JP2003268473A - Al-Mg-Si ALUMINUM ALLOY EXTRUDED-MATERIAL SUPERIOR IN COLLAPSE CRACKING RESISTANCE - Google Patents

Al-Mg-Si ALUMINUM ALLOY EXTRUDED-MATERIAL SUPERIOR IN COLLAPSE CRACKING RESISTANCE

Info

Publication number
JP2003268473A
JP2003268473A JP2003105713A JP2003105713A JP2003268473A JP 2003268473 A JP2003268473 A JP 2003268473A JP 2003105713 A JP2003105713 A JP 2003105713A JP 2003105713 A JP2003105713 A JP 2003105713A JP 2003268473 A JP2003268473 A JP 2003268473A
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded material
alloy extruded
cracking
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105713A
Other languages
Japanese (ja)
Inventor
Hitoshi Kawai
仁 川井
Shinji Yoshihara
伸二 吉原
Masakazu Hirano
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003105713A priority Critical patent/JP2003268473A/en
Publication of JP2003268473A publication Critical patent/JP2003268473A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg-Si aluminum alloy extruded-material, which has excellent collapse cracking resistance and energy absorptive properties in the axial direction, and excellent collapse cracking resistance in the transverse direction as well at the same time. <P>SOLUTION: The Al-Mg-Si aluminum alloy extruded-material consists of an Al-Mg-Si alloy containing 0.3-0.8% Mg (by mass%, hereafter) and 0.5-1.1% Si, and has 25% or more of a wall thickness reduction rate in the fracture surface after a tensile test using the specimens specified as JIS No.5. The material preferably includes one or more elements of Mn, Cr, and Zr in the amount of 0.1-0.4%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮の衝撃荷重を
受けたとき、その衝撃荷重を吸収する機能を持ち、例え
ば自動車のフレーム構造におけるサイドメンバやバンパ
ーステイ及びサイドフレームなどの衝撃吸収部材として
好適な、耐圧壊割れ性に優れるAl−Mg−Si系アル
ミニウム合金押出材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a function of absorbing an impact load of compression when it receives a compressive impact load, and is used as an impact absorbing member such as a side member, a bumper stay and a side frame in a frame structure of an automobile. The present invention relates to a suitable Al-Mg-Si-based aluminum alloy extruded material having excellent resistance to pressure cracking.

【0002】[0002]

【従来の技術】自動車のフレーム構造において、サイド
メンバやバンパーステイなどの衝撃吸収部材として、軽
量化のため例えば矩形断面を有するアルミニウム合金中
空押出材の適用が検討されている。軸方向に圧縮の衝撃
荷重を受けるこれらの衝撃吸収部材には、押出軸方向に
荷重を受けたとき押出材全体がオイラー座屈(形材全体
がくの字形に曲がる座屈)を起こさず、かつ圧壊割れを
発生することなく蛇腹状に収縮変形して、安定した高い
エネルギー吸収を得ること、及び自動車フレーム構造材
として必要な強度(耐力)を有することが要求される。
2. Description of the Related Art In an automobile frame structure, application of an aluminum alloy hollow extruded material having, for example, a rectangular cross section as a shock absorbing member such as a side member or a bumper stay has been studied for weight reduction. These shock-absorbing members that receive a compressive shock load in the axial direction do not cause Euler buckling of the entire extruded material (buckling in which the entire profile bends in a dogleg shape) when a load is applied in the axial direction of the extrusion, and It is required to contract and deform in a bellows shape without causing crush cracking to obtain stable high energy absorption and to have strength (proof strength) required as a vehicle frame structural material.

【0003】これまで、衝撃吸収部材として利用できる
アルミニウム合金押出材として、高強度アルミニウム合
金の中では比較的耐食性に優れ、リサイクル性の面でも
他の系のアルミニウム合金より優れているAl−Mg−
Si系アルミニウム合金押出材が多く検討されている
(例えば特開平6−25783号公報、特開平7−54
090号公報、特開平7−118782号公報、特開平
9−256096号公報等)。
As an aluminum alloy extruded material which can be used as a shock absorbing member, Al--Mg-- which is relatively superior in corrosion resistance among high strength aluminum alloys and superior in recyclability to other types of aluminum alloys.
Many Si-based aluminum alloy extruded materials have been studied (for example, JP-A-6-25783 and JP-A-7-54).
090, JP-A-7-118782, JP-A-9-256096, etc.).

【0004】アルミニウム合金押出材を自動車のフレー
ム構造等に用いるためには、少なくとも150MPa以
上、望ましくは200MPa以上の耐力を有することが
要求される。Al−Mg−Si系アルミニウム合金押出
材においてこの強度を出すため、上記公報にも記載され
ているように、一般にオンラインによるプレス焼入れ又
はオフラインによる溶体化・焼入れ処理を行った後、時
効処理を施している。ここで時効処理を施すのは、押出
材の強度を向上させ、かつ組織を安定化し使用中に自然
時効が進行して強度が変化するのを防止するためであ
る。
In order to use the extruded aluminum alloy material for a frame structure of an automobile, etc., it is required to have a proof stress of at least 150 MPa or more, preferably 200 MPa or more. In order to obtain this strength in an Al-Mg-Si-based aluminum alloy extruded material, as described in the above-mentioned publication, in general, online press quenching or offline solution heat treatment / hardening treatment is performed, followed by aging treatment. ing. The aging treatment is performed here to improve the strength of the extruded material and to stabilize the structure and prevent the natural aging from progressing during use to change the strength.

【0005】[0005]

【発明が解決しようとする課題】Al−Mg−Si系ア
ルミニウム合金押出材は、サイドメンバー等として使用
中に高温にさらされ、自然時効が進行し耐圧壊割れ性が
劣化する可能性があり、それを防止するため時効処理を
行うことは熱処理型のAl−Mg−Si系アルミニウム
合金押出材を衝撃吸収部材として用いる場合の必須の要
件であるが、T5、T6処理を行って強度を上げた場
合、軸方向に圧縮変形させたときに圧壊割れが発生する
という問題をはらんでいる。圧壊割れが発生すると、蛇
腹状の収縮変形が妨げられて安定したエネルギー吸収が
得られなくなる。また、圧壊割れがひどい場合、破片が
飛散する危険もある。さらに、最近ではリサイクル性等
の観点から、同じAl−Mg−Si系アルミニウム合金
押出材を、横方向に衝撃荷重を受けるサイドフレームな
ど、その他の自動車用構造部材としても、同時に利用で
きるようにすることが求められるようになってきた。そ
こで、本発明は、高強度(耐力)を付与したAl−Mg
−Si系アルミニウム合金押出材に、軸方向に優れた耐
圧壊割れ性及び優れたエネルギー吸収性を与え、同時に
横方向にも優れた耐圧壊割れ性を与えることを目的とす
る。
The Al-Mg-Si type aluminum alloy extruded material may be exposed to high temperature during use as a side member or the like, and natural aging may progress to deteriorate the pressure crack resistance. To prevent this, aging treatment is an essential requirement when using a heat-treating type Al-Mg-Si-based aluminum alloy extruded material as a shock absorbing member, but T5 and T6 treatments were performed to increase the strength. In this case, there is a problem that a crush crack occurs when it is compressed and deformed in the axial direction. When crush cracking occurs, the bellows-like contraction deformation is hindered and stable energy absorption cannot be obtained. In addition, if the crushing crack is severe, there is a risk that the fragments may scatter. Further, recently, from the viewpoint of recyclability, the same Al-Mg-Si based aluminum alloy extruded material can be used at the same time as other automobile structural members such as side frames subjected to a lateral impact load. Has come to be required. Therefore, the present invention provides Al-Mg with high strength (proof stress).
An object is to give the Si-based aluminum alloy extruded material excellent pressure-resistant cracking resistance and excellent energy absorption in the axial direction and at the same time excellent lateral pressure-resistant cracking resistance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、耐圧壊割
れ性に優れるアルミニウム合金押出材を開発すべく種々
実験研究を行う過程で、中空断面の押出材から採取した
JIS5号引張試験片を引張試験した場合の試験片の破
断面の肉厚減少率が、押出材の耐圧壊割れ性と密接な関
係にあることを見いだし、それをもとに本発明を得るこ
とができた。
[Means for Solving the Problems] In the course of conducting various experimental studies to develop an aluminum alloy extruded material having excellent resistance to crush cracking, the present inventors have taken JIS No. 5 tensile test pieces taken from the extruded material having a hollow cross section. It was found that the thickness reduction rate of the fractured surface of the test piece in the tensile test was closely related to the pressure crack resistance of the extruded material, and the present invention could be obtained based on it.

【0007】すなわち、本発明に係る耐圧壊割れ性に優
れるAl−Mg−Si系アルミニウム合金押出材は、J
IS5号引張試験片にて引張試験を実施したときの破断
面の肉厚減少率が25%以上であることを特徴とする。
ここで、破断面の肉厚減少率(以下、絞りという)と
は、引張試験片の破断面を正面からみたときの当該破断
面の中央部の肉厚(試験片の板面に対し垂直に測定した
肉厚)をa(図1参照)とし、引張試験片の元の肉厚を
としたとき、(1−a/a)×100で表される
ものとする。本発明に係る耐圧壊割れ性に優れるAl−
Mg−Si系アルミニウム合金押出材には、Mg:0.
3〜0.8%、Si:0.5〜1.1%を含有するAl
−Mg−Si系アルミニウム合金が適している。
That is, the Al-Mg-Si type aluminum alloy extruded material according to the present invention, which is excellent in the resistance to pressure cracking, is
It is characterized in that the thickness reduction rate of the fracture surface when the tensile test is carried out on the IS5 tensile test piece is 25% or more.
Here, the thickness reduction rate of the fracture surface (hereinafter referred to as drawing) means the thickness of the central portion of the fracture surface when the fracture surface of the tensile test piece is viewed from the front (perpendicular to the plate surface of the test piece. When the measured wall thickness) is a (see FIG. 1) and the original wall thickness of the tensile test piece is a 0 , it is represented by (1-a / a 0 ) × 100. According to the present invention, Al- which has excellent resistance to pressure cracking
For the Mg-Si based aluminum alloy extruded material, Mg: 0.
Al containing 3 to 0.8% and Si: 0.5 to 1.1%
A -Mg-Si based aluminum alloy is suitable.

【0008】[0008]

【発明の実施の形態】上記Al−Mg−Si系アルミニ
ウム合金は、上記以外の添加元素として必要に応じて、
Cu、Ti、Mn、Cr及びZrの1種又は2種
以上を含み(〜を単独で又はこれらの2組(+
、+、+)又は3組(++)を組み合
わせて)、さらに不可避不純物としてFe、その他の元
素を含むことができる。以下、本発明の衝撃吸収部材を
構成する押出材の組成等について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The Al-Mg-Si-based aluminum alloy is used as an additive element other than those described above, if necessary.
Includes one or more of Cu, Ti, Mn, Cr and Zr (to be used alone or two sets of these (+
, +, +) Or a combination of three pairs (++)), and Fe as an unavoidable impurity, and other elements. Hereinafter, the composition and the like of the extruded material forming the impact absorbing member of the present invention will be described.

【0009】Mg、Si MgとSiは結合してMgSiを形成し、合金強度を
向上させる。自動車フレーム構造材等として必要な強度
を得るためには、Mgは0.3%以上の添加が必要であ
る。しかし、0.8%を越えて添加されると析出物が多
くなり過ぎ、25%以上の絞りを得ることが難しくな
り、優れた耐圧壊割れ性が得られなくなる。従って、M
g含有量は0.3〜0.8%とする。より望ましい範囲
は0.4〜0.7%、さらに望ましくは0.45〜0.
60%である。一方、Si量が0.5%より少ないと必
要な強度が得られず、1.1%を越えて添加されると、
同じく粒界析出物が多くなり、25%以上の絞りを得る
ことが難しく、優れた耐圧壊割れ性が得られなくなる。
従って、Si含有量は0.5〜1.1%とする。より望
ましい範囲は0.5〜1.0%、さらに望ましくは0.
5〜0.7%である。なお、焼入れ感受性が鋭くなるの
を抑え、空冷によるプレス焼入れでも焼きが入り必要な
強度が得られるようにするには、Mg:0.7%以下、
Si:1.0%以下、過剰Si(MgSiのバランス
組成よりも過剰のSi、「総Si量−0.578×Mg
量」で定義される):0.1〜0.5%とする。
Mg, Si Mg and Si combine to form Mg 2 Si and improve alloy strength. In order to obtain the strength required as an automobile frame structural material, it is necessary to add 0.3% or more of Mg. However, if it is added in excess of 0.8%, the amount of precipitates will be too large, and it will be difficult to obtain a drawing of 25% or more, and excellent pressure crush resistance will not be obtained. Therefore, M
The g content is 0.3 to 0.8%. A more desirable range is 0.4 to 0.7%, and a further desirable range is 0.45 to 0.
60%. On the other hand, if the Si content is less than 0.5%, the required strength cannot be obtained. If the Si content exceeds 1.1%,
Similarly, grain boundary precipitates increase, and it is difficult to obtain a reduction of 25% or more, and excellent pressure crush cracking resistance cannot be obtained.
Therefore, the Si content is 0.5 to 1.1%. A more desirable range is 0.5 to 1.0%, and a further desirable range is 0.
5 to 0.7%. In order to prevent the quenching sensitivity from becoming sharp and to obtain the required strength even with press quenching by air cooling, Mg: 0.7% or less,
Si: 1.0% or less, excess Si (Si in excess of the balance composition of Mg 2 Si, “total Si amount−0.578 × Mg
Amount)): 0.1 to 0.5%.

【0010】Cu Cuは析出硬化により合金強度を向上させ、マトリック
スのMgSi析出物を微細化して絞りを大きくし、耐
圧壊割れ性を改善する効果がある。しかし、0.1%未
満ではその効果がなく、一方、0.7%を超えると耐食
性及び溶接性を低下させる。従って、Cuの含有量は
0.1〜0.7%とし、望ましくは0.1〜0.6%、
さらに望ましくは0.1〜0.4%とする。 Ti Tiは鋳造時における結晶粒を微細化することにより合
金強度を向上させる。この効果を発揮させるには、Ti
添加量は0.005%以上とすることが必要である。ま
た、0.005%より少ないと、結晶粒が粗大化して絞
りが小さくなり、優れた耐圧壊割れ性が得られなくな
る。一方、Ti添加量が0.2%を超えると前記効果が
飽和してしまい、また粗大な金属間化合物が晶出し所定
の合金強度が得られない。また、25%以上の絞りを得
るのが難しくなる。従って、Tiの含有量は0.005
〜0.2%とし、より望ましくは0.01〜0.1%、
さらに望ましくは0.01〜0.05%とする。
Cu Cu has the effects of improving the alloy strength by precipitation hardening, refining the Mg 2 Si precipitates in the matrix, increasing the size of the drawing, and improving the resistance to pressure cracking. However, if it is less than 0.1%, it is not effective, while if it exceeds 0.7%, the corrosion resistance and weldability are deteriorated. Therefore, the Cu content is 0.1 to 0.7%, preferably 0.1 to 0.6%,
More preferably, it is 0.1 to 0.4%. Ti Ti improves the alloy strength by refining the crystal grains during casting. To exert this effect, Ti
It is necessary that the addition amount be 0.005% or more. On the other hand, if it is less than 0.005%, the crystal grains become coarse and the drawing becomes small, so that excellent pressure rupture cracking resistance cannot be obtained. On the other hand, when the amount of Ti added exceeds 0.2%, the above-mentioned effect is saturated, and coarse intermetallic compounds are crystallized, so that a predetermined alloy strength cannot be obtained. Further, it becomes difficult to obtain a diaphragm of 25% or more. Therefore, the Ti content is 0.005
To 0.2%, more preferably 0.01 to 0.1%,
More preferably, it is 0.01 to 0.05%.

【0011】Mn、Cr、Zr Mn、Cr、Zrは、それぞれビレットの均質化処理時
に微細な金属間化合物として析出して押出材の結晶粒を
微細化し、強度、耐圧壊割れ性を向上させる。しかし、
これらの元素の添加量が合計で0.05%未満では前記
作用を発揮し得ない。一方、添加量が合計で0.6%を
超えると前記効果が飽和してしまう。個別にはそれぞれ
0.05%、0.001%、0.05%未満では前記作
用を発揮し得ず、それぞれ0.4%、0.2%、0.2
%を超えると前記効果が飽和してしまう。従って、M
n、Cr、Zrの含有量は合計で0.05〜0.6%、
個別にはMn:0.05〜0.4%、Cr:0.001
〜0.2%、Zr:0.05〜0.2%とし、これらの
1種又は2種以上が適宜添加される。より望ましくは、
Mn:0.1〜0.2%、Cr:0.001〜0.1
%、Zr:0.1〜0.15%の1種又は2種以上であ
る。
Mn, Cr, and Zr Mn, Cr, and Zr respectively precipitate as fine intermetallic compounds during homogenization treatment of the billet to refine the crystal grains of the extruded material and improve the strength and the resistance to pressure cracking. But,
If the total amount of these elements added is less than 0.05%, the above effect cannot be exhibited. On the other hand, if the total amount added exceeds 0.6%, the above-mentioned effect will be saturated. Individually, the above effects cannot be exhibited at less than 0.05%, 0.001% and 0.05% respectively, and 0.4%, 0.2% and 0.2%, respectively.
If it exceeds%, the effect will be saturated. Therefore, M
The total content of n, Cr and Zr is 0.05 to 0.6%,
Individually, Mn: 0.05 to 0.4%, Cr: 0.001
To 0.2%, Zr: 0.05 to 0.2%, and one or more of these are appropriately added. More preferably,
Mn: 0.1-0.2%, Cr: 0.001-0.1
%, Zr: 0.1 to 0.15%, or two or more.

【0012】ところで、Al−Mg−Si系アルミニウ
ム合金押出材において、押出材に繊維状組織が形成され
ると強度及び耐圧壊割れ性が向上する。この繊維状組織
は押出材断面全体に形成されているのが望ましく、表面
再結晶層が形成された場合でも、押出材断面厚さの1/
2程度以上の厚さで形成されていることが望ましい。な
お、この繊維状組織とは、押出による繊維状組織が押出
工程以降の熱処理工程の間においても再結晶せずに残っ
た状態の組織のことである。この繊維状組織を得るに
は、Mn、Cr、Zrを合計で0.1%以上含有させる
必要がある。一方、製造コストの低減及び焼入れ後の寸
法精度の向上のため、必要な強度と優れた耐圧壊割れ性
を空冷によるプレス焼入れで得ることが望まれている。
しかし、冷却速度の比較的遅い(通常、100〜400
℃/min)空冷の場合、Mn、Cr、Zrを添加する
と、これらの元素はAl−Mg−Si系アルミニウム合
金の焼入れ感受性を鋭くするため、合計含有量が0.4
%を越えると十分に焼きが入らず、高い強度(特に耐
力)が得られない。従って、Mn、Cr、Zrを添加し
て繊維状組織を得る場合、特に空冷によるプレス焼入れ
を行うときは、Mn、Cr、Zrの合計含有量は0.1
〜0.4%とする。ただし、通常のファン空冷(200
℃/min程度)において繊維状組織を得るには、0.
18%以上の含有量が望ましい。
By the way, in the Al-Mg-Si-based aluminum alloy extruded material, if a fibrous structure is formed in the extruded material, the strength and the pressure crush resistance are improved. It is desirable that this fibrous structure is formed on the entire cross section of the extruded material, and even if the surface recrystallized layer is formed, it is 1 / th of the thickness of the extruded material cross section.
It is desirable to be formed with a thickness of about 2 or more. The fibrous structure is a structure in which the fibrous structure by extrusion remains without being recrystallized during the heat treatment process after the extrusion process. In order to obtain this fibrous structure, it is necessary to contain Mn, Cr, and Zr in a total amount of 0.1% or more. On the other hand, in order to reduce the manufacturing cost and improve the dimensional accuracy after quenching, it is desired to obtain necessary strength and excellent pressure crush cracking resistance by press quenching by air cooling.
However, the cooling rate is relatively slow (usually 100-400
(° C / min) In the case of air cooling, when Mn, Cr, and Zr are added, these elements sharpen the quenching sensitivity of the Al-Mg-Si-based aluminum alloy, so the total content is 0.4.
If it exceeds%, the steel cannot be sufficiently baked and high strength (especially yield strength) cannot be obtained. Therefore, when Mn, Cr, and Zr are added to obtain a fibrous structure, especially when press quenching by air cooling is performed, the total content of Mn, Cr, and Zr is 0.1.
~ 0.4%. However, normal fan air cooling (200
In order to obtain a fibrous structure at (.degree. C./min),
A content of 18% or more is desirable.

【0013】不可避不純物 不可避不純物のうちFeはアルミニウム地金に最も多く
含まれる不純物であり、0.35%を超えて合金中に存
在すると鋳造時に粗大な金属間化合物を晶出し、合金の
機械的性質を損なう。従って、Feの含有量は0.35
%以下に規制する。望ましくは0.30%以下であり、
さらに0.25%以下が望ましい。また、アルミニウム
合金を鋳造する際には地金、添加元素の中間合金、化合
物等様々な経路より不純物が混入する。混入する元素は
様々であるが、Fe以外の不純物は単体で0.05%以
下、総量で0.15%以下であれば合金の特性にほとん
ど影響を及ぼさない。従って、これらの不純物は単体で
0.05%以下、総量で0.15%以下とする。なお、
不純物のうちBについてはTiの添加に伴い合金中にT
i含有量の1/5程度の量で混入するが、より望ましい
範囲は0.02%以下、さらに0.01%以下が望まし
い。
Inevitable Impurities Among the inevitable impurities, Fe is the most contained impurity in the aluminum base metal, and if more than 0.35% is present in the alloy, coarse intermetallic compounds crystallize during casting, and mechanical Spoil the nature. Therefore, the Fe content is 0.35
% Or less. It is preferably 0.30% or less,
Furthermore, 0.25% or less is desirable. Further, when casting an aluminum alloy, impurities are mixed in through various routes such as a base metal, an intermediate alloy of additional elements, and a compound. Although various elements are mixed in, if the impurities other than Fe alone are 0.05% or less and the total amount is 0.15% or less, the characteristics of the alloy are hardly affected. Therefore, these impurities should be 0.05% or less as a simple substance and 0.15% or less as a total amount. In addition,
Among the impurities, B is added to the T
It is mixed in an amount of about 1/5 of the i content, but a more desirable range is 0.02% or less, and further 0.01% or less.

【0014】また、Al−Mg−Si系アルミニウム合
金押出材において、本発明で定義された絞りの値が25
%以上のとき耐圧壊割れ性に優れる理由については、絞
りの値は材料の局部的な変形能を示す1つの指標であ
り、一方、押出材が蛇腹状に圧壊変形する場合、材料の
ごく表面に発生する伸びは30%程度に達し、このよう
な領域では材料は絞りのような局部的な変形をしている
と考えられることから、絞りの値が所定値以上の場合に
割れの発生が抑制されたものと推測される。なお、本発
明に係るAl−Mg−Si系アルミニウム合金押出材
は、押出軸方向の耐圧壊特性に優れるが、同時に横方向
の耐圧壊特性にも優れ、また、自動車のフレーム構造以
外に鉄道車両、船舶等の構造部材としても利用できる。
Further, in the extruded material of Al-Mg-Si type aluminum alloy, the value of the drawing defined in the present invention is 25.
%, The reason why the resistance to crush cracking is excellent is that the value of the squeeze is one index showing the local deformability of the material, while when the extruded material is crushed and deformed into a bellows shape, the surface of the material is very small. The elongation that occurs in the area reaches about 30%, and it is considered that the material is locally deformed like a drawing in such an area. Therefore, when the value of the drawing is equal to or larger than a predetermined value, cracking occurs. It is speculated that it was suppressed. The Al-Mg-Si-based aluminum alloy extruded material according to the present invention is excellent in crush resistance in the axial direction of extrusion, but is also excellent in crush resistance in the transverse direction at the same time. It can also be used as a structural member for ships and the like.

【0015】[0015]

【実施例】以下、本発明の実施例について、本発明の特
許請求範囲の規定から外れる比較例と比較して説明す
る。まず、下記表1に示す成分組成のAl−Mg−Si
系アルミニウム合金ビレット(直径:155mm)を通
常の方法により溶製し、約540℃×4時間の条件で均
質化処理を施した。その後、押出温度が500℃、押出
速度が5m/分の条件で各ビレットを押出加工し、押出
直後にオンラインで空冷又は水冷によるプレス焼入れを
行い、図2に示すような中空矩形断面の押出材(外形が
70×54mm、肉厚が2mmの角パイプ)を製造し
た。なお、No.9のみ水冷とし他はすべて空冷とし
た。この角パイプに対して、表1に示す条件で人工時効
処理を施し供試材とした。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples that deviate from the scope of the claims of the present invention. First, Al-Mg-Si having the composition shown in Table 1 below.
A system aluminum alloy billet (diameter: 155 mm) was melted by a usual method, and homogenized at about 540 ° C. for 4 hours. After that, each billet is extruded under the conditions of an extrusion temperature of 500 ° C. and an extrusion speed of 5 m / min, and immediately after extrusion, press quenching is performed by air cooling or water cooling, and an extruded material having a hollow rectangular cross section as shown in FIG. (A square pipe having an outer shape of 70 × 54 mm and a wall thickness of 2 mm) was manufactured. In addition, No. Only 9 was water-cooled and the others were air-cooled. This square pipe was subjected to artificial aging treatment under the conditions shown in Table 1 to obtain a test material.

【0016】[0016]

【表1】 [Table 1]

【0017】これらの各供試材から押出軸方向に平行に
JIS5号試験片を採取し、この試験片を用いて引張強
さσB、耐力σ0.2、破断伸び(破断歪)δをJISZ2
241に規定する金属材料引張試験法に準じて測定し、
一方、先に説明した方法で破断面の中央部の肉厚を測定
し、先に定義した絞りの値を求めた。元の肉厚は2mm
である。その結果を表2に示す。また、各供試材(長さ
200mm)について縦及び横圧壊試験を行った。縦圧
壊試験は、アムスラー試験機にて図3に示すように軸方
向に静的圧縮荷重を加え、これを100mmまで圧縮し
て荷重−変位曲線を得、最大荷重と100mmまでの吸
収エネルギーを求めた。割れ性の評価は目視にて行い、
開口割れ(肉厚を貫通する割れ)の発生しなかったもの
を○、開口割れの発生したものを×と評価した。縦圧壊
試験の総合評価としては、開口割れがなく、耐力200
MPa以上で吸収エネルギー2500J以上(150M
Pa以上であれば1500J以上がほぼこれに相当)を
合格と判定した。横圧壊試験は、供試材を長辺側が上下
になるように横向きにおいて静的圧縮荷重を加え、これ
を20mmまで圧縮し、割れ性の評価を目視にて行っ
た。割れ性の評価は縦圧壊試験と同じである。その結果
を表2に併せて示す。
JIS No. 5 test pieces were taken from each of these test materials parallel to the extrusion axis direction, and the tensile strength σB, proof stress σ0.2, and elongation at break (breaking strain) δ were measured according to JISZ2.
Measured according to the metal material tensile test method specified in 241.
On the other hand, the thickness of the central portion of the fracture surface was measured by the method described above, and the value of the aperture defined above was obtained. Original wall thickness is 2mm
Is. The results are shown in Table 2. In addition, longitudinal and lateral crush tests were performed on each test material (length 200 mm). In the longitudinal crush test, a static compression load is applied in the axial direction by an Amsler tester as shown in FIG. 3, and this is compressed to 100 mm to obtain a load-displacement curve, and the maximum load and absorbed energy up to 100 mm are obtained. It was The crackability is evaluated visually,
The case where no opening crack (crack penetrating the wall thickness) was evaluated as ◯, and the case where opening crack occurred was evaluated as x. As a comprehensive evaluation of the vertical crushing test, there was no cracking in the opening and the proof stress was 200.
Absorbed energy of 2500 J or more at 150 MPa or more (150 M
If it is Pa or more, 1500 J or more is almost equivalent to this), and it is determined to be acceptable. In the lateral crush test, a static compressive load was applied to the test material in a horizontal direction so that the long sides were up and down, the static compression load was compressed to 20 mm, and the cracking property was visually evaluated. The evaluation of crackability is the same as the vertical crush test. The results are also shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】表2から明らかなように、絞りが25%以
上のNo.1〜7はいずれも縦及び横圧縮の割れ性に優
れ、絞りが25%に満たないNo.8、9は割れ性が劣
る。しかも、No.1、3は耐力がNo.8とほぼ同等
であるが、No.8と比べ吸収エネルギーが20%前後
高く、耐力がNo.8より低いNo.2、4〜6でも最
大荷重はやや低いが、吸収エネルギーはNo.8より高
くなっている。耐力値がNo.8より高いNo.7では
吸収エネルギーがNo.8と比べ相当高く、No.9と
比べても高い。なお、No.1〜7、9には繊維状組織
が断面の半分以上の厚さで形成されていたが、No.8
には繊維状組織が形成されていなかった。
As is clear from Table 2, No. No. Nos. 1 to 7 are all excellent in cracking property in longitudinal and lateral compression, and the drawing is less than 25%. 8 and 9 are inferior in crackability. Moreover, No. Nos. 1 and 3 have proof stress. Although it is almost the same as No. 8, Compared with No. 8, the absorbed energy is about 20% higher and the yield strength is No. 8. No. 8 lower than 8 Even in Nos. 2, 4 and 6, the maximum load is slightly low, but the absorbed energy is no. It is higher than 8. The proof stress value is No. No. higher than 8 In No. 7, the absorbed energy is no. It is considerably higher than No. 8, and Higher than 9 In addition, No. The fibrous structure was formed in each of Nos. 1 to 7 and 9 with a thickness of half or more of the cross section. 8
No fibrous tissue was formed in the.

【0020】[0020]

【発明の効果】本発明によれば、Al−Mg−Si系ア
ルミニウム合金押出材において、押出材の絞りが25%
以上となるようにしたことにより、縦圧縮及び横圧縮に
対し優れた耐圧壊割れ性を有し、かつ吸収エネルギーが
高く、例えば自動車フレーム(サイドメンバー、クロス
メンバー、バンパーステイ、サイドフレーム、ピラ
)、バンパー、ドアビーム等の自動車用構造部材、鉄
道車両、船舶の構造用部材等として好適なアルミニウム
合金押出材を得ることができる。
According to the present invention, in an Al-Mg-Si type aluminum alloy extruded material, the extruded material has a drawing rate of 25%.
As a result of the above, it has excellent resistance to crush and cracking against longitudinal compression and lateral compression, and has a high absorbed energy. For example, automobile frames (side members, cross members, bumper stays, side frames, pillars, etc.)
- ), An aluminum alloy extruded material suitable as a structural member for automobiles such as bumpers and door beams, a structural member for railway vehicles and ships, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明における絞りを説明する図(側面図、
正面図)である
FIG. 1 is a diagram illustrating a diaphragm according to the present invention (a side view,
(Front view)

【図2】 実施例に用いた押出材の断面形状を示す図で
ある。
FIG. 2 is a diagram showing a cross-sectional shape of an extruded material used in Examples.

【図3】 実施例の縦圧壊試験を説明する図(圧壊前、
圧壊後)である。
FIG. 3 is a diagram illustrating a vertical crush test of an example (before crush,
After crushing).

【図4】 実施例の横圧壊試験を説明する図(圧壊前、
圧壊後)である。
FIG. 4 is a diagram illustrating a lateral crush test of an example (before crush,
After crushing).

フロントページの続き (72)発明者 平野 正和 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内Continued front page    (72) Inventor Masakazu Hirano             14-1 Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Co., Ltd.             Kobe Steel Chofu Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 JIS5号引張試験片にて引張試験を実
施したときの破断面の肉厚減少率が25%以上であるこ
とを特徴とする耐圧壊割れ性に優れるAl−Mg−Si
系アルミニウム合金押出材。
1. An Al-Mg-Si having excellent resistance to pressure cracking, characterized in that a thickness reduction rate of a fracture surface when a tensile test is carried out on a JIS No. 5 tensile test piece is 25% or more.
Aluminum alloy extruded material.
【請求項2】 Mg:0.3〜0.8%(質量%、以下
同じ)、Si:0.5〜1.1%を含有するAl−Mg
−Si系合金からなることを特徴とする請求項1に記載
された耐圧壊割れ性に優れるAl−Mg−Si系アルミ
ニウム合金押出材。
2. Al-Mg containing Mg: 0.3 to 0.8% (mass%, the same hereinafter) and Si: 0.5 to 1.1%.
An Al-Mg-Si-based aluminum alloy extruded material having excellent resistance to pressure cracking as set forth in claim 1, which is made of a -Si-based alloy.
【請求項3】 Mn、Cr及びZrのいずれか1種又は
2種以上の含有量が0.1〜0.4%であることを特徴
とする請求項2に記載された耐圧壊割れ性に優れるAl
−Mg−Si系アルミニウム合金押出材。
3. The pressure crush resistance according to claim 2, wherein the content of any one or more of Mn, Cr and Zr is 0.1 to 0.4%. Excellent Al
-Mg-Si based aluminum alloy extruded material.
JP2003105713A 2000-03-02 2003-04-09 Al-Mg-Si ALUMINUM ALLOY EXTRUDED-MATERIAL SUPERIOR IN COLLAPSE CRACKING RESISTANCE Pending JP2003268473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105713A JP2003268473A (en) 2000-03-02 2003-04-09 Al-Mg-Si ALUMINUM ALLOY EXTRUDED-MATERIAL SUPERIOR IN COLLAPSE CRACKING RESISTANCE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000057774 2000-03-02
JP2000-57774 2000-03-02
JP2003105713A JP2003268473A (en) 2000-03-02 2003-04-09 Al-Mg-Si ALUMINUM ALLOY EXTRUDED-MATERIAL SUPERIOR IN COLLAPSE CRACKING RESISTANCE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000191823A Division JP3498948B2 (en) 2000-03-02 2000-06-26 Al-Mg-Si aluminum alloy extruded material with excellent pressure cracking resistance

Publications (1)

Publication Number Publication Date
JP2003268473A true JP2003268473A (en) 2003-09-25

Family

ID=29217597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105713A Pending JP2003268473A (en) 2000-03-02 2003-04-09 Al-Mg-Si ALUMINUM ALLOY EXTRUDED-MATERIAL SUPERIOR IN COLLAPSE CRACKING RESISTANCE

Country Status (1)

Country Link
JP (1) JP2003268473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006404A1 (en) * 2006-03-30 2008-12-24 Toyota Jidosha Kabushiki Kaisha 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2006404A1 (en) * 2006-03-30 2008-12-24 Toyota Jidosha Kabushiki Kaisha 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
EP2006404A4 (en) * 2006-03-30 2009-12-16 Toyota Motor Co Ltd 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same

Similar Documents

Publication Publication Date Title
EP2157200B1 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
JP4942372B2 (en) Aluminum alloy extrusion for electromagnetic forming
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
EP1041165A1 (en) Shock absorbing material
JP2011001563A (en) Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
JP2003034834A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP3502939B2 (en) Al-Mg-Si aluminum alloy extruded shape with excellent impact energy absorption
JP4587588B2 (en) Aluminum alloy extruded material with excellent axial crushing characteristics and method for producing the same
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP2003268473A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUDED-MATERIAL SUPERIOR IN COLLAPSE CRACKING RESISTANCE
JP3961324B2 (en) Hollow shock absorbing member with excellent bellows-like crushability
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
CN113667866A (en) High-strength high-toughness impact-resistant energy-absorbing Al-Mg-Si alloy
JP4183396B2 (en) Aluminum alloy extruded material with excellent crushing properties
JP4274674B2 (en) Aluminum alloy member excellent in crushability and manufacturing method thereof
JP3073197B1 (en) Shock absorbing member in automobile frame structure
JP3077976B1 (en) Extruded Al-Mg-Si based aluminum alloy material with excellent impact energy absorption characteristics in the extrusion axis direction
JP3498948B2 (en) Al-Mg-Si aluminum alloy extruded material with excellent pressure cracking resistance
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JP2003268474A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUDED-SHAPE SUPERIOR IN IMPACT ENERGY ABSORPTION
JP2005105317A (en) Aluminum alloy extruded hollow shape material excellent in bending workability and crush resistance
JP2003183757A (en) Shock-absorbing member showing excellent crush resistance