイクル寿命に大きな影響を与えない。また、かならずしも基準となる最小放電電圧(作動下限電圧)V1まで放電する必要はなく、上記容量範囲内で作動していることが重要である。
【0027】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。
(実施例1)
(1)LiMn24100重量部、アセチレンブラック8重量部、ポリビニリデンフルオライド(PVDF)3重量部をN−メチルピロリドン(NMP)100重量部と混合し正極合材スラリーを得た。該スラリーを集電体となる厚さ20μmのアルミ箔の両面に塗布、乾燥した後、プレスを行い、正極を得た。図3の(a)は正極の説明図である。本実施例において正極101aの塗布面積(W1×W2)は、262.5×192mm2であり、20μmの集電体の両面に110μmの厚さで塗布されている。その結果、電極厚さtは240μmとなっている。また、電極の短辺側には電極が塗布されていない正極集電片106aが設けられ、その中央にφ3の穴が開けられている。
【0028】
(2)黒鉛化メソカーボンマイクロビーズ(MCMB、大阪ガスケミカル製、品番6−28)100重量部、PVDF10重量部をNMP90重量部と混合し、負極合材スラリーを得た。該スラリーを集電体となる厚さ14μmの銅箔の両面に塗布、乾燥した後、プレスを行い、負極を得た。図3の(b)は負極の説明図である。負極101bの塗布面積(W1×W2)は、267×195mm2であり、14μmの集電体の両面に90μmの厚さで塗布されている。その結果、電極厚さtは194μmとなっている。また、電極の短辺側には電極が塗布されていない負極集電片106bが設けられ、その中央にφ3の穴が開けられている。更に、同様の手法で片面だけに塗布し、それ以外は同様の方法で厚さ104μmの片面電極を作成した。片面電極は(3)項の電極積層体において外側に配置される(図2中101c)。
【0029】
(3)図2に示すように、上記(1)項で得られた正極8枚、負極9枚(内片面2枚)をセパレータA(レーヨン系、目付12.6g/m2)とセパレータB(ポリエチレン製微孔膜;目付13.3g/m2)とを合わせたセパレータ104を介して交互に積層し、さらに、電池容器との絶縁のために外側の負極101cの更に外側にセパレーターBを配置し、電極積層体を作成した。なお、セパレータ104は、セパレータAが正極側に、セパレータBが負極側になるように配置した。
【0030】
(4)図4に示すように、厚さ0.5mmのSUS304製薄板を深さ5mmに絞り、底容器2を作成し、上蓋1も厚さ0.5mmのSUS304製薄板で作成した。次に、上蓋1に、アルミニウム製の正極端子3及び銅製の負極端子4(頭部6mmφ、先端M3のねじ部)を取り付けた。正極及び負極端子3、4は、ポリプロピレン製ガスケットで上蓋1と絶縁した。
【0031】
(5)上記(3)項で作成した電極積層体の各正極集電片106aの穴に正極端子3のねじ部を挿通するとともに、各負極集電片106bの穴に負極端子4のねじ部を挿通し、それぞれ、アルミニウム製及び銅製のナットを締結した。接続された電極積層体を絶縁テープで固定し、図1の角部Aを全周に亘りレーザー溶接した。その後、注液口5(6mmφ)から電解液としてエチレンカーボネートとジエチルカーボネートを1:1重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液した。次に、大気圧下で、仮止め用のボルトを用いて注液口5を一旦封口した。
【0032】
(6)この電池を5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印可する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電した。
【0033】
(7)該電池の仮止め用ボルトをはずし、再度、4.00×104Pa(300Torr)の減圧下で、12mmφに打ち抜いた厚さ0.08mmのアルミ箔−変性ポリプロピレンラミネートフィルムからなる封口フィルム6を、温度250〜350℃、圧力1〜3kg/cm2、加圧時間5〜10秒の条件で熱融着することにより、注液口5を最終封口し、厚さ6mmの扁平形状のノート型電池を得た。
【0034】
該電池を5Aの電流で4.2V(最大充電電圧V2)まで充電し、その後4.2Vの定電圧を印可する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5V(最小放電電圧V1)まで放電し、最大容量Cを確認した。放電容量は27Ah(最大容量C)であった。この電池の容量は100Wh、体積エネルギー密度は265Wh/lであった。
【0035】
(8)上記2.5Vまで放電された電池を5Aで、0.75C、0.70C,0.65Cの容量を充電、5Aで2.5Vまで放電を行うサイクルを100回行った。充電時所定の容量が充電されるまでに最大電圧4.2Vに達した場合、4.2Vの定電圧を印可し充電を行った。100サイクル経過後5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印可する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電し、電池の容量を確認した。その結果を表1に示す。
【0036】
(比較例1)
実施例1と同様にし電池を組立、最大容量を確認した。その後、2.5Vまで放電された電池を0.2Cに相当する電流で、0.9Cの容量を充電し、0.2Cに相当する電流で2.5Vまで放電を行うサイクルを100回行った。充電時所定の容量が充電されるまでに最大電圧4.2Vに達した場合、4.2Vの定電圧を印可し充電を行った。また、定電圧を12時間以上印可しても所定の容量が充電できない場合、そこで充電を終了し、放電した。100サイクル経過後5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印可する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電し、電池の容量を確認した。その結果を表1に示す。
(比較例2)
実施例1と同様にし電池を組立、最大容量を確認した。その後、2.5Vまで放電された電池を5Aの電流で4.2V(最大充電電圧V2)まで充電し、その後4.2Vの定電圧を印可する定電流定電圧充電を8時間行い、5Aで容量0.75C、0.70C,0.65Cの容量の放電を行うサイクルを100回行った。放電時所定の容量が放電されるまでに最小電圧2.5Vに達した場合、そこで放電を終了した。100サイクル経過後5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印可する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電し、電池の容量を確認した。その結果を表1に示す。
【0037】
【表1】

Figure 0004594540
【0038】
【発明の効果】
以上の通り、本発明に係る充放電方法においては、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上である非水系二次電池の充放電を行なう際に、前記非水系二次電池の最大作動電圧範囲をV2〜V1(V2>V1)とし、初期状態における前記最大作動電圧範囲で得られる放電容量をCとするとき、V1を基準とし0.8C以下の容量範囲で充放電を行なう。これにより、二次電池のサイクル寿命を大きく延ばすことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る蓄電システム用非水系二次電池の平面図及び側面図である。
【図2】図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【図3】図2の積層体を構成する正極、負極、及びセパレータの平面図である。
【図4】図1に示す電池の上蓋及び底容器の縦断面図である。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 注液口
6 封口フィルム
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104 セパレータ
105a 正極集電体
105b 負極集電体
106a 正極集電片
106b 負極集電片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for charging / discharging a non-aqueous secondary battery, and more particularly to a method for charging / discharging a non-aqueous secondary battery for a power storage system.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Japanese Patent Laid-Open No. 6-86463 proposes a total system that combines electricity, gas cogeneration, fuel cells, storage batteries, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. ing. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of 50 to 400 V, for example, and in most cases, lead batteries are used.
[0003]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. , Has dramatically expanded its market.
[0004]
In response, in the field of large-scale batteries for power storage systems, lithium-ion batteries are targeted as candidates for high-energy density batteries, and development is actively underway by the Lithium Battery Power Storage Technology Research Association (LIBES) and others. .
[0005]
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, the same level as a small secondary battery for portable devices. The shape is typically a cylindrical shape having a diameter of 50 mm to 70 mm, a length of 250 mm to 450 mm, and a flat prismatic shape such as a square or oblong square having a thickness of 35 mm to 50 mm.
[0006]
However, although these large lithium ion batteries provide high energy density, the battery design is an extension of the small battery for portable devices, so that the diameter or thickness of the large lithium ion batteries is more than three times that of the small batteries for portable devices. The battery has a square shape. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to the internal resistance of the battery during charging and discharging, or internal heat generation of the battery due to change in entropy of the active material due to the entry and exit of lithium ions. For this reason, the temperature difference between the temperature inside the battery and the vicinity of the battery surface is large, and the internal resistance differs accordingly. As a result, variations in charge amount and voltage are likely to occur. In addition, since this type of battery is used as a plurality of assembled batteries, the ease of heat storage differs depending on the installation position of the batteries in the system, resulting in variations among the batteries, and accurate control of the entire assembled battery is possible. It becomes difficult. In addition, because of insufficient heat dissipation during high-rate charging / discharging, etc., the battery temperature rises, leaving the battery unfavorable, resulting in a decrease in life due to decomposition of the electrolyte, and thermal runaway of the battery. Problems such as induction of reliability, particularly safety, remained.
[0007]
In order to solve the above problems, W099 / 60652, JP2000-251940, JP2000-251941, JP2000-260478, and JP2000-260477 disclose a positive electrode, a negative electrode, and a separator. , And a non-aqueous secondary battery having a non-aqueous electrolyte containing a lithium salt contained in a battery container, wherein the non-aqueous secondary battery has a flat shape with a thickness of less than 12 mm and its energy A non-aqueous secondary battery having a capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more is disclosed. The battery proposes to solve the problems of reliability and safety due to the heat storage, which is a barrier to practical use, due to its unique battery shape (flat shape).
[0008]
[Problems to be solved by the invention]
In general, in a power storage system, unlike a small secondary battery, a large battery is designed not to charge and discharge all the capacity that can be stored, but to charge and discharge about 70% of the total capacity that can be stored on average. The Lithium Battery Power Storage Technology Research Association (LIBES) also conducts tests at a depth of discharge of 70% to evaluate the cycle characteristics of large batteries for power storage systems. However, in large batteries for power storage systems, for example, excellent cycle life exceeding 3500 cycles (several hundred cycles to 1000 cycles in the case of small secondary batteries), durability substantially exceeding that of small secondary batteries such as reliability equivalent to 10 years Therefore, a large-sized secondary battery having a longer cycle life is desired.
[0009]
An object of the present invention is a charge / discharge excellent in cycle life that can be applied to a flat non-aqueous secondary battery having a large capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more and a thickness of less than 12 mm. It is to provide a method.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention accommodates a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt in a battery container, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more, and A charge / discharge method for a non-aqueous secondary battery having a volumetric energy density of 180 Wh / l or more, wherein a maximum operating voltage range of the non-aqueous secondary battery is V2 to V1 (V2> V1), and the maximum in an initial state When the discharge capacity obtained in the operating voltage range is C, the non-aqueous secondary battery discharged to V1 or near V1 is charged with a predetermined capacity C ′ (however, C ′ those ≦ 0.8 C) performs charging until the charging, after charging was discharged at a range of a predetermined capacity C', provides a charging and discharging process of a nonaqueous secondary battery, characterized by repeating this A.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a non-aqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view and a side view of a flat rectangular (note type) non-aqueous secondary battery for an electricity storage system according to an embodiment of the present invention, and FIG. 2 is housed inside the battery shown in FIG. It is a side view which shows the structure of the electrode laminated body made.
[0012]
As shown in FIGS. 1 and 2, the non-aqueous secondary battery of this embodiment includes a battery container including an upper lid 1 and a bottom container 2, and a plurality of positive electrodes 101a and negative electrodes 101b housed in the battery container. , 101c, and an electrode laminate including the separator 104. In the case of a flat type non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the laminate) have separators 104, for example, as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of layers and the like can be variously changed according to the required capacity and the like. The shape of the non-aqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm long × 210 mm wide × 6 mm thick. The lithium secondary battery uses LiMn 2 O 4 for the positive electrode 101a and a carbon material for the negative electrodes 101b and 101c. In the case of a secondary battery, for example, it can be used in a power storage system.
[0013]
The positive electrode current collector 105 a of each positive electrode 101 a is electrically connected to the positive electrode terminal 3. Similarly, the negative electrode current collector 105 b of each negative electrode 101 b, 101 c is electrically connected to the negative electrode terminal 4. The positive electrode terminal 3 and the negative electrode terminal 4 are attached in a state of being insulated from the battery container, that is, the upper lid 1.
[0014]
The upper lid 1 and the bottom container 2 are welded by melting the upper lid all around the point A shown in the enlarged view of FIG. The upper lid 1 is provided with an electrolytic solution injection port 5, and after the electrolytic solution injection, is sealed using, for example, a sealing film 6 made of an aluminum-modified polypropylene laminate film. More preferably, the final sealing step is performed after at least one charging operation. The pressure in the battery container after the final sealing step with the sealing film 6 is preferably less than atmospheric pressure, more preferably 8.66 × 10 4 Pa (650 Torr) or less, and particularly preferably 7.33 × 10 4 ( 550 Torr) or less. This is because when the internal pressure is equal to or higher than the atmospheric pressure, the battery is likely to be larger than the designed thickness, or the variation in the battery thickness is likely to increase, and further, the internal resistance and capacity of the battery are likely to vary. This pressure is determined in consideration of the separator to be used, the type of electrolytic solution, the material and thickness of the battery container, the shape of the battery, and the like.
[0015]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used, and a high voltage and high capacity battery can be obtained, which is preferable. Further, in the case of emphasizing safety, which is the highest priority issue in practical use of a large lithium secondary battery, manganese oxide having a high thermal decomposition temperature is preferable. As this manganese oxide, a lithium composite manganese oxide typified by LiMn 2 O 4 , a system in which one or more different metal elements are added to these composite oxides, and a lithium in which lithium is made in excess of the stoichiometric ratio 1 + x Mn 2-y O 4 and the like. In particular, the present invention has a great effect when a positive electrode mainly composed of the manganese oxide is used.
[0016]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene, which are used as negative electrode materials for known lithium ion batteries. Examples thereof include conductive polymers represented by organic organic semiconductors.
[0017]
Although the structure of the separator 104 is not particularly limited, a single-layer or multi-layer separator can be used, and at least one sheet is preferably a nonwoven fabric. In this case, cycle characteristics are improved. The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamides, kraft paper, glass, cellulosic materials, and the like, depending on the heat resistance and safety design of the battery. It is determined appropriately.
[0018]
As the electrolyte of the non-aqueous secondary battery of this embodiment, a non-aqueous electrolyte containing a known lithium salt can be used, which is appropriately determined according to the use conditions such as the positive electrode material, the negative electrode material, and the charging voltage, and more specifically. Includes lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or two or more of these And those dissolved in an organic solvent such as a mixed solvent. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and naturally the electrolytic solution has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0019]
The non-aqueous secondary battery configured as described above can be used for a household power storage system (night power storage, cogeneration, solar power generation, etc.), a power storage system such as an electric vehicle, etc. It can have a high energy density. In this case, the energy capacity is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or when the volumetric energy density is less than 180 Wh / l, the capacity is small for use in the power storage system, and it is necessary to increase the number of series-parallel batteries to obtain sufficient system capacity. In addition, it is not preferable for a power storage system because a compact design becomes difficult.
[0020]
The non-aqueous secondary battery of this embodiment has a flat shape, and its thickness is less than 12 mm, more preferably less than 10 mm. As for the lower limit of the thickness, 2 mm or more is practical in consideration of the filling factor of the electrode and the battery size (the area becomes larger in order to obtain the same capacity as the thickness is reduced). If the thickness of the battery exceeds 12 mm, it will be difficult to sufficiently dissipate the heat generated inside the battery, or the temperature difference between the inside of the battery and the vicinity of the battery surface will increase, resulting in different internal resistances. The variation in charge amount and voltage increases. The specific thickness is appropriately determined according to the battery capacity and the energy density, but it is preferable to design with the maximum thickness that provides the expected heat dissipation characteristics.
[0021]
In addition, as the shape of the non-aqueous secondary battery of the present embodiment, for example, the flat front and back surfaces can be various shapes such as a square, a circle, an oval, and the rectangular shape is generally rectangular. However, it may be a polygon such as a triangle or a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of manufacture, the flat front and back surfaces of the battery are rectangular, and a notebook shape as shown in FIG. 1 is preferable.
[0022]
The materials used for the top lid 1 and the bottom container 2 to be the battery container are appropriately selected depending on the use and shape of the battery, and are not particularly limited, and iron, stainless steel, aluminum, etc. are common and practical. is there. Further, the thickness of the battery container is appropriately determined depending on the use and shape of the battery or the material of the battery case, and is not particularly limited. Preferably, the thickness of the portion of 80% or more of the battery surface area (the thickness of the portion having the largest area constituting the battery container) is 0.2 mm or more. If the thickness is less than 0.2 mm, it is not desirable because the strength required for manufacturing the battery cannot be obtained. From this viewpoint, it is more preferably 0.3 mm or more. The thickness of the same part is desirably 1 mm or less. If this thickness exceeds 1 mm, the force to hold down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and a sufficient capacity cannot be obtained, or the weight increases. Preferably it is 0.7 mm or less.
[0023]
As described above, by designing the thickness of the non-aqueous secondary battery to be less than 12 mm, for example, when the battery has a large capacity of 30 Wh or more and a high energy density of 180 Wh / l, a high rate charge / discharge, etc. In this case, it is possible to achieve excellent heat dissipation characteristics and suppress an increase in battery temperature. Therefore, the heat storage of the battery due to internal heat generation is reduced, and as a result, it is possible to suppress the thermal runaway of the battery, and it is possible to provide a non-aqueous secondary battery excellent in reliability and safety.
[0024]
Below, the charging / discharging method of the non-aqueous secondary battery which concerns on this invention is demonstrated. The non-aqueous secondary battery has a maximum operating voltage range of V2 to V1 (V2> V1), and a discharge capacity obtained in this maximum operating voltage range in the initial state is C. It is possible to improve the cycle life by charging and discharging in the capacity range. The operating upper limit voltage V2 is determined in consideration of battery design such as positive electrode material, negative electrode material, electrolyte, etc., battery usage environment, etc. Generally, rated charging voltage, standard charging voltage, etc. in technical documents, catalogs, etc. It is called. For example, when a lithium composite oxide such as LiMn 2 O 4 or LiCoO 2 is used for the positive electrode and a graphite-based material is used for the negative electrode, V2 is 4.3V to 4.0V. The lower limit voltage V1 is a voltage generally called a discharge end voltage. For example, when a lithium composite oxide such as LiMn 2 O 4 or LiCoO 2 is used for the positive electrode and a graphite-based material is used for the negative electrode, V1 is 3. 3V to 2.5V. The maximum operating voltage range V2 to V1 (V2> V1) is a maximum voltage range in which no significant battery deterioration is generally caused even when repeated charging and discharging are performed. The maximum capacity C obtained in the above maximum operating voltage range is applied at a voltage (for example, constant voltage) at the maximum operating voltage, charged until the charging current becomes sufficiently small, and then operated at a low rate of, for example, 8 hours or more. This is the capacity obtained when discharging to the lower limit voltage V1. About this maximum capacity | capacitance C, a practical value can be calculated | required by measuring with the electric current value of about 0.2 C (5-hour rate) except for a battery with extremely large internal resistance.
[0025]
The charge / discharge method of the non-aqueous secondary battery according to the present invention is based on V1 when the maximum operating voltage range is V2 to V1 (V2> V1) and the maximum capacity obtained in this voltage range in the initial state is C. And charging / discharging in a capacity range of 0.8 C or less.
[0026]
Generally, charging / discharging of a battery is performed on the basis of the operation upper limit voltage V2. In other words, the battery is fully charged at the operating upper limit voltage V2 unless charging is completed, and the capacity at 100% or less of the maximum capacity C with respect to V2 is taken out by discharging. In the case of a battery for an electricity storage system, select a battery that allows for cycle deterioration of the battery in order to guarantee the rated capacity. That is, normally, charging / discharging is performed in a capacity range of about 0.7 C or less with reference to the operation upper limit voltage V2. However, in the present invention, charging / discharging is performed in a capacity range of 0.8 C or less with reference to the operating lower limit voltage V1, thereby improving the cycle life as compared with the case of charging / discharging based on the conventional operating upper limit voltage V2. I found out that The capacity for charging / discharging with reference to the operating lower limit voltage V1 is 0.8C or less, preferably 0.7C or less. This charge / discharge capacity is determined in consideration of the cycle deterioration rate of the battery, the use environment, etc., and is not particularly limited as long as it is 0.8 C or less. When the charge / discharge capacity exceeds 0.8 C, no significant improvement in cycle life is seen compared to the conventional charge / discharge based on V2. However, in the charging / discharging method of the present invention, the basic charging / discharging operation may be performed at a capacity of 0.8 C or less with reference to the operating lower limit voltage V1, and charging / discharging is performed as long as the cycle life is not significantly affected. The discharge capacity may exceed 0.8C. If the charge / discharge capacity exceeds 0.8 C, for example, 200 cycles or less, preferably 100 cycles or less, out of 1000 cycles, the cycle life is not greatly affected. Further, it is not always necessary to discharge to the reference minimum discharge voltage (operation lower limit voltage) V1, and it is important to operate within the capacity range.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
(1) 100 parts by weight of LiMn 2 O 4 , 8 parts by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. FIG. 3A is an explanatory diagram of the positive electrode. In this embodiment, the application area (W1 × W2) of the positive electrode 101a is 262.5 × 192 mm 2 , and is applied to both surfaces of a 20 μm current collector with a thickness of 110 μm. As a result, the electrode thickness t is 240 μm. Moreover, the positive electrode current collection piece 106a with which the electrode is not apply | coated is provided in the short side of an electrode, and the hole of (phi) 3 is made in the center.
[0028]
(2) 100 parts by weight of graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., No. 6-28) and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied to both sides of a 14 μm thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. FIG. 3B is an explanatory diagram of the negative electrode. The application area (W1 × W2) of the negative electrode 101b is 267 × 195 mm 2 and is applied to both surfaces of a 14 μm current collector with a thickness of 90 μm. As a result, the electrode thickness t is 194 μm. Further, a negative electrode current collecting piece 106b to which no electrode is applied is provided on the short side of the electrode, and a hole of φ3 is formed in the center thereof. Further, a single-sided electrode having a thickness of 104 μm was prepared by the same method except that the coating was applied to only one side. The single-sided electrode is arranged on the outer side in the electrode laminate of item (3) (101c in FIG. 2).
[0029]
(3) As shown in FIG. 2, 8 sheets of positive electrodes and 9 sheets of negative electrodes (2 sheets on the inner side) obtained in the above item (1) were combined with separator A (rayon system, basis weight 12.6 g / m 2 ) and separator B. (Polyethylene microporous membrane; weight per unit area: 13.3 g / m 2 ) are laminated alternately via separators 104, and further, separator B is provided on the outer side of outer negative electrode 101c for insulation from the battery container. Arranged to create an electrode stack. The separator 104 was disposed so that the separator A was on the positive electrode side and the separator B was on the negative electrode side.
[0030]
(4) As shown in FIG. 4, a SUS304 thin plate having a thickness of 0.5 mm was squeezed to a depth of 5 mm to form the bottom container 2, and the upper lid 1 was also made of a SUS304 thin plate having a thickness of 0.5 mm. Next , the positive electrode terminal 3 made of aluminum and the negative electrode terminal 4 made of copper (head portion 6 mmφ, screw portion of the tip M3) were attached to the upper lid 1 . The positive and negative terminals 3 and 4 were insulated from the upper lid 1 by a polypropylene gasket.
[0031]
(5) The screw portion of the positive electrode terminal 3 is inserted into the hole of each positive electrode current collecting piece 106a of the electrode laminate prepared in the above item (3), and the screw portion of the negative electrode terminal 4 is inserted into the hole of each negative electrode current collector piece 106b. And nuts made of aluminum and copper were fastened. The connected electrode laminate was fixed with an insulating tape, and the corner A in FIG. 1 was laser welded over the entire circumference. Thereafter, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l was poured into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1 as an electrolytic solution from the pouring port 5 (6 mmφ). Next, under the atmospheric pressure, the liquid injection port 5 was once sealed using a temporary fixing bolt.
[0032]
(6) This battery is charged to 4.2 V with a current of 5 A, and then subjected to constant current and constant voltage charging for 12 hours, followed by discharging to 2.5 V with a constant current of 5 A. did.
[0033]
(7) The temporary fastening bolt of the battery is removed, and the sealing is again made of 0.08 mm thick aluminum foil-modified polypropylene laminate film punched to 12 mmφ under reduced pressure of 4.00 × 10 4 Pa (300 Torr) The film 6 is heat-sealed under the conditions of a temperature of 250 to 350 ° C., a pressure of 1 to 3 kg / cm 2 , and a pressurization time of 5 to 10 seconds, whereby the liquid injection port 5 is finally sealed, and a flat shape with a thickness of 6 mm A notebook battery was obtained.
[0034]
The battery is charged at a current of 5 A to 4.2 V (maximum charging voltage V2), and then a constant current and constant voltage charging for applying a constant voltage of 4.2 V is performed for 12 hours, followed by 2. at a constant current of 5 A. The battery was discharged to 5 V (minimum discharge voltage V1), and the maximum capacity C was confirmed. The discharge capacity was 27 Ah (maximum capacity C). This battery had a capacity of 100 Wh and a volume energy density of 265 Wh / l.
[0035]
(8) The battery discharged to 2.5V was charged with 5A at a capacity of 0.75C, 0.70C, and 0.65C, and a cycle of discharging to 2.5V at 5A was performed 100 times. When the maximum voltage of 4.2 V was reached before the predetermined capacity was charged during charging, the battery was charged by applying a constant voltage of 4.2 V. After 100 cycles, the battery is charged to 4.2 V with a current of 5 A, and then subjected to constant current and constant voltage charging for 12 hours, followed by discharging to 2.5 V with a constant current of 5 A. The battery capacity was checked. The results are shown in Table 1.
[0036]
(Comparative Example 1)
A battery was assembled and the maximum capacity was confirmed in the same manner as in Example 1. Thereafter, a battery discharged to 2.5 V was charged with a capacity of 0.9 C with a current corresponding to 0.2 C, and a cycle of discharging to 2.5 V with a current corresponding to 0.2 C was performed 100 times. . When the maximum voltage of 4.2V was reached before the predetermined capacity was charged, the battery was charged by applying a constant voltage of 4.2V. Further, when a predetermined capacity could not be charged even when a constant voltage was applied for 12 hours or more, charging was terminated and discharged. After 100 cycles, the battery is charged to 4.2 V with a current of 5 A, and then subjected to constant current and constant voltage charging for 12 hours, followed by discharging to 2.5 V with a constant current of 5 A. The battery capacity was checked. The results are shown in Table 1.
(Comparative Example 2)
A battery was assembled and the maximum capacity was confirmed in the same manner as in Example 1. After that, the battery discharged to 2.5V is charged with a current of 5A to 4.2V (maximum charging voltage V2), and then a constant current / constant voltage charging for applying a constant voltage of 4.2V is performed for 8 hours. A cycle of discharging with capacities of 0.75 C, 0.70 C, and 0.65 C was performed 100 times. When the minimum voltage reached 2.5 V before the predetermined capacity was discharged at the time of discharge, the discharge was terminated there. After 100 cycles, the battery is charged to 4.2 V with a current of 5 A, and then subjected to constant current and constant voltage charging for 12 hours, followed by discharging to 2.5 V with a constant current of 5 A. The battery capacity was checked. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0004594540
[0038]
【The invention's effect】
As described above, in the charge / discharge method according to the present invention, the nonaqueous electrolyte containing the positive electrode, the negative electrode, the separator, and the lithium salt is accommodated in the battery container, has a flat shape with a thickness of less than 12 mm, and has an energy capacity. When charging / discharging a non-aqueous secondary battery having a volume energy density of 30 Wh or more and a volume energy density of 180 Wh / l or more, the maximum operating voltage range of the non-aqueous secondary battery is V2 to V1 (V2> V1), and the initial state When the discharge capacity obtained in the above-mentioned maximum operating voltage range is C, charging / discharging is performed in a capacity range of 0.8 C or less with reference to V1. Thereby, the cycle life of the secondary battery can be greatly extended.
[Brief description of the drawings]
1A and 1B are a plan view and a side view of a nonaqueous secondary battery for a power storage system according to an embodiment of the present invention.
2 is a side view showing a configuration of an electrode laminate housed in the battery shown in FIG. 1. FIG.
FIG. 3 is a plan view of a positive electrode, a negative electrode, and a separator constituting the laminate of FIG.
4 is a longitudinal sectional view of an upper lid and a bottom container of the battery shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Top cover 2 Bottom container 3 Positive electrode terminal 4 Negative electrode terminal 5 Injection hole 6 Sealing film 101a Positive electrode (both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
104 Separator 105a Positive electrode current collector 105b Negative electrode current collector 106a Positive electrode current collector piece 106b Negative electrode current collector piece

Claims (6)

正極、負極、セパレータ、およびリチウム塩を含む非水系電解質を電池容器内に収容し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上および体積エネルギー密度が180Wh/l以上である非水系二次電池の充放電方法であって、
前記非水系二次電池の最大作動電圧範囲をV2〜V1(V2>V1)とし、初期状態における前記最大作動電圧範囲で得られる放電容量をCとするとき、V1またはV1近くまで放電された前記非水系二次電池を、充電時に、前記放電容量Cに対して所定の容量C´(ただし、C´≦0.8C)が充電されるまで充電を行い、充電後、所定の容量C´の範囲で放電を行い、これを繰り返すことを特徴とする非水系二次電池の充放電方法。
A nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is accommodated in a battery container, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more, and a volume energy density of 180 Wh / l or more. A charge / discharge method for an aqueous secondary battery,
When the maximum operating voltage range of the non-aqueous secondary battery is V2 to V1 (V2> V1) and the discharge capacity obtained in the maximum operating voltage range in the initial state is C, the discharge is performed to V1 or near V1. At the time of charging, the non-aqueous secondary battery is charged until a predetermined capacity C ′ (where C ′ ≦ 0.8C) is charged with respect to the discharge capacity C. A method for charging and discharging a non-aqueous secondary battery, characterized in that discharge is performed in a range and this is repeated .
前記正極がマンガン系酸化物を主体とすることを特徴とする請求項1に記載の非水系二次電池の充放電方法。  The charge / discharge method for a non-aqueous secondary battery according to claim 1, wherein the positive electrode mainly comprises a manganese-based oxide. 前記負極は、リチウムをドープおよび脱ドープ可能な物質を含むことを特徴とする請求項1または2に記載の非水系二次電池の充放電方法。  The method for charging and discharging a non-aqueous secondary battery according to claim 1, wherein the negative electrode contains a material capable of doping and dedoping lithium. 前記負極は、黒鉛系材料を主体とすることを特徴とする請求項3に記載の非水系二次電池の充放電方法。  The charge / discharge method for a non-aqueous secondary battery according to claim 3, wherein the negative electrode is mainly composed of a graphite-based material. 前記扁平形状の表裏面の形状は、矩形であることを特徴とする請求項1〜4のいずれかに記載の非水系二次電池の充放電方法。  The charge / discharge method for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein a shape of the front and back surfaces of the flat shape is a rectangle. 前記電池容器の板厚は、0.2mm以上1mm以下であることを特徴とする請求項1〜5のいずれかに記載の非水系二次電池の充放電方法。  The thickness of the said battery container is 0.2 mm or more and 1 mm or less, The charging / discharging method of the non-aqueous secondary battery in any one of Claims 1-5 characterized by the above-mentioned.
JP2001054158A 2001-02-28 2001-02-28 Non-aqueous secondary battery charge / discharge method Expired - Fee Related JP4594540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054158A JP4594540B2 (en) 2001-02-28 2001-02-28 Non-aqueous secondary battery charge / discharge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054158A JP4594540B2 (en) 2001-02-28 2001-02-28 Non-aqueous secondary battery charge / discharge method

Publications (2)

Publication Number Publication Date
JP2002260743A JP2002260743A (en) 2002-09-13
JP4594540B2 true JP4594540B2 (en) 2010-12-08

Family

ID=18914531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054158A Expired - Fee Related JP4594540B2 (en) 2001-02-28 2001-02-28 Non-aqueous secondary battery charge / discharge method

Country Status (1)

Country Link
JP (1) JP4594540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4246629A1 (en) * 2020-11-10 2023-09-20 National Institute Of Advanced Industrial Science and Technology Electrolyte solution for nonaqueous secondary batteries, nonaqueous secondary battery using same, and method for discharging nonaqueous secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245835A (en) * 1996-03-04 1997-09-19 Murata Mfg Co Ltd Manufacture of non-aqueous electrolyte secondary battery
JPH10255852A (en) * 1997-03-06 1998-09-25 Sanyo Electric Co Ltd Charging-discharging method of nonaqueous electrolyte secondary battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same
JP2000113909A (en) * 1998-08-04 2000-04-21 Furukawa Battery Co Ltd:The Storing method for lithium secondary battery
JP2000260477A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245835A (en) * 1996-03-04 1997-09-19 Murata Mfg Co Ltd Manufacture of non-aqueous electrolyte secondary battery
JPH10255852A (en) * 1997-03-06 1998-09-25 Sanyo Electric Co Ltd Charging-discharging method of nonaqueous electrolyte secondary battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same
JP2000113909A (en) * 1998-08-04 2000-04-21 Furukawa Battery Co Ltd:The Storing method for lithium secondary battery
JP2000260477A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2002260743A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
JP3799463B2 (en) Battery module
JP3997370B2 (en) Non-aqueous secondary battery
CN108963184A (en) More contact pin electrodes with high aspect ratio and the battery comprising the electrode
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
JP4562304B2 (en) Method for producing non-aqueous secondary battery
JP4053802B2 (en) Electrochemical devices
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP4009803B2 (en) Non-aqueous secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JP4403447B2 (en) Non-aqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP4092543B2 (en) Non-aqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4601109B2 (en) Non-aqueous secondary battery
JP2002270240A (en) Nonaqueous secondary cell
JP4594478B2 (en) Non-aqueous secondary battery
JP4594540B2 (en) Non-aqueous secondary battery charge / discharge method
JP2001243953A (en) Non-aqueous secondary battery
JP4025944B2 (en) Organic electrolyte battery for power storage system
JP4859277B2 (en) Non-aqueous secondary battery
JP4548070B2 (en) Secondary battery
JP2001266848A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees