JP4088757B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4088757B2
JP4088757B2 JP2002079161A JP2002079161A JP4088757B2 JP 4088757 B2 JP4088757 B2 JP 4088757B2 JP 2002079161 A JP2002079161 A JP 2002079161A JP 2002079161 A JP2002079161 A JP 2002079161A JP 4088757 B2 JP4088757 B2 JP 4088757B2
Authority
JP
Japan
Prior art keywords
battery
container
secondary battery
less
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002079161A
Other languages
Japanese (ja)
Other versions
JP2003282034A (en
Inventor
史朗 加藤
香江 横内
静邦 矢田
博幸 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002079161A priority Critical patent/JP4088757B2/en
Publication of JP2003282034A publication Critical patent/JP2003282034A/en
Application granted granted Critical
Publication of JP4088757B2 publication Critical patent/JP4088757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池に関し、特に、蓄電システム用非水系二次電池に関するものである。
【0002】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特開平6−86463号公報には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、電圧が例えば50〜400Vの組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0003】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べ優れることから、その市場を飛躍的に延ばしている。
【0004】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、リチウムイオン電池をターゲットとし、リチウム電池電力貯蔵技術研究組合(LIBES)等で精力的に開発が進められている。
【0005】
これら大型リチウムイオン電池のエネルギー容量は、100Whから400Wh程度であり、体積エネルギー密度は、200〜300Wh/lと携帯機器用小型二次電池並のレベルに達している。その形状は、直径50mm〜70mm、長さ250mm〜450mmの円筒型、厚さ35mm〜50mmの角形又は長円角形等の扁平角柱形が代表的なものである。
【0006】
しかし、このような大型リチウムイオン電池は、高エネルギー密度が得られるものの、一般的にその電池設計が携帯機器用小型電池の延長線上にあることから、直径又は厚さが携帯機器用小型電池の3倍以上の円筒型、角型等の電池形状とされる。この場合には、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りによって活物質のエントロピーが変化することによる電池の内部発熱により、電池内部に熱が蓄積されやすい。このため、電池内部の温度と電池表面付近の温度差が大きく、これに伴って内部抵抗が偏在し、その結果、充電量、電圧のばらつきを生じ易い。また、この種の電池は複数個を組電池にして用いるため、システム内での電池の設置位置によっても蓄熱されやすさが異なって各電池間のばらつきが生じ、組電池全体の正確な制御が困難になる。更には、高率充放電時等に放熱が不十分な為、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解等による寿命の低下、更には電池の熱暴走の誘起など信頼性、特に、安全性に問題が残されていた。
【0007】
上記問題を解決する目的でWO99/60652号公報には、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、前記非水系二次電池は、その厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池が開示されている。前記電池は独特の電池形状(扁平形状)により、実用化の障壁となる上記蓄熱に起因する信頼性、安全性の問題点を解決する事を提案している。
【0008】
ところで、一般に電池容器では、物が衝突する等の外部からの衝撃に耐え、且つ、電池容器内に収納される電極を挟持しガスが発生した場合にこれを押さえ込むという機能を奏するように、電池サイズ、電池形状、電池の使用環境等に応じて材質、形状等の選択が行われる。特に大型電池では、小型電池と異なり、電池の信頼性、安全性を確保するために、電池容器の設計、つまり材質、形状等の決定が特に重要となる。例えば電池形状を角型にする場合には、円筒型の電池に比べて平板状部分の耐圧性が低いことから高強度の材料が必要となるため、電池容器の材質としてステンレス或いは鉄が一般に用いられている。
【0009】
しかしながら、上記のような厚さが12mm未満の大容量(30Wh以上)扁平形状の大型電池では、大きな面積の平板状部材が存し、角型或いは円筒型電池に比べ、電池全体に対する電池容器材料の体積の占める割合が大きくなる。したがって、このような薄型扁平形状の電池において電池容器にステンレス或いは鉄を用いた場合には、電池総重量に対し、電池容器重量の閉める比率が高くなるという問題があった。すなわち、従来の扁平形状の電池は、高い体積エネルギー密度を実現し得るにも関わらず、重量エネルギー密度が極度に低下するという問題を有していた。
【0010】
そこで、電池容器にアルミニウム系材料を用いれば容器重量を約3分の1に減少でき、上記重量エネルギー密度の低下を抑制できる。但し、底容器、及び上蓋共に純度の高いアルミニウムを用いると、レーザ溶接性が低下する、外部応力により変形し易い等の問題があった。又底容器、上蓋共にレーザ溶接性の高いアルミニウム合金を用いた場合、材料硬度が高くなり、小さいR(曲率半径)での絞り加工が困難となり、電池全体での内部有効体積が上げにくい等の問題があった。
【0011】
【発明が解決しようとする課題】
本発明の目的は、厚さが12mm未満の扁平形状である非水系二次電池において、高容量、高体積エネルギー密度、及び高重量エネルギー密度を兼ね備えた非水系二次電池を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記目的を達成するため、下記の非水系二次電池を提供する。
【0013】
項1.正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容し、厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上である非水系二次電池において、前記電池容器が、平板形状の上蓋および絞り加工を施した底容器より構成され、前記上蓋がアルミニウム合金からなる部分を主要部材として備え、前記底容器が高純度のアルミニウム金属からなる部分を主要部材として備えていることを特徴とする非水系二次電池。
【0014】
項2.前記電池容器における底容器が、99重量%以上のAl成分を含有する高純度のアルミニウムで構成されている項1に記載の非水系二次電池。
【0015】
項3.前記電池容器における上蓋が、0.5重量%〜2.0重量%のMn成分を含有するアルミニウム合金で構成されている項2に記載の非水系二次電池。
【0016】
項4.前記電池容器における上蓋が、0.02重量%〜0.8重量%のMg成分を含有するアルミニウム合金で構成されている請求項3に記載の非水系二次電池。
【0017】
項5.前記電池容器内の圧力が大気圧未満である項1から4のいずれかに記載の非水系二次電池。
【0018】
項6.前記電池容器内の圧力が、少なくとも1回充電された後に前記電池容器内の圧力を大気圧未満にした状態で最終封口されることにより、大気圧未満にされた項5に記載の非水系二次電池。
【0019】
項7.前記電池容器内の圧力が、8.66×104Pa以下である項1から6のいずれかに記載の非水系二次電池。
【0020】
項8.前記負極が、リチウムをドープおよび脱ドープ可能な物質を含む項1から7のいずれかに記載の非水系二次電池。
【0021】
項9.前記正極が、マンガン酸化物を含む項1から8のいずれかに記載の非水系二次電池。
【0022】
項10.前記扁平形状の表裏面の形状が矩形である項1から9のいずれかに記載の非水系二次電池。
【0023】
項11.前記電池容器の板厚が0.2mm以上1mm以下である項1から10のいずれかに記載の非水系二次電池。
【0024】
【発明の実施の形態】
以下、本発明の一実施形態に係る非水系二次電池について図面を参照しながら説明する。図1は、本実施形態の一例である扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図を示す図であり、図2は、図1に示す電池の内部に収納される電極積層体を示す側面図である。
【0025】
図1及び図2に示すように、本実施の形態の非水系二次電池は、上蓋1及び底容器2からなる電池容器と、前記電池容器の中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。本実施形態のような扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図2に示すように、セパレータ104を介して交互に配置されて積層されるが、本発明は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。また、図1及び図2に示す非水系二次電池の形状は、例えば縦300mm×横210mm×厚さ6mmであり、正極101aにLiMn24、負極101b、101cに炭素材料を用いるリチウム二次電池の場合、例えば、蓄電システムに用いることができる。
【0026】
また、図1に示すように、電池容器の上蓋1には、正極端子3及び負極端子4が上蓋1と絶縁された状態で取り付けられており、正極端子3に図2に示す各正極101aの正極集電体105aが電気的に接続されるとともに、負極端子4に各負極101b、101cの負極集電体105bが電気的に接続されている。
【0027】
上蓋1及び底容器2は、図1中の拡大図に示したA点、つまり上蓋1の周縁部を溶かし込んで底容器2と溶接することにより電池容器を構成している。該溶接方法としては、例えば、レーザ溶接、アーク溶接、抵抗溶接等が挙げられる。そのうち、溶接面積が小さくエネルギーを集中できるため容器の変形歪みや周辺への熱影響が小さい点から、レーザ溶接が好ましい。上蓋1には、電解液の注液口5が開けられており、電解液注液後、例えば、アルミニウム−変成ポリプロピレンラミネートフィルムからなる封口フィルム6を用いて封口される。
【0028】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、高電圧、高容量の電池が得られることから、好ましい。また、大型リチウム系二次電池の実用化において最重点課題である安全性を重視する場合、熱分解温度が高いマンガン酸化物を主体とする正極を用いることが好ましい。このマンガン酸化物としてはLiMn24に代表されるリチウム複合マンガン酸化物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系、さらにはリチウムを量論比よりも過剰にしたLi1+xMn2-y4が挙げられる。
【0029】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物、或いはポリアセン系有機半導体に代表される導電性高分子等が挙げられる。特に、安全性の観点からは、150℃前後の発熱が小さいポリアセン系物質及びこれを含む材料が好ましい。
【0030】
セパレータ104の構成は、特に限定されるものではないが、単層又は複層のセパレータを用いることができ、少なくとも1枚は不織布を用いることが好ましく、この場合、サイクル特性が向上する。また、セパレータ104の材質も、特に限定されるものではないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス、セルロース系材料等が挙げられ、電池の耐熱性、安全性設計に応じ適宜決定される。これらの中では、ポリエチレン、ポリプロピレンなどが、コスト、含水量などの観点から好ましい。また、セパレータ104としてポリエチレンまたはポリプロピレンを用いる場合には、セパレータの目付量は、好ましくは5〜30g/m2程度であり、より好ましくは5〜20g/m2程度であり、さらに好ましくは5〜20g/m2程度である。セパレータの目付量が、30g/m2を超える場合には、セパレータが厚くなりすぎたり、また気孔率が低下し、電池の内部抵抗が高くなるので、好ましくない。これに対し、セパレータの目付量が5g/m2未満の場合には、実用的な強度が得られないので、やはり好ましくない。
【0031】
本発明の二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF6、LiBF4、LiClO4等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、この電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0032】
上記のように構成された非水系二次電池は、家庭用蓄電システム(夜間電力貯蔵、コージェネレション、太陽光発電等)、電気自動車等の蓄電システム等に用いることができ、大容量且つ高エネルギー密度を有することができる。この場合、エネルギー容量は、好ましくは30Wh以上、より好ましくは50Wh以上であり、且つエネルギー密度は、好ましくは180Wh/l以上、より好ましくは200Wh/lである。エネルギー容量が30Wh未満の場合、或いは、体積エネルギー密度が180Wh/l未満の場合は、蓄電システムに用いるには容量が小さく、充分なシステム容量を得るために電池の直並列数を増やす必要があること、また、コンパクトな設計が困難となることから蓄電システム用としては好ましくない。
【0033】
本実施形態の非水系二次電池は、扁平形状をしており、その厚さは12mm未満、より好ましくは10mm未満である。厚さの下限については電極の充填率、電池サイズ(薄くなれば同容量を得るためには面積が大きくなる)を考慮した場合、2mm以上が実用的である。電池の厚さが12mm以上になると、電池内部の発熱を充分に外部に放熱することが難しくなること、或いは電池内部と電池表面付近での温度差が大きくなり、内部抵抗が異なる結果、電池内での充電量、電圧のばらつきが大きくなる。なお、具体的な厚さは、電池容量、エネルギー密度に応じて適宜決定されるが、期待する放熱特性が得られる最大厚さで設計するのが、好ましい。
【0034】
また、本実施形態の非水系二次電池は、例えば、電池容器の扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点から、電池の扁平形状の表裏面が矩形であり、図1に示すようなノート型の形状が好ましい。
【0035】
本実施形態では、電池容器が平板形状の上蓋及び絞り加工を施した底容器より構成され、前記上蓋1がアルミニウム合金からなる部分を主要部材として備え、前記底容器2が高純度のアルミニウム金属からなる部分を主要部材として備えている。必ずしも電池容器全体をアルミニウム系材料で構成する必要はなく、アルミニウム系材料からなる部分を主要構成部材として備えていればよい。但し、後述する本発明の効果を十分に奏するためには、電池容器全体の80%以上がアルミニウム系材料で構成されるのが好ましく、90%以上とするとより好ましい。
【0036】
電池容器の底容器材料としては、Al成分の含有量が99重量%以上である高純度アルミニウムにより構成されていることが好ましく、99.5%以上がより好ましい。Al成分含有量が99%未満と低く、Mn、Cu成分等の比率が高いと、機械的強度は高まるが伸び率が下がってしまう。その場合、絞り加工で切れが発生し、深く絞ることが難しい。又、電池としてのエネルギー密度を高めるため、各コーナー部のRを小さく設計する場合、伸びにくい材料では絞り加工で切れやクラックが発生する可能性が高い。この観点から絞り加工を施す電池底容器の材料としては、Al成分含有量が99重量%以上である伸び率の高い高純度アルミニウムを主要部材とすることが望ましい。
【0037】
電池容器の上蓋に使用するアルミニウム合金材料としては、例えばSi,Fe,Cu,Mn,Mg,Cr,Zn,Tiなどのうちから選ばれた、1種又は2種以上の金属とアルミニウムとの合金を用いることができる。Al−Mn系合金の成分においては、Mn成分の含有量を0.5重量%〜2.0重量%にするのが好ましい。Mn成分が0.5重量%より少なくなると、機械的強度および大型での剛性が低くなる。又、成形性及びレーザ溶接特性が低下してしまう。一方、2.0重量%を越えても、強度の向上効果はそれほど増加せず、粗い金属間化合物の発現によるひび割れの可能性が高くなる。また、Mg−Al系合金におけるMg成分の含有量は、0.02重量%〜0.8重量%にするのが好ましい。Mg成分が0.8重量%以上になると、電池容器をレーザ溶接する場合に、クラックやホール等の溶接不良を起こしやすくなる。
【0038】
上記のように、電池容器において、アルミニウム合金より成る上蓋と高純度アルミニウムより成る底容器とを組み合わせることにより、電池として、機械的強度、レーザ溶接性、及び高エネルギー密度を併せ持つことが可能となる。
【0039】
電池容器を構成する上蓋1及び底容器2の厚さは、電池の用途、電池ケースの材質等により適宜決定され、特に限定されるものではないが、好ましくは、その電池表面積の80%以上の部分の厚さ(電池容器を構成する一番面積が広い部分の厚さ)が0.2mm以上である。厚さが0.2mm未満では、電池の製造に必要な強度が得られないという問題があり、この観点から、より好ましくは厚さを0.3mm以上であり、更に、好ましくは0.4mm以上である。同部分の厚さは、1mm以下であることが望ましい。この厚さが1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し十分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0040】
上記のように、電池容器をアルミニウム或いはアルミニウムを主体とする合金で構成し、非水系二次電池の厚さを12mm未満に設計することにより、この電池が30Wh以上の大容量且つ180Wh/lの高エネルギー密度を有する場合に高率充放電が行われたときであっても、優れた放熱特性を実現し、電池温度の上昇を抑制することができる。従って、内部発熱による電池の蓄熱を低減することができ、その結果、電池の熱暴走も抑止することが可能となり、信頼性、安全性に優れた非水系二次電池を提供することができる。特に、本実施形態では、電池容器がアルミニウム系材料で構成されているため、従来のように電池容器をステンレス等で構成したものに比べ、電池容器を軽量化することができ、これにより電池全体の軽量化を図ることができる。その結果、電池厚さ、電池表面積により異なるが、ステンレスを用いる場合に比べて、重量エネルギー密度を、1.2〜1.5倍程度に向上させることができる。
【0041】
一方、一般的な形状である大型角型電池、或いは円筒型電池等で電池容器を例えばステンレス製のものからアルミニウム系材料に変えた場合には、電池全体に対する電池容器材料の体積の占める割合が扁平形状の電池に比べて小さいことから、重量エネルギー密度の向上は多くとも1.2倍程度である。
【0042】
このように、厚さが12mm未満の扁平形状で、30Wh以上の大容量且つ180Wh/l以上の高エネルギー密度を有する非水二次電池において、電池容器にアルミニウム或いはアルミニウムを主体とする合金を適用する効果は極めて大きい。
【0043】
ところで、電池容器に一般使用されるステンレス、鉄に比べ、アルミニウム或いはアルミニウムを主体とする合金を用いた場合、電極面を挟持し押圧する力が弱くなることから、内部抵抗が大きくなったり、或いは、サイクル寿命が低下して電池性能に影響を与えることがある。特に、厚さが8mm以下の電池において高体積エネルギー密度を得るためには、電池容器を構成する材料の厚さを薄くする必要があるが、このようにすると上記した電池特性の低下が生じやすくなる。これらの問題に対しては、次に説明するように電池内を大気圧未満になるようにして封口することにより、アルミニウム或いはアルミニウムを主体とする合金を電池容器に用いても、電池容器厚さを増加させることなく、ステンレス、鉄と同等の特性が得られることを見出した。
【0044】
完成後の電池の内部圧力が大気圧未満になるようにするためには、正極101a、負極101b、101c、セパレータ104及び非水系電解質を電池容器内に収容し、電池容器内の圧力を大気圧未満にした状態で電池容器の最終封口工程を行う。この最終封口工程は、少なくとも一回の充電操作の後に行うことが好ましい。これは、1回目の充電初期に電解液の分解により内部にガスが発生することがあり、この場合に、充電操作を行わずに大気圧未満で最終封口工程を行うと、その後の1回目の充電操作により電池内部が加圧状態(大気圧以上)になり、電池の厚みが厚くなったり、電池の内部抵抗及び容量がばらつき、安定したサイクル特性が得られない場合があるからである。特に、負極に黒鉛、正極にリチウム複合酸化物を用いた液系の電解質を用いる場合は、ガスが発生しやすい。
【0045】
この充電操作は、電池に用いられる正極材料、負極材料、セパレータ、電解液等の種類、これらの材料の含水率及び不純物、電池が使用される電圧等に応じて種々の条件を採用することができるが、例えば電池の使用電圧まで4〜8時間率程度の速度で充電し、また必要に応じて定電圧を印加し、さらに通常の下限電圧まで8時間率程度の速度で放電してもよく、この充電操作の後に最終封口工程を行う。また、電池の容量以下の充電操作のみを行った後に封口してもよく、或いは2回以上の充放電を繰り返した後に封口する等の種々の充電操作も可能であるが、充放電操作完了後の電池の内圧を大気圧未満に維持することが肝要である。
【0046】
このように、本実施形態では、充電操作を行ってガスを発生させた後に、ガス抜きを施し最終封口工程を大気圧未満で行うことにより、アルミニウム或いはアルミニウムを主体とする合金を電池容器に用いる場合に起きやすい容器が膨れてしまうという問題を解決することができる。この場合、1回目の充電操作を行うときは、電池内部の圧力については特に限定されないが、電池内を大気圧未満にして行うことが好ましい。
【0047】
また、電池内部を大気圧未満にする方法は特に限定されないが、具体的には、以下のようにして行うことができる。
【0048】
まず、図2に示すように、正極101a、負極101b、101c及びセパレータ104を積層して得られた電極積層体等を上蓋1及び底容器2内に収容した後、上蓋1及び底容器2の外周部を溶接する。次に、図1に示す注液口5から電解液を電池容器内に注入する。続いて、仮封口のため、前述のアルミニウム−変性ポリプロピレンラミネートフィルム、アルミニウム−変性ポリエチレンラミネートフィルムに代表される熱融着型で水分透過率の低い封口フィルム6を用いて注液口5を一旦封口し、その後、上記のように少なくとも1回充電した後に封口フィルム6を外す。なお、仮封口の方法は、上記した例に限定されるものではなく、例えばねじ等を用いて注入口5を一時的に封口してもよく、また、水分を除去した状態、例えば空気を遮断した環境下又は露点が−40℃以下のドライ雰囲気下の場合、封口せずに上記の充電操作を行ってもよい。
【0049】
次に、最終封口工程として、封口フィルム6を熱融着する。なお、最終封口工程に用いられる方法は、封口フィルムの熱融着に限定されるものではなく、金属板又は箔を溶接したり、若しくは、電池容器にコックを取り付けて電池内を所定の圧力(大気圧未満)に減圧した後、コックを閉じる等してもよい。
【0050】
なお、上記の最終封口工程では、電池内の圧力を大気圧未満に設定しているが、8.66×104Pa(650Torr)以下にすることが好ましく、7.33×104Pa(550Torr)以下に設定することがより好ましい。この圧力は、最終的に完成した電池に要求される内部圧力に応じて決定される。この注入口5を形成する部分は、電池の外周部分5mmを除く、表裏面のいずれかにあることが好ましい。図1に示す扁平型形状の場合、上蓋1内に配置した正極端子3及び負極端子4との間にあるデッドスペース内に設けることが、スペースの有効利用によるエネルギー密度確保の点からより好ましい。又、最終封口工程後、上記金属製電池容器において、正負極外部端子以外の部分を絶縁性のフィルム等で覆うことが好ましい。なぜなら、電池をスタック状に配置させるモジュール等を想定した場合や通常のハンドリングにおいて、両極外部端子と金属容器との接触による外部短絡を防止できるからである。
【0051】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。
【0052】
実施例
(1)LiMn24100重量部、アセチレンブラック8重量部、ポリビニリデンフルオライド(PVDF)3重量部をN−メチルピロリドン(NMP)100重量部と混合し正極合材スラリーを得た。前記スラリーを集電体となる厚さ20μmのアルミ箔の両面に塗布、乾燥した後、プレスを行い正極を得た。図3の(a)は正極の説明図である。本実施例において正極101aの塗布面積(W1×W2)は、262.5×192mm2であり、20μmの集電体の両面に110μmの厚さで塗布されている。その結果、電極厚さtは240μmとなっている。また、電極の短辺側には電極材料が塗布されていない正極集電片106aが設けられ、その中央に直径3mmの穴が形成されている。
【0053】
(2)黒鉛化メソカーボンマイクロビーズ(MCMB、大阪ガスケミカル製、品番6−28)100重量部、PVDF10重量部をNMP90重量部と混合し、負極合材スラリーを得た。前記スラリーを集電体となる厚さ14μmの銅箔の両面に塗布、乾燥した後、プレスを行い、負極を得た。図3の(b)は負極の説明図である。負極101bの塗布面積(W1×W2)は、267×195mm2であり、14μmの集電体の両面に90μmの厚さで塗布されている。その結果、電極厚さtは194μmとなっている。また、電極の短辺側には電極材料が塗布されていない負極集電片106bが設けられ、その中央に直径3mmの穴が形成されている。更に、同様の手法で片面だけに塗布し、それ以外は同様の方法で厚さ104μmの片面電極を作成した。片面電極は(3)項の電極積層体における両外側に配置される(図2中101c)。
【0054】
(3)図2に示すように、上記(1)項で得られた正極8枚、負極9枚(内片面2枚)をセパレータA104a(レーヨン系、目付12.6g/m2)とセパレータB104b(ポリエチレン製微孔膜;目付13.3g/m2)とを合わせたセパレータ104を介して交互に積層し、さらに、電池容器との絶縁のために外側の負極101cの更に外側にセパレーターB104aを配置し、電極積層体を作成した。なお、セパレータ104は、セパレータA104aが正極側に、セパレータB104bが負極側になるように配置した。
【0055】
(4)電池容器を構成する底容器2は、図4に示すように、厚さ0.5mmの高純度アルミニウム1050(JIS H 4000による記号)製薄板(Al純度99.50%以上)を、絞り加工により深さ5mm、四隅の角R3でトレー状に作製した。上蓋1は、厚さ0.5mmのMn−Al系合金3003製薄板を、平板より打抜き作製した。また、図4に示すように、上蓋1には、アルミニウム製の正極端子3及び銅製の負極端子4(頭部6mmφ、先端M3のねじ部)を取り付けた。正極端子3及び負極端子4は、テフロン(登録商標)製ガスケットにより上蓋1と絶縁した。
【0056】
(5)上記(3)項で作成した電極積層体の各正極集電片106aの穴に正極端子3のねじ部を挿通するとともに、各負極集電片106bの穴に負極端子4のねじ部を挿通し、それぞれ、アルミニウム製及び銅製のナットを締結した後、電極積層体を絶縁テープで上蓋1に固定し、図1で示す上蓋1と底容器2フランジ部との重なり部Aを、全周に亘り上蓋からレーザー溶接した。その後、注液口5(6mmφ)から電解液としてエチレンカーボネートとジエチルカーボネートを1:1重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液した。続いて、大気圧下で仮止め用のボルトを用いて注液口5を一旦封口した。
【0057】
(6)この電池を5Aの電流で4.2Vまで充電した後、4.2Vの定電圧を印加する定電流定電圧充電を8時間行い、続いて、5Aの定電流で3.0Vまで放電した。
【0058】
(7)電池に取り付けられた仮止め用ボルトを取り外し、4.00×104Pa(300Torr)の減圧下で、12mmφに打ち抜いた厚さ0.08mmのアルミ箔−変性ポリプロピレンラミネートフィルムからなる封口フィルム6を、温度250〜350℃、圧力98.1〜294kPa(1〜3kg/cm2)、加圧時間5〜10秒の条件で熱融着することにより、注液口5を最終封口し、厚さ6mm扁平形状のノート型電池を得た。合計10セルの試作を実施したが、液漏れは発生しなかった。
【0059】
続いて、この電池を5Aの電流で4.2Vまで充電し、その後4.2Vの定電圧を印加する定電流定電圧充電を8時間行い、続いて、5Aの定電流で3.0Vまで放電し、容量を確認した。これにより算出された放電容量は27Ahであった。この電池のエネルギー容量は100Wh,体積エネルギー密度は265Wh/l、重量エネルギー密度は140Wh/Kgであった。なお、10Aの定電流で放電した場合、放電容量は、24.9Ahであった。
【0060】
比較例1
底容器2、上蓋1共に厚さ0.5mmの純度の高いアルミニウム1050製薄板を用いる以外は上記実施例と同様にして電池を組み立てたが、レーザ溶接時に一部のセルで小さなクラックが発生したためか、試作10セル中2セルにおいて柱液工程時微量の液漏れが確認された。又、同様の電池を用いて高さ1.9mよりコンクリート面への落下試験を実施したところ、一部の電池でフランジ角部が大きく変形し開口寸前の状態となってしまった。以上のことより、底容器2、上蓋1ともに厚さ0.5mmのアルミニウム1050薄板材料を使用した場合、レーザ溶接時の気密性と使用時の機械的強度に問題があった。
【0061】
比較例2
底容器2、上蓋1共に厚さ0.5mmのアルミニウム合金3003製薄板を用いる以外は上記実施例と同様にして電池を組み立てるため、実施例と同様に、深さ5mm、角部R2で底容器の絞り加工を計10セル分実施した。しかし、10個中1個の容器で、角部近傍に小さな孔が発見された。よって、上記合金を使用する場合には、もう少しRを大きく取る必要があった。但し、Rを大きく設計すると電池全体での内部有効体積が減少し、電池としてのエネルギー密度が低下してしまうという問題があった。
【0062】
【発明の効果】
以上から明らかな通り、本発明によれば、厚さが12mm未満の扁平形状であり、30Wh以上の大容量且つ180Wh/l以上の体積エネルギー密度を有する扁平型非水二次電池において、電池容器に上蓋にはアルミニウム合金を底容器には高純度アルミニウムを組み合わせて主要構成部材として備えることにより、電池容器の軽量化を図ることができ、その結果、大面積扁平形状にも関わらず、高い重量エネルギー密度を実現する非水系二次電池を提供することができる。又上記アルミ系材料の組合せにより、機械的強度とレーザ溶接性を上蓋に持たせ、かつ底容器の絞りを小さいRで深く加工できることから、より高い体積エネルギー密度の電池設計が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態である蓄電システム用非水系二次電池の平面図及び側面図を示す図である。
【図2】図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【図3】図2に示す積層体を構成する正極、負極、及びセパレータの平面図である。
【図4】図1に示す電池の上蓋及び底容器を分離した状態で示す断面図である。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 注液口
6 封口フィルム
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104 セパレータ
105a 正極集電体
105b 負極集電体
106a 正極集電片
106b 負極集電片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery, and more particularly to a non-aqueous secondary battery for a power storage system.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Japanese Patent Laid-Open No. 6-86463 proposes a total system that combines electricity, gas cogeneration, fuel cells, storage batteries, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. ing. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of 50 to 400 V, for example, and in most cases, lead batteries are used.
[0003]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. , Has dramatically expanded its market.
[0004]
In response, in the field of large-scale batteries for power storage systems, lithium-ion batteries are targeted as candidates for high-energy density batteries, and development is actively underway by the Lithium Battery Power Storage Technology Research Association (LIBES) and others. .
[0005]
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, the same level as a small secondary battery for portable devices. The shape is typically a cylindrical shape having a diameter of 50 mm to 70 mm, a length of 250 mm to 450 mm, and a flat prismatic shape such as a square or oblong square having a thickness of 35 mm to 50 mm.
[0006]
However, although such a large lithium ion battery can obtain a high energy density, since its battery design is generally an extension of the small battery for portable devices, the diameter or thickness of the small battery for portable devices is small. The battery shape is three times or more, such as a cylindrical shape and a rectangular shape. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to the internal resistance of the battery during charging and discharging, or internal heat generation of the battery due to change in entropy of the active material due to the entry and exit of lithium ions. For this reason, the temperature difference between the temperature inside the battery and the vicinity of the battery surface is large, and accordingly, the internal resistance is unevenly distributed, and as a result, the charge amount and the voltage are likely to vary. In addition, since this type of battery is used as a plurality of assembled batteries, the ease of heat storage differs depending on the installation position of the batteries in the system, resulting in variations among the batteries, and accurate control of the entire assembled battery is possible. It becomes difficult. In addition, because of insufficient heat dissipation during high-rate charging / discharging, etc., the battery temperature rises, leaving the battery unfavorable, resulting in a decrease in life due to decomposition of the electrolyte, and thermal runaway of the battery. Problems such as induction of reliability, particularly safety, remained.
[0007]
In order to solve the above problem, WO99 / 60652 discloses a flat nonaqueous secondary battery in which a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is contained in a battery container, An aqueous secondary battery has a flat shape with a thickness of less than 12 mm, a non-aqueous secondary battery having an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more is disclosed. It has been proposed that the battery has a unique battery shape (flat shape) to solve the problems of reliability and safety caused by the heat storage that becomes a barrier to practical use.
[0008]
By the way, in general, a battery container can withstand a shock from the outside such as an object colliding, and has a function of holding an electrode stored in the battery container and pressing it when gas is generated. The material, shape, etc. are selected according to the size, battery shape, battery usage environment, and the like. In particular, in the case of a large battery, unlike a small battery, in order to ensure the reliability and safety of the battery, it is particularly important to determine the design of the battery container, that is, the material, shape, and the like. For example, when the battery shape is rectangular, stainless steel or iron is generally used as the material of the battery container because a high-strength material is required because the pressure resistance of the flat plate portion is lower than that of a cylindrical battery. It has been.
[0009]
However, a large-sized battery having a large capacity (30 Wh or more) and a flat shape having a thickness of less than 12 mm as described above has a flat plate member having a large area, and battery container material for the whole battery as compared with a square or cylindrical battery. The proportion of the volume of increases. Therefore, in such a thin and flat battery, when stainless steel or iron is used for the battery container, there is a problem that a ratio of closing the battery container weight is high with respect to the total battery weight. In other words, the conventional flat battery has a problem that the weight energy density is extremely lowered although a high volume energy density can be realized.
[0010]
Therefore, if an aluminum-based material is used for the battery container, the container weight can be reduced to about one third, and the decrease in the weight energy density can be suppressed. However, when high-purity aluminum is used for both the bottom container and the upper lid, there are problems such as a decrease in laser weldability and a tendency to deform due to external stress. In addition, when aluminum alloy with high laser weldability is used for both the bottom container and the top lid, the material hardness is high, drawing with a small R (curvature radius) becomes difficult, and the internal effective volume of the entire battery is difficult to increase. There was a problem.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a nonaqueous secondary battery having a high capacity, a high volume energy density, and a high weight energy density in a flat nonaqueous battery having a thickness of less than 12 mm. .
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the following nonaqueous secondary battery.
[0013]
Item 1. A nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is accommodated in a battery container, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more, and a volume energy density of 180 Wh / l or more. In a non-aqueous secondary battery, the battery container is composed of a flat top lid and a bottom container that has been subjected to drawing processing, and the top lid includes a portion made of an aluminum alloy as a main member, and the bottom container is made of high-purity aluminum. A non-aqueous secondary battery comprising a metal part as a main member.
[0014]
Item 2. Item 2. The nonaqueous secondary battery according to Item 1, wherein the bottom container of the battery container is composed of high-purity aluminum containing 99% by weight or more of an Al component.
[0015]
Item 3. Item 3. The nonaqueous secondary battery according to Item 2, wherein the upper lid of the battery container is composed of an aluminum alloy containing 0.5 wt% to 2.0 wt% of a Mn component.
[0016]
Item 4. The non-aqueous secondary battery according to claim 3, wherein the upper lid of the battery container is made of an aluminum alloy containing 0.02 wt% to 0.8 wt% Mg component.
[0017]
Item 5. Item 5. The nonaqueous secondary battery according to any one of Items 1 to 4, wherein the pressure in the battery container is less than atmospheric pressure.
[0018]
Item 6. Item 6. The nonaqueous system according to Item 5, wherein the pressure in the battery container is reduced to less than atmospheric pressure by being finally sealed in a state where the pressure in the battery container is less than atmospheric pressure after being charged at least once. Next battery.
[0019]
Item 7. The pressure in the battery container is 8.66 × 10 Four Item 7. The nonaqueous secondary battery according to any one of Items 1 to 6, which is Pa or less.
[0020]
Item 8. Item 8. The nonaqueous secondary battery according to any one of Items 1 to 7, wherein the negative electrode contains a material capable of doping and dedoping lithium.
[0021]
Item 9. Item 9. The nonaqueous secondary battery according to any one of Items 1 to 8, wherein the positive electrode contains a manganese oxide.
[0022]
Item 10. Item 10. The nonaqueous secondary battery according to any one of Items 1 to 9, wherein the flat front and back surfaces are rectangular.
[0023]
Item 11. Item 11. The nonaqueous secondary battery according to any one of Items 1 to 10, wherein the battery container has a plate thickness of 0.2 mm to 1 mm.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a non-aqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a plan view and a side view of a flat rectangular (note type) non-aqueous secondary battery for a power storage system as an example of the present embodiment, and FIG. 2 shows the inside of the battery shown in FIG. It is a side view which shows the electrode laminated body accommodated in.
[0025]
As shown in FIGS. 1 and 2, the non-aqueous secondary battery according to the present embodiment includes a battery container composed of an upper lid 1 and a bottom container 2, a plurality of positive electrodes 101a and negative electrodes housed in the battery container. 101b, 101c, and an electrode laminate including the separator 104. In the case of a flat type non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the laminate) are provided via a separator 104 as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of stacked layers can be variously changed depending on the required capacity. The shape of the nonaqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm long × 210 mm wide × 6 mm thick, and LiMn is formed on the positive electrode 101a. 2 O Four In the case of a lithium secondary battery using a carbon material for the negative electrodes 101b and 101c, for example, it can be used in a power storage system.
[0026]
Moreover, as shown in FIG. 1, the positive electrode terminal 3 and the negative electrode terminal 4 are attached to the upper lid 1 of the battery container in a state insulated from the upper lid 1, and each positive electrode 101a shown in FIG. The positive electrode current collector 105 a is electrically connected, and the negative electrode current collector 105 b of each of the negative electrodes 101 b and 101 c is electrically connected to the negative electrode terminal 4.
[0027]
The top lid 1 and the bottom container 2 constitute a battery container by melting the point A shown in the enlarged view in FIG. 1, that is, the peripheral edge of the top lid 1 and welding it to the bottom container 2. Examples of the welding method include laser welding, arc welding, resistance welding, and the like. Among them, laser welding is preferable because the welding area is small and energy can be concentrated, so that deformation deformation of the container and thermal influence on the periphery are small. The upper lid 1 is provided with an electrolytic solution injection port 5, and after the electrolytic solution injection, is sealed using, for example, a sealing film 6 made of an aluminum-modified polypropylene laminate film.
[0028]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used, and a high voltage and high capacity battery can be obtained, which is preferable. In addition, in the case of emphasizing safety, which is the most important issue in the practical application of a large-sized lithium secondary battery, it is preferable to use a positive electrode mainly composed of manganese oxide having a high thermal decomposition temperature. As this manganese oxide, LiMn 2 O Four Lithium composite manganese oxide, a system in which one or more different metal elements are added to these composite oxides, and Li in which lithium is made in excess of the stoichiometric ratio 1 + x Mn 2-y O Four Is mentioned.
[0029]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene, which are used as negative electrode materials for known lithium ion batteries. Examples thereof include conductive polymers represented by organic organic semiconductors. In particular, from the viewpoint of safety, a polyacene-based substance having a small heat generation at around 150 ° C. and a material containing the same are preferable.
[0030]
Although the structure of the separator 104 is not particularly limited, a single-layer or multi-layer separator can be used, and at least one sheet is preferably a nonwoven fabric. In this case, cycle characteristics are improved. The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamides, kraft paper, glass, cellulosic materials, and the like, depending on the heat resistance and safety design of the battery. It is determined appropriately. Among these, polyethylene, polypropylene, and the like are preferable from the viewpoints of cost, water content, and the like. Further, when polyethylene or polypropylene is used as the separator 104, the basis weight of the separator is preferably 5 to 30 g / m. 2 More preferably 5-20 g / m 2 More preferably 5 to 20 g / m 2 Degree. Separator weight is 30g / m 2 In the case where it exceeds 1, the separator becomes too thick, the porosity is lowered, and the internal resistance of the battery is increased, which is not preferable. In contrast, the basis weight of the separator is 5 g / m 2 If the ratio is less than 1, practical strength cannot be obtained, which is not preferable.
[0031]
As the electrolyte of the secondary battery of the present invention, a known non-aqueous electrolyte containing a lithium salt can be used, which is appropriately determined according to the use conditions such as the positive electrode material, the negative electrode material, the charging voltage, and more specifically, LiPF. 6 , LiBF Four LiClO Four Lithium salts such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or a mixed solvent of two or more of these are dissolved. The thing etc. are illustrated. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and this electrolytic solution naturally has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0032]
The non-aqueous secondary battery configured as described above can be used for a household power storage system (night power storage, cogeneration, solar power generation, etc.), a power storage system such as an electric vehicle, and the like. It can have an energy density. In this case, the energy capacity is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or when the volumetric energy density is less than 180 Wh / l, the capacity is small for use in the power storage system, and it is necessary to increase the number of series-parallel batteries to obtain sufficient system capacity. In addition, it is not preferable for a power storage system because a compact design becomes difficult.
[0033]
The non-aqueous secondary battery of this embodiment has a flat shape, and its thickness is less than 12 mm, more preferably less than 10 mm. As for the lower limit of the thickness, 2 mm or more is practical in consideration of the filling factor of the electrode and the battery size (the area becomes larger in order to obtain the same capacity as the thickness is reduced). When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases, resulting in different internal resistances. Variation in the amount of charge and voltage in the battery becomes large. The specific thickness is appropriately determined according to the battery capacity and the energy density, but it is preferable to design with the maximum thickness that provides the expected heat dissipation characteristics.
[0034]
Moreover, the non-aqueous secondary battery of this embodiment can be made into various shapes, such as a square shape, circular shape, and oval shape, for example, the flat front and back surfaces of a battery container. However, it may be a polygon such as a triangle or a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of manufacture, the flat front and back surfaces of the battery are rectangular, and a notebook shape as shown in FIG. 1 is preferable.
[0035]
In this embodiment, the battery container is composed of a flat-shaped upper lid and a bottom container that has been subjected to drawing processing, the upper lid 1 includes a portion made of an aluminum alloy as a main member, and the bottom container 2 is made of high-purity aluminum metal. This part is provided as a main member. The entire battery container is not necessarily made of an aluminum-based material, and a portion made of an aluminum-based material may be provided as a main constituent member. However, in order to sufficiently achieve the effects of the present invention described later, it is preferable that 80% or more of the entire battery container is made of an aluminum-based material, and more preferably 90% or more.
[0036]
The bottom container material of the battery container is preferably composed of high-purity aluminum having an Al component content of 99% by weight or more, and more preferably 99.5% or more. If the Al component content is as low as less than 99% and the ratio of Mn, Cu component, etc. is high, the mechanical strength increases, but the elongation decreases. In that case, cutting occurs in the drawing process, and it is difficult to draw deeply. In addition, when the R of each corner portion is designed to be small in order to increase the energy density as a battery, there is a high possibility that a material that is not easily stretched will be cut or cracked by drawing. From this point of view, it is desirable that the material of the battery bottom container to be drawn is made of high-purity aluminum having a high elongation ratio with an Al component content of 99% by weight or more as a main member.
[0037]
The aluminum alloy material used for the upper lid of the battery container is, for example, an alloy of one or more metals selected from Si, Fe, Cu, Mn, Mg, Cr, Zn, Ti, and the like with aluminum. Can be used. In the component of the Al-Mn alloy, the content of the Mn component is preferably 0.5 wt% to 2.0 wt%. When the Mn component is less than 0.5% by weight, mechanical strength and rigidity at a large size are lowered. In addition, formability and laser welding characteristics are degraded. On the other hand, even if it exceeds 2.0% by weight, the effect of improving the strength does not increase so much, and the possibility of cracking due to the expression of a rough intermetallic compound increases. Moreover, it is preferable that content of Mg component in Mg-Al type alloy shall be 0.02 weight%-0.8 weight%. When the Mg component is 0.8% by weight or more, welding defects such as cracks and holes are likely to occur when laser welding a battery container.
[0038]
As described above, in a battery container, by combining an upper lid made of an aluminum alloy and a bottom container made of high-purity aluminum, the battery can have both mechanical strength, laser weldability, and high energy density. .
[0039]
The thicknesses of the top cover 1 and the bottom container 2 constituting the battery container are appropriately determined depending on the use of the battery, the material of the battery case, etc., and are not particularly limited, but preferably 80% or more of the battery surface area. The thickness of the portion (thickness of the portion having the largest area constituting the battery container) is 0.2 mm or more. If the thickness is less than 0.2 mm, there is a problem that the strength required for battery production cannot be obtained. From this viewpoint, the thickness is more preferably 0.3 mm or more, and further preferably 0.4 mm or more. It is. The thickness of the same part is desirably 1 mm or less. If this thickness exceeds 1 mm, the force to hold down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and sufficient capacity cannot be obtained, or the weight is increased. Preferably it is 0.7 mm or less.
[0040]
As described above, the battery container is made of aluminum or an alloy mainly composed of aluminum, and the thickness of the nonaqueous secondary battery is designed to be less than 12 mm, so that the battery has a large capacity of 30 Wh or more and 180 Wh / l. Even when high rate charge / discharge is performed in the case of a high energy density, excellent heat dissipation characteristics can be realized, and an increase in battery temperature can be suppressed. Accordingly, the heat storage of the battery due to internal heat generation can be reduced, and as a result, the thermal runaway of the battery can be suppressed, and a non-aqueous secondary battery excellent in reliability and safety can be provided. In particular, in the present embodiment, since the battery container is made of an aluminum-based material, the battery container can be reduced in weight as compared with the conventional battery container made of stainless steel or the like. Can be reduced in weight. As a result, although depending on the battery thickness and the battery surface area, the weight energy density can be improved by about 1.2 to 1.5 times compared to the case of using stainless steel.
[0041]
On the other hand, when the battery container is changed from, for example, a stainless steel to an aluminum-based material in a large-sized rectangular battery or a cylindrical battery having a general shape, the ratio of the volume of the battery container material to the entire battery is Since it is smaller than a flat battery, the improvement in weight energy density is at most about 1.2 times.
[0042]
As described above, in a non-aqueous secondary battery having a flat shape with a thickness of less than 12 mm, a large capacity of 30 Wh or more and a high energy density of 180 Wh / l or more, aluminum or an alloy mainly composed of aluminum is applied to the battery container. The effect to do is extremely great.
[0043]
By the way, compared to stainless steel and iron generally used for battery containers, when aluminum or an alloy mainly composed of aluminum is used, the force to pinch and press the electrode surface is weakened, so that the internal resistance increases, or , The cycle life may be reduced and battery performance may be affected. In particular, in order to obtain a high volume energy density in a battery having a thickness of 8 mm or less, it is necessary to reduce the thickness of the material that constitutes the battery container. Become. To solve these problems, the thickness of the battery container can be reduced even if aluminum or an alloy mainly composed of aluminum is used for the battery container by sealing the inside of the battery so as to be less than atmospheric pressure as described below. It has been found that the same characteristics as stainless steel and iron can be obtained without increasing.
[0044]
In order to reduce the internal pressure of the battery after completion to less than atmospheric pressure, the positive electrode 101a, the negative electrodes 101b and 101c, the separator 104, and the nonaqueous electrolyte are accommodated in the battery container, and the pressure in the battery container is set to atmospheric pressure. The final sealing step of the battery container is performed in a state of less than. This final sealing step is preferably performed after at least one charging operation. In this case, gas may be generated inside due to the decomposition of the electrolytic solution at the initial stage of the first charge. In this case, if the final sealing step is performed at less than atmospheric pressure without performing the charging operation, the subsequent first time This is because there is a case where the inside of the battery is pressurized (atmospheric pressure or more) by the charging operation, the thickness of the battery increases, the internal resistance and capacity of the battery vary, and stable cycle characteristics cannot be obtained. In particular, when a liquid electrolyte using graphite for the negative electrode and a lithium composite oxide for the positive electrode is used, gas is likely to be generated.
[0045]
This charging operation may employ various conditions depending on the types of positive electrode material, negative electrode material, separator, electrolyte, etc. used in the battery, the moisture content and impurities of these materials, the voltage at which the battery is used, etc. However, for example, the battery may be charged at a rate of about 4 to 8 hours to the working voltage of the battery, a constant voltage may be applied as necessary, and the battery may be discharged at a rate of about 8 hours to the normal lower limit voltage. The final sealing step is performed after this charging operation. In addition, sealing may be performed after performing only the charging operation below the capacity of the battery, or various charging operations such as sealing after repeating charging and discharging twice or more are possible. It is important to maintain the internal pressure of the battery below atmospheric pressure.
[0046]
As described above, in this embodiment, after performing the charging operation to generate gas, degassing is performed and the final sealing step is performed at less than atmospheric pressure, so that aluminum or an alloy mainly composed of aluminum is used for the battery container. It is possible to solve the problem that the container that is likely to swell in a case is swollen. In this case, when the first charging operation is performed, the internal pressure of the battery is not particularly limited, but it is preferable that the internal pressure of the battery is lower than atmospheric pressure.
[0047]
Moreover, the method of making the inside of the battery less than atmospheric pressure is not particularly limited, but specifically, it can be performed as follows.
[0048]
First, as shown in FIG. 2, after the electrode laminate obtained by laminating the positive electrode 101 a, the negative electrode 101 b, 101 c and the separator 104 is accommodated in the upper lid 1 and the bottom container 2, the upper lid 1 and the bottom container 2 Weld the outer periphery. Next, an electrolytic solution is injected into the battery container from the injection port 5 shown in FIG. Subsequently, for the temporary sealing, the liquid injection port 5 is once sealed by using the heat-sealing type sealing film 6 represented by the aforementioned aluminum-modified polypropylene laminate film and aluminum-modified polyethylene laminate film and having a low water permeability. Then, after charging at least once as described above, the sealing film 6 is removed. In addition, the method of temporary sealing is not limited to the above-mentioned example, For example, you may seal the injection port 5 temporarily using a screw etc., and the state which removed the water | moisture content, for example, air | blocking air In a dry environment with a dew point of −40 ° C. or lower, the above charging operation may be performed without sealing.
[0049]
Next, the sealing film 6 is heat-sealed as a final sealing step. The method used in the final sealing step is not limited to heat sealing of the sealing film, but a metal plate or a foil is welded, or a cock is attached to the battery container and a predetermined pressure ( After reducing the pressure to less than atmospheric pressure, the cock may be closed.
[0050]
In the final sealing step, the pressure in the battery is set to less than atmospheric pressure, but 8.66 × 10 Four It is preferable to set it to Pa (650 Torr) or less, and 7.33 × 10 Four It is more preferable to set it to Pa (550 Torr) or less. This pressure is determined according to the internal pressure required for the finally completed battery. The portion for forming the injection port 5 is preferably located on either the front or back surface excluding the outer peripheral portion of 5 mm of the battery. In the case of the flat shape shown in FIG. 1, it is more preferable to provide in a dead space between the positive electrode terminal 3 and the negative electrode terminal 4 disposed in the upper lid 1 from the viewpoint of securing energy density by effective use of the space. Moreover, after the final sealing step, in the metal battery container, it is preferable to cover portions other than the positive and negative external terminals with an insulating film or the like. This is because it is possible to prevent an external short circuit due to contact between the bipolar external terminals and the metal container in the case of assuming a module or the like in which batteries are arranged in a stack or in normal handling.
[0051]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0052]
Example
(1) LiMn 2 O Four 100 parts by weight, 8 parts by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. FIG. 3A is an explanatory diagram of the positive electrode. In this embodiment, the application area (W1 × W2) of the positive electrode 101a is 262.5 × 192 mm. 2 It is applied to both sides of a 20 μm current collector with a thickness of 110 μm. As a result, the electrode thickness t is 240 μm. Moreover, the positive electrode current collection piece 106a in which the electrode material is not apply | coated is provided in the short side of an electrode, and the hole of diameter 3mm is formed in the center.
[0053]
(2) 100 parts by weight of graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., No. 6-28) and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied to both sides of a 14 μm thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. FIG. 3B is an explanatory diagram of the negative electrode. The coating area (W1 × W2) of the negative electrode 101b is 267 × 195 mm. 2 It is applied to both sides of a 14 μm current collector with a thickness of 90 μm. As a result, the electrode thickness t is 194 μm. Further, a negative electrode current collecting piece 106b to which no electrode material is applied is provided on the short side of the electrode, and a hole having a diameter of 3 mm is formed at the center thereof. Further, a single-sided electrode having a thickness of 104 μm was prepared by the same method except that the coating was applied to only one side. Single-sided electrodes are arranged on both outer sides of the electrode laminate of item (3) (101c in FIG. 2).
[0054]
(3) As shown in FIG. 2, 8 positive electrodes and 9 negative electrodes (2 inner surfaces) obtained in the above item (1) were used as separators A104a (rayon system, basis weight 12.6 g / m). 2 ) And separator B104b (polyethylene microporous membrane; basis weight 13.3 g / m) 2 ) And the separator 104 combined with each other, and further, the separator B104a is arranged on the outer side of the outer negative electrode 101c for insulation from the battery container, thereby preparing an electrode laminate. The separator 104 was arranged so that the separator A104a was on the positive electrode side and the separator B104b was on the negative electrode side.
[0055]
(4) As shown in FIG. 4, the bottom container 2 constituting the battery container is a thin plate made of high-purity aluminum 1050 (symbol according to JIS H 4000) having a thickness of 0.5 mm (Al purity 99.50% or more), It was made into a tray shape at a depth of 5 mm and four corners R3 by drawing. The upper lid 1 was made by punching a thin plate made of Mn-Al alloy 3003 having a thickness of 0.5 mm from a flat plate. Further, as shown in FIG. 4, a positive electrode terminal 3 made of aluminum and a negative electrode terminal 4 made of copper (head portion 6 mmφ, screw portion of tip M <b> 3) were attached to the upper lid 1. The positive electrode terminal 3 and the negative electrode terminal 4 were insulated from the upper lid 1 by a Teflon (registered trademark) gasket.
[0056]
(5) The screw portion of the positive electrode terminal 3 is inserted into the hole of each positive electrode current collecting piece 106a of the electrode laminate prepared in the above item (3), and the screw portion of the negative electrode terminal 4 is inserted into the hole of each negative electrode current collector piece 106b. After the nuts made of aluminum and copper were fastened, the electrode laminate was fixed to the upper lid 1 with insulating tape, and the overlapping portion A of the upper lid 1 and the bottom container 2 flange portion shown in FIG. Laser welding was performed from the upper lid over the circumference. Thereafter, LiPF was added to the solvent at a concentration of 1 mol / l from an injection port 5 (6 mmφ) into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a 1: 1 weight ratio as an electrolyte. 6 The solution in which was dissolved was injected. Subsequently, the liquid injection port 5 was once sealed using a temporary fixing bolt under atmospheric pressure.
[0057]
(6) After charging this battery to 4.2 V with a current of 5 A, constant current and constant voltage charging for applying a constant voltage of 4.2 V is performed for 8 hours, and subsequently discharging to 3.0 V with a constant current of 5 A did.
[0058]
(7) Remove the temporary fixing bolt attached to the battery, 4.00 × 10 Four Under a reduced pressure of Pa (300 Torr), a sealing film 6 made of an aluminum foil-modified polypropylene laminate film having a thickness of 0.08 mm punched to 12 mmφ was subjected to a temperature of 250 to 350 ° C., a pressure of 98.1 to 294 kPa (1 to 3 kg / cm 2 The liquid injection port 5 was finally sealed by heat-sealing under conditions of a pressurization time of 5 to 10 seconds, and a flat battery having a thickness of 6 mm was obtained. A total of 10 cells were prototyped, but no liquid leakage occurred.
[0059]
Subsequently, the battery is charged to 4.2 V with a current of 5 A, and then a constant current and constant voltage charge for applying a constant voltage of 4.2 V is performed for 8 hours. Subsequently, the battery is discharged to 3.0 V with a constant current of 5 A. And confirmed the capacity. The discharge capacity calculated thereby was 27 Ah. This battery had an energy capacity of 100 Wh, a volume energy density of 265 Wh / l, and a weight energy density of 140 Wh / Kg. When discharged at a constant current of 10 A, the discharge capacity was 24.9 Ah.
[0060]
Comparative Example 1
The batteries were assembled in the same manner as in the above example except that both the bottom container 2 and the top lid 1 were made of a high-purity aluminum 1050 thin plate having a thickness of 0.5 mm, but small cracks occurred in some cells during laser welding. In addition, a small amount of liquid leakage was confirmed in the column liquid process in 2 out of 10 prototype cells. In addition, when a drop test on a concrete surface was performed from a height of 1.9 m using the same battery, the flange corners of some batteries were greatly deformed, and the state was just before opening. From the above, when the aluminum 1050 thin plate material having a thickness of 0.5 mm is used for both the bottom container 2 and the upper lid 1, there is a problem in airtightness during laser welding and mechanical strength during use.
[0061]
Comparative Example 2
In order to assemble the battery in the same manner as in the above example except that both the bottom container 2 and the top lid 1 are made of aluminum alloy 3003 thin plate having a thickness of 0.5 mm, the bottom container is 5 mm deep and has a corner portion R2 as in the example. A total of 10 cells were drawn. However, a small hole was found in the vicinity of the corner in one of ten containers. Therefore, when the above alloy is used, it is necessary to make R a little larger. However, when R is designed to be large, there is a problem that the internal effective volume of the whole battery is reduced and the energy density of the battery is lowered.
[0062]
【The invention's effect】
As is apparent from the above, according to the present invention, in a flat non-aqueous secondary battery having a flat shape with a thickness of less than 12 mm, a large capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more, In addition, the upper cover is made of aluminum alloy and the bottom container is made of high-purity aluminum as a main component, making it possible to reduce the weight of the battery container. A non-aqueous secondary battery that realizes energy density can be provided. In addition, the combination of the above aluminum-based materials allows the upper lid to have mechanical strength and laser weldability, and the bottom container can be deeply processed with a small R, so that a battery design with a higher volumetric energy density can be achieved.
[Brief description of the drawings]
1A and 1B are a plan view and a side view of a nonaqueous secondary battery for a power storage system according to an embodiment of the present invention.
2 is a side view showing a configuration of an electrode laminate housed in the battery shown in FIG. 1. FIG.
FIG. 3 is a plan view of a positive electrode, a negative electrode, and a separator constituting the laminate shown in FIG.
4 is a cross-sectional view showing a state in which an upper lid and a bottom container of the battery shown in FIG. 1 are separated.
[Explanation of symbols]
1 Upper lid
2 Bottom container
3 Positive terminal
4 Negative terminal
5 Injection port
6 Sealing film
101a Positive electrode (both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
104 separator
105a Positive electrode current collector
105b Negative electrode current collector
106a Positive electrode current collector
106b Negative electrode current collector

Claims (11)

正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容し、厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上である非水二次電池において、前記電池容器が、平板形状の上蓋および絞り加工を施した底容器より構成され、前記上蓋がアルミニウム合金からなる部分を主要部材として備え、前記底容器が99重量%以上のAl成分を含有する高純度のアルミニウムからなる部分を主要部材として備えていることを特徴とする非水系二次電池。A nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is accommodated in a battery container, has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more, and a volume energy density of 180 Wh / l or more. In the non-aqueous secondary battery, the battery container is composed of a flat top lid and a bottom container subjected to a drawing process, and the top lid includes a portion made of an aluminum alloy as a main member, and the bottom container is 99% by weight or more. A non-aqueous secondary battery comprising, as a main member, a portion made of high-purity aluminum containing the Al component . 前記電池容器における底容器が、99.5重量%以上のAl成分を含有する高純度のアルミニウムで構成されている請求項1に記載の非水系二次電池。Bottom container in the battery container, 99. The non-aqueous secondary battery according to claim 1, comprising high-purity aluminum containing 5 % by weight or more of an Al component. 前記電池容器における上蓋が、0.5重量%〜2.0重量%のMn成分を含有するアルミニウム合金で構成されている請求項に記載の非水系二次電池。The non-aqueous secondary battery according to claim 1 , wherein an upper lid of the battery container is made of an aluminum alloy containing 0.5 wt% to 2.0 wt% of a Mn component. 前記電池容器における上蓋が、0.02重量%〜0.8重量%のMg成分を含有するアルミニウム合金で構成されている請求項3に記載の非水系二次電池。  The non-aqueous secondary battery according to claim 3, wherein the upper lid of the battery container is made of an aluminum alloy containing 0.02 wt% to 0.8 wt% Mg component. 前記電池容器内の圧力が大気圧未満である請求項1から4のいずれかに記載の非水系二次電池。  The nonaqueous secondary battery according to any one of claims 1 to 4, wherein the pressure in the battery container is less than atmospheric pressure. 前記電池容器内の圧力が、少なくとも1回充電された後に前記電池容器内の圧力を大気圧未満にした状態で最終封口されることにより、大気圧未満にされた請求項5に記載の非水系二次電池。  The non-aqueous system according to claim 5, wherein the pressure in the battery container is reduced to less than atmospheric pressure by being finally sealed in a state where the pressure in the battery container is less than atmospheric pressure after being charged at least once. Secondary battery. 前記電池容器内の圧力が、8.66×104Pa以下である請求項1から6のいずれかに記載の非水系二次電池。The nonaqueous secondary battery according to any one of claims 1 to 6, wherein the pressure in the battery container is 8.66 x 10 4 Pa or less. 前記負極が、リチウムをドープおよび脱ドープ可能な物質を含む請求項1から7のいずれかに記載の非水系二次電池。  The non-aqueous secondary battery according to claim 1, wherein the negative electrode includes a material capable of doping and dedoping lithium. 前記正極が、マンガン酸化物を含む請求項1から8のいずれかに記載の非水系二次電池。  The non-aqueous secondary battery according to claim 1, wherein the positive electrode contains a manganese oxide. 前記扁平形状の表裏面の形状が矩形である請求項1から9のいずれかに記載の非水系二次電池。  The non-aqueous secondary battery according to claim 1, wherein the shape of the flat front and back surfaces is a rectangle. 前記電池容器の板厚が0.2mm以上1mm以下である請求項1から10のいずれかに記載の非水系二次電池。  The nonaqueous secondary battery according to any one of claims 1 to 10, wherein a thickness of the battery container is 0.2 mm or more and 1 mm or less.
JP2002079161A 2002-03-20 2002-03-20 Non-aqueous secondary battery Expired - Fee Related JP4088757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079161A JP4088757B2 (en) 2002-03-20 2002-03-20 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079161A JP4088757B2 (en) 2002-03-20 2002-03-20 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2003282034A JP2003282034A (en) 2003-10-03
JP4088757B2 true JP4088757B2 (en) 2008-05-21

Family

ID=29228742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079161A Expired - Fee Related JP4088757B2 (en) 2002-03-20 2002-03-20 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4088757B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950823A (en) * 1995-06-01 1997-02-18 Ricoh Co Ltd Secondary battery
JPH10284014A (en) * 1997-04-01 1998-10-23 Furukawa Electric Co Ltd:The Sheath-can for sealing angular lithium secondary battery made of aluminum alloy
JP2000129384A (en) * 1998-10-23 2000-05-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for secondary battery case, its manufacture, and secondary battery case
JP3997370B2 (en) * 1999-03-11 2007-10-24 大阪瓦斯株式会社 Non-aqueous secondary battery
JP2000294202A (en) * 1999-04-02 2000-10-20 Toshiba Battery Co Ltd Thin battery
JP4348492B2 (en) * 1999-07-15 2009-10-21 大阪瓦斯株式会社 Non-aqueous secondary battery
JP2001243980A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2001243953A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2003282034A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
KR101595611B1 (en) a secondary battery for improving energy degree
JP3997370B2 (en) Non-aqueous secondary battery
WO2005013408A1 (en) Lithium ion secondary cell
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
JP4009803B2 (en) Non-aqueous secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP2008251381A (en) Nonaqueous secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP4428796B2 (en) Non-aqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP2002298827A (en) Nonaqueous secondary battery
JP4688305B2 (en) Non-aqueous secondary battery
JP4601109B2 (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2004296325A (en) Nonaqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP4168263B2 (en) Non-aqueous secondary battery
JP4594478B2 (en) Non-aqueous secondary battery
JP4088757B2 (en) Non-aqueous secondary battery
JP2002245991A (en) Non-aqueous secondary battery
JP4859277B2 (en) Non-aqueous secondary battery
JP4025944B2 (en) Organic electrolyte battery for power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170307

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees