JP2003260705A - Heat accumulation type fiberboard and utilization method therefor - Google Patents

Heat accumulation type fiberboard and utilization method therefor

Info

Publication number
JP2003260705A
JP2003260705A JP2002061834A JP2002061834A JP2003260705A JP 2003260705 A JP2003260705 A JP 2003260705A JP 2002061834 A JP2002061834 A JP 2002061834A JP 2002061834 A JP2002061834 A JP 2002061834A JP 2003260705 A JP2003260705 A JP 2003260705A
Authority
JP
Japan
Prior art keywords
heat
heat storage
microcapsules
fiberboard
heat accumulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002061834A
Other languages
Japanese (ja)
Inventor
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2002061834A priority Critical patent/JP2003260705A/en
Publication of JP2003260705A publication Critical patent/JP2003260705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiberboard having heat accumulation properties utilizable as a building interior material arranged so as to be pasted on the indoor side surfaces such as the wall, ceiling, floor or the like of a house to keep a comfortable room temperature for a long time even if heat preliminarily accumulated by a cooling and heating instrument or natural energy is gradually radiated to generate a large change in the open air temperature. <P>SOLUTION: This heat accumulating fiberboard is obtained by the thermal pressure bonding molding of a composition comprising microcapsules including a heat accumulating material, woody fibers and an adhesive. The film of the microcapsules preferably comprises a thermosetting urea/formalin resin or a melamine/formalin resin and the volume mean particle size thereof is preferably 10 μm or less. The heat accumulation material preferably has a melting point of 5-50°C and can be utilized as a building interior material for stabilizing a room temperature. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱性を有する繊
維ボード、いわゆるパーティクルボード、ファイバーボ
ードに関するものであり、本発明の蓄熱性繊維ボードを
建築物、住宅やビルの床材、壁材、天井材等の内装材と
して用いることにより冷暖房のためのエネルギーが著し
く節約可能な新規な繊維ボードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-retaining fiber board, a so-called particle board, a fiber board. The heat-retaining fiber board of the present invention is used for a building, a floor of a house or a building, a wall material, The present invention relates to a novel fiber board which can significantly save energy for cooling and heating by using it as an interior material such as a ceiling material.

【0002】[0002]

【従来の技術】近年、地球温暖化抑制が世界的に重要視
されるようになり、その対策として化石燃料を燃焼させ
た際に多量に発生する二酸化炭素の削減化策が大きな問
題となっている。特に建物の居住環境や作業環境を維持
するために消費するエネルギーは膨大な量となり、その
削減や有効利用等の省エネルギー対策が不可欠である。
通常、外気温の変動に対し室内の温度を快適な範囲の温
度域に維持するために、建物自体の機密性を高めたり、
壁や天井、床などの建物の中に断熱材を配する対策が広
く一般に用いられており、室内と室外の熱移動を極力抑
える対策がとられている。
2. Description of the Related Art In recent years, global warming control has become more and more important worldwide, and as a countermeasure against it, a measure to reduce a large amount of carbon dioxide generated when a fossil fuel is burned becomes a big problem. There is. In particular, the amount of energy consumed to maintain the living environment and working environment of a building becomes enormous, and energy saving measures such as reduction and effective use thereof are indispensable.
Usually, in order to maintain the indoor temperature in a comfortable temperature range against fluctuations in the outside temperature, the confidentiality of the building itself is increased,
A measure of arranging a heat insulating material in a building such as a wall, a ceiling, or a floor is widely used, and a measure of suppressing heat transfer inside and outside the room is taken as much as possible.

【0003】これに対し、太陽熱や冷暖房などのエネル
ギーを水や建物の躯体の一部に顕熱として蓄えたり、潜
熱材を用いた建材や蓄熱技術が提案されている。具体的
な例として、特開昭57−202493号公報では球状
蓄熱材を建築壁内に配した蓄熱体、特開昭58−237
9号公報においては無機系の蓄熱材を合成樹脂製チュー
ブに充填したものを内接した蓄断熱材、特開昭62−1
17931号公報には蓄熱材を植設した複合板、特公平
2−29824号公報には断熱材と潜熱蓄熱材との組み
合わせが提案されているが、一般にこれらの潜熱蓄熱材
の熱伝導性が悪いため蓄放熱特性が低下し、効率よく潜
熱を使い切らない場合が多かった。その対策として、特
公平6−33633号公報では複数の潜熱蓄熱材をカプ
セル化して基材中に分散し、放熱面温度をほぼ一定に保
つことができる蓄熱建材が紹介されている。
On the other hand, energy such as solar heat and cooling / heating is stored as sensible heat in water or a part of the skeleton of a building, and a building material and a heat storage technology using a latent heat material have been proposed. As a specific example, JP-A-57-202493 discloses a heat storage body in which a spherical heat storage material is arranged in a building wall, and JP-A-58-237.
No. 9 discloses a heat storage and heat insulating material in which a synthetic resin tube filled with an inorganic heat storage material is inscribed.
17931 discloses a composite plate in which a heat storage material is implanted, and Japanese Patent Publication No. 29829/1990 proposes a combination of a heat insulating material and a latent heat storage material, but in general, the thermal conductivity of these latent heat storage materials is high. Since it was bad, the heat storage and heat dissipation characteristics deteriorated, and in many cases latent heat could not be used up efficiently. As a countermeasure, Japanese Patent Publication No. 6-33633 discloses a heat storage building material capable of encapsulating a plurality of latent heat storage materials and dispersing them in a base material to keep the heat radiation surface temperature substantially constant.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、住宅
の壁、天井、床などの室内側面に貼り付けて配置させる
ことにより、予め冷暖房器具又は自然エネルギーで蓄熱
した熱を徐々に放熱して外気温に大きな変化が生じても
快適な室温を長時間維持する建築用内装材として利用可
能な蓄熱性を有する蓄熱性を有する繊維ボードを提供す
ることにある。
The object of the present invention is to gradually dissipate the heat previously accumulated by the cooling / heating equipment or natural energy by arranging it by adhering it to the inside surface such as the wall, ceiling or floor of the house. Another object of the present invention is to provide a heat-retaining fiber board that can be used as an interior material for construction that maintains a comfortable room temperature for a long time even when a large change occurs in the outside air temperature.

【0005】[0005]

【課題を解決するための手段】本発明の課題は蓄熱材を
内包するマイクロカプセルと木質繊維、及び接着剤から
成る組成物を熱圧着成型せしめた蓄熱性繊維ボードを建
築用内装材として用いることにより達成される。
An object of the present invention is to use a heat storage fiberboard obtained by thermocompression molding a composition comprising microcapsules enclosing a heat storage material, wood fibers, and an adhesive as an interior material for construction. Achieved by

【0006】[0006]

【発明の実施の形態】本発明の繊維ボードは一般に建築
材料として用いられている木質系繊維ボードの中に蓄熱
材を内包するマイクロカプセルを高比率で含有させたも
のである。一般的な木質系加工材として、集成材、パー
ティクルボード、ファイバーボードなどが知られてい
る。集成材は小角材を繊維方向に平行に集成接着させた
材料である。パーティクルボード及びファイバーボード
は木材、その他の植物繊維質の小片、切削片、破砕片な
どに接着剤を添加、散布し成型加工した板状の製品であ
る。ファイバーボードはその硬さに応じて、インシュレ
ーションボード、セミハードボード、ハードボードに分
類される。
BEST MODE FOR CARRYING OUT THE INVENTION The fiber board of the present invention is a wood-based fiber board generally used as a building material containing a high proportion of microcapsules containing a heat storage material. Laminated wood, particle board, fiber board, etc. are known as general wood-based processed materials. The laminated wood is a material in which small square wood is laminated and adhered in parallel with the fiber direction. Particleboard and fiberboard are plate-like products that are formed by adding and bonding an adhesive to wood, other plant fiber pieces, cut pieces, and crushed pieces. Fiber boards are classified into insulation boards, semi-hard boards, and hard boards according to their hardness.

【0007】パーティクルボード、ファイバーボード
は、間伐材、木の枝、カンナくず、鋸くずの他に、家屋
解体時に発生する木質系廃材も再利用できるのが特徴で
優れたリサイクル性を備えている。特にパーティクルボ
ードは木材を細かく切削したチップ(削片)に接着材を
塗布し、熱圧成型した密度0.5〜0.9g/cm3
木質ボードで木材に比べて厚さ、大きさを自由に加工す
る事が可能で寸法の狂いや反りの少ないのが特長であ
る。
Particle boards and fiber boards are characterized by being able to reuse wood-based waste materials generated during the dismantling of houses, as well as thinned wood, tree branches, planks and sawdust, and have excellent recyclability. . In particular, particle board is a wood board made by finely cutting wood (fine pieces) by applying an adhesive and heat-pressing it to a density of 0.5-0.9 g / cm 3 The feature is that it can be processed freely and there is little dimensional deviation and warpage.

【0008】本発明の繊維ボードの製法は、1.木質繊
維とマイクロカプセルを混合する工程、2.接着剤を混
合又は散布する工程、3.熱圧着する工程、の3工程か
ら成る。1.の工程では適当な大きさに裁断した繊維小
片と、粉末化または粒状化された固形のマイクロカプセ
ル固形物とを混合すればよい。マイクロカプセル固形物
は、マイクロカプセルスラリーをドラムドライヤー、ス
プレードライヤー、フリーズドライヤー等の各種乾燥装
置や造粒装置を用いて直径約1mm〜10cmの大きさ
に粉末及び造粒加工される。また、予め繊維小片とマイ
クロカプセルスラリーを混合したものを流動層乾燥装置
等を用いて両者を結着造粒させたものを用いても良い。
The method for producing the fiber board of the present invention is as follows. 1. Mixing wood fiber and microcapsules 2. The step of mixing or spraying the adhesive, It consists of three steps of thermocompression bonding. 1. In the step (2), the fiber pieces cut into an appropriate size may be mixed with the powdered or granulated solid microcapsule solid material. Microcapsule solids are powdered and granulated from a microcapsule slurry to a size of about 1 mm to 10 cm in diameter using various dryers such as a drum dryer, a spray dryer, and a freeze dryer, and a granulator. Alternatively, a mixture of the fiber pieces and the microcapsule slurry that has been previously mixed and bound and granulated with a fluidized bed dryer may be used.

【0009】2.の工程で用いられる接着剤は熱可塑
性、熱硬化性いずれの性質のものでも使用できるが好ま
しくは、フェノール樹脂系接着剤、尿素樹脂系接着剤、
メラミン樹脂系接着剤、尿素−メラミン共縮合樹脂系接
着剤、レゾルシノール型接着剤、ポリウレタン系接着剤
等の耐水性のある接着剤が用いられる。これらの接着剤
は繊維小片と予め混合されるか、連続的に上方から散布
されて均一に混合される。更に建築材料として防かび、
防虫、難燃化のための薬剤をこの工程で添加しても良
い。更に必要であれば、老化防止剤、酸化防止剤、可塑
剤、粘着付与剤、滑剤、着色剤、硬化剤、発泡剤、合成
繊維、合成樹脂類、断熱材などを添加、注入、貼り合わ
せが可能である。
2. The adhesive used in the step of can be used with any of thermoplastic and thermosetting properties, but is preferably a phenol resin adhesive, a urea resin adhesive,
Water-resistant adhesives such as melamine resin-based adhesives, urea-melamine co-condensed resin-based adhesives, resorcinol-type adhesives, and polyurethane-based adhesives are used. These adhesives are either premixed with the fiber pieces or continuously sprinkled from above and mixed evenly. Furthermore, as a building material, mold proof,
Insect repellent and flame retardant agents may be added in this step. Furthermore, if necessary, anti-aging agents, antioxidants, plasticizers, tackifiers, lubricants, colorants, curing agents, foaming agents, synthetic fibers, synthetic resins, heat insulating materials, etc. may be added, injected, and laminated. It is possible.

【0010】本発明の繊維とマイクロカプセルの固形重
量比率は自由に設定できるが、蓄熱性をなるべく発揮し
得るように繊維ボード中に占めるマイクロカプセルの重
量比率は30%以上、好ましくは50〜90%の範囲が
好ましい。これ以上になると蓄熱性は充分であるが繊維
ボードの強度が低下するため好ましくない。繊維ボード
の蓄熱量は、マイクロカプセルの含有比率と繊維ボード
自体の単位面積当たりの重量と目的によって決められ
る。必要とされる融解熱量は、建物を構成する素材や環
境、広さ及び地域によって異なるが、夏場日中の屋内の
温度上昇及び冬場暖房用具を使用しなくても明らかな温
度上昇または低下を抑えるだけのマイクロカプセルを練
り込む必要がある。具体的には融点が5〜50℃の範囲
の蓄熱材を内包するマイクロカプセルを繊維ボード中に
練り込んで1m2当たりの融解熱量が60kJ/m2
上とすることが好ましい。
The solid weight ratio of the fibers of the present invention to the microcapsules can be freely set, but the weight ratio of the microcapsules in the fiber board is 30% or more, preferably 50 to 90, so as to maximize the heat storage property. % Range is preferred. If it is more than this, the heat storage property is sufficient, but the strength of the fiber board decreases, which is not preferable. The heat storage amount of the fiber board is determined by the content ratio of the microcapsules, the weight per unit area of the fiber board itself, and the purpose. The amount of heat required for fusion depends on the materials that make up the building, the environment, the size, and the area, but the temperature rise inside the building during the daytime in summer and the apparent temperature rise or drop without using heating equipment in winter are suppressed. It is necessary to knead only microcapsules. Specifically, it is preferable to knead microcapsules containing a heat storage material having a melting point in the range of 5 to 50 ° C. into a fiber board so that the heat of fusion per 1 m 2 is 60 kJ / m 2 or more.

【0011】一般に蓄熱材をマイクロカプセル化する方
法としては、複合エマルジョン法によるカプセル化法
(特開昭62−1452号公報)、蓄熱材粒子の表面に
熱可塑性樹脂を噴霧する方法(同62−45680号公
報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成す
る方法(同62−149334号公報)、蓄熱材粒子の
表面でモノマーを重合させ被覆する方法(同62−22
5241号公報)、界面重縮合反応によるポリアミド皮
膜マイクロカプセルの製法(特開平2−258052号
公報)等に記載されている方法を用いることができる。
Generally, as a method of microencapsulating a heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. 62-1452) and a method of spraying a thermoplastic resin on the surface of heat storage material particles (the same 62- No. 45680), a method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (No. 62-149334), and a method of polymerizing and coating a monomer on the surface of the heat storage material particles (No. 62-22).
5241), a method for producing polyamide-coated microcapsules by an interfacial polycondensation reaction (Japanese Patent Laid-Open No. 2-258052), and the like.

【0012】カプセル膜材としては、界面重合法、イン
サイチュー法等の手法で得られる、ポリスチレン、ポリ
アクリロニトリル、ポリアミド、ポリアクリルアミド、
エチルセルロース、ポリウレタン、アミノプラスト樹
脂、またゼラチンとカルボキシメチルセルロース若しく
はアラビアゴムとのコアセルベーション法を利用した合
成あるいは天然の樹脂が用いられるが、熱圧着工程で高
温で加圧されるため熱的に安定な熱硬化性樹脂皮膜を有
するマイクロカプセルが好ましく、特に脂肪族系炭化水
素化合物でも良好な品質のマイクロカプセルが得られる
インサイチュー法による尿素ホルマリン樹脂、メラミン
ホルマリン樹脂皮膜を用いたマイクロカプセルが好まし
い。
As the capsule membrane material, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, obtained by a method such as an interfacial polymerization method or an in situ method,
Ethyl cellulose, polyurethane, aminoplast resin, or synthetic or natural resin using coacervation method of gelatin and carboxymethyl cellulose or gum arabic is used, but it is thermally stable because it is pressed at high temperature in thermocompression bonding process. A microcapsule having a thermosetting resin film is preferable, and a microcapsule using a urea formalin resin or melamine formalin resin film by an in-situ method that can obtain a microcapsule of good quality even with an aliphatic hydrocarbon compound is particularly preferable.

【0013】本発明で用いられる蓄熱材の相変化点、即
ち融点は生活温度域において快適と感じられる下限と、
床暖房などの蓄熱温度域を含めた温度域に設定すること
が好ましく、5〜50℃の範囲に設定されることが好ま
しい。具体的には、炭素数が約14〜30程度のn-パラ
フィン類や、無機系共晶物及び無機系水和物、パルミチ
ン酸、ミリスチン酸等の脂肪酸類、ベンゼン、p-キシレ
ン等の芳香族炭化水素化合物、パルミチン酸イソプロピ
ル、ステアリン酸ブチル等のエステル化合物、ステアリ
ルアルコール等のアルコール類等の化合物が挙げられ、
化学的、物理的に安定でしかも安価なものが用いられ
る。これらは混合して用いても良いし、必要に応じ過冷
却防止材、比重調節材、劣化防止剤等を添加することが
できる。また、融点の異なる2種以上のマイクロカプセ
ルを混合して用いることも可能である。
The phase change point of the heat storage material used in the present invention, that is, the melting point, has a lower limit at which it is felt comfortable in the living temperature range,
It is preferable to set in a temperature range including a heat storage temperature range such as floor heating, and it is preferable to set in a range of 5 to 50 ° C. Specifically, n-paraffins having about 14 to 30 carbon atoms, inorganic eutectic and inorganic hydrates, fatty acids such as palmitic acid and myristic acid, and aromatics such as benzene and p-xylene. Group hydrocarbon compounds, ester compounds such as isopropyl palmitate and butyl stearate, and compounds such as alcohols such as stearyl alcohol,
A chemically and physically stable and inexpensive material is used. These may be used as a mixture, and if necessary, a supercooling preventing material, a specific gravity adjusting material, a deterioration preventing agent and the like may be added. It is also possible to mix and use two or more types of microcapsules having different melting points.

【0014】本発明に係るマイクロカプセルの粒子経
は、塗工又は含浸する過程で物理的圧力による破壊を防
止するために10μm以下、特に好ましくは5μm以下
が好ましい。マイクロカプセルの粒子径は、乳化剤の種
類と濃度、乳化時の乳化液の温度、乳化比(水相と油相
の体積比率)、乳化機、分散機等と称される微粒化装置
の運転条件(攪拌回転数、時間等)等を適宜調節して所
望の粒子径に設定する。この粒子径以上になるとマイク
ロカプセルが外圧で容易に壊れやすくなったり、蓄熱材
の比重が分散媒のそれと大きく差がある場合など、浮遊
したり沈降したりし易くなるので好ましくない。
The particle size of the microcapsules according to the present invention is preferably 10 μm or less, particularly preferably 5 μm or less in order to prevent destruction due to physical pressure during the coating or impregnation process. The particle size of the microcapsules depends on the type and concentration of the emulsifier, the temperature of the emulsion during emulsification, the emulsification ratio (volume ratio of the water phase and the oil phase), the operating conditions of the atomizer called an emulsifier, disperser, etc. (Agitation rotation speed, time, etc.) are appropriately adjusted to set a desired particle size. When the particle size is more than this range, the microcapsules are easily broken by external pressure, and when the specific gravity of the heat storage material is largely different from that of the dispersion medium, the microcapsules easily float or settle, which is not preferable.

【0015】3.の熱圧着工程は繊維小片の集合体に強
度を付与する工程であり、圧力により繊維ボードの密度
が変化する。具体的には面圧で10〜100kg/m2
の圧力、温度は80〜160℃の範囲で1分以上かけら
れる。この範囲より高い圧力又は温度ではマイクロカプ
セルの劣化をもたらすため好ましくなく、この範囲以下
の圧力、温度であるとボードとしての強度が発現しない
ため好ましくない。
3. The thermocompression bonding step is a step of imparting strength to the aggregate of fiber pieces, and the density of the fiber board changes with pressure. Specifically, the surface pressure is 10 to 100 kg / m 2
The pressure and temperature are within the range of 80 to 160 ° C. for 1 minute or more. A pressure or temperature higher than this range is not preferable because it causes deterioration of the microcapsules, and a pressure or temperature lower than this range is not preferable because the strength as a board is not expressed.

【0016】本発明の繊維ボードは住宅やビルの床下あ
るいは天井裏に貼り付けることにより蓄熱性を有する建
築材料として使用することができる。また、防音性にも
優れるという効果も有しているため、二世代住宅や集合
住宅のように複数の世帯から成る住宅ではとかく苦情の
原因となる騒音や振動を吸収できる利点が発揮される。
また、建築用ボードと同様に切断したりあるいは穴を開
けたり、ボード上に壁紙などを貼り付けたりすることも
可能である。本発明の蓄熱性ボードは、ガラスウール、
中空粒子、ウレタンフォーム、発泡性樹脂などの断熱材
と組み合わせて用いることにより断熱性と蓄熱性の相乗
効果が得られるため好ましい態様である。
The fiber board of the present invention can be used as a building material having a heat storage property by being attached to the underfloor or the ceiling of a house or building. In addition, since it also has an effect of being excellent in soundproofing, a house having a plurality of households such as a second-generation house or an apartment house has an advantage of absorbing noise and vibration that cause complaints.
It is also possible to cut or make a hole in the same manner as the construction board, and to paste wallpaper on the board. The heat storage board of the present invention is made of glass wool,
It is a preferred embodiment because a synergistic effect of heat insulation and heat storage can be obtained by using it in combination with a heat insulation material such as hollow particles, urethane foam, and foaming resin.

【0017】[0017]

【実施例】以下に本発明の実施例を示す。実施例中の部
数は固形質量部を表す。また、融点及び融解熱量は示差
熱熱量計(米国パーキンエルマー社製、DSC−7型)
を用いて測定した。
EXAMPLES Examples of the present invention will be shown below. The numbers of parts in the examples represent solid parts by mass. Further, the melting point and the heat of fusion are measured by a differential calorimeter (DSC-7 type manufactured by Perkin Elmer, USA).
Was measured using.

【0018】実施例 メラミン粉末12重量部に37%ホルムアルデヒド水溶
液15.4重量部と水40重量部を加え、pHを8に調
整した後、約70℃まで加熱してメラミン−ホルムアル
デヒド初期縮合物水溶液を得た。pHを4.5に調整し
た10%スチレン−無水マレイン酸共重合体のナトリウ
ム塩水溶液100重量部中に、蓄熱材として、n-オクタ
デカン(融点26〜28℃)80重量部を激しく撹拌し
ながら添加し、粒子径が3.0μmになるまで乳化を行
った。
Example To 12 parts by weight of melamine powder, 15.4 parts by weight of 37% aqueous formaldehyde solution and 40 parts by weight of water were added to adjust pH to 8, and then heated to about 70 ° C. to prepare an aqueous solution of melamine-formaldehyde initial condensate. Got 80 parts by weight of n-octadecane (melting point 26-28 ° C) was vigorously stirred as a heat storage material in 100 parts by weight of an aqueous solution of sodium salt of 10% styrene-maleic anhydride copolymer adjusted to pH 4.5. It was added and emulsified until the particle diameter became 3.0 μm.

【0019】得られた乳化液に、上記メラミン−ホルム
アルデヒド初期縮合物水溶液全量を添加し70℃で2時
間撹拌を施した後、pHを9まで上げて水を添加して乾
燥固形分濃度40%の蓄熱材マイクロカプセル分散液を
得た。このマイクロカプセル分散液をスプレードライヤ
ーで水分含有率3%以下まで乾燥し粒子径約30μmの
マイクロカプセル粉体を得た。このマイクロカプセル粉
体100部とボード材料としてストランド状スギ材チッ
プ100部をよく混合し、これらに粉末状ユリア樹脂接
着剤20部を添加しパーティクルボードを得た。
To the obtained emulsion, the whole amount of the above melamine-formaldehyde initial condensate aqueous solution was added and stirred at 70 ° C. for 2 hours, after which the pH was raised to 9 and water was added to obtain a dry solids concentration of 40%. A heat storage material microcapsule dispersion liquid of was obtained. This microcapsule dispersion was dried with a spray dryer to a water content of 3% or less to obtain a microcapsule powder having a particle size of about 30 μm. 100 parts of this microcapsule powder and 100 parts of a strand-shaped cedar material chip as a board material were thoroughly mixed, and 20 parts of a powdery urea resin adhesive was added to obtain a particle board.

【0020】ボードの構造は3層とし、表裏の2層には
強度を保持するためにスギ材を用い、コア層にはスギ材
チップと粒状発泡スチロールを混合した物を用いて軽量
化を図った。その後マイクロ波加熱後直ちにホットプレ
スで140℃、20kg/cm2の条件下5分間熱圧着
を行い、発泡体と接着剤を溶融させその後コールドプレ
スで固化させ厚さ12mmのボードを得た。
The structure of the board is three layers, the two layers on the front and back sides are made of cedar wood for maintaining strength, and the core layer is made of a mixture of cedar wood chips and expanded polystyrene foam for weight reduction. . Immediately after microwave heating, thermocompression bonding was performed by hot pressing for 5 minutes under the conditions of 140 ° C. and 20 kg / cm 2 , the foam and the adhesive were melted and then solidified by cold pressing to obtain a board having a thickness of 12 mm.

【0021】この繊維ボードの表面に市販の壁紙を貼り
付け、裏面には断熱材としてウレタンフォームシートを
貼り付けて厚さ15mmの蓄熱性繊維ボードを得た。こ
の繊維ボードを組み合わせて一辺が50cmの立方体の
木箱を作製した。この木箱を環境温度を強制的にコント
ロール可能な雰囲気内で木箱の外気温度を0〜40℃間
を1時間で昇温と降温を繰り返し、木箱の中心部分の温
度を測定したところ、木箱内では22〜28℃の範囲で
温度変化幅の少なく27℃付近の温度域を長時間持続す
る環境が得られることが分かった。マイクロカプセルを
含まずに実施例と全く同様に作製した繊維ボードには温
度持続効果は全く見られなかった。
A commercially available wallpaper was attached to the surface of this fiber board, and a urethane foam sheet was attached to the back surface as a heat insulating material to obtain a heat storage fiber board having a thickness of 15 mm. This fiber board was combined to produce a cubic wooden box with a side of 50 cm. The temperature of the center of the wooden box was measured by repeating the temperature increase and decrease of the outside temperature of the wooden box between 0 and 40 ° C for 1 hour in an atmosphere in which the environmental temperature of the wooden box can be forcibly controlled. It was found that in the wooden box, an environment in which the temperature change width is small in the range of 22 to 28 ° C and the temperature range of around 27 ° C is maintained for a long time can be obtained. The fiberboard produced in exactly the same manner as in the example without the microcapsules did not show any temperature-sustaining effect.

【0022】[0022]

【発明の効果】実施例の結果からも明らかなように、本
発明で示される蓄熱性を有する繊維ボードは見かけ上通
常のパーティクルボードやファイバーボードと同様の形
態、性状であるが蓄熱性を有するために住宅やビルの内
装材として使用することにより、多量の温熱又は冷熱を
蓄えることが可能となり、冷暖房に要するエネルギーの
節約、及び太陽光エネルギーの有効利用に大きく役立つ
ものである。また、床材として使用することにより、防
音性、吸音性に優れるという集合住宅として非常に都合
の良い副次的な効果を得ることも可能となった。
As is clear from the results of the examples, the heat-retaining fiber board of the present invention has the same shape and properties as those of ordinary particle boards and fiber boards but has heat-retaining property. Therefore, by using it as an interior material of a house or a building, it becomes possible to store a large amount of heat or cold, which greatly contributes to the saving of energy required for heating and cooling and the effective use of solar energy. Also, by using it as a floor material, it is possible to obtain a secondary effect that is very convenient as an apartment house that is excellent in soundproofing and sound absorbing properties.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28D 20/00 C09K 5/00 E ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F28D 20/00 C09K 5/00 E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】蓄熱材を内包するマイクロカプセルと木質
繊維、及び接着剤から成る組成物を熱圧着成型せしめた
蓄熱性繊維ボード。
1. A heat storage fiber board obtained by thermocompression molding a composition comprising a microcapsule containing a heat storage material, wood fiber, and an adhesive.
【請求項2】 マイクロカプセルの皮膜が熱硬化性の尿
素ホルマリン樹脂、メラミンホルマリン樹脂皮膜であ
り、且つ体積平均粒子径が10μm以下である請求項1
記載の蓄熱性繊維ボード。
2. The microcapsule film is a thermosetting urea formalin resin or melamine formalin resin film and has a volume average particle size of 10 μm or less.
The heat storage fiber board described.
【請求項3】 融点が5〜50℃の範囲の蓄熱材を内包
するマイクロカプセルを含む請求項1記載の蓄熱性繊維
ボードを建築用内装材して利用する方法。
3. A method of using the heat storage fiber board as an interior material for construction, comprising microcapsules containing a heat storage material having a melting point in the range of 5 to 50 ° C.
JP2002061834A 2002-03-07 2002-03-07 Heat accumulation type fiberboard and utilization method therefor Pending JP2003260705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061834A JP2003260705A (en) 2002-03-07 2002-03-07 Heat accumulation type fiberboard and utilization method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061834A JP2003260705A (en) 2002-03-07 2002-03-07 Heat accumulation type fiberboard and utilization method therefor

Publications (1)

Publication Number Publication Date
JP2003260705A true JP2003260705A (en) 2003-09-16

Family

ID=28670457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061834A Pending JP2003260705A (en) 2002-03-07 2002-03-07 Heat accumulation type fiberboard and utilization method therefor

Country Status (1)

Country Link
JP (1) JP2003260705A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070491A (en) * 2004-08-31 2006-03-16 Nitto Boseki Co Ltd Heat accumulating inorganic fiber plate and method of manufacturing the same
JP2012503537A (en) * 2008-09-25 2012-02-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Production of aggregates composed of phase change materials and having controlled properties
KR101157385B1 (en) * 2011-12-12 2012-06-20 김보현 Natural fiber board for thermal storage comprising phase change materials
CN102514072A (en) * 2011-12-30 2012-06-27 廊坊华日家具股份有限公司 Hollow plastic capsule and fiber composite material and preparation method thereof
JP2012518563A (en) * 2009-02-26 2012-08-16 クロノテック・アーゲー Induction wood board and method for producing induction wood board
JP2018189296A (en) * 2017-05-02 2018-11-29 永大産業株式会社 Heat storage board and manufacturing method thereof
JP2018202710A (en) * 2017-06-02 2018-12-27 大倉工業株式会社 Woody board and manufacturing method of the same
JP2019188661A (en) * 2018-04-23 2019-10-31 大倉工業株式会社 Manufacturing method of woody board
JP2020157533A (en) * 2019-03-26 2020-10-01 永大産業株式会社 Manufacturing method of woody board
JP7321054B2 (en) 2019-10-24 2023-08-04 永大産業株式会社 Heat storage chip, heat storage board including same, and manufacturing method thereof
WO2023188911A1 (en) * 2022-03-29 2023-10-05 パナソニックIpマネジメント株式会社 Method for producing particle board, and compressed material for producing particle board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070491A (en) * 2004-08-31 2006-03-16 Nitto Boseki Co Ltd Heat accumulating inorganic fiber plate and method of manufacturing the same
JP2012503537A (en) * 2008-09-25 2012-02-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Production of aggregates composed of phase change materials and having controlled properties
JP2012518563A (en) * 2009-02-26 2012-08-16 クロノテック・アーゲー Induction wood board and method for producing induction wood board
KR101157385B1 (en) * 2011-12-12 2012-06-20 김보현 Natural fiber board for thermal storage comprising phase change materials
CN102514072A (en) * 2011-12-30 2012-06-27 廊坊华日家具股份有限公司 Hollow plastic capsule and fiber composite material and preparation method thereof
JP2018189296A (en) * 2017-05-02 2018-11-29 永大産業株式会社 Heat storage board and manufacturing method thereof
JP2018202710A (en) * 2017-06-02 2018-12-27 大倉工業株式会社 Woody board and manufacturing method of the same
JP7042560B2 (en) 2017-06-02 2022-03-28 大倉工業株式会社 Wood board and its manufacturing method
JP2019188661A (en) * 2018-04-23 2019-10-31 大倉工業株式会社 Manufacturing method of woody board
JP7026564B2 (en) 2018-04-23 2022-02-28 大倉工業株式会社 How to make a wooden board
JP2020157533A (en) * 2019-03-26 2020-10-01 永大産業株式会社 Manufacturing method of woody board
JP7134122B2 (en) 2019-03-26 2022-09-09 永大産業株式会社 Wood board manufacturing method
JP7321054B2 (en) 2019-10-24 2023-08-04 永大産業株式会社 Heat storage chip, heat storage board including same, and manufacturing method thereof
WO2023188911A1 (en) * 2022-03-29 2023-10-05 パナソニックIpマネジメント株式会社 Method for producing particle board, and compressed material for producing particle board

Similar Documents

Publication Publication Date Title
US7166355B2 (en) Use of microcapsules in gypsum plasterboards
CN1104393C (en) Fibre-containing aerogel composite material
US20030211796A1 (en) Flame-inhibiting finishing of articles containing organic latent-heat storage materials
JP2003260705A (en) Heat accumulation type fiberboard and utilization method therefor
US20070098973A1 (en) Insulation Containing Heat Expandable Spherical Additives, Calcium Acetate, Cupric Carbonate, or a Combination Thereof
US7662469B2 (en) Composite elements made from rigid polyurethane foam
US20080033075A1 (en) Molded Elements Made Of Materials Containing Lignocellulose
JP2011080064A (en) Method of use of aerogel for deadening object sound and/or impact sound
CN102317073A (en) Laminar component made from composite material
JP2007119656A (en) Heat accumulation board
JP2007196465A (en) Non-flammable heat storage panel
JP4632507B2 (en) Latent heat storage cement building material
JP3109281B2 (en) Wood board
JP6473205B2 (en) Wood board manufacturing method
JP4173666B2 (en) Microcapsule solidified material and method of using the same
JP2004301397A (en) Heat storage board
JP2004324246A (en) Thermal storage building material and method of using the same
JP2003261716A (en) Rubber material with heat storage effect and method of utilizing the same
JP2004316245A (en) Heat storage resin board and its utilization method
JP2003090124A (en) Heat storage material for floor heating
JP6211770B2 (en) Wood board
JP2005068954A (en) Heat accumulating building material and its use
JP2004060350A (en) Heat storage board
KR102631303B1 (en) High heat storage masonry panel with PCM impregnated fine aggregate using sol-gel method, and method for preparing thereof
JP2003155789A (en) Heat accumulating board