JP2003263979A - 非水電解質二次電池およびその製造法 - Google Patents

非水電解質二次電池およびその製造法

Info

Publication number
JP2003263979A
JP2003263979A JP2002066651A JP2002066651A JP2003263979A JP 2003263979 A JP2003263979 A JP 2003263979A JP 2002066651 A JP2002066651 A JP 2002066651A JP 2002066651 A JP2002066651 A JP 2002066651A JP 2003263979 A JP2003263979 A JP 2003263979A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
current collector
electrode active
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002066651A
Other languages
English (en)
Other versions
JP4162075B2 (ja
Inventor
Takayuki Nakamoto
貴之 中本
Satoshige Nanai
識成 七井
Yasuhiko Mifuji
靖彦 美藤
Shinji Kasamatsu
真治 笠松
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002066651A priority Critical patent/JP4162075B2/ja
Publication of JP2003263979A publication Critical patent/JP2003263979A/ja
Application granted granted Critical
Publication of JP4162075B2 publication Critical patent/JP4162075B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 高容量で充放電サイクル寿命特性に優れた非
水電解質二次電池を提供する。 【解決手段】 充放電可能な正極、充放電可能な負極、
および非水電解質からなり、前記負極が、連続気孔を有
する集電体および前記集電体に充填された負極活物質か
らなり、前記集電体の比表面積が0.002m2/g以
上0.06m2/g以下であり、前記集電体の空隙率が
60%以上97%以下であり、前記負極活物質の平均粒
径dが、0.5μm以上50μm以下であり、前記連続
気孔の合計体積の10%以上25%以下が前記負極活物
質で充填されており、前記負極活物質と前記集電体との
接合面積の前記負極活物質の表面積に対する割合が、5
%以上40%以下である非水電解質二次電池。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高容量かつ充放電
サイクル寿命特性に優れた非水電解質二次電池およびそ
の製造法に関し、特にその負極の改良に関する。
【0002】
【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。非水電解質二
次電池の正極活物質としては、LiMn24、LiCo
2、LiNiO2、V25、Cr25、MnO2、Ti
2、MoS2などの遷移金属酸化物や遷移金属カルコゲ
ン化合物が知られている。これらは層状もしくはトンネ
ル構造を有し、リチウムイオンを吸蔵・放出することが
できる。一方、負極活物質としては、金属リチウムの検
討が数多く行われている。しかしながら、金属リチウム
は充電時に表面に樹枝状リチウムを析出させるため、充
放電効率の低下や、樹枝状リチウムと正極との接触によ
る内部短絡の問題が生じる。
【0003】このような問題を解決するために、リチウ
ムイオンを吸蔵・放出できる一方でリチウムの樹枝状成
長を抑制し得るリチウム−アルミニウム合金などのリチ
ウム合金を負極に用いる検討が試みられている。しか
し、合金負極は、深い充放電の繰り返しにより微細化
し、それに伴い容量が低下するという問題を有する。こ
のような状況のもと、現在はリチウムを可逆的に吸蔵・
放出でき、サイクル性と安全性に優れた黒鉛系の炭素材
料を負極に用いたリチウムイオン電池が実用化されてい
る。
【0004】負極活物質としての黒鉛の理論容量は37
2mAh/gである。一方、現在実用化されているリチ
ウムイオン電池では、負極活物質の実際の充放電容量は
350mAh/gである。つまり、黒鉛を負極活物質と
して用いた電池は、ほぼ容量の限界にきているといえ
る。また、黒鉛は理論密度が2.2g/ccと低く、体
積あたりの負極に含まれる黒鉛重量はさらに減少する。
そのため体積あたりの容量の大きな金属材料を負極に利
用することが望まれている。
【0005】特開平7−122274号公報および特開
平7−235293号公報は、負極に金属酸化物を用い
ることを提案している。例えば結晶質のSnO、SnO
2などが、従来のWO2に比べて高容量をもつことが示さ
れている。また、特開平7−288123号公報は、S
nSiO3、SnSi1-xx3などの非晶質酸化物を負
極に用いることでサイクル特性が改善されると述べてい
る。
【0006】特願平9−132298号明細書は、特定
の金属塩および半金属塩が、高容量およびサイクル寿命
の点で非水電解質二次電池の負極材料として優れること
を示している。金属塩および半金属塩には、硝酸塩、硫
酸塩、硫酸水素塩、チオシアン酸塩、シアン酸塩、炭酸
塩、炭酸水素塩、ホウ酸水素塩、リン酸水素塩、セレン
酸塩、セレン酸水素塩、テルル酸塩、テルル酸水素塩、
タングステン酸塩、モリブデン酸塩、チタン酸塩、クロ
ム酸塩、ジルコン酸塩、ニオブ酸塩、タンタル酸塩、マ
ンガン酸塩、バナジン酸塩よりなる群から選択される少
なくとも1種が用いられている。
【0007】特開平10−233208号公報は、S
i、Ge、Sn、Pb、Bi、P、B、Ga、In、A
l、As、Sb、Zn、Ir、Mg、Ca、Srおよび
Baよりなる群から選択される2種以上の元素と、酸
素、硫黄、セレンおよびテルルよりなる群から選択され
る1種以上の元素とを含む結晶質化合物が、高容量でサ
イクル寿命に優れた負極材料であることを提案してい
る。
【0008】特開平9−246472号公報は、金属酸
化物に代わって、体積あたりの放電容量の増加や初充電
時の不可逆容量の抑制を目的に、様々な合金材料を提案
している。特開平11−86854号公報は、合金材料
の一粒子内にリチウムを吸蔵できる相と吸蔵しない相を
共存させることにより、充電状態(リチウム吸蔵状態)
応力をリチウムを吸蔵しない相で緩和させてサイクル特
性の向上を図ることが提案されている。
【0009】
【発明が解決しようとする課題】携帯用機器の高機能化
や電気自動車用を始めとする大型電池の開発の動きが活
発化するなか、駆動用電源としての電池の長寿命化に対
する要求が一層強まっている。このような要望に対し
て、上記の負極材料は、未だ充分なサイクル性を与える
に至っていない。すなわち、合金材料の組成や相構造の
改良により、充放電の可逆性を向上させることはできる
が、リチウムを吸蔵可能な金属や合金に共通の充放電時
の体積変化が大きいという問題は、未だ解決されていな
い。
【0010】結晶学的あるいは冶金学的な数値に基づく
と、充電時の活物質の膨張率は以下のようになる。例え
ば活物質がSnの場合、1モルのSnに対する冶金学的
なLiの最大挿入量は4.4モルである。また、結晶格
子体積に基づくと、リチウム挿入前に対する挿入後のS
nの理論体積膨張率は358%となる。このような大き
な膨張率を有する負極活物質を、従来の電極の構成や方
法に従って製造した場合、特に充電時に、電極の膨張や
形態変化が大きくなる。そのような従来の電極で電池を
構成した場合、充放電時の電極の変形や電解液の偏在に
よるサイクル特性の悪化や電池外観の変形をもたらすお
それがある。
【0011】
【課題を解決するための手段】本発明は、上記に鑑み、
充放電時の膨脹・収縮にともなう負極の変形や電解液の
偏在を防止することにより、高容量で充放電サイクル寿
命特性に優れた非水電解質二次電池を提供するものであ
る。
【0012】すなわち、本発明は、充放電可能な正極、
充放電可能な負極、および非水電解質からなり、前記負
極が、連続気孔を有する集電体および前記集電体に充填
された負極活物質からなり、前記集電体の比表面積が
0.002m2/g以上0.06m2/g以下であり、前
記集電体の空隙率が60%以上97%以下であり、前記
負極活物質の平均粒径dが、0.5μm以上50μm以
下であり、前記連続気孔の合計体積の10%以上25%
以下が前記負極活物質で充填されており、前記負極活物
質の表面積に対する前記負極活物質と前記集電体との接
合面積の割合が、5%以上40%以下である非水電解質
二次電池に関する。ここで、前記負極活物質の表面積に
対する前記負極活物質と前記集電体との接合面積の割合
は、負極の任意の断面のSEM観察により測定すること
ができる。
【0013】前記集電体は、金属または合金からなり、
CuおよびNiの少なくとも1種を含むことが好まし
い。前記負極活物質は、Sn単体またはSnを含む合金
からなることが好ましい。前記負極活物質は、Si単体
またはSiを含む合金からなることが好ましい。
【0014】本発明は、また、充放電可能な正極を作製
する工程A、充放電可能な負極を作製する工程B、非水
電解質を調製する工程C、ならびに前記正極、前記負極
および前記非水電解質を用いて電池を組み立てる工程D
からなり、工程Bが、連続気孔を有し、比表面積が0.
002m2/g以上0.06m2/g以下であり、空隙率
が60%以上97%以下である集電体に、平均粒径dが
0.5μm以上50μm以下の負極活物質を充填するこ
とにより、前記連続気孔の合計体積の10%以上25%
以下が前記負極活物質で充填されており、前記負極活物
質の表面積に対する前記負極活物質と前記集電体との接
合面積の割合が5%以上40%以下である負極を得る工
程である非水電解質二次電池の製造法に関する。
【0015】本発明は、また、工程Bが、前記集電体へ
前記負極活物質をメッキにより充填する工程b1からな
る非水電解質二次電池の製造法(第1の製造法)に関す
る。第1の製造法では、工程b1に続き、前記集電体と
前記負極活物質とを、それらの融点未満の温度で加熱す
る工程を有することが好ましい。
【0016】本発明は、また、工程Bが、前記集電体へ
前記負極活物質を塗工により充填し、続いて前記負極活
物質を焼結する工程b2からなる非水電解質二次電池の
製造法(第2の製造法)に関する。
【0017】本発明は、また、工程Bが、前記集電体へ
前記負極活物質および結着剤からなる混合物を塗工によ
り充填する工程b3からなる非水電解質二次電池の製造
法(第3の製造法)に関する。
【0018】第1の製造法は、負極活物質がSn単体ま
たはSnを含む合金からなる場合に有効である。第2お
よび第3の製造法は、負極活物質がSn単体またはSn
を含む合金からなる場合、ならびに負極活物質がSi単
体またはSiを含む合金からなる場合に有効である。
【0019】
【発明の実施の形態】本発明の非水電解質二次電池は、
充放電による活物質の膨脹・収縮にともなう負極の変形
・電解液の偏在化を抑制したものであり、高容量で優れ
たサイクル特性を有する点に主な特徴を有する。
【0020】充放電による負極の変形・電解液の偏在化
のメカニズムは、概ね次のようである。すなわち、負極
活物質としてリチウムを電気化学的に吸蔵可能な金属ま
たは合金を用いた場合、充電により生成するMxLi
(M:リチウムを吸蔵可能な金属または合金)の体積
は、充電前のMに比較して増加している。例えば、金属
Snは、リチウムを最大量吸蔵するとLi4.4Snとな
る。この場合の充電による体積増加率は3.58倍であ
る(容量は993mAh/g)。一方、負極活物質とし
てリチウムをインターカレーション反応により吸蔵する
炭素材料、例えば黒鉛を用いた場合、その体積増加率は
約10%である(容量は372mAh/g)。このよう
に、リチウムを電気化学的に吸蔵可能な金属または合金
を負極活物質に用いた場合、非常に高容量である一方、
充電時の体積変化が大きい。
【0021】充電時の負極活物質の膨張により、負極集
電体の空隙率が過度に低い場合には、負極の形状変化や
破壊が起こる。また、負極の大きな体積変化にともなっ
て、電解液の分布が不均一となり、負極内での電気化学
反応が均質に進行しなくなる。このため、円滑に充放電
反応が行われる部分と、そうでない部分とが生じる。そ
の結果、設計時に想定した利用率や充電深度から乖離す
る部分、すなわちサイクル寿命の観点から許容される利
用率や充電深度を越える部分が発生する。特に充電時に
は、負極の一部に金属リチウムが樹枝状に析出し、サイ
クル特性が低下するおそれがある。以上の現象は、活物
質の粒径が過度に大きい場合または集電体への活物質充
填率が過度に大きい場合にも起こりうる。一方、負極集
電体の空隙率が過度に高い場合、充放電による活物質の
体積変化に対しては充分な空間を確保できるが、高すぎ
る空隙率のために、充放電時の集電性が不十分な状態と
なり、その結果、サイクル性が劣化する。以上の現象
は、活物質の粒径が過度に小さい場合または集電体への
活物質充填率が過度に小さい場合にも起こりうる。従っ
て、負極集電体の空隙率には好適範囲が存在する。ま
た、集電体の比表面積は、集電体の空隙率に応じて変化
するため、空隙率の好適範囲によって比表面積の好適範
囲が決まる。
【0022】また、活物質の膨張率はその種類により異
なるが、活物質の粒径と集電体への活物質充填率にも、
負極の体積変化を抑制する観点から要求される好適範囲
が存在する。その好適範囲において、負極の高容量を達
成し、かつ、集電性を確保するには、必要量の活物質が
集電体に充填されるとともに、活物質粒子と集電体とが
必要充分に接合している必要がある。そのためには、活
物質の粒径と集電体への活物質充填率の好適範囲に応じ
て、集電体の比表面積をさらに好適化する必要がある。
【0023】ここで、活物質粒子と集電体との接合面積
が過度に大きい場合、充放電による活物質の体積変化に
応じて、集電体に引張または圧縮応力が作用し、負極の
形状変化や破壊が発生してしまう。一方、活物質粒子と
集電体との接合面積が過度に小さい場合、両者間の接合
強度が弱いため、充放電による活物質の体積変化に応じ
て活物質粒子と集電体との接触が不十分になり、その結
果、サイクル性が劣化する。従って、活物質粒子と集電
体との接合面積も好適化する必要がある。
【0024】本発明者らは鋭意検討の結果、連続気孔を
有する集電体および前記集電体に充填された負極活物質
からなる負極において、負極の形状変化や破壊ならびに
電解液の偏在化を防止し、容量、集電性およびサイクル
性を確保し得る以下の条件を見出し、本発明を完成する
に至った。
【0025】まず、集電体の比表面積の好適範囲は0.
002m2/g以上0.06m2/g以下、さらに好まし
くは0.004m2/g以上0.02m2/g以下であ
る。比表面積が0.002m2/g未満では、負極の形
状変化や破壊、電解液の偏在化が生じる。一方、比表面
積が0.06m2/gをこえると、充放電時の集電性が
不十分な状態となり、サイクル性が劣化する。集電体の
空隙率の好適範囲は60%以上97%以下、さらに好ま
しくは80%以上92%以下である。空隙率が60%未
満では、負極の形状変化や破壊、電解液の偏在化が生
じ、97%をこえると、充放電時の集電性が不十分な状
態となり、サイクル性が劣化する。
【0026】負極活物質の平均粒径dの好適範囲は0.
5μm以上50μm以下、さらに好ましくは10μm以
上30μm以下である。平均粒径dが0.5μm未満ま
たは50μmをこえると、負極の形状変化や破壊、電解
液の偏在化が生じる。なお、「平均粒径」における「平
均」とは、活物質粒子の体積基準の平均(D50)をい
う。集電体への活物質充填率(集電体が有する連続気孔
の合計体積に占める活物質体積の割合)に関しては、集
電体が有する連続気孔の合計体積の10%以上25%以
下、さらに好ましくは15%以上22%以下が、負極活
物質で充填されていることが必要である。連続気孔の合
計体積の10%未満しか活物質で充填されていない場合
には、電池の高容量化が困難になり、連続気孔の合計体
積の25%をこえて活物質が充填されている場合には、
負極の形状変化や破壊、電解液の偏在化が生じる。
【0027】負極活物質と集電体との接合面積の好適範
囲は、負極活物質の表面積の5%以上40%以下、さら
に好ましくは10%以上30%以下である。上記接合面
積の割合が5%未満になると、充放電による活物質の体
積変化に応じて活物質粒子と集電体との接触が不十分に
なり、サイクル性が劣化する。一方、接合面積の割合が
40%をこえると、集電体に引張または圧縮応力が作用
し、負極の形状変化や破壊が発生してしまう。
【0028】負極集電体は、CuおよびNiの少なくと
も1種を含む金属もしくは合金からなることが望まし
い。CuとNiは全率固溶体を形成するため、集電体が
CuおよびNiの両方を含む場合のCu/Niの比率は
限定されない。集電体の構成材料には、上記以外にも、
電池内において化学変化を起こさない電子伝導体、例え
ば、ステンレス鋼、インコネル合金、ハステロイ等を用
いることができる。
【0029】集電体は、例えば、Cu粉末、有機バイン
ダーおよび水からなるスラリーに、界面活性剤および蒸
発型発泡剤を添加し、得られた混合物を薄膜に成形後、
熱処理してCu粉末を焼結することにより、製造するこ
とができる。また、発泡ウレタン等のような、三次元網
目構造を有する高分子樹脂からなるシートの表面に、無
電解メッキ法による前処理でCuを平均厚0.1μmで
付着させ、電気メッキの後、得られたシートから樹脂を
焼却除去し、還元処理することにより、製造することが
できる。ただし、集電体の製造方法はこれらの方法に限
るものではない。
【0030】負極活物質は、Sn単体またはSnを含む
合金からなることが望ましい。Snを含む合金として
は、例えば、Snと、Ag、Au、Bi、Cd、Co、
Cr、Cu、Ge、Fe、In、Mn、Mo、Ni、P
b、Pt、Sb、Ti、WおよびZnよりなる群から選
択される少なくとも1種の元素とを含む合金が好まし
い。
【0031】あるいは、負極活物質は、Si単体または
Siを含む合金からなることが望ましい。Siを含む合
金としては、例えば、Siと、Ag、Au、Bi、C
d、Co、Cr、Cu、Ge、Fe、In、Mg、M
n、Mo、Ni、Pb、Pt、Sb、Ti、V、Wおよ
びZnよりなる群から選択される少なくとも1種の元素
とを含む合金が好ましい。
【0032】負極活物質がSn単体またはSnを含む合
金からなる場合、負極集電体への負極活物質の充填方法
としてメッキ法を用いることができる。電解メッキを採
用してもよく、無電解メッキを採用してもよい。メッキ
後、集電体および集電体に付着した活物質粒子を、それ
らの融点未満の温度で熱処理すると、集電体と活物質粒
子の接合力が増大するため、より優れた負極が得られ
る。
【0033】負極活物質がSn単体またはSnを含む合
金からなる場合、および負極活物質がSi単体またはS
iを含む合金からなる場合には、負極集電体への負極活
物質の充填方法として、負極活物質を集電体に塗布した
後、負極活物質を焼結する方法を用いることができる。
また、負極活物質および結着剤からなる混合物を集電体
に塗布する方法を用いることもできる。結着剤量は、負
極活物質100重量部あたり、0.3重量部以上5重量
部以下が好ましい。結着剤量が0.3重量部未満の場
合、活物質と集電体との結合力が弱くなり、5重量部を
こえると、負極の電子伝導性が低下する。
【0034】負極活物質を製造する好ましい方法の1つ
は、ガスアトマイズ法である。その他に、液体急冷法、
イオンビームスパッタリング法、真空蒸着法、メッキ
法、気相化学反応法、メカニカルアロイ法などを適用す
ることができる。
【0035】本発明におけるセパレータとしては、大き
なイオン透過度および所定の機械的強度を有する電子絶
縁性の微多孔性薄膜が好ましく用いられる。セパレータ
の材質としては、耐有機溶剤性と疎水性の観点からポリ
プロピレン樹脂、ポリエチレン樹脂が用いられ、耐熱性
の観点からアラミド樹脂などが用いられる。これらは単
独で用いてもよく、複合して用いてもよい。セパレータ
の厚みは5〜100μm、さらには5〜20μmが好ま
しい。セパレータの空隙率は、イオンの透過性、電解液
の粘度、セパレータ自身の機械的物性などに応じて決定
されるが、一般的には20〜80%であることが望まし
い。
【0036】本発明では、リチウム含有遷移金属酸化物
などの従来公知の正極材料を用いることができる。リチ
ウム含有遷移金属酸化物としては、例えば、LixCo
2、LixNiO2、LixMnO2、LixCoyNi1-y
2、LixCoy1-yz、LixNi1-yyz、Lix
Mn24、LixMn2-yy4(M=Na、Mg、S
c、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、
Cr、Pb、Sb、Bのうち少なくとも一種)、(ここ
でx=0〜1.2、y=0〜0.9、z=2.0〜2.
3)などが挙げられる。ここで、上記のx値は、充放電
開始前の値であり、充放電により増減する。ただし、遷
移金属カルコゲン化物、バナジウム酸化物およびそのリ
チウム化合物、ニオブ酸化物およびそのリチウム化合
物、有機導電性物質である共役系ポリマー、シェブレル
相化合物等の他の正極材料を用いることも可能である。
また、複数の異なる正極材料を混合して用いることも可
能である。正極活物質の平均粒径は、特に限定されない
が、1〜30μmであることが好ましい。
【0037】本発明で使用される正極用導電剤は、用い
る正極材料の充放電電位において、化学変化を起こさな
い電子伝導性材料であれば何でもよい。例えば、天然黒
鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト
類、アセチレンブラック、ケッチェンブラック、チャン
ネルブラック、ファーネスブラック、ランプブラック、
サーマルブラック等のカーボンブラック類、炭素繊維、
金属繊維などの導電性繊維類、フッ化カーボン、アルミ
ニウム等の金属粉末類、酸化亜鉛、チタン酸カリウムな
どの導電性ウィスカー類、酸化チタンなどの導電性金属
酸化物あるいはポリフェニレン誘導体などの有機導電性
材料などを単独又はこれらの混合物として含ませること
ができる。これらの導電剤のなかでは、人造黒鉛、アセ
チレンブラックが特に好ましい。導電剤の添加量は、特
に限定されないが、正極材料に対して1〜50重量%が
好ましく、特に1〜30重量%が好ましい。カーボンや
グラファイトでは2〜15重量%が特に好ましい。
【0038】本発明に用いられる正極用結着剤は、熱可
塑性樹脂、熱硬化性樹脂のいずれであってもよい。好ま
しい結着剤は、例えば、ポリエチレン、ポリプロピレ
ン、ポリテトラフルオロエチレン(PTFE)、ポリフ
ッ化ビニリデン(PVDF)、スチレンブタジエンゴ
ム、テトラフルオロエチレン−ヘキサフルオロエチレン
共重合体、テトラフルオロエチレン−ヘキサフルオロプ
ロピレン共重合体(FEP)、テトラフルオロエチレン
−パーフルオロアルキルビニルエーテル共重合体(PF
A)、フッ化ビニリデン−ヘキサフルオロプロピレン共
重合体、フッ化ビニリデン−クロロトリフルオロエチレ
ン共重合体、エチレン−テトラフルオロエチレン共重合
体(ETFE樹脂)、ポリクロロトリフルオロエチレン
(PCTFE)、フッ化ビニリデン−ペンタフルオロプ
ロピレン共重合体、プロピレン−テトラフルオロエチレ
ン共重合体、エチレン−クロロトリフルオロエチレン共
重合体(ECTFE)、フッ化ビニリデン−ヘキサフル
オロプロピレン−テトラフルオロエチレン共重合体、フ
ッ化ビニリデン−パーフルオロメチルビニルエーテル−
テトラフルオロエチレン共重合体、エチレン−アクリル
酸共重合体または前記材料の(Na+)イオン架橋体、
エチレン−メタクリル酸共重合体または前記材料の(N
+)イオン架橋体、エチレン−アクリル酸メチル共重
合体または前記材料の(Na+)イオン架橋体、エチレ
ン−メタクリル酸メチル共重合体または前記材料の(N
+)イオン架橋体を挙げることができる。これらの材
料は単独又は混合物として用いることができる。これら
の材料の中でより好ましい材料はポリフッ化ビニリデン
(PVDF)、ポリテトラフルオロエチレン(PTF
E)である。
【0039】本発明に用いられる正極用集電体として
は、用いる正極材料の充放電電位において化学変化を起
こさない電子伝導体であれば何でもよい。正極集電体の
構成材料としては、例えば、ステンレス鋼、アルミニウ
ム、チタン、炭素、導電性樹脂などの他に、アルミニウ
ムやステンレス鋼の表面にカーボンあるいはチタンを付
与したものが用いられる。特に、アルミニウムあるいは
アルミニウム合金が好ましい。これらの材料の表面を酸
化して用いることもできる。また、表面処理により集電
体表面に凹凸を付けることが望ましい。正極集電体の形
状は、フォイルの他、フィルム、シート、ネット、パン
チされたもの、ラス体、多孔質体、発泡体、繊維群、不
織布の成形体などが用いられる。正極集電体の厚みは、
特に限定されないが、1〜500μmのものが用いられ
る。
【0040】本発明に用いられる負極用結着剤は、熱可
塑性樹脂、熱硬化性樹脂のいずれであってもよい。好ま
しい結着剤は、例えば、ポリエチレン、ポリプロピレ
ン、ポリテトラフルオロエチレン(PTFE)、ポリフ
ッ化ビニリデン(PVDF)、スチレンブタジエンゴ
ム、テトラフルオロエチレン−ヘキサフルオロエチレン
共重合体、テトラフルオロエチレン−ヘキサフルオロプ
ロピレン共重合体(FEP)、テトラフルオロエチレン
−パーフルオロアルキルビニルエーテル共重合体(PF
A)、フッ化ビニリデン−ヘキサフルオロプロピレン共
重合体、フッ化ビニリデン−クロロトリフルオロエチレ
ン共重合体、エチレン−テトラフルオロエチレン共重合
体(ETFE樹脂)、ポリクロロトリフルオロエチレン
(PCTFE)、フッ化ビニリデン−ペンタフルオロプ
ロピレン共重合体、プロピレン−テトラフルオロエチレ
ン共重合体、エチレン−クロロトリフルオロエチレン共
重合体(ECTFE)、フッ化ビニリデン−ヘキサフル
オロプロピレン−テトラフルオロエチレン共重合体、フ
ッ化ビニリデン−パーフルオロメチルビニルエーテル−
テトラフルオロエチレン共重合体、エチレン−アクリル
酸共重合体または前記材料の(Na+)イオン架橋体、
エチレン−メタクリル酸共重合体または前記材料の(N
+)イオン架橋体、エチレン−アクリル酸メチル共重
合体または前記材料の(Na+)イオン架橋体、エチレ
ン−メタクリル酸メチル共重合体または前記材料の(N
+)イオン架橋体を挙げることができる。これらの材
料は単独又は混合物として用いることができる。これら
の材料の中でより好ましい材料は、スチレンブタジエン
ゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共
重合体または前記材料の(Na+)イオン架橋体、エチ
レン−メタクリル酸共重合体または前記材料の(N
+)イオン架橋体、エチレン−アクリル酸メチル共重
合体または前記材料の(Na+)イオン架橋体、エチレ
ン−メタクリル酸メチル共重合体または前記材料の(N
+)イオン架橋体である。
【0041】本発明に用いられる非水電解質は、溶媒
と、その溶媒に溶解するリチウム塩とから構成されてい
る。非水溶媒としては、例えば、エチレンカーボネ−ト
(EC)、プロピレンカ−ボネ−ト(PC)、ブチレン
カーボネート(BC)、ビニレンカーボネート(VC)
などの環状カーボネート類、ジメチルカーボネート(D
MC)、ジエチルカーボネート(DEC)、エチルメチ
ルカーボネート(EMC)、ジプロピルカーボネート
(DPC)などの鎖状カーボネート類、ギ酸メチル、酢
酸メチル、プロピオン酸メチル、プロピオン酸エチルな
どの脂肪族カルボン酸エステル類、γ−ブチロラクトン
等のγ−ラクトン類、1,2−ジメトキシエタン(DM
E)、1,2−ジエトキシエタン(DEE)、エトキシ
メトキシエタン(EME)等の鎖状エーテル類、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン等の環状
エーテル類、ジメチルスルホキシド、1,3−ジオキソ
ラン、ホルムアミド、アセトアミド、ジメチルホルムア
ミド、ジオキソラン、アセトニトリル、プロピルニトリ
ル、ニトロメタン、エチルモノグライム、リン酸トリエ
ステル、トリメトキシメタン、ジオキソラン誘導体、ス
ルホラン、メチルスルホラン、1,3−ジメチル−2−
イミダゾリジノン、3−メチル−2−オキサゾリジノ
ン、プロピレンカーボネート誘導体、テトラヒドロフラ
ン誘導体、エチルエーテル、1,3−プロパンサルト
ン、アニソール、ジメチルスルホキシド、N−メチルピ
ロリドン、などの非プロトン性有機溶媒を挙げることが
できる。これらは単独で用いてもよく、2種以上を混合
して用いてもよい。なかでも環状カーボネートと鎖状カ
ーボネートとの混合溶媒または環状カーボネートと鎖状
カーボネートと脂肪族カルボン酸エステルとの混合溶媒
が好ましい。
【0042】これらの溶媒に溶解するリチウム塩として
は、例えばLiClO4、LiBF4、LiPF6、Li
AlCl4、LiSbF6、LiSCN、LiCl、Li
CF3SO3、LiCF3CO2、Li(CF3SO22
LiAsF6、LiN(CF3SO22、LiB10
10、低級脂肪族カルボン酸リチウム、LiCl、Li
Br、LiI、クロロボランリチウム、四フェニルホウ
酸リチウム、イミド類等を挙げることができる。これら
は単独で用いてもよく、2種以上を混合して用いてもよ
いが、少なくともLiPF6を用いることが好ましい。
【0043】特に好ましい非水電解質は、ECまたはP
Cなどの環状カーボネート類を少なくとも含み、LiP
6を含む非水電解質である。非水電解質を電池内に添
加する量は、特に限定されない。正極材料や負極材料の
量や電池のサイズに応じた必要量の非水電解質を用い
る。溶質の非水溶媒に対する溶解量は、特に限定されな
いが、0.2〜2mol/l、さらには0.5〜1.5
mol/lとすることが好ましい。
【0044】放電特性や充放電特性を改良する目的で、
他の化合物を電解質に添加することも有効である。例え
ば、トリエチルフォスファイト、トリエタノールアミ
ン、環状エーテル、エチレンジアミン、n−グライム、
ピリジン、ヘキサリン酸トリアミド、ニトロベンゼン誘
導体、クラウンエーテル類、第四級アンモニウム塩、エ
チレングリコールジアルキルエーテル、リン酸エステル
などを用いることができる。
【0045】本発明における負極板と正極板の構成は、
少なくとも正極合剤面の対向面に負極合剤面が存在して
いることが好ましい。また、電池の形状はコイン型、ボ
タン型、シート型、積層型、円筒型、偏平型、角型、電
気自動車等に用いる大型のものなどいずれにも適用でき
る。また、本発明の非水電解質二次電池は、携帯情報端
末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪
車、電気自動車、ハイブリッド電気自動車等に用いるこ
とができるが、特にこれらに限定されるわけではない。
【0046】
【実施例】以下に、本発明を実施例に基づいて具体的に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。 《実施例1〜9および比較例1〜8》 (i)負極集電体の作製 負極集電体は、Cu粉末、有機バインダーおよび水から
なるスラリーに、界面活性剤と蒸発型発泡剤を添加し、
得られた混合物を薄膜に成形し、熱処理し、Cu粉末を
焼結させることにより作製した。Cu粉末の粒径、熱処
理温度と時間、および界面活性剤と蒸発型発泡剤の種類
を調整することで、表1に示す物性を有する各集電体を
作製した。集電体はすべて厚さ100μmとした。な
お、これらの集電体を得るための原料組成および諸条件
は当業者に明らかであり、当業者であれば従来の方法に
沿って容易に作製することができる。
【0047】(ii)負極の作製 メッキ法により、上記集電体に負極活物質を充填した。
ここでは電解メッキを採用した。Snメッキには、0.
1モル濃度のH2SO4と0.1モル濃度のSnSO4
溶解したメッキ液(水溶液)を用いた。このメッキ液1
00mlに上記の集電体を浸漬した。浴温度は20℃と
し、浸漬時間は15分間とした。得られた負極に含まれ
るSn量を、化学分析法でSnの定量分析を行うことに
より求めた。
【0048】(iii)負極の物性 得られた負極の厚さ、集電体の空隙率、集電体の比表面
積、活物質の平均粒径、活物質充填率(集電体が有する
連続気孔の合計体積に占める活物質体積の割合)、活物
質の表面積に対する活物質と集電体との接合面積の割合
を表1に示す。表1に示すように負極の厚さは全て10
0μmであった。なお、集電体の空隙率および活物質充
填率は、水銀ポロシメータ法を用いて求めた。負極活物
質の表面積に対する負極活物質と集電体との接合面積の
割合は、負極断面のSEM観察から求めた。
【0049】(iv)試験セルの作製 得られた負極の特性を明らかにするために、図1に示す
試験セルを以下のように作製した。まず、上記負極を直
径16mmに打ち抜き、試験電極1とした。試験電極1
をケース2の中に置き、微多孔性ポリプロピレンセパレ
ータ3を試験電極上に置いた。一方、エチレンカーボネ
ート(EC)と1,2−ジメトキシエタン(DME)と
を体積比1:1含む混合溶媒に、過塩素酸リチウム(L
iClO 4)を1モル/lの濃度で溶解し、電解液を調
製した。この電解液をセパレータ3の上から注液した。
次いで、内側に直径17.5mmの金属Li(対極4)を
張り付け、外周部にポリプロピレン製のガスケット5を
付した封口板6を用いてケース2の開口部を封口し、試
験セルとした。
【0050】(v)試験セルの評価 試験セルの充放電を45℃で繰り返し、負極(試験電極
1)の膨張・収縮の程度を調べた。まず、試験セルを
0.5mAの定電流で、試験電極1の電位が対極4に対
して0Vになるまでカソード分極(試験電極1を負極と
見る場合には充電に相当)し、次に試験電極1の電位が
対極4に対して1.5Vになるまでアノード分極(試験
電極1を負極と見る場合には放電に相当)した。そし
て、初期充電時(1回目のカソード分極後)の負極の厚
さと空隙率を求めた。また、充放電を100サイクル繰
り返した後の放電容量と、初期の放電容量から、容量維
持率を求めた。結果を表1に示す。さらに、すべての試
験セルについて、100サイクルの充放電を繰り返した
後の試験電極を取り出して観察したところ、試験電極の
表面に金属リチウムの析出は見られなかった。この結果
により、本実施例の負極にデンドライトは発生しないこ
とを確認した。
【0051】(vi)円筒型電池の作製 次に、前記負極を用いた電池のサイクル特性を評価する
ために、図2に示す円筒型電池を以下のように作製し
た。正極活物質であるLiMn24は、Li2CO3とM
34とを所定のモル比で混合し、900℃で加熱する
ことによって合成した。さらに、これを100メッシュ
以下に分級したものを正極活物質とした。正極活物質1
00gに対して導電剤として炭素粉末を10g、結着剤
としてポリ4フッ化エチレンの水性ディスパージョンを
8gと純水を加え、ペーストを得た。得られたペースト
をチタンの芯材に塗布し、乾燥、圧延して正極11を得
た。
【0052】スポット溶接で取り付けた芯材と同材質の
正極リード14を有する正極11と、スポット溶接で取
り付けた芯材と同材質の負極リード15を有する負極1
2とを、両極板より幅広の帯状微多孔性ポリプロピレン
製セパレータ13を介して渦巻状に捲回することで、電
極体を構成した。次いで、電極体の上下それぞれにポリ
プロピレン製の絶縁板16、17を配して電槽18に挿
入した。電槽18の上部に段部を形成させた後、試験セ
ルに用いたのと同じ電解液を電槽18に注液した。最後
に正極端子20を有する封口板19で電槽18の開口部
を密閉して円筒型電池とした。
【0053】(vii)円筒型電池の評価 得られた円筒型電池の充放電を45℃で、充放電電流
4.0mA/cm2(30分率相当)、充放電電圧範囲
4.3V〜2.6Vで繰り返し、高率充放電における1
サイクル目の放電容量に対する100サイクル目の容量
維持率を求めた。結果を表1に示す。
【0054】
【表1】
【0055】[集電体の空隙率に関する考察]実施例1
〜3では、初期充電時においても、負極の厚さは100
μmを維持しており、負極の空隙率は15%に留まって
いる(実施例1)。100サイクル後の容量維持率も良
好である。一方、比較例1では、負極の厚さが充電時に
顕著に増大しており、負極の空隙率は12%にまで低下
している。100サイクル後の容量維持率も40%と低
い値である。比較例2でも、100サイクル後の容量維
持率は45%と低い値である。
【0056】この結果については、次のように考える。
すなわち、活物質であるSnの1モルに対するLiの最
大挿入量が4.4モルであると仮定すると、Li挿入前
に対する挿入後(充電時)の理論体積膨張率は358%
である。しかしながら、表1のとおり負極の空隙率の大
きな実施例1〜3では、膨張分の体積が負極内の空間に
収容されるため、負極の厚さは変化することがなく、充
放電に伴う負極の形状変化が少ないと考えられる。その
結果、サイクル特性も良化していると考えられる。
【0057】これに対して、負極集電体の空隙率の小さ
な比較例1では、充電時の活物質の膨張を負極内の空間
に収容することが困難であるため、負極の厚さが大幅に
増加し、負極形状が大幅に変化してサイクル特性が悪化
すると考えられる。しかも、充電時の空隙率は12%で
あるから、活物質への電解液の供給も不十分になってい
ると考えられる。一方、比較例2のように、負極集電体
の空隙率が97%をこえる場合には、空隙率が過剰に高
いため充放電時の集電性が不十分となり、サイクル特性
が劣化すると考えられる。集電体の比表面積は、集電体
の空隙率に応じて変化するため、好適な比表面積の範囲
は好適な空隙率の範囲に対応している。
【0058】[活物質の平均粒径に関する考察]実施例
4、5の負極は、充電時においても厚さ100μmを維
持しており、空隙率は35%までの低下に留まってい
る。さらに、100サイクル後の容量維持率も良好であ
る。一方、比較例3では、活物質の平均粒径が過度に小
さいため、高容量を達成するのに必要な充填率を得る場
合、集電体の表面積の全面に活物質を付着させる必要が
ある。この場合、充電時には集電体と付着している活物
質粒子との間に引張・圧縮応力が作用する。その結果、
負極の厚さが大幅に増大し、100サイクル後の容量維
持率も30%と低くなると考えられる。また、比較例4
では、活物質の平均粒径が過度に大きいため、充電時の
活物質の膨張を負極内の空間に収容することが困難とな
り、負極の厚さが大幅に増加し、サイクル特性が悪化し
ていると考えられる。
【0059】[活物質の充填率に関する考察]活物質の
平均粒径が25μmである場合、充填率の異なる実施例
6と7の負極は、いずれも充電時において厚さ100μ
mを維持しており、空隙率は15%に留まっている。1
00サイクル後の容量維持率も良好である。一方、比較
例5では、活物質の充填率が過度に小さいため、高容量
を達成できない。また、比較例6では、活物質の充填率
が過度に大きいため、充電時の活物質の膨張を負極内の
空間に収容することが困難となり、負極の厚さが大幅に
増加している。また、このような充放電による電極形状
の大幅な変化がサイクル特性の悪化をもたらしていると
考えられる。しかも、充電時の空隙率は3%であるか
ら、活物質への電解液の供給も不十分と考えられる。
【0060】[活物質と集電体との接合面積に関する考
察]負極活物質の表面積に対する負極活物質と集電体と
の接合面積の割合がそれぞれ5%および40%である実
施例8と9の負極では、充電時においても活物質と集電
体との接合が維持されていると考えられ、負極の厚さは
100μmを維持している。また、充電時の空隙率は3
5%に留まっている。100サイクル後の容量維持率も
良好である。一方、比較例7では、負極活物質の表面積
に対する負極活物質と集電体との接合面積の割合が過度
に小さいため、充電時に活物質が集電体と離れてしま
い、サイクル特性が悪化していると考えられる。また、
比較例8の電極では、負極活物質の表面積に対する負極
活物質と集電体の接合面積の割合が過度に大きいため、
充電時には集電体と付着粒子間に引張・圧縮応力が作用
する。その結果、負極の厚さが増大し、100サイクル
後の容量維持率も40%と低くなると考えられる。
【0061】なお、実施例2の電池は、高容量でありな
がら、サイクル維持率が特に優れていた。実施例2の負
極において、集電体の空隙率は90%、比表面積は0.
025m2/gであり、この集電体の連続気孔内には平
均粒径25μmのSnが充填率が21%で保持されてお
り、Sn粒子同士の間隔は約40μmであった。また、
負極活物質の表面積に対する、負極活物質と集電体との
接合面積の割合は20%であった。この電極の初期充電
を行ったところ、Sn粒子同士が点接触するまで膨張し
た。そのため、負極の厚さが変化することはなかった。
従って、実施例2の負極は、空隙を最も有効に利用でき
ている状態と言える。また、充放電を繰り返しても活物
質と集電体との接着は維持されていた。なお、集電体へ
負極活物質を付着させる際に、本実施例ではSn単体の
メッキを行ったが、Snを含む合金を用いた場合にも同
様の結果が得られた。
【0062】《実施例10〜12》本実施例では、負極
集電体の組成について説明する。負極集電体は、空隙率
95%、比表面積0.035m2/g、厚さ100μm
のものを用いた。集電体の作製方法は、原料粉末組成が
異なること以外は先述の実施例と同一である。集電体の
組成にはCu、Cu0.5Ni0.5の固溶体またはNiを選
択した。これらの集電体を用いたこと以外、先述の実施
例と同様の操作によって、表2に示す物性の負極を作製
し、評価した。実施例10〜12の負極はすべて、充電
時においても、厚さ100μmを維持しており、充電時
の空隙率は20%に留まっている。100サイクル後の
容量維持率も良好である。なお、CuとNiからなる合
金としては、上記以外のすべての組成を用いることがで
きる。
【0063】
【表2】
【0064】《実施例13、14》本実施例では、負極
集電体への負極活物質の付着方法として、負極活物質を
集電体に塗布した後、焼結する方法を採用する場合につ
いて説明する。負極集電体には、空隙率95%のCuを
使用した。負極活物質には、Cu6Sn5またはNiSi
2を用いた。負極活物質の製造には、ガスアトマイズ法
を採用した。各活物質粉末と増粘性結着剤としてのカル
ボキシメチルセルロースとを重量比95:5の割合で混
合し、さらに水を加えてペーストを得た。このペースト
を上述のCu集電体に塗布・充填し、水素気流中で乾燥
と活物質粒子の焼結を行った。焼結温度は、Cu6Sn5
では200℃(3時間)、NiSi2では800℃(3
時間)とした。ペースト濃度、充填率および乾燥速度を
コントロールして、焼結後の負極の空隙率が72%で、
厚さ100μmの負極を得た。これらの負極を用いたこ
と以外、先述の実施例と同様の操作によって電池を作製
し、評価した。結果を表3に示す。
【0065】
【表3】
【0066】表3のように、各実施例の負極は、充電時
においても、厚さ100μmを維持し、充電時の空隙率
は20%に留まっている。100サイクル後の容量維持
率も良好である。焼結により作製した負極では、集電体
と活物質粒子との間が強固に接合されているため、充電
時の活物質の膨張に対する柔軟性に乏しく、一部では、
焼結状態の破壊が生じていると推定できる。なお、本実
施例では、負極活物質としてCu6Sn5とNiSi2
用いたが、Sn単体、他のSnを含む合金、Si単体、
他のSiを含む合金についても同様の結果を得ている。
【0067】《実施例15、16》本実施例では、負極
集電体への負極活物質の付着方法として、負極活物質と
結着剤との混合物を集電体に塗布する方法を採用した場
合について説明する。Cu 6Sn5粉末と結着剤であるポ
リフッ化ビニリデンとを、重量比98:2の割合で混合
し、さらにN,N−ジメチルホルムアミドを加えてペー
スト化した。このペーストをCu集電体内に充填し、1
00℃で乾燥し、厚さ100μmの負極を得た。なお、
乾燥後の負極の空隙率が72%になるように調整した。
また、Cu6Sn5粉末の代わりに、NiSi2粉末を用
いて、同様の方法で、厚さ100μmの負極を得た。こ
れらの負極を用いたこと以外、先述の実施例と同様の操
作によって電池を作製し、評価した。結果を表4に示
す。
【0068】
【表4】
【0069】表4のように、各実施例の負極は、充電時
においても、厚さ100μmを維持し、充電時の空隙率
は20%に留まっている。100サイクル後の容量維持
率も良好である。なお、本実施例では、負極活物質とし
てCu6Sn5とNiSi2を用いたが、Sn単体、他の
Snを含む合金、Si単体、他のSiを含む合金につい
ても同様の結果を得ている。
【0070】《実施例17》本実施例では、負極集電体
への負極活物質の付着方法として、メッキにより活物質
を付与した後、集電体と活物質の融点未満の温度でそれ
らを熱処理する方法を採用した場合について説明する。
負極集電体には、空隙率90%のCuを使用した。実施
例2と同様の方法で、集電体にSnを電解メッキで付着
させた後、Ar雰囲気下、210度で5時間熱処理を行
った。得られた負極を用いたこと以外、先述の実施例と
同様の操作によって電池を作製し、評価した。結果を表
5に示す。
【0071】
【表5】
【0072】表5のように、実施例17の負極は、充電
時においても厚さ100μmを維持し、充電時の空隙率
は22%に留まっている。また、実施例17では、10
0サイクル後の容量維持率が、熱処理を行わなかった負
極を用いた実施例2に比べて、さらに高くなっている。
この結果については、次のように考えられる。すなわ
ち、熱処理を行うと、SnとCu集電体との接合面で、
SnとCuとが相互拡散し、SnとCuとの固溶体もし
くは合金が形成され、それらの界面における活物質粒子
と集電体との接合力は増大する。その結果、容量維持率
が良化するものと考えられる。なお、本実施例では、負
極活物質としてSn単体を用いたが、Snを含む合金に
ついても同様の結果を得ている。
【0073】
【発明の効果】本発明によれば、充放電時の膨脹・収縮
にともなう負極の変形や電解液の偏在を防止することが
できるため、高容量で充放電サイクル寿命特性に優れた
非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】負極特性を評価するための試験セルの断面概略
図である。
【図2】本発明の非水電解質二次電池の特性を評価する
ための円筒型電池の断面概略図である。
【符号の説明】
1 試験電極 2 ケース 3 セパレータ 4 対極 5 ガスケット 6 封口板 11 正極 12 負極 13 セパレータ 14 正極リード 15 負極リード 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 笠松 真治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H017 AA03 AS02 BB04 BB09 BB10 BB12 CC27 CC28 DD08 EE01 HH02 HH03 HH04 5H029 AJ03 AJ05 AK02 AK03 AK05 AK16 AK18 AL11 AL18 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ14 CJ02 CJ08 CJ22 CJ23 CJ24 DJ07 EJ01 HJ05 HJ07 HJ09 HJ14 5H050 AA07 AA08 BA17 CA02 CA08 CA09 CA11 CA20 CA29 CB11 CB29 DA03 DA04 DA06 DA07 FA13 FA14 FA17 FA18 GA02 GA10 GA22 GA23 GA24 HA05 HA07 HA09 HA14

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 充放電可能な正極、充放電可能な負極、
    および非水電解質からなり、 前記負極が、連続気孔を有する集電体および前記集電体
    に充填された負極活物質からなり、 前記集電体の比表面積が0.002m2/g以上0.0
    6m2/g以下であり、 前記集電体の空隙率が60%以上97%以下であり、 前記負極活物質の平均粒径dが、0.5μm以上50μ
    m以下であり、 前記連続気孔の合計体積の10%以上25%以下が前記
    負極活物質で充填されており、 前記負極活物質の表面積に対する前記負極活物質と前記
    集電体との接合面積の割合が、5%以上40%以下であ
    る非水電解質二次電池。
  2. 【請求項2】 前記集電体が、金属または合金からな
    り、CuおよびNiの少なくとも1種を含む請求項1記
    載の非水電解質二次電池。
  3. 【請求項3】 前記負極活物質が、Sn単体またはSn
    を含む合金からなる請求項1または2記載の非水電解質
    二次電池。
  4. 【請求項4】 前記負極活物質が、Si単体またはSi
    を含む合金からなる請求項1または2記載の非水電解質
    二次電池。
  5. 【請求項5】 充放電可能な正極を作製する工程A、 充放電可能な負極を作製する工程B、 非水電解質を調製する工程C、ならびに前記正極、前記
    負極および前記非水電解質を用いて電池を組み立てる工
    程Dからなり、 工程Bが、連続気孔を有し、比表面積が0.002m2
    /g以上0.06m2/g以下であり、空隙率が60%
    以上97%以下である集電体に、平均粒径dが0.5μ
    m以上50μm以下の負極活物質を充填することによ
    り、前記連続気孔の合計体積の10%以上25%以下が
    前記負極活物質で充填されており、前記負極活物質と前
    記集電体との接合面積の前記負極活物質の表面積に対す
    る割合が5%以上40%以下である負極を得る工程であ
    る非水電解質二次電池の製造法。
  6. 【請求項6】 前記工程Bが、前記集電体へ前記負極活
    物質をメッキにより充填する工程b1からなる請求項5
    記載の非水電解質二次電池の製造法。
  7. 【請求項7】 工程b1に続いて、前記集電体と前記負
    極活物質とを、それらの融点未満の温度で加熱する工程
    を有する請求項6記載の非水電解質二次電池の製造法。
  8. 【請求項8】 工程Bが、前記集電体へ前記負極活物質
    を塗工により充填し、続いて前記負極活物質を焼結する
    工程b2からなる請求項5記載の非水電解質二次電池の
    製造法。
  9. 【請求項9】 工程Bが、前記集電体へ前記負極活物質
    および結着剤からなる混合物を塗工により充填する工程
    b3からなる請求項5記載の非水電解質二次電池の製造
    法。
JP2002066651A 2002-03-12 2002-03-12 非水電解質二次電池およびその製造法 Expired - Lifetime JP4162075B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066651A JP4162075B2 (ja) 2002-03-12 2002-03-12 非水電解質二次電池およびその製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066651A JP4162075B2 (ja) 2002-03-12 2002-03-12 非水電解質二次電池およびその製造法

Publications (2)

Publication Number Publication Date
JP2003263979A true JP2003263979A (ja) 2003-09-19
JP4162075B2 JP4162075B2 (ja) 2008-10-08

Family

ID=29198330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066651A Expired - Lifetime JP4162075B2 (ja) 2002-03-12 2002-03-12 非水電解質二次電池およびその製造法

Country Status (1)

Country Link
JP (1) JP4162075B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129254A (ja) * 2003-10-21 2005-05-19 Daiwa Fine Chemicals Co Ltd (Laboratory) リチウム二次電池用負極
JP2007141605A (ja) * 2005-11-17 2007-06-07 Sony Corp 負極および電池
JP2007250441A (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2009199744A (ja) * 2008-02-19 2009-09-03 Sumitomo Electric Ind Ltd リチウム二次電池用負極とその製造方法。
JP2010192255A (ja) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd 電極構造およびリチウムイオン二次電池
RU2626457C1 (ru) * 2016-03-30 2017-07-28 Общество с ограниченной ответственностью "Литион" Пористый литиевый анод
WO2018211916A1 (ja) * 2017-05-18 2018-11-22 富士フイルム株式会社 孔あき金属箔、孔あき金属箔の製造方法、二次電池用負極および二次電池用正極
JPWO2020217749A1 (ja) * 2019-04-25 2021-11-11 日本碍子株式会社 リチウム二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129254A (ja) * 2003-10-21 2005-05-19 Daiwa Fine Chemicals Co Ltd (Laboratory) リチウム二次電池用負極
JP2007141605A (ja) * 2005-11-17 2007-06-07 Sony Corp 負極および電池
JP2007250441A (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2009199744A (ja) * 2008-02-19 2009-09-03 Sumitomo Electric Ind Ltd リチウム二次電池用負極とその製造方法。
JP2010192255A (ja) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd 電極構造およびリチウムイオン二次電池
RU2626457C1 (ru) * 2016-03-30 2017-07-28 Общество с ограниченной ответственностью "Литион" Пористый литиевый анод
WO2018211916A1 (ja) * 2017-05-18 2018-11-22 富士フイルム株式会社 孔あき金属箔、孔あき金属箔の製造方法、二次電池用負極および二次電池用正極
JPWO2020217749A1 (ja) * 2019-04-25 2021-11-11 日本碍子株式会社 リチウム二次電池
JP7193622B2 (ja) 2019-04-25 2022-12-20 日本碍子株式会社 リチウム二次電池

Also Published As

Publication number Publication date
JP4162075B2 (ja) 2008-10-08

Similar Documents

Publication Publication Date Title
EP1962364B1 (en) Rechargeable lithium battery
JP4837614B2 (ja) リチウム二次電池
JP3141858B2 (ja) リチウム遷移金属系ハロゲン化酸化物とその製造方法及びその用途
US5851696A (en) Rechargeable lithium battery
JP2010129471A (ja) 正極活物質および非水電解質電池
KR20070058484A (ko) 향상된 리튬 전지 및 이를 형성하는 방법
JP2010080407A (ja) 正極活物質、正極および非水電解質二次電池に関する。
US8133462B2 (en) Method of modifying a lithium-based oxide comprising at least one transition metal, positive electrode comprising this oxide, and lithium secondary battery
JP2002083597A (ja) リチウム二次電池
US8785040B2 (en) Positive electrode for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2005353582A (ja) 電解液および電池
JP2004039491A (ja) 非水電解質二次電池
JP2002367602A (ja) 非水電解質二次電池
JP4441935B2 (ja) 非水電解液二次電池用負極およびそれを用いた電池
US7097938B2 (en) Negative electrode material and battery using the same
JPH11297311A (ja) 非水系二次電池用負極材料
JP4162075B2 (ja) 非水電解質二次電池およびその製造法
JP2003115324A (ja) 非水電解質電池。
JPH0922700A (ja) ポリマー電解質二次電池
JP3968772B2 (ja) 非水電解質電池
JP3530174B2 (ja) 正極活物質及びリチウムイオン二次電池
JP3732062B2 (ja) 非水電解質二次電池の充放電方法
JP4078864B2 (ja) 二次電池用負極および二次電池
JP2002203606A (ja) 非水電解質二次電池
JP2002110152A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4162075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

EXPY Cancellation because of completion of term