JP2003269070A - Mineral lifting method of deep sea bottom mineral resources and mineral lifting device - Google Patents
Mineral lifting method of deep sea bottom mineral resources and mineral lifting deviceInfo
- Publication number
- JP2003269070A JP2003269070A JP2002075497A JP2002075497A JP2003269070A JP 2003269070 A JP2003269070 A JP 2003269070A JP 2002075497 A JP2002075497 A JP 2002075497A JP 2002075497 A JP2002075497 A JP 2002075497A JP 2003269070 A JP2003269070 A JP 2003269070A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- mineral
- seawater
- downcomer
- deep sea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、Ni,Co,Cu,M
n等の有価金属を豊富に含む鉱物資源を深海底から揚鉱
する方法及び装置に関する。The present invention relates to Ni, Co, Cu, M
TECHNICAL FIELD The present invention relates to a method and an apparatus for lifting mineral resources rich in valuable metals such as n from the deep sea floor.
【0002】[0002]
【従来の技術】各種産業分野における進展や先端技術産
業の成長に伴って資源消費量が指数関数的に増加してお
り、現在の陸上資源依存体制は21世紀初頭に破綻する
と一部でいわれている。枯渇が懸念される陸上資源を補
完し、資源の安定供給を図るため深海底の鉱物資源が注
目されている。たとえば、水深4000〜6000mの
深海底には、重金属を多量に含むマンガンノジュールが
ある。水深800〜2400mの深海底には、Coリッ
チクラストと称されるコバルト鉱床が層状に分布してい
る。水深2000〜3000mの深海底から黒煙となっ
て噴出する海底熱水鉱床はCuやZnの品位が高い。こ
のように深海底には莫大な量の鉱物資源があり、Cu,
Ni,Co等の鉱物資源埋蔵量は現在世界消費量の数百
倍,或いは数千倍とも予想されている。2. Description of the Related Art Resource consumption has increased exponentially with the progress of various industrial fields and the growth of advanced technology industries, and it is said that the current terrestrial resource dependence system will collapse in the early 21st century. There is. Mineral resources on the deep sea floor are attracting attention in order to supplement onshore resources, which may be depleted, and to ensure a stable supply of resources. For example, manganese nodules containing a large amount of heavy metals are present on the deep sea floor at a water depth of 4000 to 6000 m. Cobalt ore deposits called Co-rich crust are distributed in layers on the deep seabed at a depth of 800-2400 m. The submarine hydrothermal deposit ejected as black smoke from the deep seabed with a depth of 2000 to 3000 m has high Cu and Zn grades. As you can see, there are huge amounts of mineral resources on the deep sea floor,
The reserves of mineral resources such as Ni and Co are now expected to be hundreds or thousands of times the world consumption.
【0003】深海底から鉱物資源を採取して産業に利用
する上では、深海底に埋蔵されている鉱物資源を採掘
し、採掘した鉱物資源を海上まで運搬(揚鉱)する技術
の開発が必要になる。揚鉱に関しては、連続バケット
法,流体ドレッジ法等、種々の方法が提案されている。
連続バケット法は、経済的に優れているものの深海底に
おけるバケットの姿勢制御が不可能なため、取り残され
る鉱物資源が多く揚鉱効率が悪い。流体ドレッジ法は、
深海底から鉱物塊を海水と共に吸い上げる方法であり、
コストが嵩むものの連続バケット法に比較して揚鉱効率
が高い。In order to extract mineral resources from the deep sea floor and use them for industry, it is necessary to develop a technology for mining the mineral resources buried in the deep sea floor and transporting the mined mineral resources to the sea (lifting). become. Various methods such as a continuous bucket method and a fluid dredge method have been proposed for lifted ore.
The continuous bucket method is economically excellent, but since it is impossible to control the attitude of the bucket at the deep sea bottom, there are many mineral resources left behind and the efficiency of pumping is poor. The fluid dredge method is
It is a method of sucking up mineral blocks together with seawater from the deep sea floor.
Although the cost is high, the efficiency of lifting is higher than that of the continuous bucket method.
【0004】流体ドレッジ法は、鉱物塊の吸上げにポン
プを使用するポンプ方式,揚鉱管の途中から空気を吹き
込み鉱物塊に揚力を作用させるエアリフト方式に大別さ
れる。ポンプ方式では、ポンプ仕様の決定が難しく、多
数のポンプが必要なことが欠点である。たとえば、揚水
能力50mのポンプで水深5000mの深海底から鉱物
塊を上昇させる場合、100個のポンプが必要になる。
また、一つのポンプが故障しても揚鉱できなくなる事態
も生じる。The fluid dredge method is roughly classified into a pump method in which a pump is used for sucking up a mineral lump, and an air lift method in which air is blown from the middle of a lift pipe to apply a lift force to the mineral lump. In the pump method, it is difficult to determine the pump specifications and a large number of pumps are required, which is a drawback. For example, if a pump with a pumping capacity of 50 m is used to raise a mineral block from the deep sea bottom at a depth of 5000 m, 100 pumps are required.
In addition, even if one pump fails, it may not be possible to lift ore.
【0005】エアリフト方式では、気泡を含む気液混相
流体が揚鉱管を上昇する際に流動様式が変化しやすい。
たとえば、海水中に鉛直配置した揚鉱管の下部に空気を
吹き込むと、空気吹込みによって生じた多数の気泡は、
それぞれ別個の流線に沿って体積,形状を変えながら揚
鉱管を上昇する過程で合体し、大きな気体の塊(スラグ
流)となって上昇する。しかも、気泡の上昇に伴って流
速が増し、ボイド率が大きくなると、揚鉱管の中央を気
体,管壁近傍を海水が流れる相分離が生じ、鉱物塊を揚
鉱できなくなる。そこで、深海底に埋蔵されている鉱物
資源よりも密度が大きな重液を揚鉱に利用することが検
討されている(特公平8−26740号公報)。この方
法では、重液材,海水,添加材を混合して調整した重液
を下降管に送り込み、海底U字管,揚鉱管内を流動させ
ることにより、重液と鉱物資源との比重差で鉱物資源を
浮上させている。In the air lift system, the flow pattern is apt to change when the gas-liquid mixed phase fluid containing bubbles rises in the lifting pipe.
For example, when air is blown into the bottom of a vertically arranged ore pipe in seawater, many bubbles generated by the air blow
They change in volume and shape along separate streamlines, and coalesce in the process of ascending the lift pipe, and rise as a large gas mass (slag flow). Moreover, when the flow rate increases with the rise of bubbles and the void ratio increases, phase separation occurs in which gas flows in the center of the lift pipe and seawater flows in the vicinity of the pipe wall, making it impossible to lift mineral blocks. Therefore, the utilization of heavy liquid having a density higher than that of the mineral resources buried in the deep sea floor for lift ore has been studied (Japanese Patent Publication No. 8-26740). In this method, the heavy liquid prepared by mixing the heavy liquid material, seawater, and the additive material is sent to the downcomer pipe and flowed in the seabed U-shaped pipe and the lifting pipe, so that the difference in specific gravity between the heavy liquid and the mineral resources It is raising mineral resources.
【0006】[0006]
【発明が解決しようとする課題】しかし、重液の調整や
揚鉱管内の流動制御に問題がある。たとえば、密度がお
よそ2500kg/m3のマンガンノジュールに必要な
浮力を与えるために当該密度以上の重液が必要とされる
が、このような比重の大きな重液の調製は容易でなく、
貯蔵安定性も十分でない。仮に、要求比重の重液が提供
されたとしても、下降管に送り込まれた重液がU字管の
底部に沈降し、揚鉱管の下部に重液,上部に海水が溜ま
った二相分離状態になる。揚鉱管内の重液を一滴漏らさ
ず供給し、水深5000mの深海底からマンガンノジュ
ールを効率よく回収する方法も未解決である。更には、
重液の密度を3000kg/m3と仮定すると揚鉱管低
部の管内圧力が1500気圧に達し、揚鉱管底部の管外
圧力500気圧との間に1000気圧の管内外圧力差が
生じる。当該圧力差に耐える強度が揚鉱管に要求される
が、材質的にも構造的にも克服困難な問題がある。However, there are problems in adjusting the heavy liquid and controlling the flow in the lifting pipe. For example, in order to give the buoyancy required for manganese nodules having a density of about 2500 kg / m 3 , a heavy liquid having a density higher than the density is required, but it is not easy to prepare a heavy liquid having such a large specific gravity.
Storage stability is also not sufficient. Even if heavy liquid of required specific gravity is provided, the heavy liquid sent into the downcomer will settle at the bottom of the U-shaped pipe, and the heavy liquid will accumulate in the lower part of the lifting pipe and seawater will accumulate in the upper part. It becomes a state. A method for efficiently supplying manganese nodules from the deep sea bottom at a water depth of 5000 m by supplying a heavy liquid in the lift ore pipe without leaking is also unsolved. Furthermore,
Assuming that the density of the heavy liquid is 3000 kg / m 3 , the internal pressure of the lower part of the lifting pipe reaches 1500 atm, and a pressure difference of 1000 atm from the external pressure of 500 at the bottom of the lifting pipe occurs. The lifted pipe is required to have the strength to withstand the pressure difference, but there is a problem that it is difficult to overcome in terms of material and structure.
【0007】[0007]
【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、両端開放部で液
面高さを一定に維持しようとする力が作用するU字管の
特性を利用し、バケットや重液の必要なく、極めて簡単
な設備構成で深海底から鉱物塊を海面まで輸送可能にす
ることを目的とする。The present invention has been devised to solve such a problem, and is a U-shaped member on which a force for maintaining a constant liquid level at both end open portions acts. Utilizing the characteristics of pipes, the object is to enable transportation of mineral blocks from the deep sea floor to the sea surface with an extremely simple equipment configuration without the need for buckets or heavy liquids.
【0008】本発明の揚鉱方法は、その目的を達成する
ため、一方が下降管,他方が上昇管となるU字管を深海
底から海面にかけて鉛直保持し、上昇管の上端開口から
下降管の上端開口に海水を輸送することによりU字管内
で海水を循環流動させ、深海底で採掘された鉱物塊を上
昇管の底部に送り込み、上昇管を上昇する海水に載せて
浮上させることを特徴とする。In order to achieve the object, the lifting method of the present invention vertically holds a U-shaped pipe, one of which is a downcomer pipe and the other of which is an uplift pipe, from the deep sea bottom to the sea surface, and the downcomer pipe is opened from the upper end opening of the uplift pipe. The seawater is circulated and fluidized in the U-shaped pipe by transporting it to the upper opening of the pipe, and the mineral mass mined at the deep sea bottom is sent to the bottom of the rising pipe, and the rising pipe is placed on the rising seawater to float. And
【0009】この方法に使用する揚鉱装置は、底部が深
海底又は深海底近傍に配置され、上端が開口した下降管
及び上昇管をもつU字管と、上昇管の下部に接続され、
深海底から採掘した鉱物資源を上昇管に送り込む鉱物供
給ホースと、上昇管の上端開口から送り出された混合流
体を鉱物塊,海水に分別して収容する貯鉱槽と、貯鉱槽
の受水部から下降管の上端開口に海水を輸送するポンプ
とを備えている。上昇管は、下降管よりも内部断面積を
小さくすることが好ましい。また、ポンプと下降管上部
との間に調圧タンクを設けると、U字管内の周期的な圧
力変動にも対応できる揚鉱装置となる。The lift ore apparatus used in this method has a bottom portion arranged at or near the deep sea bottom, and is connected to a U-shaped pipe having a downcomer pipe and an upcomer pipe having open upper ends, and a lower portion of the ascend pipe,
A mineral supply hose that feeds mineral resources mined from the deep sea to the rising pipe, a storage tank that separates and stores the mixed fluid sent from the upper opening of the rising pipe into mineral mass and seawater, and a receiving part of the storage tank To a top opening of the downcomer pipe. It is preferable that the riser pipe has a smaller internal cross-sectional area than the downcomer pipe. Further, if a pressure regulating tank is provided between the pump and the upper part of the downcomer pipe, the lifting ore apparatus can cope with periodic pressure fluctuations in the U-shaped pipe.
【0010】[0010]
【作用及び実施の形態】両端が開いたU字管を鉛直に保
持し、液体をU字管に注入して静止させると、何れの管
端内でも液面に及ぼす圧力が大気圧に等しいため同じ液
面高さに維持される。このU字管の一方端部から他方端
部に液体をポンプ等で搬送すると、両管端内で同じ液面
高さが維持されるように、液体はU字管内を循環する。
本発明者等は、当該U字管内における液体の流動に着目
し、一方を下降管11,他方を上昇管12としたU字管
10(図1)の揚鉱への適用可能性を調査・検討した。
なお、図1は下降管11と上昇管12とを離したU字管
10を示しているが、下降管11,上昇管12を一体化
させたU字管10も使用可能なことは勿論である。[Operation and Embodiment] When a U-shaped tube with both ends open is held vertically and liquid is injected into the U-shaped tube to make it stand still, the pressure exerted on the liquid surface is equal to the atmospheric pressure in any of the tube ends. Maintained at the same liquid level. When the liquid is conveyed from one end to the other end of the U-shaped pipe by a pump or the like, the liquid circulates in the U-shaped pipe so that the same liquid level height is maintained in both pipe ends.
The inventors of the present invention focused on the flow of the liquid in the U-shaped pipe and investigated the applicability of the U-shaped pipe 10 (FIG. 1), one of which is the downcomer pipe 11 and the other of which is the uplift pipe 12, to lift-up ore. investigated.
Although FIG. 1 shows a U-shaped pipe 10 in which the downcomer pipe 11 and the ascending pipe 12 are separated, it goes without saying that a U-shaped pipe 10 in which the downcomer pipe 11 and the ascending pipe 12 are integrated can also be used. is there.
【0011】鉛直保持されたU字管10に海水を満た
し、上昇管12の上端から下降管11の上端に海水を輸
送すると、U字管10の内部を海水Wが循環する。そこ
で、深海底Bに設置されている集鉱機20で採掘された
鉱物塊Mを上昇管12の底部に送り込むと、上昇してい
る海水Wが鉱物塊Mに抗力を与えると共に、鉱物塊Mに
浮力が作用する。鉱物塊Mに働く抗力及び浮力の合力が
鉱物塊Mの重力よりも大きくなると、上昇管12内部を
鉱物塊Mが海面Lに向けて流動し、U字管10を保持し
ているメガロフロート等の揚鉱基地30に排出される。When the vertically held U-shaped pipe 10 is filled with seawater and is transported from the upper end of the ascending pipe 12 to the upper end of the descending pipe 11, the seawater W circulates inside the U-shaped pipe 10. Therefore, when the mineral mass M mined by the concentrator 20 installed on the deep sea floor B is sent to the bottom of the rising pipe 12, the rising seawater W exerts a drag force on the mineral mass M and the mineral mass M. Buoyancy acts on. When the resultant force of the drag force and the buoyancy acting on the mineral mass M becomes larger than the gravity of the mineral mass M, the mineral mass M flows toward the sea surface L inside the rising pipe 12, and the megalo float holding the U-shaped pipe 10 or the like. It is discharged to the landing base 30 of.
【0012】鉱物塊Mに作用する抗力は海水Wと鉱物塊
Mの相対流速の二乗に比例するので、海水Wの上昇速度
を上げると鉱物塊Mの浮上に必要な力が得られる。海水
Wの上昇速度は、下降管11の内部断面積を大きく、上
昇管12の内部断面積を小さくするだけで容易に増加で
き、下降管11,上昇管12の内部断面積比に応じて必
要とする上昇速度が得られる。たとえば、上昇管12/
下降管11の内径比を1/2にすると内部断面積比が1
/4となり、計算上では下降管11内の流速に対して4
倍の流速で海水Wが上昇管12を上昇し、鉱物塊Mに大
きな抗力を与える。Since the drag force acting on the mineral lump M is proportional to the square of the relative flow velocity of the seawater W and the mineral lump M, increasing the rising speed of the seawater W provides the force necessary for floating the mineral lump M. The rising speed of the seawater W can be easily increased by increasing the internal cross-sectional area of the downcomer pipe 11 and decreasing the internal cross-sectional area of the upcomer pipe 12, and is required according to the internal cross-sectional area ratio of the downcomer pipe 11 and the upcomer pipe 12. And the ascending speed is obtained. For example, riser 12 /
If the inner diameter ratio of the downcomer pipe 11 is halved, the internal cross-sectional area ratio becomes 1
/ 4, which is calculated to be 4 with respect to the flow velocity in the downcomer 11.
The seawater W rises up the ascending pipe 12 at a double flow rate, and gives a large drag force to the mineral mass M.
【0013】下降管11,上昇管12の口径が同じU字
管10を想定すると、上昇管12では所定の上昇速度で
海水Wが上昇しており,下降管11では海水Wが補充さ
れながら上昇速度と同じ速度で海水Wが流下している。
下降管11,上昇管12内を流動する海水Wは、流体摩
擦に起因する速度のn乗に比例した損失及び鉱物塊Mの
押上げによる損失を受ける。損失を補いながらU字管1
0内で所望の流速を確保するためには、ポンプ31の推
力,ヘッド差等によって海水Wに駆動力を与えることが
必要となる。Assuming a U-shaped pipe 10 having the same diameters as the downcomer 11 and the ascending pipe 12, the seawater W is rising at a predetermined ascending speed in the ascending pipe 12, and the seawater W is ascending while being supplemented with the seawater W in the descending pipe 11. Seawater W is flowing down at the same speed as the speed.
The seawater W flowing in the downcomer 11 and the ascend pipe 12 suffers a loss proportional to the n-th power of the velocity due to fluid friction and a loss due to the pushing up of the mineral mass M. U-shaped tube 1 while compensating for loss
In order to secure a desired flow velocity within zero, it is necessary to apply a driving force to the seawater W by the thrust of the pump 31, the head difference, and the like.
【0014】ポンプ31には、損失補填に要する駆動力
を発生させる能力をもつ限り、大型ポンプである必要は
ない。ヘッド差は、実用的には100m以下で十分であ
る。この点、バケットの制御やバケット回転用の大動力
を必要とし、バケットを繋ぐ鎖の切断等が懸念されるバ
ケット方式に比較して設備構成が極めて簡単になり、重
液揚鉱方式に比較しても揚鉱作業が簡略化される。鉱物
塊Mは、海水Wと共に上昇管12内を上昇し、揚鉱基地
30に配置されている貯鉱槽40に上昇管12の上端開
口から送り出される。貯鉱槽40は、隔壁41で受水部
42,貯鉱部43に区画されており、貯鉱部43側を低
く傾斜させたスクリーン44が受水部42の上方に設け
られている。The pump 31 does not have to be a large pump as long as it has the ability to generate the driving force required for compensating for the loss. The head difference of 100 m or less is practically sufficient. In this respect, it requires a large amount of power for bucket control and bucket rotation, and the equipment configuration is extremely simple compared to the bucket system where there is concern about breaking chains that connect the buckets. However, the land mining work is simplified. The mineral mass M rises in the ascending pipe 12 together with the seawater W, and is sent out from the upper end opening of the ascending pipe 12 to the storage tank 40 arranged at the landing base 30. The ore storage tank 40 is divided into a water receiving portion 42 and a ore storing portion 43 by a partition wall 41, and a screen 44 in which the ore storing portion 43 side is inclined low is provided above the water receiving portion 42.
【0015】貯鉱槽40は、ヘッド差を補うため揚鉱基
地30の比較的低い位置に設けることが好ましい。低い
位置での配置は、海上の突風等による影響が少なく、安
全操業の上でも有利である。揚鉱時にU字管10の両端
部に発生するヘッド差は、U字管10を海水Wが流れる
際の抵抗等に起因する。下降管11の上端開口にポンプ
31を直結することにより、抵抗等に起因する損失を補
って一定流速が得られる。しかし、実際には鉱物塊Mの
上昇に伴う脈動やU字管10への給鉱時に発生するU字
管10の抵抗増加等があるので、上昇管12の上端より
下降管11の上端を高く維持し、下降管11の上端を開
放することが好ましい。The ore storage tank 40 is preferably provided at a relatively low position of the lifting base 30 to compensate for the head difference. The arrangement at a low position is less affected by gusts on the sea and is advantageous for safe operation. The head difference generated at both ends of the U-shaped pipe 10 at the time of lifting is due to resistance or the like when the seawater W flows through the U-shaped pipe 10. By directly connecting the pump 31 to the upper end opening of the downcomer 11, a constant flow velocity can be obtained by compensating for the loss caused by resistance or the like. However, in reality, there are pulsations associated with the rise of the mineral mass M and an increase in the resistance of the U-tube 10 that occurs when the U-tube 10 is fed, so the upper end of the downcomer pipe 11 is higher than the upper end of the upcomer pipe 12. It is preferable to maintain and open the upper end of the downcomer 11.
【0016】また、U字管10内の圧力変動を吸収する
調圧タンク34(図2)をポンプ31と下降管11との
間に設けると、揚鉱基地30からの下降管11の上方突
出を抑制でき、揚鉱装置の耐風圧特性が向上する。調圧
タンク34は、適量の空気が封入された密閉容器であ
り、受水部42から下降管11に海水Wを送るポンプ3
1に直結されている。調圧タンク34に封入された空気
の収縮によって、U字管10に送り込まれる海水Wの圧
力が調整される。更に、調圧タンク34に設けられた空
気弁35を操作して調圧タンク34内の空気量を調節す
ると、圧力変動に対する調圧タンク34の特性を変える
ことができる。その結果、U字管10の長さ,上昇管1
2を上昇してくる鉱物塊Mの粒径変化等に起因する周期
的な圧力変動にも対応できる揚鉱装置となる。If a pressure regulating tank 34 (FIG. 2) that absorbs pressure fluctuations in the U-shaped pipe 10 is provided between the pump 31 and the downcomer pipe 11, the downcomer pipe 11 protrudes upward from the land mining station 30. Can be suppressed, and the wind pressure resistance of the ore lifting equipment can be improved. The pressure adjusting tank 34 is a closed container in which an appropriate amount of air is sealed, and the pump 3 that sends the seawater W from the water receiving section 42 to the downcomer pipe 11.
It is directly connected to 1. The pressure of the seawater W fed into the U-shaped pipe 10 is adjusted by the contraction of the air enclosed in the pressure regulating tank 34. Further, when the air valve 35 provided in the pressure regulating tank 34 is operated to adjust the amount of air in the pressure regulating tank 34, the characteristic of the pressure regulating tank 34 with respect to pressure fluctuation can be changed. As a result, the length of the U-tube 10 and the riser 1
This is a lift ore apparatus that can cope with periodic pressure fluctuations due to a change in the particle size of the mineral mass M rising up to 2.
【0017】鉱物塊M/海水Wの混合流体は、上昇管1
2からスクリーン44上に送り出され、貯鉱部43に向
けてスクリーン44の傾斜面を流下する。流下中に海水
Wの大半がスクリーン44を通過して受水部42に流入
し、鉱物塊Mから分離される。受水部42内の海水W
は、ポンプ31により配水管33を流動し、下降管11
の上部開口に送り込まれ、U字管10内を循環流動す
る。スクリーン44を通過しない鉱物塊Mは、貯鉱部4
3に回収され、有価金属資源として使用される。The mixed fluid of mineral mass M / seawater W is supplied to the rising pipe 1
It is sent out onto the screen 44 from 2 and flows down the inclined surface of the screen 44 toward the ore storage part 43. Most of the seawater W passes through the screen 44 and flows into the water receiving section 42 while flowing down, and is separated from the mineral mass M. Seawater W in the water receiving section 42
Flows through the water distribution pipe 33 by the pump 31, and the downcomer pipe 11
Is sent to the upper opening of the U-tube 10 and circulates in the U-tube 10. The mineral mass M that does not pass through the screen 44 is stored in the storage part 4
It is recovered in 3 and used as a valuable metal resource.
【0018】鉱物塊Mは底部から上昇管12に送り込ま
れるが、U字管10の内外は同じ海水Wである。そのた
め、如何なる深度でもU字管10の内外圧力差が小さ
く、U字管10の要求強度が緩和される。海水Wが流れ
ているU字管10内に鉱物塊Mが送り込まれるため、海
水Wの流動で生じるベンチュリ−効果、すなわち鉱物塊
MをU字管10内に吸引する作用も働き、鉱物供給ホー
ス21からU字管10への鉱物塊Mの輸送もスムーズに
なる。The mineral mass M is fed into the ascending pipe 12 from the bottom, but the inside and outside of the U-shaped pipe 10 is the same seawater W. Therefore, the pressure difference between the inside and the outside of the U-shaped tube 10 is small at any depth, and the required strength of the U-shaped tube 10 is relaxed. Since the mineral mass M is fed into the U-shaped pipe 10 in which the seawater W is flowing, the Venturi effect generated by the flow of the seawater W, that is, the action of sucking the mineral mass M into the U-shaped pipe 10 also works, and the mineral supply hose. The transportation of the mineral mass M from the 21 to the U-shaped pipe 10 also becomes smooth.
【0019】U字管10の内外圧力差が小さいことは、
集鉱機20の鉱物供給ホース21と上昇管12との接続
が多少不完全で周囲の海水が上昇管12に漏洩又は浸入
しても、揚鉱能力に大きな悪影響を及ぼさない点でも有
利である。しかも、受水部42から下降管11の上端に
海水Wを輸送するポンプ31だけでU字管10内を流動
している海水Wに必要推進力を付与できるため、設備構
成の大幅な簡素化が可能となり、設備費を含めた揚鉱コ
ストの低減が図られる。The fact that the pressure difference between the inside and outside of the U-shaped tube 10 is small means that
It is also advantageous in that the connection between the mineral supply hose 21 of the concentrator 20 and the rising pipe 12 is somewhat incomplete, and even if the surrounding seawater leaks or enters the rising pipe 12, it does not significantly affect the pumping capacity. . Moreover, the required propulsive force can be applied to the seawater W flowing in the U-shaped pipe 10 only by the pump 31 that transports the seawater W from the water receiving portion 42 to the upper end of the downcomer 11, so that the facility configuration is greatly simplified. It is possible to reduce the cost of land mining, including equipment costs.
【0020】[0020]
【実施例】深さ3.2mの水槽を用いたシミュレーショ
ン試験で、U字管10の揚鉱能力を調査した。U字管1
0は、長さ3.5m,内径5cmの透明なアクリル樹脂
製下降管11と長さ3m,内径4cmの透明なアクリル
樹脂製上昇管12を曲率半径0.1m,内径4.5cmの
エルボー管で接続することにより用意した。上昇管12
及びエルボー管を三方継手で接続し、鉱物供給ホース2
1を想定したホースを三方継手の残る開口部に接続し
た。[Example] In a simulation test using a water tank having a depth of 3.2 m, the lifting capacity of the U-shaped pipe 10 was investigated. U-shaped tube 1
0 is a clear acrylic resin downcomer pipe 11 having a length of 3.5 m and an inner diameter of 5 cm and a transparent acrylic resin riser pipe 12 having a length of 3 m and an inner diameter of 4 cm, and an elbow pipe having a radius of curvature of 0.1 m and an inner diameter of 4.5 cm. Prepared by connecting with. Riser 12
And the elbow pipe is connected with a three-way joint, and the mineral supply hose 2
The hose assuming 1 was connected to the remaining opening of the three-way joint.
【0021】水槽底部にU字管10のエルボー管を配置
し、下降管11,上昇管12を鉛直保持した。水槽を比
重1.02g/cm3の海水Wで満たし、U字管10内に
も同じ海水Wを水槽内の海面Lと同じレベルまで注入し
た。海水Wには、流動状態が観察されるように海水Wと
同じ比重に調整した着色アクリルビーズを懸濁させた。
上昇管12の上端開口から海水Wを汲み出し、流量38
リットル/分で下降管11の上端開口に送り込んだとこ
ろ、海水Wは、流速0.32m/秒で下降管11を流下
し、流速0.5m/秒で上昇管12を上昇した。The elbow pipe of the U-shaped pipe 10 was arranged at the bottom of the water tank, and the descending pipe 11 and the ascending pipe 12 were held vertically. The water tank was filled with seawater W having a specific gravity of 1.02 g / cm 3 , and the same seawater W was injected into the U-shaped tube 10 to the same level as the sea level L in the water tank. The colored acrylic beads adjusted to have the same specific gravity as the seawater W were suspended in the seawater W so that the fluidized state was observed.
Seawater W is pumped out from the upper end opening of the rising pipe 12, and the flow rate is 38
When it was sent to the upper end opening of the downcomer pipe 11 at a rate of 1 liter / minute, the seawater W flowed down the downcomer pipe 11 at a flow velocity of 0.32 m / sec and rose in the riser pipe 12 at a flow velocity of 0.5 m / sec.
【0022】U字管10内で海水Wを循環流動させなが
ら、粒径25mm,比重2.2g/cm3の有色の無機質
粒子をホースから上昇管12の下部に送り込み、U字管
10内における無機質粒子の挙動を調査した。送り込ま
れた大半の無機質粒子は、上昇管12を流れる海水Wに
随伴して上昇管12の上部に送られた。無機質粒子の浮
上は、1時間の連続試験後にも同様に安定していた。While circulating the seawater W in the U-shaped pipe 10, colored inorganic particles having a particle diameter of 25 mm and a specific gravity of 2.2 g / cm 3 are fed from the hose to the lower part of the rising pipe 12 to cause the inside of the U-shaped pipe 10 to move. The behavior of inorganic particles was investigated. Most of the sent-in inorganic particles were sent to the upper part of the rising pipe 12 along with the seawater W flowing through the rising pipe 12. The floating of the inorganic particles was similarly stable even after the continuous test for 1 hour.
【0023】前掲条件下の無機質粒子に働く抗力F1及
び浮力F2は、次のように試算される。
抗力F1及び浮力F2の合力で無機質粒子が浮上すること
から、海水Wよりも比重の大きな無機質粒子であっても
水槽底部から上昇管12の上端開口まで搬送することが
可能になる。The drag force F 1 and the buoyancy force F 2 acting on the inorganic particles under the above-mentioned conditions are calculated as follows. Since the inorganic particles float due to the resultant force of the drag force F 1 and the buoyancy force F 2 , even the inorganic particles having a larger specific gravity than the seawater W can be conveyed from the bottom of the water tank to the upper end opening of the rising pipe 12.
【0024】[0024]
【発明の効果】以上に説明したように、本発明において
は、両開口端部で液面高さが同じになろうとするU字管
の特性を活用し、上昇管の上端開口から下降管の上端開
口に海水を搬送することによってU字管内で海水を循環
流動させ、深海底で採掘した鉱物塊を海水の上昇流に載
せて海面まで浮上させている。この方式によるとき、鉱
物塊の浮上に要する駆動力は、上昇管の上端開口から送
り出された海水を下降管の上端開口に搬送するポンプの
推力だけでよいため設備構成が大幅に簡略化され、揚鉱
作業自体も容易になる。その結果、深海底から鉱物資源
が容易に採取され、Mn,Co,Ni,Cu,Zn等の
有価資源の安定供給が可能になる。As described above, in the present invention, by utilizing the characteristic of the U-shaped tube in which the liquid level heights tend to be the same at the both ends of the opening, the characteristics of the U-shaped tube are increased from the upper opening of the ascending tube to the descending tube. The seawater is circulated and fluidized in the U-shaped pipe by transporting the seawater to the upper end opening, and the mineral mass mined at the deep sea bottom is placed on the rising flow of seawater and floated to the sea surface. When this method is used, the driving force required to float the mineral mass is only the thrust of the pump that conveys the seawater sent from the upper opening of the ascending pipe to the upper opening of the descending pipe, so the facility configuration is greatly simplified, The lifting operation itself becomes easy. As a result, mineral resources can be easily collected from the deep sea floor, and stable supply of valuable resources such as Mn, Co, Ni, Cu and Zn becomes possible.
【図1】 本発明に従った揚鉱装置の概略図FIG. 1 is a schematic diagram of a lift ore apparatus according to the present invention.
【図2】 調圧タンクを備えた揚鉱装置の揚鉱基地[Fig.2] Lifting base of lifting equipment equipped with pressure regulating tank
10:U字管 11:下降管 12:上昇管
20:集鉱機 21:鉱物供給ホース
30:揚鉱基地 31:ポンプ 33:配水管
34:調圧タンク
40:貯鉱槽 41:隔壁 42:受水部 4
3:貯鉱部 44:スクリーン
M:鉱物塊 W:海水 B:深海底 L:海面10: U-shaped pipe 11: Down pipe 12: Up pipe 20: Mining machine 21: Mineral supply hose 30: Lifting base 31: Pump 33: Water pipe
34: Pressure control tank 40: Storage tank 41: Partition wall 42: Water receiving part 4
3: Storage part 44: Screen M: Mineral block W: Seawater B: Deep sea floor L: Sea surface
Claims (4)
管を深海底から海面にかけて鉛直保持し、上昇管の上端
開口から下降管の上端開口に海水を輸送することにより
U字管内で海水を循環流動させ、深海底で採掘された鉱
物塊を上昇管の底部に送り込み、上昇管を上昇する海水
に載せて浮上させることを特徴とする深海底鉱物資源の
揚鉱方法。A U-shaped pipe, one of which is a downcomer and the other of which is an upcomer, is held vertically from the deep sea floor to the sea surface, and seawater is transported from the upper opening of the ascending pipe to the upper opening of the downcomer. A method of pumping deep-sea bottom mineral resources, characterized in that the seawater is circulated and flowed at, the mineral mass mined at the deep-sea bottom is sent to the bottom of the rising pipe, and the rising pipe is placed on the rising seawater to float.
れ、上端が開口した下降管及び上昇管をもつU字管と、
上昇管の下部に接続され、深海底で採掘した鉱物資源を
上昇管に送り込む鉱物供給ホースと、上昇管の上端開口
から送り出された混合流体を鉱物塊,海水に分別して収
容する貯鉱槽と、貯鉱槽の受水部から下降管の上端開口
に海水を輸送するポンプとを備えている深海底鉱物資源
の揚鉱装置。2. A U-shaped pipe having a descending pipe and an ascending pipe, the bottom portion of which is arranged at or near the deep sea bottom and the upper end of which is open,
A mineral supply hose that is connected to the bottom of the ascending pipe and sends mineral resources mined at the deep sea floor to the ascending pipe, and a storage tank that separates and stores the mixed fluid sent from the upper opening of the ascending pipe into mineral clumps and seawater. , A deep sea bottom mineral resource pumping apparatus comprising a pump for transporting seawater from a water receiving portion of a storage tank to an upper opening of a downcomer pipe.
断面積が小さい請求項2記載の揚鉱装置。3. The lift ore apparatus according to claim 2, wherein the internal cross-sectional area of the rising pipe is smaller than the internal cross-sectional area of the downcomer pipe.
を設けている請求項2記載の揚鉱装置。4. The lifting equipment according to claim 2, wherein a pressure regulating tank is provided between the pump and the upper end of the downcomer pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002075497A JP2003269070A (en) | 2002-03-19 | 2002-03-19 | Mineral lifting method of deep sea bottom mineral resources and mineral lifting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002075497A JP2003269070A (en) | 2002-03-19 | 2002-03-19 | Mineral lifting method of deep sea bottom mineral resources and mineral lifting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003269070A true JP2003269070A (en) | 2003-09-25 |
Family
ID=29204556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002075497A Pending JP2003269070A (en) | 2002-03-19 | 2002-03-19 | Mineral lifting method of deep sea bottom mineral resources and mineral lifting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003269070A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010534777A (en) * | 2007-07-13 | 2010-11-11 | シー. マーシャル,ブルース | Hydrothermal energy and deep sea resource recovery system |
US20110010967A1 (en) * | 2009-07-17 | 2011-01-20 | Lockheed Martin Corporation | Deep Undersea Mining System and Mineral Transport System |
JP2011196047A (en) * | 2010-03-18 | 2011-10-06 | Nippon Steel Engineering Co Ltd | System and method of lifting mineral |
JP2011207537A (en) * | 2010-03-28 | 2011-10-20 | Nippon Steel Engineering Co Ltd | Ore lifting system |
JP2012518102A (en) * | 2009-02-13 | 2012-08-09 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | A method for converting hydrate buried in the seabed into a hydrocarbon composition with market value. |
JP2012193578A (en) * | 2011-03-17 | 2012-10-11 | Nippon Steel Engineering Co Ltd | Mineral lifting system and method for sea-bottom mineral resource |
CN106276263A (en) * | 2016-08-05 | 2017-01-04 | 上海交通大学 | A kind of solid particle hydraulic hoisting device |
KR20180035891A (en) | 2015-08-28 | 2018-04-06 | 데쓰조 나가타 | Dimming System and Dimming Method |
CN108204235A (en) * | 2018-02-27 | 2018-06-26 | 嘉兴市禾东船业有限责任公司 | One kind is used for marine mineral transport device |
JP2018168537A (en) * | 2017-03-29 | 2018-11-01 | 株式会社不動テトラ | Method and device for lifting ore of valuable substance of seabed |
JP2019078018A (en) * | 2017-10-20 | 2019-05-23 | 国立大学法人 東京大学 | Mining device, marine resources lifting device provided with the same and marine resources lifting method |
JP2019120063A (en) * | 2018-01-09 | 2019-07-22 | 株式会社不動テトラ | Carrier material, and method and device for lifting ore of valuable substance of seabed using the same |
CN111852480A (en) * | 2020-08-12 | 2020-10-30 | 长沙矿冶研究院有限责任公司 | Offshore test system for mixed transportation of deep-sea mineral products |
WO2021143490A1 (en) * | 2020-01-17 | 2021-07-22 | 招商局深海装备研究院(三亚)有限公司 | Deep-sea ore hydraulic lifting system having deep-sea single high-pressure silo feeding apparatus |
WO2021143491A1 (en) * | 2020-01-17 | 2021-07-22 | 招商局深海装备研究院(三亚)有限公司 | Environmentally-friendly semi-closed-loop deep sea ore hydraulic lifting system |
CN113982590A (en) * | 2021-12-27 | 2022-01-28 | 中国海洋大学 | Buoyancy self-elevating type multi-metal nodule transmission system and method |
CN117167016A (en) * | 2023-09-01 | 2023-12-05 | 中国海洋大学 | By means of supercritical CO 2 Device for realizing efficient collection and transportation of deep sea ores |
-
2002
- 2002-03-19 JP JP2002075497A patent/JP2003269070A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010534777A (en) * | 2007-07-13 | 2010-11-11 | シー. マーシャル,ブルース | Hydrothermal energy and deep sea resource recovery system |
JP2012518102A (en) * | 2009-02-13 | 2012-08-09 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | A method for converting hydrate buried in the seabed into a hydrocarbon composition with market value. |
US20110010967A1 (en) * | 2009-07-17 | 2011-01-20 | Lockheed Martin Corporation | Deep Undersea Mining System and Mineral Transport System |
US8794710B2 (en) * | 2009-07-17 | 2014-08-05 | Lockheed Martin Corporation | Deep undersea mining system and mineral transport system |
JP2011196047A (en) * | 2010-03-18 | 2011-10-06 | Nippon Steel Engineering Co Ltd | System and method of lifting mineral |
JP2011207537A (en) * | 2010-03-28 | 2011-10-20 | Nippon Steel Engineering Co Ltd | Ore lifting system |
JP2012193578A (en) * | 2011-03-17 | 2012-10-11 | Nippon Steel Engineering Co Ltd | Mineral lifting system and method for sea-bottom mineral resource |
KR20180035891A (en) | 2015-08-28 | 2018-04-06 | 데쓰조 나가타 | Dimming System and Dimming Method |
CN106276263A (en) * | 2016-08-05 | 2017-01-04 | 上海交通大学 | A kind of solid particle hydraulic hoisting device |
JP2018168537A (en) * | 2017-03-29 | 2018-11-01 | 株式会社不動テトラ | Method and device for lifting ore of valuable substance of seabed |
JP2019078018A (en) * | 2017-10-20 | 2019-05-23 | 国立大学法人 東京大学 | Mining device, marine resources lifting device provided with the same and marine resources lifting method |
JP2019120063A (en) * | 2018-01-09 | 2019-07-22 | 株式会社不動テトラ | Carrier material, and method and device for lifting ore of valuable substance of seabed using the same |
CN108204235A (en) * | 2018-02-27 | 2018-06-26 | 嘉兴市禾东船业有限责任公司 | One kind is used for marine mineral transport device |
CN108204235B (en) * | 2018-02-27 | 2024-03-01 | 浙江禾东船业科技股份有限公司 | Be used for seabed mineral conveyer |
WO2021143490A1 (en) * | 2020-01-17 | 2021-07-22 | 招商局深海装备研究院(三亚)有限公司 | Deep-sea ore hydraulic lifting system having deep-sea single high-pressure silo feeding apparatus |
WO2021143491A1 (en) * | 2020-01-17 | 2021-07-22 | 招商局深海装备研究院(三亚)有限公司 | Environmentally-friendly semi-closed-loop deep sea ore hydraulic lifting system |
CN111852480A (en) * | 2020-08-12 | 2020-10-30 | 长沙矿冶研究院有限责任公司 | Offshore test system for mixed transportation of deep-sea mineral products |
WO2022032818A1 (en) * | 2020-08-12 | 2022-02-17 | 长沙矿冶研究院有限责任公司 | Offshore test system for mixed transportation of deep-sea mining |
CN113982590A (en) * | 2021-12-27 | 2022-01-28 | 中国海洋大学 | Buoyancy self-elevating type multi-metal nodule transmission system and method |
CN117167016A (en) * | 2023-09-01 | 2023-12-05 | 中国海洋大学 | By means of supercritical CO 2 Device for realizing efficient collection and transportation of deep sea ores |
CN117167016B (en) * | 2023-09-01 | 2024-02-13 | 中国海洋大学 | By means of supercritical CO 2 Device for realizing efficient collection and transportation of deep sea ores |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003269070A (en) | Mineral lifting method of deep sea bottom mineral resources and mineral lifting device | |
CN101980917B (en) | Liquid storing and offloading device and drilling and production installations on sea based thereon | |
JP6208401B2 (en) | Pumping system and pumping method | |
US10344572B2 (en) | Apparatus and method for producing oil and gas using buoyancy effect | |
US8926219B2 (en) | Device for collecting and temporarily storing fluids from an underwater source | |
US4030216A (en) | Method of and apparatus for underwater hydraulic conveying, as for ocean mining and the like, and continued transport of material in controlled floating containers | |
US20160153169A1 (en) | Riser flow control | |
CN102498258A (en) | Production riser | |
CN108204235B (en) | Be used for seabed mineral conveyer | |
OA11703A (en) | Methods and systems for producing off-shore deep water wells. | |
WO1991010808A1 (en) | Pumping method for ores of deep sea mineral resources using heavy liquid | |
US8753521B2 (en) | Offshore oil spill remediation and recovery system | |
KR20140146049A (en) | A delivery method and system | |
JP2009280960A (en) | Pumping mechanism and sea bottom resource recovering apparatus | |
JP6878721B2 (en) | Seafloor valuable material landing method and landing equipment | |
US20070221112A1 (en) | Solution mining to refloat and dispose of an offshore floating structure | |
JP2019078018A (en) | Mining device, marine resources lifting device provided with the same and marine resources lifting method | |
US6394428B2 (en) | Method and apparatus for dissolving water-soluble gas in the sea and isolating it deep in the sea and a method for its installation | |
JP6570000B2 (en) | Carrier material, mining method and equipment for submarine valuable material using the same | |
US3961488A (en) | Method for filling and emptying of cassions | |
CN110529095B (en) | Deep sea parallel multiphase multistage separation reinjection system | |
GB2480093A (en) | Recovering fluid from a spilling undersea well | |
Takano et al. | Experimental Studies of Air-Lift Pump for Deep Sea Mining | |
Mustafa et al. | The Red Sea pre-pilot mining test 1979 | |
CN111167169A (en) | Quick separation and recovery device for sea surface spilled oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060328 |