JP2002270240A - Nonaqueous secondary cell - Google Patents

Nonaqueous secondary cell

Info

Publication number
JP2002270240A
JP2002270240A JP2001071023A JP2001071023A JP2002270240A JP 2002270240 A JP2002270240 A JP 2002270240A JP 2001071023 A JP2001071023 A JP 2001071023A JP 2001071023 A JP2001071023 A JP 2001071023A JP 2002270240 A JP2002270240 A JP 2002270240A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
secondary battery
separator
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001071023A
Other languages
Japanese (ja)
Inventor
Shiro Kato
史朗 加藤
Hajime Kinoshita
肇 木下
Shizukuni Yada
静邦 矢田
Haruo Kikuta
治夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001071023A priority Critical patent/JP2002270240A/en
Publication of JP2002270240A publication Critical patent/JP2002270240A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large-sized nonaqueous secondary cell of which, electrodes and separator can be correctly and easily laminated, which is used for a storage cell system with high productivity, high energy density, and high reliability and safety. SOLUTION: For the flat-shaped nonaqueous secondary cell with a thickness of less than 12 mm, housing a positive electrode, a negative electrode, a separator and nonaqueous electrolyte containing lithium salt in a cell container, with energy capacity of not less than 30 Wh, and volume energy density of 180 Wh/l, a wound structure is formed by winding a laminated body laminating the belt-shaped positive electrode, the belt-shaped negative electrode, a belt- shaped separator laid between the positive electrode and the negative electrode, and the other belt-shaped separator arranged at the outside of either one of the positive electrode or the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池に
関し、特に、蓄電システム用非水系二次電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery for a power storage system.

【0002】[0002]

【従来の技術】近年、省資源を目指したエネルギーの有
効利用及び地球環境問題の観点から、深夜電力貯蔵及び
太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電シ
ステム、電気自動車のための蓄電システム等が注目を集
めている。例えば、特開平6−86463号公報には、
エネルギー需要者に最適条件でエネルギーを供給できる
システムとして、発電所から供給される電気、ガスコー
ジェネレーション、燃料電池、蓄電池等を組み合わせた
トータルシステムが提案されている。このような蓄電シ
ステムに用いられる二次電池は、エネルギー容量が10
Wh以下の携帯機器用小型二次電池と異なり、容量が大
きい大型のものが必要とされる。このため、上記の蓄電
システムでは、複数の二次電池を直列に積層し、電圧が
例えば50〜400Vの組電池として用いるのが常であ
り、ほとんどの場合、鉛電池を用いていた。
2. Description of the Related Art In recent years, from the viewpoint of effective use of energy for resource saving and global environmental problems, a home-use decentralized power storage system for late-night power storage and power storage for photovoltaic power generation has been developed. Power storage systems are attracting attention. For example, JP-A-6-86463 discloses that
As a system capable of supplying energy to an energy consumer under optimum conditions, a total system combining electricity supplied from a power plant, gas cogeneration, a fuel cell, a storage battery, and the like has been proposed. A secondary battery used in such a power storage system has an energy capacity of 10
Unlike small secondary batteries for portable devices of Wh or less, large batteries having large capacities are required. For this reason, in the above-described power storage system, a plurality of secondary batteries are stacked in series, and usually used as a battery pack having a voltage of, for example, 50 to 400 V. In most cases, a lead battery is used.

【0003】一方、携帯機器用小型二次電池の分野で
は、小型及び高容量のニーズに応えるべく、新型電池と
してニッケル水素電池、リチウム二次電池の開発が進展
し、180Wh/l以上の体積エネルギー密度を有する
電池が市販されている。特に、リチウムイオン電池は、
350Wh/lを超える体積エネルギー密度の可能性を
有すること、及び、安全性、サイクル特性等の信頼性が
金属リチウムを負極に用いたリチウム二次電池に比べて
優れることから、その市場を飛躍的に延ばしている。
On the other hand, in the field of small rechargeable batteries for portable equipment, nickel-metal hydride batteries and lithium rechargeable batteries have been developed as new types of batteries in order to meet the needs of small size and high capacity, and volume energy of 180 Wh / l or more has been developed. Batteries having a density are commercially available. In particular, lithium-ion batteries
It has a potential for volume energy density exceeding 350 Wh / l, and is superior in reliability such as safety and cycle characteristics as compared with lithium secondary batteries using lithium metal as a negative electrode, so that the market is dramatically improved. To be extended.

【0004】これを受け、蓄電システム用大型電池の分
野においても、高エネルギー密度電池の候補として、リ
チウムイオン電池をターゲットとし、リチウム電池電力
貯蔵技術研究組合(LIBES)等で精力的に開発が進
められている。
[0004] In response to this, in the field of large-sized batteries for power storage systems, lithium-ion batteries have been targeted as candidates for high-energy density batteries, and lithium battery power storage technology research associations (LIBES) and others have been vigorously developing them. Have been.

【0005】これら大型リチウムイオン電池のエネルギ
ー容量は、100Whから400Wh程度であり、体積
エネルギー密度は、200〜300Wh/lと携帯機器
用小型二次電池並のレベルに達している。その形状は、
直径50mm〜70mm、長さ250mm〜450mm
の円筒型、厚さ35mm〜50mmの角形又は長円角形
等の扁平角柱形が代表的なものである。
The energy capacity of these large lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, which is at the level of a small secondary battery for portable equipment. Its shape is
Diameter 50mm-70mm, length 250mm-450mm
And a rectangular prism having a thickness of 35 mm to 50 mm or an oblong prism or the like are typical.

【0006】[0006]

【発明が解決しようとする課題】これら大型リチウムイ
オン電池の組立においては、例えば、円筒型形状の場
合、正極、セパレータ及び負極の積層体を巻回、あるい
は、折り畳んで電極ユニットとし、電池内に組み込まれ
る。又、角型電池の場合、正極、セパレータ、負極の積
層体を巻回、あるいは、折り畳んで電極ユニットとし、
電池内に組み込まれる。更には、複数枚の正極、セパレ
ータ、負極を順に積層(スタック)して電極ユニットと
し、電池内に組み込まれる。これらのうち、正極、負
極、セパレータの位置決めが容易で、量産性の高い方式
としては、巻回、あるいは、折り畳み方式であると考え
られ、スタック方式は、前記方式と比べ劣ると思われ
る。
In assembling these large lithium-ion batteries, for example, in the case of a cylindrical shape, a laminate of a positive electrode, a separator and a negative electrode is wound or folded to form an electrode unit, and the battery is inserted into the battery. Be incorporated. In the case of a prismatic battery, a positive electrode, a separator, and a laminate of a negative electrode are wound or folded to form an electrode unit,
Built into the battery. Furthermore, a plurality of positive electrodes, separators, and an electrode unit stacked (stacked) a negative electrode in this order, is incorporated into the battery. Among these, the winding or folding system is considered to be a system in which the positive electrode, the negative electrode, and the separator can be easily positioned and has high mass productivity, and the stack system is considered to be inferior to the above system.

【0007】しかしながら、大型電池においては小型電
池と異なり、巻回、あるいは、折り畳む電極の長さが数
倍〜10倍以上にもなる為、大型電池においては、内部
抵抗を考慮し、電極からの集電に工夫する必要があり、
図10(a)に示すように電極200の一端に集電タブ
201を設ける小型電池と同様の構造では電池の内部抵
抗が増加する。
However, unlike a small battery, the length of a wound or folded electrode is several times to 10 times or more in a large battery. Therefore, in a large battery, the internal resistance is considered in consideration of the internal resistance. It is necessary to devise current collection,
As shown in FIG. 10A, in a structure similar to a small battery in which the current collecting tab 201 is provided at one end of the electrode 200, the internal resistance of the battery increases.

【0008】そこで、図10(b)に示すように電極2
00に複数の集電タブ201を設けたものや、図11
(a)に示すように正極及び負極の長さ方向の一辺に電
極材料が塗布されていない集電片301を有する電極3
00の該集電片301に複数本の集電タブ302を取り
付けたものを、図11(b)(c)に示すように、正極
300a(300)、セパレータ及び負極300b(3
00)を積層した積層体303を円筒状に巻回したり、
図11(d)のように角型に巻回することにより、正極
300a(300)と負極300b(300)との間に
セパレータが介在した電極ユニット304を形成し、該
電極ユニット304を電池内に配置する方法等が提案さ
れた。
Therefore, as shown in FIG.
11 in which a plurality of current collecting tabs 201 are provided in FIG.
As shown in (a), an electrode 3 having a current collecting piece 301 on which one side of a length direction of a positive electrode and a negative electrode is not coated with an electrode material.
As shown in FIGS. 11B and 11C, the current collecting piece 301 with a plurality of current collecting tabs 302 attached thereto is used as a positive electrode 300a (300), a separator and a negative electrode 300b (3).
00) is wound into a cylindrical shape,
As shown in FIG. 11D, the electrode unit 304 in which a separator is interposed between the positive electrode 300a (300) and the negative electrode 300b (300) is formed by winding in a rectangular shape, and the electrode unit 304 is mounted inside the battery. A method of arranging them in a location has been proposed.

【0009】しかし、いずれの場合においても、集電構
造が複雑となり、小型電池において実績のある巻回、あ
るいは、折りたたみ方式でも、大型電池においては、一
概に量産性の高い方法であるとは考えられない。
However, in either case, the current collecting structure becomes complicated, and the winding or folding method, which has been used in small batteries, is considered to be a method of mass productivity for large batteries. I can't.

【0010】加えて、上述のように、大型リチウムイオ
ン電池は高エネルギー密度が得られるものの、その電池
設計が携帯機器用小型電池の延長にあることから、直径
又は厚さが携帯機器用小型電池の3倍以上の円筒型、角
型等の電池形状であり、放熱が不十分な為、電池温度が
上昇し、電池にとって好ましくない状態におかれること
から、電解液の分解等による寿命の低下、更には電池の
熱暴走の誘起など信頼性、特に安全性に問題が残されて
いた。
[0010] In addition, as described above, although a large lithium-ion battery can provide a high energy density, since its battery design is an extension of a small battery for a portable device, its diameter or thickness is small. The battery shape is more than three times the shape of a cylinder or square, and the heat dissipation is insufficient, the battery temperature rises, and the battery is put in an unfavorable state. , and further such as reliability induction of thermal runaway of the battery, was not a problem is left to the particular safety.

【0011】本発明の目的は、電極及びセパレーターの
積層を正確かつ容易に行えるとともに、集電構造が簡便
で、量産性の高い蓄電システム等に用いられる大型非水
系二次電池を提供することにある。
An object of the present invention is to provide a large-sized non-aqueous secondary battery used in a power storage system or the like which has a simple current collection structure, can easily and accurately laminate an electrode and a separator, and is used for a mass storage system. is there.

【0012】また、本発明の他の目的は、高エネルギー
密度かつ信頼性、安全性の高い蓄電システム等に用いら
れる大型非水系二次電池を提供することにある。
Another object of the present invention is to provide a large non-aqueous secondary battery used for a power storage system or the like with high energy density, high reliability and high safety.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するため、以下の非水系二次電池を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention provides the following non-aqueous secondary battery to achieve the above object.

【0014】非水系二次電池は、正極、負極、セパレー
タ、及びリチウム塩を含む非水系電解質を電池容器内に
収容し、厚さが12mm未満の扁平形状であり、エネル
ギー容量が30Wh以上且つ体積エネルギー密度が18
0Wh/l以上の非水系二次電池であって、帯状の正極
と、帯状の負極と、該正極と負極の間に介在する帯状の
セパレータと、前記正極又は前記負極のいずれか一方の
外側に配設させる帯状の他のセパレータとを積層して積
層体を形成し、該積層体を巻いて巻回構造にしたことを
特徴とする。
A non-aqueous secondary battery contains a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt in a battery container, has a flat shape with a thickness of less than 12 mm, and has an energy capacity of 30 Wh or more and a volume. energy density is 18
A non-aqueous secondary battery of 0 Wh / l or more, wherein a strip-shaped positive electrode, a strip-shaped negative electrode, a strip-shaped separator interposed between the positive electrode and the negative electrode, and one of the positive electrode and the negative electrode are provided outside. It is characterized in that a laminated body is formed by laminating another belt-shaped separator to be disposed, and the laminated body is wound into a wound structure.

【0015】また、非水系二次電池は、正極、負極、セ
パレータ、及びリチウム塩を含む非水系電解質を電池容
器内に収容し、厚さが12mm未満の扁平形状であり、
エネルギー容量が30Wh以上且つ体積エネルギー密度
が180Wh/l以上の非水系二次電池であって、帯状
の正極と帯状の負極とが合わさった状態でジグザグ状に
折り畳まれ、且つ、前記正極と前記負極との間にセパレ
ータを介在させたことを特徴とする。
The non-aqueous secondary battery contains a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt in a battery container, and has a flat shape with a thickness of less than 12 mm.
What is claimed is: 1. A non-aqueous secondary battery having an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more, wherein the positive electrode and the negative electrode are folded in a zigzag shape in a state where a positive electrode and a negative electrode are combined. And a separator interposed therebetween.

【0016】これらの非水系二次電池において、前記正
極及び前記負極の長手方向の一辺部に沿って集電片を形
成するのが望ましい。
In these non-aqueous secondary batteries, it is desirable to form a current collecting piece along one longitudinal side of the positive electrode and the negative electrode.

【0017】また、前記正極集電片と前記負極集電片と
を反対側に位置させ、且つ、前記セパレータと前記正極
集電片及び前記負極集電片とが重ならないように積層す
るのが望ましい。
Further, it is preferable that the positive electrode current collector and the negative electrode current collector are located on opposite sides, and the separator, the positive electrode current collector and the negative electrode current collector are stacked so as not to overlap with each other. desirable.

【0018】前記集電片を圧接して集電圧接部を形成
し、該集電圧接部を端子に接続するように構成するのが
望ましく、前記正極は、マンガン系酸化物を主体とする
のが望ましく、前記負極は、リチウムをドープ及び脱ド
ープ可能な物質を含むのが望ましく、前記扁平形状の表
裏面の形状は、矩形であるのが望ましく、前記電池容器
の板厚は、0.2mm以上1mm以下であるのが望まし
い。
The pressed against the current collector piece to form a collecting voltage contact portion, it is desirable to configure to connect the said population voltage contact portion to the terminal, the positive electrode, to mainly the manganese-based oxide Preferably, the negative electrode desirably contains a material capable of doping and undoping lithium, the shape of the flat front and back surfaces is desirably rectangular, and the thickness of the battery container is 0.2 mm. It is desirable that it is not less than 1 mm.

【0019】[0019]

【発明の実施の形態】以下、本発明の一実施の形態の非
水系二次電池について図面を参照しながら説明する。図
1(a)(b)は、本発明の一実施の形態の扁平な矩形
(ノート型)の蓄電システム用非水系二次電池の平面図
及び側面図を示し、図2は、図1に示す電池の内部に収
納される電極ユニット100を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous secondary battery according to one embodiment of the present invention will be described below with reference to the drawings. 1A and 1B are a plan view and a side view of a flat rectangular (notebook) non-aqueous secondary battery for a power storage system according to an embodiment of the present invention, and FIG. 2 shows an electrode unit 100 housed inside the battery shown.

【0020】図1及び図2に示すように、本実施の形態
の非水系二次電池は、上蓋1及び底容器2からなる電池
容器と、該電池容器の中に収納されている帯状の正極1
01a、帯状の負極101b及び2本の帯状のセパレー
タ104の積層体を巻回した電極ユニット100とを備
えている。
As shown in FIGS. 1 and 2, a non-aqueous secondary battery according to the present embodiment includes a battery container including an upper lid 1 and a bottom container 2, and a strip-shaped positive electrode housed in the battery container. 1
01a, a strip-shaped negative electrode 101b, and an electrode unit 100 in which a laminate of two strip-shaped separators 104 is wound.

【0021】また、図1及び図2に示す非水系二次電池
の形状は、例えば縦300mm×210mm×厚さ6m
mであり、正極101aにLiMn24、負極101
b、101cに炭素材料を用いるリチウム二次電池は、
例えば、蓄電システムに用いることができる。
The shape of the non-aqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm × 210 mm × 6 m in thickness.
m, LiMn 2 O 4 on the positive electrode 101a, the negative electrode 101
A lithium secondary battery using a carbon material for b and 101c is:
For example, it can be used for a power storage system.

【0022】正極101aを構成する正極集電体105
aは、正極端子3に電気的に接続され、同様に、負極1
01bを構成する負極集電体105bは、負極端子4に
電気的に接続されている。本発明において集電体の端子
への接続方法については、特に限定されるものではない
が、本実施形態では好ましい方式として巻回方式を例と
して説明する。
[0022] The positive electrode current collector 105 that make up the positive electrode 101a
a is electrically connected to the positive electrode terminal 3, and
The negative electrode current collector 105b included in the negative electrode terminal 01b is electrically connected to the negative electrode terminal 4. In the present invention, the method of connecting the current collector to the terminal is not particularly limited, but in the present embodiment, a winding method will be described as an example of a preferable method.

【0023】正極101a及び負極101bについては
図12(a)に示した長さ方向の一辺部に電極材料が塗
布されていない集電体を用い、該一辺部を電力取出し用
の正極集電片106a及び負極集電片106bとしてい
る。正極101a、負極101b及びセパレータ104
の積層体は、図2に示すように巻回されることにより電
極ユニット100が得られる。
As for the positive electrode 101a and the negative electrode 101b, a current collector in which the electrode material is not applied to one side in the length direction shown in FIG. 12A is used. 106a and the negative electrode current collector 106b. Positive electrode 101a, negative electrode 101b, and separator 104
Is wound as shown in FIG. 2 to obtain the electrode unit 100.

【0024】図6及び図7は、電極ユニット100の製
造方法を示しており、正極101a、負極101b及び
2本のセパレータ104がそれぞれロール状に巻かれた
供給部から正極101a、負極101b及びセパレータ
104をそれぞれ供給し、回転軸B1と中心に回転する
板状の巻き取り体Bによってこれらを積層して巻き取る
ようにしている。
FIGS. 6 and 7 show a method of manufacturing the electrode unit 100, in which a positive electrode 101a, a negative electrode 101b, and a separator 101 are supplied from a supply portion in which a positive electrode 101a, a negative electrode 101b, and two separators 104 are wound in a roll shape. 104 are supplied, and these are stacked and wound by a plate-shaped winding body B rotating about the rotation axis B1.

【0025】すなわち、正極集電片106aと負極集電
片106bとが反対側(電極ユニット100の両側)に
位置し、正極101aと負極101bの電極材料塗布部
がセパレータ104を介して重なり、且つ、正極101
a又は負極101bの外側の電極材料塗布部に他のセパ
レータ104が重なるように、正極101aと負極10
1bとセパレータ104とを積層しながら巻き取り体B
で巻回して電極ユニット100を得るようにしている。
That is, the positive electrode current collector 106a and the negative electrode current collector 106b are located on opposite sides (both sides of the electrode unit 100), and the electrode material application portions of the positive electrode 101a and the negative electrode 101b overlap with the separator 104 interposed therebetween. , Positive electrode 101
a or the negative electrode 10a so that another separator 104 overlaps the electrode material application portion outside the negative electrode 101a or the negative electrode 101b.
Winding body B while laminating 1b and separator 104
And the electrode unit 100 is obtained.

【0026】そして、図3(a)に示すように、電極ユ
ニット100の両側に位置する正極集電片106a及び
負極集電片106bをそれぞれ押しつぶして集電圧接部
108a及び負極集電圧接部108bを形成し、該集電
圧接部108a及び負極集電圧接部108bを正極集電
タブ7及び負極集電タブ8に溶接等の簡便な方法で接続
する。本発明の非水系二次電池は厚さが12mm未満の
扁平形状であることから、電極ユニットの厚さもおのず
と薄くなり、従来の大型二次電池では困難であったこの
ような集電タブ7,8の取り付けが可能になる。
Then, as shown in FIG. 3 (a), the positive current collector 106a and the negative current collector 106b located on both sides of the electrode unit 100 are crushed, respectively, to collect the current collecting contact 108a and the negative current collecting 108b. Then, the current collecting contact portion 108a and the negative electrode current collecting contact portion 108b are connected to the positive current collecting tab 7 and the negative current collecting tab 8 by a simple method such as welding. Since the non-aqueous secondary battery of the present invention has a flat shape with a thickness of less than 12 mm, the thickness of the electrode unit is naturally reduced, and such a current collecting tab 7, which has been difficult with a conventional large secondary battery. 8 becomes possible.

【0027】上蓋1及び底容器2は、図1中の拡大図に
示したA点で上蓋の全周を溶かし込み、溶接されてい
る。上蓋1には、電解液の注液口5が開けられており、
電解液注液後、例えば、アルミニウム−変成ポリプロピ
レンラミネートフィルムからなる封口フィルム6を用い
て封口される。最終封口工程は、少なくとも一回の充電
操作の後に行うことがより好ましい。封口フィルム6に
よる最終封口工程後の電池容器内の圧力は、大気圧未満
であることが好ましく、更に好ましくは86659.3
Pa(650Torr)以下、特に好ましくは7332
7.1pa(550Torr)以下である。この圧力
は、使用するセパレータ、電解液の種類、電池容器の材
質及び厚み、電池の形状等を加味して決定されるもので
ある。内圧が大気圧以上の場合、電池が設計厚みより大
きくなり易く、又は、電池の厚みのバラツキが大きくな
り易く、電池の内部抵抗及び容量がばらつくきやすい。
The upper lid 1 and the bottom container 2 are welded by melting the entire circumference of the upper lid at a point A shown in an enlarged view in FIG. An electrolyte injection port 5 is opened in the upper lid 1.
After the injection of the electrolyte, the container is sealed with a sealing film 6 made of, for example, an aluminum-modified polypropylene laminated film. More preferably, the final sealing step is performed after at least one charging operation. The pressure in the battery container after the final sealing step with the sealing film 6 is preferably lower than the atmospheric pressure, and more preferably 86659.3.
Pa (650 Torr) or less, particularly preferably 7332
It is 7.1 pa (550 Torr) or less. This pressure is determined in consideration of the separator used, the type of electrolyte, the material and thickness of the battery container, the shape of the battery, and the like. When the internal pressure is equal to or higher than the atmospheric pressure, the battery tends to be larger than the designed thickness, or the thickness of the battery tends to vary widely, and the internal resistance and capacity of the battery tend to vary.

【0028】正極101aに用いられる正極活物質とし
ては、リチウム系の正極材料であれば、特に限定され
ず、リチウム複合コバルト酸化物、リチウム複合ニッケ
ル酸化物、リチウム複合マンガン酸化物、或いはこれら
の混合物、更にはこれら複合酸化物に異種金属元素を一
種以上添加した系等を用いることができ、高電圧、高容
量の電池が得られることから、好ましい。また、大型リ
チウム系二次電池の実用化において最重点課題である安
全性を重視する場合、熱分解温度が高いマンガン酸化物
が好ましい。このマンガン酸化物としてはLiMn24
に代表されるリチウム複合マンガン酸化物、更にはこれ
ら複合酸化物に異種金属元素を一種以上添加した系、さ
らにはリチウムを量論比よりも過剰にしたLi1+xMn
2-y4等が挙げられる。特に、本発明は上記マンガン酸
化物を主体とする正極を用いる場合、その効果が大き
い。
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material. A lithium composite cobalt oxide, a lithium composite nickel oxide, a lithium composite manganese oxide, or a mixture thereof is used. Further, a system in which one or more different metal elements are added to these composite oxides can be used, and a high-voltage, high-capacity battery can be obtained, which is preferable. In addition, when importance is placed on safety, which is the highest priority in practical application of a large lithium secondary battery, a manganese oxide having a high thermal decomposition temperature is preferable. As this manganese oxide, LiMn 2 O 4
Lithium composite manganese oxides represented by the above, furthermore, a system in which one or more different metal elements are added to these composite oxides, and further, Li 1 + x Mn in which lithium is exceeded in a stoichiometric ratio
2-y O 4 and the like. In particular, the present invention has a great effect when a positive electrode mainly composed of the manganese oxide is used.

【0029】負極101bに用いられる負極活物質とし
ては、リチウム系の負極材料であれば、特に限定され
ず、リチウムをドープ及び脱ドープ可能な材料であるこ
とが、安全性、サイクル寿命などの信頼性が向上し好ま
しい。リチウムをドープ及び脱ドープ可能な材料として
は、公知のリチウムイオン電池の負極材として使用され
ている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸
化物系等の金属酸化物、或いはポリアセン系有機半導体
に代表される導電性高分子等が挙げられる。
The negative electrode active material used for the negative electrode 101b is not particularly limited as long as it is a lithium-based negative electrode material. A material capable of doping and undoping lithium can be used for reliability, such as safety and cycle life. It is preferable because the property is improved. Materials capable of doping and undoping lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene-based materials that are used as negative electrode materials for known lithium ion batteries. Conductive polymers typified by organic semiconductors and the like can be given.

【0030】セパレータ104の構成は、特に限定され
るものではないが、単層又は複層のセパレータを用いる
ことができ、少なくとも1枚は不織布を用いることが好
ましく、この場合、サイクル特性が向上する。また、セ
パレータ104の材質も、特に限定されるものではない
が、例えばポリエチレン、ポリプロピレンなどのポリオ
レフィン、ポリアミド、クラフト紙、ガラス、セルロー
ス系材料等が挙げられ、電池の耐熱性、安全性設計に応
じ適宜決定される。
The separator 104 configuration is not particularly limited, it can be used a separator of a single layer or multiple layers, at least one preferably used nonwoven fabric, in this case, the cycle characteristics are improved . Also, the material of the separator 104 is not particularly limited, but examples thereof include polyolefins such as polyethylene and polypropylene, polyamide, kraft paper, glass, and cellulosic materials, depending on the heat resistance and safety design of the battery. It is determined as appropriate.

【0031】本実施形態の非水系二次電池の電解質とし
ては、公知のリチウム塩を含む非水系電解質を使用する
ことができ、正極材料、負極材料、充電電圧等の使用条
件により適宜決定され、より具体的にはLiPF6、L
iBF4、LiClO4等のリチウム塩を、プロピレンカ
ーボネート、エチレンカーボネート、ジエチルカーボネ
ート、ジメチルカーボネート、メチルエチルカーボネー
ト、ジメトキシエタン、γ−ブチロラクトン、酢酸メチ
ル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の
有機溶媒に溶解したもの等が例示される。また、電解液
の濃度は特に限定されるものではないが、一般的に0.
5mol/lから2mol/lが実用的であり、該電解
液は当然のことながら、水分が100ppm以下のもの
を用いることが好ましい。なお、本明細書で使用する非
水系電解質とは、非水系電解液、有機電解液を含む概念
を意味するものであり、また、ゲル状又は固体の電解質
も含む概念を意味するものである。
As the electrolyte of the non-aqueous secondary battery of the present embodiment, a known non-aqueous electrolyte containing a lithium salt can be used, which is appropriately determined according to the conditions of use such as a positive electrode material, a negative electrode material, and a charging voltage. More specifically, LiPF 6 , L
Lithium salts such as iBF 4 and LiClO 4 are mixed with propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or a mixed solvent of two or more of these. Examples thereof include those dissolved in an organic solvent. Further, the concentration of the electrolytic solution is not particularly limited, but is generally set at 0.1.
5 mol / l to 2 mol / l is practical, and it is preferable to use, as a matter of course, an electrolyte having a water content of 100 ppm or less. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte and an organic electrolyte, and also a concept including a gel or solid electrolyte.

【0032】上記のように構成された非水系二次電池
は、家庭用蓄電システム(夜間電力貯蔵、コージェネレ
-ション、太陽光発電等)、電気自動車等の蓄電システ
ム等に用いることができ、大容量且つ高エネルギー密度
を有することができる。この場合、エネルギー容量は、
好ましくは30Wh以上、より好ましくは50Wh以上
であり、且つエネルギー密度は、好ましくは180Wh
/l以上、より好ましくは200Wh/lである。エネ
ルギー容量が30Wh未満の場合、或いは、体積エネル
ギー密度が180Wh/l未満の場合は、蓄電システム
に用いるには容量が小さく、充分なシステム容量を得る
ために電池の直並列数を増やす必要があること、また、
コンパクトな設計が困難となることから蓄電システム用
としては好ましくない。
The non-aqueous secondary battery constructed as described above is used in a home power storage system (nighttime power storage, cogeneration system).
, Solar power generation, etc.), electric storage systems for electric vehicles, etc., and can have large capacity and high energy density. In this case, the energy capacity is
It is preferably at least 30 Wh, more preferably at least 50 Wh, and the energy density is preferably at least 180 Wh.
/ L or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or when the volume energy density is less than 180 Wh / l, the capacity is small for use in a power storage system, and it is necessary to increase the number of series-parallel batteries in order to obtain a sufficient system capacity. That also
It is not preferable for a power storage system because a compact design is difficult.

【0033】本実施形態の非水系二次電池は、扁平形状
をしており、その厚さは12mm未満、より好ましくは
10mm未満である。厚さの下限については電極の充填
率、電池サイズ(薄くなれば同容量を得るためには面積
が大きくなる)を考慮した場合、2mm以上が実用的で
ある。電池の厚さが12mm以上になると、電池内部の
発熱を充分に外部に放熱することが難しくなること、或
いは電池内部と電池表面付近での温度差が大きくなり、
内部抵抗が異なる結果、電池内での充電量、電圧のバラ
ツキが大きくなる。なお、具体的な厚さは、電池容量、
エネルギー密度に応じて適宜決定されるが、期待する放
熱特性が得られる最大厚さで設計するのが好ましい。
The non-aqueous secondary battery of the present embodiment has a flat shape and a thickness of less than 12 mm, more preferably less than 10 mm. The lower limit of the thickness is practically 2 mm or more in consideration of the filling rate of the electrode and the battery size (the smaller the thickness, the larger the area for obtaining the same capacity). When the thickness of the battery is 12 mm or more, it is difficult to sufficiently radiate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases,
As a result of the difference in the internal resistance, the amount of charge and the voltage in the battery vary widely. The specific thickness depends on the battery capacity,
Although it is appropriately determined according to the energy density, it is preferable to design the maximum thickness so as to obtain expected heat radiation characteristics.

【0034】また、本実施の形態の非水系二次電池の形
状としては、例えば、扁平形状の表裏面が角形、円形、
長円形等の種々の形状とすることができ、角形の場合
は、一般に矩形であるが、三角形、六角形等の多角形と
することもできる。さらに、肉厚の薄い円筒等の筒形に
することもできる。筒形の場合は、筒の肉厚がここでい
う厚さとなる。また、製造の容易性の観点から、電池の
扁平形状の表裏面が矩形であり、図1に示すようなノー
ト型の形状が好ましい。
The shape of the non-aqueous secondary battery of the present embodiment is, for example, that the flat front and back surfaces are square, circular,
It can be of various shapes such as an oval, and in the case of a square, it is generally a rectangle, but it can also be a polygon such as a triangle or a hexagon. Further, it may be a cylindrical shape such as a thin-walled cylinder. In the case of a cylindrical shape, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of production, the flat front and back surfaces of the battery are preferably rectangular, and a notebook-type shape as shown in FIG. 1 is preferable.

【0035】電池容器となる上蓋1及び底容器2に用い
られる材質は、電池の用途、形状により適宜選択され、
特に限定されるものではなく、鉄、ステンレス鋼、アル
ミニウム等が一般的であり、実用的である。また、電池
容器の厚さも電池の用途、形状或いは電池ケースの材質
により適宜決定され、特に限定されるものではない。好
ましくは、その電池表面積の80%以上の部分の厚さ
(電池容器を構成する一番面積が広い部分の厚さ)が
0.2mm以上である。上記厚さが0.2mm未満で
は、電池の製造に必要な強度が得られないことから望ま
しくなく、この観点から、より好ましくは0.3mm以
上である。また、同部分の厚さは、1mm以下であるこ
とが望ましい。この厚さが1mmを超えると、電極面を
押さえ込む力は大きくなるが、電池の内容積が減少し充
分な容量が得られないこと、或いは、重量が重くなるこ
とから望ましくなく、この観点からより好ましくは0.
7mm以下である。
The materials used for the upper lid 1 and the bottom container 2 serving as the battery container are appropriately selected depending on the use and shape of the battery.
There is no particular limitation, and iron, stainless steel, aluminum and the like are common and practical. Also, the thickness of the battery container is appropriately determined depending on the use and shape of the battery or the material of the battery case, and is not particularly limited. Preferably, the thickness of a portion of 80% or more of the battery surface area (the thickness of the portion having the largest area constituting the battery container) is 0.2 mm or more. If the thickness is less than 0.2 mm, the strength required for manufacturing the battery cannot be obtained, which is not desirable. From this viewpoint, the thickness is more preferably 0.3 mm or more. Further, it is desirable that the thickness of the portion is 1 mm or less. When the thickness exceeds 1 mm, the force for pressing down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and a sufficient capacity cannot be obtained, or the weight increases, which is not desirable. Preferably 0.
7 mm or less.

【0036】上記のように、非水系二次電池の厚さを1
2mm未満に設計することにより、例えば、該電池が3
0Wh以上の大容量且つ180Wh/lの高エネルギー
密度を有する場合、高率充放電時等においても、電池温
度の上昇が小さく、優れた放熱特性を有することができ
る。従って、内部発熱による電池の蓄熱が低減され、結
果として電池の熱暴走も抑止することが可能となり信頼
性、安全性に優れた非水系二次電池を提供することがで
きる。
As described above, the thickness of the non-aqueous secondary battery is set to 1
By designing it to be less than 2 mm, for example,
When the battery has a large capacity of 0 Wh or more and a high energy density of 180 Wh / l, the battery temperature rise is small even during high-rate charging and discharging, and excellent heat radiation characteristics can be obtained. Therefore, heat storage of the battery due to internal heat generation is reduced, resulting in thermal runaway also becomes possible to prevent reliability of the battery, it is possible to provide a nonaqueous secondary battery excellent in safety.

【0037】図8乃至図9は、他の実施形態を示してい
る。本実施態様の電極ユニットは、帯状の正極101
a'、帯状の負極101c及び帯状のセパレータ104
を積層した積層体100aをジグザグ状に折り畳んだ構
造となっている。正極101a'及び負極101cは、
集電体105a'及び集電体105cのそれぞれの片面
にのみ電極材料塗布部102a'及び102cを設けて
構成されており、この点以外は前記の正極101a及び
負極101bと同じである。また、この電極ユニットは
下記の折畳み装置Cによって製造されるものである。
FIGS. 8 and 9 show another embodiment. The electrode unit of the present embodiment includes a strip-shaped positive electrode 101.
a ′, strip-shaped negative electrode 101 c and strip-shaped separator 104
Are laminated in a zigzag shape. The positive electrode 101a ′ and the negative electrode 101c
The current collector 105a 'and the current collector 105c are provided with the electrode material application portions 102a' and 102c only on one surface thereof, and are otherwise the same as the positive electrode 101a and the negative electrode 101b. This electrode unit is manufactured by the folding device C described below.

【0038】そして、正極101a'、負極101c及
びセパレータ104を積層するときには、図8に示すよ
うに、セパレータ104を中間に位置させ、正極101
a'、負極101cの電極材料塗布部102a'及び10
2cをセパレータ104に接触させ、正極101a'の
正極集電片106a'と負極101cの負極集電片10
6cとをセパレータ104の両側に位置させる。
When the positive electrode 101a ', the negative electrode 101c, and the separator 104 are laminated, as shown in FIG.
a ′, the electrode material coated portions 102a ′ and 10 of the negative electrode 101c.
2c is brought into contact with the separator 104, and the positive electrode current collector 106a 'of the positive electrode 101a' and the negative electrode current collector 10
6c on both sides of the separator 104.

【0039】折畳み装置Cは、図9に示すように、正極
101a'、負極101c及びセパレータ104がそれ
ぞれロール状に巻かれた供給部C3と、該供給部C3か
ら供給される正極101a'、負極101c及びセパレー
タ104を積層して該積層体100aを下方に移動させ
るロール対C2と、積層体100aに折り癖100bを
付ける折り癖手段C2と、これらの手段を総括的に制御
する図外の制御手段とを備えている。
As shown in FIG. 9, the folding device C includes a supply section C3 in which a positive electrode 101a ', a negative electrode 101c, and a separator 104 are respectively wound in a roll shape, a positive electrode 101a' supplied from the supply section C3, and a negative electrode 101a '. A roll pair C2 for laminating 101c and the separator 104 to move the laminated body 100a downward, a folding habit means C2 for imparting a folding habit 100b to the laminated body 100a, and a non-illustrated control for generally controlling these means. and a means.

【0040】折り癖手段C1は、積層体100aの側方
に高さが異なるようにして一対配設され、各折り癖手段
C1は、折り癖を形成するための雄部C11と雌部C1
2とを備えている。図9のように、雄部C11はX1方
向に往復動し、雌部C12はX2方向に往復動し、雄部
C11と雌部C12とが積層体100aを挟持した状態
で合致することにより積層体100aに折り癖部100
bが形成され、雄部C11と雌部C12とを離して折り
癖部100bの付いた積層体100aをベッドC4上に
降下させる。そして、この動作を繰り返すことにより積
層体100aがジグザグ状に折り畳まれて電極ユニット
が形成される。なお、正極101a'及び負極101c
が折れ曲がることにより、集電体105a'及び105
cの電極非塗布面同士が折り重なる。
A pair of folding habit means C1 are arranged on the side of the laminated body 100a so as to have different heights, and each of the folding habit means C1 has a male portion C11 and a female portion C1 for forming a folding habit.
2 is provided. As shown in FIG. 9, the male part C11 reciprocates in the X1 direction, the female part C12 reciprocates in the X2 direction, and the male part C11 and the female part C12 are stacked when they match while sandwiching the stacked body 100a. Folding part 100 on body 100a
b is formed, lowers the stack 100a marked with a habit portion 100b folded away the male portion C11 and the female portion C12 on the bed C4. Then, by repeating this operation, the stacked body 100a is folded in a zigzag shape to form an electrode unit. Incidentally, the positive electrode 101a 'and the anode 101c
Are bent, the current collectors 105a 'and 105
The electrode non-applied surfaces c overlap each other.

【0041】また、電極ユニットの両側に位置する正極
集電片106a'及び負極集電片106cはそれぞれ押
しつぶされて集電圧接部及び負極集電圧接部が形成され
るのは、先に述べた実施形態と同様である。
The positive current collector 106a 'and the negative current collector 106c located on both sides of the electrode unit are respectively crushed to form a current collecting contact portion and a negative current collecting contact portion, as described above. This is the same as the embodiment.

【0042】[0042]

【実施例】以下、本発明の実施例を示し、本発明をさら
に具体的に説明する。 (実施例1) (1)LiMn24100重量部、アセチレンブラック
8重量部、ポリビニリデンフルオライド(PVDF)3
重量部をN−メチルピロリドン(NMP)100重量部
と混合し正極合材スラリーを得た。該スラリーを厚さ2
0μmのアルミ箔(集電体)の両面に塗布、乾燥した
後、プレスを行い、正極を得た。図4の(a)は正極の
説明図である。本実施例において正極101aは、幅W
が162mmで厚さが20μmの集電体の両面に110
μmの厚さで塗布されている。その結果、電極材料塗布
部の厚さtは240μmとなっている。また、電極の長
さ方向には電極材料が塗布されていない正極集電片10
6aが幅15mmで設けられている。
The present invention will be described more specifically below with reference to examples of the present invention. (Example 1) (1) 100 parts by weight of LiMn 2 O 4 , 8 parts by weight of acetylene black, polyvinylidene fluoride (PVDF) 3
The mixture was mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. Thick the slurry 2
After coating and drying on both sides of a 0 μm aluminum foil (current collector), pressing was performed to obtain a positive electrode. FIG. 4A is an explanatory diagram of the positive electrode. In this embodiment, the positive electrode 101a has a width W
Is 110 on both sides of a current collector having a thickness of 162 mm and a thickness of 20 μm.
It is applied with a thickness of μm. As a result, the thickness t of the electrode material application portion is 240 μm. In addition, the positive electrode current collector 10 in which the electrode material is not applied in the length direction of the electrode.
6a is provided with a width of 15 mm.

【0043】(2)黒鉛化メソカーボンマイクロビーズ
(MCMB、大阪ガスケミカル製、品番6−28)10
0重量部、PVDF10重量部をNMP90重量部と混
合し、負極合材スラリーを得た。該スラリーを厚さ14
μmの銅箔(集電体)の両面に塗布、乾燥した後、プレ
スを行い、負極を得た。図4の(b)は負極の説明図で
ある。負極101bは、幅Wが165mmで厚さが14
μmの集電体105bの両面に90μmの厚さで塗布さ
れている。その結果、電極材料塗布部の厚さtは194
μmとなっている。また、電極の長さ方向には電極材料
が塗布されていない負極集電片106bが幅15mm設
けられている。
(2) Graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd., product number 6-28) 10
0 parts by weight and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. When the slurry has a thickness of 14
After coating and drying on both sides of a copper foil (collector) of μm, pressing was performed to obtain a negative electrode. FIG. 4B is an explanatory diagram of the negative electrode. The negative electrode 101b has a width W of 165 mm and a thickness of 14 mm.
On both sides of μm of the current collector 105b is applied to a thickness of 90 [mu] m. As a result, the thickness t of the electrode material coating unit 194
It has become a μm. Further, a negative electrode current collecting piece 106b on which an electrode material is not applied is provided in a length direction of the electrode by 15 mm in width.

【0044】(3)図2に示すように、上記(1)項で
得られた一枚の正極101a、一枚の負極101bをセ
パレータA(レーヨン系、目付12.6g/m2)とセパ
レータB(ポリエチレン製微孔膜;目付13.3g/m
2)とを合わせたセパレータ104を介し図2に示すよ
うに巻回した(幅Wは168mm)。なお、セパレータ
104は、セパレータAが正極側に、セパレータBが負
極側になるように配置した。続いて、図3に示す用に、
正極集電片106aを押しつぶし、厚み0.3mmのア
ルミニウム板を正極集電タブ7として溶接した。正極集
電タブ7の形状は図3に示され、正極端子3に取り付け
るための穴7aがあけられている。同様にして負極集電
体106bを押しつぶし、厚み0.5mmのニッケル板
を負極集電タブ8として溶接した。負極集電タブ8の形
状は図3に示され、負極端子4に取り付けるための穴8
aがあけられている。
[0044] (3) As shown in FIG. 2, (1) one of the positive electrode 101a obtained in section a piece of the negative electrode 101b separator A (rayon, having a basis weight 12.6 g / m 2) and the separator B (polyethylene microporous membrane; basis weight 13.3 g / m
2 ) was wound as shown in FIG. 2 through a separator 104 (width W was 168 mm). The separator 104 was disposed such that the separator A was on the positive electrode side and the separator B was on the negative electrode side. Then, as shown in FIG.
The positive electrode current collecting piece 106a was crushed, and an aluminum plate having a thickness of 0.3 mm was welded as the positive electrode current collecting tab 7. The shape of the positive electrode current collector tab 7 is shown in FIG. 3, the hole 7a for attaching the positive electrode terminal 3 is opened. Similarly, the negative electrode current collector 106b was crushed, and a nickel plate having a thickness of 0.5 mm was welded as the negative electrode current collector tab 8. The shape of the negative electrode current collector tab 8 is shown in FIG. 3, the holes 8 for attachment to the negative terminal 4
a is opened.

【0045】(4)図5に示すように、厚さ0.5mm
のSUS304製薄板を深さ5mmに絞り、底容器2を
作成し、上蓋1も厚さ0.5mmのSUS304製薄板
で作成した。次に、図5に示すように、上蓋1に、アル
ミニウム製の正極端子3及び銅製の負極端子4(頭部6
mmφ、先端M3のねじ部)を取り付けた。正極及び負
極端子3、4は、ポリプロピレン製ガスケット9で上蓋
1と絶縁した。
(4) As shown in FIG.
Of the SUS304 thin plate was squeezed to a depth of 5 mm to prepare the bottom container 2, and the upper lid 1 was also formed of a 0.5 mm thick SUS304 thin plate. Next, as shown in FIG. 5, a positive electrode terminal 3 made of aluminum and a negative electrode terminal 4 made of copper
mmφ, a threaded portion at the tip M3). The positive and negative terminals 3 and 4 were insulated from the upper lid 1 by a polypropylene gasket 9.

【0046】(5)上記(3)項で作成した電極ユニッ
トの各正極タブ7の穴を正極端子3に、各負極タブ8の
穴を負極端子4に入れ、それぞれ、アルミニウム製及び
銅製のボルトで接続した。接続された電極積層体を絶縁
テープで固定し、図1の角部Aを全周に亘りレーザー溶
接した。その後、図1に示す注液口5(6mmφ)から
電解液としてエチレンカーボネートとジエチルカーボネ
ートを1:1重量比で混合した溶媒に1mol/lの濃
度にLiPF6を溶解した溶液を注液した。次に、大気
圧下で、仮止め用のボルトを用いて注液口5を一旦封口
した。
(5) The holes of the respective positive electrode tabs 7 of the electrode unit prepared in the above item (3) are inserted into the positive electrode terminal 3, and the holes of the respective negative electrode tabs 8 are inserted into the negative electrode terminal 4. in the connection. The connected electrode laminate was fixed with an insulating tape, and the corner A of FIG. 1 was laser-welded over the entire circumference. Thereafter, the liquid inlet 5 1 of ethylene carbonate and diethyl carbonate as the electrolyte solution from (diameter: 6 mm) shown in Figure 1: was injected a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in mixed solvent 1 weight ratio. Next, the liquid injection port 5 was temporarily closed under atmospheric pressure using a bolt for temporary fixing.

【0047】(6)この電池を5Aの電流で4.2Vま
で充電し、その後4.2Vの定電圧を印加する定電流定
電圧充電を12時間行い、続いて、5Aの定電流で2.
5Vまで放電した。
(6) This battery is charged to a current of 5 A up to 4.2 V, and then a constant current and constant voltage charging of applying a constant voltage of 4.2 V is performed for 12 hours, and then a constant current of 5 A is applied to the battery.
Discharged to 5V.

【0048】(7)該電池の仮止め用ボルトをはずし、
再度、4.00×104 Pa(300Torr)の減圧
下で、12mmφに打ち抜いた厚さ0.08mmのアル
ミ箔−変性ポリプロピレンラミネートフィルムからなる
封口フィルム6を、温度250〜350℃、圧力1〜3
kg/cm2、加圧時間5〜10秒の条件で熱融着する
ことにより、注液口5を最終封口し、厚さ6mmの扁平
形状のノート型電池を得た。
(7) Remove the temporary fixing bolt of the battery,
Again, under a reduced pressure of 4.00 × 10 4 Pa (300 Torr), a sealing film 6 made of an aluminum foil-modified polypropylene laminate film having a thickness of 0.08 mm and punched into 12 mmφ was heated at a temperature of 250 to 350 ° C. and a pressure of 1 to 1 mm. 3
The liquid injection port 5 was finally sealed by heat fusion under the conditions of kg / cm 2 and a pressurization time of 5 to 10 seconds to obtain a flat notebook battery having a thickness of 6 mm.

【0049】該電池を5Aの電流で4.2Vまで充電
し、その後4.2Vの定電圧を印加する定電流定電圧充
電を12時間行い、続いて、5Aの定電流で2.5Vま
で放電し、容量を確認した。放電容量は21.6Ahで
あった。(容量:78Wh,エネルギー密度:210W
h/l)
[0049] charged to 4.2V the battery 5A of current conducted thereafter 4.2V constant current constant voltage charging for 12 hours to apply a constant voltage, followed by discharge at 5A constant current to 2.5V And checked the capacity. The discharge capacity was 21.6 Ah. (Capacity: 78 Wh, energy density: 210 W
h / l)

【0050】[0050]

【発明の効果】本発明の非水系二次電池によると、積層
体を扁平させることによって、電池の厚みが薄くなって
蓄熱量を低く抑えることができ、電解液の分解等による
寿命の低下や熱暴走等を防止でき、大型電池の信頼性、
安全性を高めることができる。
According to the non-aqueous secondary battery of the present invention, by flattening the laminate, the thickness of the battery can be reduced and the amount of heat storage can be suppressed, and the life of the battery due to decomposition of the electrolytic solution and the like can be reduced. Thermal runaway can be prevented, and the reliability of large batteries
Safety can be improved.

【0051】また、正極と負極とセパレータとの積層体
をジグザグ状に折り重ねることによっても、電池の厚み
が薄くなって蓄熱量を低く抑えることができ、同様の効
果が得られる。
Also, by folding the laminate of the positive electrode, the negative electrode, and the separator in a zigzag manner, the thickness of the battery can be reduced and the amount of heat storage can be suppressed, and the same effect can be obtained.

【0052】更に、正極集電片同士及び負極集電片同士
をそれぞれ近接させることができるので、正極集電片同
士及び負極集電片同士をそれぞれ押しつぶして端子に直
接接続することができ、この結果、集電タブが不要にな
って集電構造を簡素化できる。
Further, since the positive electrode current collectors and the negative electrode current collectors can be brought close to each other, the positive electrode current collectors and the negative electrode current collectors can be crushed and connected directly to the terminals, respectively. As a result, a current collecting tab becomes unnecessary and the current collecting structure can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の一実施の形態の蓄電システム
用非水系二次電池の平面図、(b)は蓄電システム用非
水系二次電池の側面図である。
FIG. 1A is a plan view of a non-aqueous secondary battery for a power storage system according to an embodiment of the present invention, and FIG. 1B is a side view of the non-aqueous secondary battery for a power storage system.

【図2】(a)は図1に示す電池の内部に収納される電
極ユニットの構成の一例を示す側面図、(b)は(a)
の部分拡大図である。
2A is a side view showing an example of the configuration of an electrode unit housed inside the battery shown in FIG. 1, and FIG.
FIG.

【図3】(a)は本発明の一実施の形態の蓄電システム
用非水系二次電池の電極ユニットへの集電タブの接続を
説明する側面図、(b)はその平面図である。
FIG. 3A is a side view illustrating connection of a current collecting tab to an electrode unit of a non-aqueous secondary battery for a power storage system according to an embodiment of the present invention, and FIG. 3B is a plan view thereof.

【図4】本発明の非水系二次電池の実施例に用いた正
極、負極、及びセパレータの説明図である。
FIG. 4 is an explanatory diagram of a positive electrode, a negative electrode, and a separator used in an example of the nonaqueous secondary battery of the present invention.

【図5】本発明の非水系二次電池の実施例に用いた電池
容器の説明図である。
FIG. 5 is an explanatory diagram of a battery container used in an embodiment of the non-aqueous secondary battery of the present invention.

【図6】電極ユニットの製造方法を示す斜視図である。FIG. 6 is a perspective view illustrating a method for manufacturing an electrode unit.

【図7】電極ユニットの製造方法を示す側面図である。7 is a side view showing a manufacturing method of the electrode unit.

【図8】本発明の他の実施形態における電極ユニットの
製造方法を示す斜視図である。
FIG. 8 is a perspective view illustrating a method for manufacturing an electrode unit according to another embodiment of the present invention.

【図9】同製造方法を示す側面図である。FIG. 9 is a side view showing the same manufacturing method.

【図10】従来の非水系二次電池の電極を示す図であ
る。
FIG. 10 is a view showing electrodes of a conventional non-aqueous secondary battery.

【図11】従来の非水系二次電池の電極ユニット、集電
構造を説明する図である。
FIG. 11 is a diagram illustrating an electrode unit and a current collecting structure of a conventional non-aqueous secondary battery.

【符号の説明】[Explanation of symbols]

1 上蓋 2 底容器 3 正極端子 4 負極端子 5 注液口 6 封口フィルム 101a 正極(両面) 101b 負極(両面) 101c 負極(片面) 105a 正極集電体 105b 負極集電体 106a 正極集電片 106b 負極集電片 107a 正極位置決め穴 107b 負極位置決め穴 DESCRIPTION OF SYMBOLS 1 Top lid 2 Bottom container 3 Positive electrode terminal 4 Negative terminal 5 Injection port 6 Sealing film 101a Positive electrode (both surfaces) 101b Negative electrode (both surfaces) 101c Negative electrode (one surface) 105a Positive current collector 105b Negative current collector 106a Positive current collector 106b Negative electrode Current collecting piece 107a Positive electrode positioning hole 107b Negative electrode positioning hole

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/48 H01M 4/48 4/58 4/58 (72)発明者 矢田 静邦 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 (72)発明者 菊田 治夫 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 5H011 AA01 AA09 AA13 CC06 DD13 KK01 5H022 AA09 AA18 CC08 CC12 CC16 5H029 AJ07 AJ12 AJ14 AK03 AL02 AL06 AL07 AL16 AM00 AM03 AM04 AM05 AM07 AM16 BJ03 BJ12 BJ14 BJ15 DJ02 DJ05 HJ04 HJ12 HJ19 5H050 AA13 AA14 AA15 AA19 BA17 CA08 CA09 CA29 CB02 CB07 CB08 CB23 DA20 FA05 FA06 GA07 HA19 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01M 4/48 H01M 4/48 4/58 4/58 (72) Inventor Shizukuni Yada Hirano-cho, Chuo-ku, Osaka-shi, Osaka 4-1-2, Kansai New Technology Research Institute Co., Ltd. (72) Inventor Haruo Kikuta 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka F-term in Osaka Gas Co., Ltd. 5H011 AA01 AA09 AA13 CC06 DD13 KK01 5H022 AA09 AA18 CC08 CC12 CC16 5H029 AJ07 AJ12 AJ14 AK03 AL02 AL06 AL07 AL16 AM00 AM03 AM04 AM05 AM07 AM16 BJ03 BJ12 BJ14 BJ15 DJ02 DJ05 HJ04 HJ12 HJ19 5H050 AA13 AA14 AA19 CA07 CB07 CA17 CB

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、セパレータ、及びリチウム
塩を含む非水系電解質を電池容器内に収容し、厚さが1
2mm未満の扁平形状であり、エネルギー容量が30W
h以上且つ体積エネルギー密度が180Wh/l以上の
非水系二次電池であって、 帯状の正極と帯状の負極とが合わさった状態で巻回さ
れ、且つ、前記正極と前記負極との間にセパレータを介
在させたことを特徴とする非水系二次電池。
A non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is accommodated in a battery container and has a thickness of 1%.
Flat shape less than 2mm, energy capacity 30W
h and a volume energy density of 180 Wh / l or more, wherein the band-shaped positive electrode and the band-shaped negative electrode are wound in a combined state, and a separator is provided between the positive electrode and the negative electrode. A non-aqueous secondary battery characterized by interposing.
【請求項2】 正極、負極、セパレータ、及びリチウム
塩を含む非水系電解質を電池容器内に収容し、厚さが1
2mm未満の扁平形状であり、エネルギー容量が30W
h以上且つ体積エネルギー密度が180Wh/l以上の
非水系二次電池であって、 帯状の正極と帯状の負極とが合わさった状態でジグザグ
状に折り畳まれ、且つ、前記正極と前記負極との間にセ
パレータを介在させたことを特徴とする非水系二次電
池。
2. A non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is accommodated in a battery container and has a thickness of 1%.
Flat shape less than 2mm, energy capacity 30W
And volume energy density than h is a non-aqueous secondary battery of above 180 Wh / l, folded in a zigzag shape in a state where combined and the strip-shaped cathode and a strip-shaped anode, and, between the positive electrode and the negative electrode Non-aqueous secondary battery characterized in that a separator is interposed in the battery.
【請求項3】 前記正極及び前記負極の長手方向の一辺
部に沿って集電片を形成したことを特徴とする請求項1
又は2のいずれかに記載の非水系二次電池。
3. A current collecting piece is formed along one longitudinal side of the positive electrode and the negative electrode.
Or the non-aqueous secondary battery according to any one of 2.
【請求項4】 前記正極集電片と前記負極集電片とを反
対側に位置させ、且つ、前記セパレータと前記正極集電
片及び前記負極集電片とが重ならないように積層したこ
とを特徴とする請求項1から3のいずれかに記載の非水
系二次電池。
4. The method according to claim 1, wherein the positive electrode current collector and the negative electrode current collector are located on opposite sides, and the separator, the positive electrode current collector and the negative electrode current collector are stacked so as not to overlap with each other. The non-aqueous secondary battery according to claim 1, wherein:
【請求項5】 前記集電片を圧接して集電圧接部を形成
し、該集電圧接部を端子に接続するように構成したこと
を特徴とする請求項3又は4に記載の非水系二次電池。
5. The non-aqueous system according to claim 3, wherein the current collecting pieces are pressed into contact with each other to form a voltage collecting contact portion, and the voltage collecting contact portion is connected to a terminal. Rechargeable battery.
【請求項6】 前記正極は、マンガン系酸化物を主体と
することを特徴とする請求項1から5のいずれかに記載
の非水系二次電池。
6. The non-aqueous secondary battery according to claim 1, wherein the positive electrode mainly comprises a manganese-based oxide.
【請求項7】 前記負極は、リチウムをドープ及び脱ド
ープ可能な物質を含むことを特徴とする請求項1から6
のいずれかに記載の非水系二次電池。
7. The negative electrode according to claim 1, wherein the negative electrode includes a material capable of doping and undoping lithium.
The non-aqueous secondary battery according to any one of the above.
【請求項8】 前記扁平形状の表裏面の形状は、矩形で
あることを特徴とする請求項1から7のいずれかに記載
の非水系二次電池。
8. The non-aqueous secondary battery according to claim 1, wherein the flat front and back surfaces are rectangular.
【請求項9】 前記電池容器の板厚は、0.2mm以上
1mm以下であることを特徴とする請求項1から8まで
のいずれかに記載の非水系二次電池。
9. The non-aqueous secondary battery according to claim 1, wherein a plate thickness of the battery container is 0.2 mm or more and 1 mm or less.
JP2001071023A 2001-03-13 2001-03-13 Nonaqueous secondary cell Pending JP2002270240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071023A JP2002270240A (en) 2001-03-13 2001-03-13 Nonaqueous secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071023A JP2002270240A (en) 2001-03-13 2001-03-13 Nonaqueous secondary cell

Publications (1)

Publication Number Publication Date
JP2002270240A true JP2002270240A (en) 2002-09-20

Family

ID=18928800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071023A Pending JP2002270240A (en) 2001-03-13 2001-03-13 Nonaqueous secondary cell

Country Status (1)

Country Link
JP (1) JP2002270240A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285487A (en) * 2004-03-29 2005-10-13 Nichia Chem Ind Ltd Nonaqueous electrolyte secondary battery, positive electrode active material for it, and positive electrode mix for it
CN102214844A (en) * 2010-04-07 2011-10-12 深圳市比克电池有限公司 Square lithium battery, winding battery cell and manufacturing method thereof
JP2012033275A (en) * 2010-07-28 2012-02-16 Aisin Seiki Co Ltd Manufacturing method for cell laminate, manufacturing apparatus for the same and cell laminate
JP2013073840A (en) * 2011-09-28 2013-04-22 Sumitomo Bakelite Co Ltd Method of manufacturing lithium ion secondary battery
JP2016530682A (en) * 2013-08-15 2016-09-29 オキシス エナジー リミテッド Stacked lithium-sulfur battery
CN111193075A (en) * 2018-11-14 2020-05-22 精工电子有限公司 Electrochemical cell
CN111430774A (en) * 2020-04-30 2020-07-17 蜂巢能源科技有限公司 Rapid lamination method and lamination tool for battery cell pole group and battery cell pole group

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101830A (en) * 1991-10-11 1993-04-23 Asahi Chem Ind Co Ltd Battery
JP2000040501A (en) * 1998-07-21 2000-02-08 Denso Corp Flat winding electrode battery
JP2000090975A (en) * 1998-09-09 2000-03-31 Sony Corp Thin battery and sealing method thereof
JP2000150306A (en) * 1998-11-12 2000-05-30 Toyota Motor Corp Current collecting system of battery or capacitor
JP2000260477A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2001035466A (en) * 1999-07-15 2001-02-09 Osaka Gas Co Ltd Non-aqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101830A (en) * 1991-10-11 1993-04-23 Asahi Chem Ind Co Ltd Battery
JP2000040501A (en) * 1998-07-21 2000-02-08 Denso Corp Flat winding electrode battery
JP2000090975A (en) * 1998-09-09 2000-03-31 Sony Corp Thin battery and sealing method thereof
JP2000150306A (en) * 1998-11-12 2000-05-30 Toyota Motor Corp Current collecting system of battery or capacitor
JP2000260477A (en) * 1999-03-11 2000-09-22 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2001035466A (en) * 1999-07-15 2001-02-09 Osaka Gas Co Ltd Non-aqueous secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285487A (en) * 2004-03-29 2005-10-13 Nichia Chem Ind Ltd Nonaqueous electrolyte secondary battery, positive electrode active material for it, and positive electrode mix for it
JP4539139B2 (en) * 2004-03-29 2010-09-08 日亜化学工業株式会社 Nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode mixture for nonaqueous electrolyte secondary battery
CN102214844A (en) * 2010-04-07 2011-10-12 深圳市比克电池有限公司 Square lithium battery, winding battery cell and manufacturing method thereof
JP2012033275A (en) * 2010-07-28 2012-02-16 Aisin Seiki Co Ltd Manufacturing method for cell laminate, manufacturing apparatus for the same and cell laminate
JP2013073840A (en) * 2011-09-28 2013-04-22 Sumitomo Bakelite Co Ltd Method of manufacturing lithium ion secondary battery
JP2016530682A (en) * 2013-08-15 2016-09-29 オキシス エナジー リミテッド Stacked lithium-sulfur battery
CN111193075A (en) * 2018-11-14 2020-05-22 精工电子有限公司 Electrochemical cell
CN111430774A (en) * 2020-04-30 2020-07-17 蜂巢能源科技有限公司 Rapid lamination method and lamination tool for battery cell pole group and battery cell pole group

Similar Documents

Publication Publication Date Title
JP3997370B2 (en) Non-aqueous secondary battery
JP3799463B2 (en) Battery module
JP4562304B2 (en) Method for producing non-aqueous secondary battery
JP2012156405A (en) Electricity storage device
CA2249935C (en) Lithium secondary battery
JP5236199B2 (en) Non-aqueous secondary battery
JP4009803B2 (en) Non-aqueous secondary battery
JP5415009B2 (en) Power storage device module
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JP2002270240A (en) Nonaqueous secondary cell
JP2002246068A (en) Nonaqueous secondary cell
JP2002270241A (en) Nonaqueous secondary cell
US20150079448A1 (en) Nonaqueous electrolyte battery
JP4092543B2 (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4601109B2 (en) Non-aqueous secondary battery
JP2001243953A (en) Non-aqueous secondary battery
JP2002245991A (en) Non-aqueous secondary battery
JP4025944B2 (en) Organic electrolyte battery for power storage system
JP2001266812A (en) Nonaqueous secondary battery
JP4859277B2 (en) Non-aqueous secondary battery
JP2001266848A (en) Non-aqueous secondary battery
JP2001243936A (en) Non-aqueous secondary cell
JP2001243980A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100127