JP2004301397A - Heat storage board - Google Patents

Heat storage board Download PDF

Info

Publication number
JP2004301397A
JP2004301397A JP2003093287A JP2003093287A JP2004301397A JP 2004301397 A JP2004301397 A JP 2004301397A JP 2003093287 A JP2003093287 A JP 2003093287A JP 2003093287 A JP2003093287 A JP 2003093287A JP 2004301397 A JP2004301397 A JP 2004301397A
Authority
JP
Japan
Prior art keywords
heat storage
board
storage material
inorganic filler
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003093287A
Other languages
Japanese (ja)
Inventor
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003093287A priority Critical patent/JP2004301397A/en
Publication of JP2004301397A publication Critical patent/JP2004301397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-flammable or flame-retardant heat storage board usable as a building interior material for maintaining comfortable room temperature for a long time even when a great change occurs in an outside temperature. <P>SOLUTION: The heat storage board is obtained by molding microcapsules having heat storage materials of internal capsule and a composition consisting of an inorganic filler and a thermoplastic resin. The inorganic filler is preferably a water-insoluble carbonate compound, and the heat storage material is preferably a heat storage material having a melting point of 5-50°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱性を有するボード状成型物に関するものであり、本発明の蓄熱性ボードを住宅やビルの床材、壁材、天井材等の内装材として用いることにより冷暖房のためのエネルギーが著しく節約可能で室温変化が生じにくい省エネ効果に優れる新規な不燃性のボードに関するものである。
【0002】
【従来の技術】
近年、地球温暖化抑制が世界的に重要視されるようになり、その対策として化石燃料を燃焼させた際に多量に発生する二酸化炭素の削減化策が大きな問題となっている。特に建物の居住環境や作業環境を維持するために消費するエネルギーは膨大な量となり、その削減や有効利用等の省エネルギー対策が不可欠である。通常、外気温の変動に対し室内の温度を快適な範囲の温度域に維持するために、建物自体の機密性を高めたり、壁や天井、床などの建物の中に断熱材を配する等の対策が広く一般に用いられており、室内と室外の熱移動を極力抑える対策がとられている。
【0003】
これに対し、太陽熱や冷暖房などのエネルギーを水や建物の躯体の一部に顕熱として蓄えたり、潜熱材を用いた建材や蓄熱技術が提案されている。具体的には球状蓄熱材を建築壁内に配した蓄熱体(例えば、特許文献1参照)、無機系の蓄熱材を合成樹脂製チューブに充填したものを内接した蓄断熱材(例えば、特許文献2参照)、蓄熱材を植設した複合板(例えば、特許文献3参照)、断熱材と潜熱蓄熱材との組み合わせ(例えば、特許文献4参照)等が提案されているが、一般にこれらの潜熱蓄熱材の熱伝導性が悪いため蓄放熱特性が低下し、効率よく潜熱を使い切らない場合が多かった。その対策として、複数の潜熱蓄熱材をカプセル化して基材中に分散し、放熱面温度をほぼ一定に保つことができる蓄熱建材が紹介されている(例えば、特許文献5参照)。
【0004】
また、建築用建材として用いられるためには難燃化及び不燃化処理を施さないと使用できないか、使用できる範囲が制限されてしまう。そのために難燃剤を大量に練り込んだり、材料表面に塗工又は含浸処理する必要があった。
【0005】
【特許文献1】
特開昭57−202493号公報
【特許文献2】
特開昭58−2379号公報
【特許文献3】
特開昭62−117931号公報
【特許文献4】
特公平2−29824号公報
【特許文献5】
特公平6−33633号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、希望する快適な温度域を長時間維持する蓄熱性を有し、しかも建材としては不可欠な条件である難燃性または不燃性のボードを提供することにある。
【0007】
【課題を解決するための手段】
本発明の課題は、蓄熱材を内包するマイクロカプセルと無機系充填剤及び熱可塑性樹脂から成る組成物を成型せしめることにより達成される。
【0008】
【発明の実施の形態】
本発明の蓄熱性ボードは、蓄熱材を内包するマイクロカプセル、無機系充填材と熱可塑性樹脂なる材料から構成される。無機系充填材としては、水酸化アルミニウム,水酸化マグネシウム,水酸化カルシウム等の水酸化物、炭酸カルシウム,炭酸マグネシウム等の炭酸化合物、硫酸アルミニウム、硫酸バリウム等の硫酸化合物などの他、アスベスト,タルク,ベンナイト,クレー等の無機系化合物、あるいは珪酸塩、蛇紋岩、石灰岩、天然珪藻土なども挙げられるが、特に水に不溶性の炭酸塩化合物が好ましいものとして挙げられる。即ち、炭酸塩化合物は加熱により二酸化炭素を放出し消火性に優れるためである。これらの化合物は単独又は2種以上を混合して用いることもできる。
【0009】
本発明で用いられる熱可塑性樹脂とはマイクロカプセルと無機系充填剤を結着させるためのバインダーとして用いられる。その具体例としては、ポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、ポリエチレン、ポリプロピレン、ポリ酢酸ビニル等が挙げられるが、ポリ塩化ビニルが難燃性であるため特に好ましい。これらの熱可塑性樹脂はなるべく小さい粒状で添加されることが好ましい。上記蓄熱材を内包するマイクロカプセルと無機系充填剤及び熱可塑性樹脂以外に、必要であれば添加剤として、発泡剤、有機溶剤、可塑剤、金属、金属化合物、セラミック、鉱物等、防腐剤、光触媒、活性炭、芳香剤、着色剤、染料、合成又は天然繊維、老化防止剤、酸化防止剤、粘着付与剤、滑剤等を添加、注入、貼り合わせが可能である。
【0010】
蓄熱性ボード質量中に占める蓄熱材を内包するマイクロカプセルの質量部数比率は、5〜80%、好ましくは10〜60%の範囲で添加される。この範囲以下であると蓄熱量が小さくなり建材としての蓄熱能力に乏しくなり、この範囲以上であると発煙したり燃え易くなるため好ましくない。同様に無機系充填剤は5〜60%の範囲の範囲が好ましく、この範囲以下であると難燃性に乏しく、これ以上であると蓄熱能力が乏しくなり好ましくない。同様に熱可塑性樹脂は1〜40%の範囲で添加される。これ以下の範囲であると建材としての強度に乏しく、これ以上の範囲であれば蓄熱能力が乏しくなり好ましくない。
【0011】
蓄熱性ボードの蓄熱量は、使用する蓄熱材の種類や蓄熱性ボード中に占めるマイクロカプセルの含有比率によって決められる。必要とされる融解熱量は、建物を構成する素材や環境、広さ及び地域によって異なるが、夏場日中の屋内の温度上昇及び冬場暖房用具を使用しなくても明らかな温度上昇または低下を抑えるだけのマイクロカプセルを練り込む必要がある。具体的には融点が5〜50℃の範囲の蓄熱材を内包するマイクロカプセルを繊維ボード中に練り込んで1m当たりの融解熱量が60kJ/m以上とすることが好ましい。
【0012】
一般に蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(同62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(同62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(同62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法を用いることができる。
【0013】
カプセル膜材としては、界面重合法、インサイチュー法等の手法で得られる、ポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、熱圧着工程で高温で加圧されるため熱的に安定な熱硬化性樹脂皮膜を有するマイクロカプセルが好ましく、特に脂肪族系炭化水素化合物でも良好な品質のマイクロカプセルが得られるインサイチュー法による尿素ホルマリン樹脂、メラミンホルマリン樹脂皮膜を用いたマイクロカプセルが好ましい。
【0014】
本発明で用いられる蓄熱材の相変化点、即ち融点は生活温度域において快適と感じられる下限と、床暖房などの蓄熱温度域を含めた温度域に設定することが好ましく5〜50℃の範囲、好ましくは10〜40℃の範囲に設定される。具体的な蓄熱材としては、炭素数が約14〜30のノルマルパラフィン類や、無機系共晶物及び無機系水和物、パルミチン酸、ミリスチン酸等の脂肪酸類、ベンゼン、キシレン等の芳香族炭化水素化合物、パルミチン酸イソプロピル、ステアリン酸ブチル等のエステル化合物、ステアリルアルコール等のアルコール類等の化合物が挙げられ、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止材、比重調節材、劣化防止剤等を添加することができる。また、融点の異なる2種以上のマイクロカプセルを混合して用いることも可能である。
【0015】
本発明に係るマイクロカプセルの粒子経は、塗工又は含浸する過程で物理的圧力による破壊を防止するために10μm以下、特に好ましくは5μm以下に設定される。粒子径の制御は、乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(攪拌回転数、時間等)等を適宜調節して所望の粒子径に設定する。この粒子径以上になるとマイクロカプセルが外圧で容易に壊れやすくなったり、蓄熱材の比重が分散媒のそれと大きく差がある場合など、浮遊したり沈降したりし易くなるので好ましくない。
【0016】
通常、本発明に係るマイクロカプセルは固形分質量濃度が20〜60%の水分散系で得られるため、そのまま無機系充填剤及び熱可塑性樹脂と混合され成形後に水分を除去させれば良いが、予め固体、粉体等の乾燥固形化物の状態で混合しても良い。乾燥固形化する手段としては、スプレードライヤー、ドラムドライヤー、フリーズドライヤーなどの乾燥装置が用いられる。
【0017】
蓄熱材を内包するマイクロカプセル及び無機系充填剤及び熱可塑性樹脂の混合物は成型用金型の中で高温、高圧下で熱圧着されてボード状に成形される。加熱温度は熱可塑性樹脂の軟化点以上まで高められる。圧力は、面圧で1〜100kg/mの圧力が加えられる。この範囲より高い圧力又は温度ではマイクロカプセルの劣化をもたらすため好ましくなく、この範囲以下の圧力、温度であるとボードとしての強度が発現しないため好ましくない。この過程で上記混合物に発泡剤を添加してボードを発泡させることも可能である。
【0018】
本発明の蓄熱性ボードは住宅やビルの床下あるいは天井裏に貼り付けることにより蓄熱性を有する建築材料として利用される。また床暖房用蓄熱材、農業用蓄熱材、車両用、配送用蓄熱材として使用することもできる。また、発泡させた形態の本発明の蓄熱性ボードは蓄熱性の他に防音性にも優れるという効果も発揮される。また、通常の建築用ボードと同様に自由に切断したりあるいは穴を開けたり、ボード上に壁紙などを貼り付けたりすることも可能である。本発明の蓄熱性を有するボードは、ガラスウール、中空粒子、ウレタンフォーム、発泡性樹脂などの断熱材と組み合わせて用いることにより更なる断熱性と蓄熱性の相乗効果が得られるため好ましい態様である。
【0019】
【実施例】
以下に本発明の実施例を示す。実施例中の部数は固形質量部を表す。また、融点及び融解熱量は示差熱熱量計(米国パーキンエルマー社製、DSC−7型)を用いて測定した。
【0020】
実施例
メラミン粉末12質量部に37%ホルムアルデヒド水溶液15.4質量部と水40質量部を加え、pHを8に調整した後、約70℃まで加熱してメラミン−ホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整した10%スチレン−無水マレイン酸共重合体のナトリウム塩水溶液100質量部中に、蓄熱材として、ノルマルオクタデカン(融解熱量230kJ/kg、融点26〜28℃)80重量部を激しく撹拌しながら添加し、粒子径が3.0μmになるまで乳化を行った。
【0021】
得られた乳化液に、上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加し70℃で2時間撹拌を施した後、pHを9まで上げて水を添加して乾燥固形分濃度40%の蓄熱材マイクロカプセル分散液を得た。このマイクロカプセル分散液をスプレードライヤーで水分含有率1%まで乾燥し粒子径約30μmのマイクロカプセル凝集物の粉体を得た。このマイクロカプセル粉体100質量部とポリ塩化ビニル樹脂40質量部、無機充填剤として炭酸カルシウム30質量部、タルク15質量部、を小形ニーダーを用いてよく混練した後、それらの混合物を金型に隙間なく充填し、上部に蓋をして10kgf/mの圧力で加圧成形した。加圧した状態で170℃に加熱してポリ塩化ビニル樹脂を溶解、ゲル化させて蓄熱性ボードを得た。
【0022】
この蓄熱性ボードの表面に市販の壁紙を貼り付け、裏面には断熱材としてウレタンフォームシートを貼り付けて厚さ15mmの蓄熱性ボードを得た。この蓄熱性ボードを組み合わせて一辺が50cmの立方体の木箱を作製した。この木箱を、環境温度が強制的にコントロール可能な雰囲気内で木箱の外気温度を0〜40℃間を1時間で昇温と降温を繰り返し、木箱内の中心付近の温度を測定したところ、木箱内では27〜28℃付近の温度域を長時間持続する環境が得られることが分かった。また、実施例と同様の操作で蓄熱材を内包するマイクロカプセルを用いずに成形加工を行ったボードを用いて同様の木箱を作製し温度変化を調べたところ、全く蓄熱性は観察されなかった。
【0023】
【発明の効果】
実施例の結果からも明らかなように、本発明で示される蓄熱性を有するボードは通常の建材用ボードと同様の形態、性状であるが特定の温度域に蓄熱性を有するために住宅やビルの内装材として使用することにより、多量の温熱又は冷熱を蓄えることが可能となり、冷暖房に要するエネルギーの節約、及び太陽光エネルギーの有効利用に大きく役立つものである。本発明の蓄熱性ボードに直接火炎を吹き付けても炭化することはあったが炎を出して類焼することはなく、建造用材料としていかなる場所にも適応可能である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a board-like molded product having heat storage properties, and energy for cooling and heating can be obtained by using the heat storage boards of the present invention as interior materials such as floor materials, wall materials, and ceiling materials of houses and buildings. The present invention relates to a novel non-combustible board which can be remarkably saved and has an excellent energy saving effect in which a change in room temperature hardly occurs.
[0002]
[Prior art]
In recent years, suppression of global warming has been regarded as important worldwide, and as a countermeasure, a measure to reduce a large amount of carbon dioxide generated when fossil fuels are burnt has been a serious problem. In particular, the amount of energy consumed to maintain the living environment and working environment of a building is enormous, and energy saving measures such as reduction and effective use are indispensable. Normally, in order to maintain the indoor temperature within a comfortable temperature range in response to changes in the outside air temperature, it is necessary to increase the confidentiality of the building itself, or to install heat insulating materials inside the building such as walls, ceilings, and floors. The measures described above are widely and generally used, and measures are taken to minimize the heat transfer between indoor and outdoor areas.
[0003]
On the other hand, there has been proposed a building material using a latent heat material or a heat storage technology in which energy such as solar heat or cooling / heating is stored as sensible heat in water or a part of a building frame. Specifically, a heat storage element in which a spherical heat storage material is arranged in a building wall (for example, see Patent Document 1), and a heat storage and heat insulation material in which an inorganic heat storage material filled in a synthetic resin tube is inscribed (for example, Patent Document 2), a composite plate in which a heat storage material is implanted (for example, see Patent Document 3), a combination of a heat insulating material and a latent heat storage material (for example, see Patent Document 4), and the like have been proposed. Since the thermal conductivity of the latent heat storage material is poor, the heat storage and radiation characteristics are reduced, and in many cases, the latent heat is not efficiently used up. As a countermeasure, a heat storage building material capable of encapsulating and dispersing a plurality of latent heat storage materials in a base material and maintaining a heat radiation surface temperature substantially constant has been introduced (for example, see Patent Document 5).
[0004]
Further, in order to be used as a building material for building, it cannot be used unless flame-retardant and non-combustible treatments are performed, or the usable range is limited. Therefore, it was necessary to knead a large amount of the flame retardant or to apply or impregnate the material surface.
[0005]
[Patent Document 1]
JP-A-57-202493 [Patent Document 2]
JP-A-58-2379 [Patent Document 3]
JP-A-62-117931 [Patent Document 4]
Japanese Patent Publication No. 2-29824 [Patent Document 5]
Japanese Patent Publication No. 6-33633
[Problems to be solved by the invention]
An object of the present invention is to provide a flame-retardant or non-combustible board which has a heat storage property for maintaining a desired comfortable temperature range for a long time and is an essential condition as a building material.
[0007]
[Means for Solving the Problems]
The object of the present invention is achieved by molding a composition comprising a microcapsule containing a heat storage material, an inorganic filler and a thermoplastic resin.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat storage board of the present invention is made of a microcapsule containing a heat storage material, an inorganic filler and a thermoplastic resin. Examples of the inorganic filler include hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, carbonate compounds such as calcium carbonate and magnesium carbonate, and sulfate compounds such as aluminum sulfate and barium sulfate, as well as asbestos and talc. Inorganic compounds such as limestone, benite, clay and the like, or silicates, serpentine, limestone, natural diatomaceous earth, etc., are preferred, and water-insoluble carbonate compounds are particularly preferred. That is, the carbonate compound emits carbon dioxide by heating and is excellent in fire extinguishing property. These compounds can be used alone or in combination of two or more.
[0009]
The thermoplastic resin used in the present invention is used as a binder for binding the microcapsules and the inorganic filler. Specific examples thereof include polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethylcellulose, polyurethane, polyethylene, polypropylene, polyvinyl acetate, and the like, and polyvinyl chloride is particularly preferable because of its flame retardancy. These thermoplastic resins are preferably added in the form of small particles. In addition to the microcapsules containing the heat storage material and the inorganic filler and thermoplastic resin, if necessary, as additives, foaming agents, organic solvents, plasticizers, metals, metal compounds, ceramics, minerals, preservatives, Photocatalysts, activated carbon, fragrances, coloring agents, dyes, synthetic or natural fibers, antioxidants, antioxidants, tackifiers, lubricants, etc. can be added, injected and bonded.
[0010]
The mass part ratio of the microcapsules containing the heat storage material in the mass of the heat storage board is added in the range of 5 to 80%, preferably 10 to 60%. If it is less than this range, the amount of heat storage will be small, and the heat storage capacity as a building material will be poor. Similarly, the content of the inorganic filler is preferably in the range of 5 to 60%. If the content is less than this range, the flame retardancy is poor. Similarly, the thermoplastic resin is added in the range of 1 to 40%. If it is less than this range, the strength as a building material is poor, and if it is more than this range, the heat storage capacity becomes poor, which is not preferable.
[0011]
The heat storage amount of the heat storage board is determined by the type of heat storage material used and the content ratio of the microcapsules in the heat storage board. The amount of heat required varies depending on the material, environment, size and area of the building, but it suppresses the rise in indoor temperature during summer days and the apparent rise or fall of temperature without the use of winter heating equipment. It is necessary to knead only microcapsules. Specifically, it is preferable that a microcapsule containing a heat storage material having a melting point in the range of 5 to 50 ° C. is kneaded into a fiber board so that the heat of fusion per 1 m 2 is 60 kJ / m 2 or more.
[0012]
In general, as a method of microencapsulating a heat storage material, a method of encapsulation by a composite emulsion method (Japanese Patent Application Laid-Open No. 62-1452) and a method of spraying a thermoplastic resin onto the surface of heat storage material particles (Japanese Patent Application Laid-Open No. 62-45680). ), A method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Application Laid-Open No. 62-149334), a method of polymerizing and coating a monomer on the surface of the heat storage material particles (Japanese Patent Application No. 62-225241), A method described in, for example, a method for producing a polyamide-coated microcapsule by a polycondensation reaction (JP-A-2-258052) can be used.
[0013]
As the capsule membrane material, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethylcellulose, polyurethane, aminoplast resin, or a core cell of gelatin and carboxymethylcellulose or gum arabic obtained by a method such as an interfacial polymerization method or an in situ method. Synthetic or natural resins using the hydration method are used, but microcapsules having a thermally stable thermosetting resin film because they are pressurized at a high temperature in the thermocompression bonding step are preferable, and particularly, aliphatic hydrocarbon compounds. However, a microcapsule using a urea formalin resin or melamine formalin resin film by an in-situ method that can obtain microcapsules of good quality is preferable.
[0014]
The phase change point of the heat storage material used in the present invention, that is, the melting point, is preferably set to the lower limit where comfort is felt in the living temperature range and the temperature range including the heat storage temperature range such as floor heating, preferably in the range of 5 to 50 ° C. , Preferably set in the range of 10 to 40 ° C. Specific heat storage materials include normal paraffins having about 14 to 30 carbon atoms, inorganic eutectics and inorganic hydrates, fatty acids such as palmitic acid and myristic acid, and aromatics such as benzene and xylene. Examples include hydrocarbon compounds, ester compounds such as isopropyl palmitate and butyl stearate, and compounds such as alcohols such as stearyl alcohol. Chemically and physically stable and inexpensive compounds are used. These may be used as a mixture, and if necessary, a supercooling preventing material, a specific gravity adjusting material, a deterioration preventing agent and the like can be added. It is also possible to use a mixture of two or more kinds of microcapsules having different melting points.
[0015]
The particle size of the microcapsules according to the present invention is set to 10 μm or less, particularly preferably 5 μm or less, in order to prevent breakage due to physical pressure during coating or impregnation. The particle size is controlled by the type and concentration of the emulsifier, the temperature of the emulsified liquid at the time of emulsification, the emulsification ratio (volume ratio of the aqueous phase and the oil phase), the operating conditions of the atomizing device called an emulsifier, a disperser, etc. Stirring speed, time, etc.) are appropriately adjusted to set a desired particle size. If the particle size is larger than this, the microcapsules are easily broken due to external pressure, or the microcapsules easily float or settle when the specific gravity of the heat storage material is significantly different from that of the dispersion medium, which is not preferable.
[0016]
Usually, since the microcapsules according to the present invention are obtained in an aqueous dispersion having a solid content mass concentration of 20 to 60%, they may be mixed with an inorganic filler and a thermoplastic resin to remove moisture after molding, You may mix beforehand in the state of dry solidified substances, such as solid and powder. As a means for drying and solidifying, a drying device such as a spray dryer, a drum dryer, and a freeze dryer is used.
[0017]
The mixture of the microcapsules containing the heat storage material, the inorganic filler and the thermoplastic resin is thermocompressed at a high temperature and a high pressure in a molding die to form a board. The heating temperature is raised to above the softening point of the thermoplastic resin. As the pressure, a pressure of 1 to 100 kg / m 2 is applied as a surface pressure. A pressure or temperature higher than this range is not preferable because the microcapsules are deteriorated, and a pressure or temperature lower than this range is not preferable because strength as a board is not exhibited. In this process, a board can be foamed by adding a foaming agent to the mixture.
[0018]
The heat storage board of the present invention is used as a building material having heat storage by attaching it to the floor of a house or a building or the ceiling. Further, it can be used as a heat storage material for floor heating, a heat storage material for agriculture, a vehicle, and a heat storage material for delivery. In addition, the heat storage board of the present invention in a foamed form also has an effect of being excellent in soundproofing in addition to heat storage. In addition, it is also possible to freely cut or make a hole, or paste wallpaper or the like on the board, similarly to a normal building board. The board having heat storage properties of the present invention is a preferred embodiment because a further synergistic effect of heat insulation and heat storage properties can be obtained by using in combination with a heat insulating material such as glass wool, hollow particles, urethane foam, or foamable resin. .
[0019]
【Example】
Examples of the present invention will be described below. The number of parts in the examples represents solid parts by mass. The melting point and the heat of fusion were measured using a differential calorimeter (DSC-7, manufactured by PerkinElmer, USA).
[0020]
Example 1 After adding 15.4 parts by mass of a 37% formaldehyde aqueous solution and 40 parts by mass of water to 12 parts by mass of melamine powder and adjusting the pH to 8, the mixture was heated to about 70 ° C. to obtain an aqueous solution of a melamine-formaldehyde precondensate. . 80 parts by weight of normal octadecane (heat of fusion 230 kJ / kg, melting point 26 to 28 ° C.) as a heat storage material in 100 parts by mass of a 10% styrene-maleic anhydride copolymer sodium salt aqueous solution whose pH has been adjusted to 4.5. Was added with vigorous stirring, and emulsification was performed until the particle size became 3.0 μm.
[0021]
To the obtained emulsion, the whole amount of the melamine-formaldehyde precondensate aqueous solution was added, and the mixture was stirred at 70 ° C. for 2 hours. Then, the pH was raised to 9 and water was added to the heat storage material having a dry solid content of 40%. A microcapsule dispersion was obtained. The microcapsule dispersion was dried to a moisture content of 1% with a spray drier to obtain a microcapsule aggregate powder having a particle diameter of about 30 μm. 100 parts by mass of this microcapsule powder, 40 parts by mass of polyvinyl chloride resin, 30 parts by mass of calcium carbonate as an inorganic filler, and 15 parts by mass of talc are kneaded well using a small kneader, and then the mixture is placed in a mold. The space was filled without gaps, the top was covered, and pressure molding was performed at a pressure of 10 kgf / m 2 . The pressurized state was heated to 170 ° C. to dissolve and gel the polyvinyl chloride resin to obtain a heat storage board.
[0022]
A commercially available wallpaper was stuck on the front surface of the heat storage board, and a urethane foam sheet was stuck on the back surface as a heat insulating material to obtain a heat storage board having a thickness of 15 mm. By combining the heat storage boards, a cubic wooden box having a side of 50 cm was produced. The temperature of the wooden box was repeatedly increased and decreased from 0 to 40 ° C. in one hour in an atmosphere in which the environmental temperature could be forcibly controlled, and the temperature near the center of the wooden box was measured. However, it has been found that an environment in which the temperature range around 27 to 28 ° C. is maintained for a long time in the wooden box can be obtained. In addition, when a similar wooden box was produced using a board that had been molded and processed without using a microcapsule containing a heat storage material in the same operation as in the example, and a temperature change was examined, no heat storage property was observed. Was.
[0023]
【The invention's effect】
As is clear from the results of the examples, the boards having heat storage properties shown in the present invention have the same form and properties as ordinary building material boards, but have heat storage properties in a specific temperature range, so that houses and buildings By using it as an interior material, a large amount of hot or cold heat can be stored, which greatly contributes to saving energy required for cooling and heating and effective use of solar energy. Even if a flame was directly sprayed on the heat storage board of the present invention, it could be carbonized, but it did not emit a flame and burned, and could be applied to any place as a building material.

Claims (3)

蓄熱材を内包するマイクロカプセルと無機系充填剤及び熱可塑性樹脂から成る組成物を成型せしめた蓄熱性ボード。A heat storage board formed by molding a composition comprising a microcapsule containing a heat storage material, an inorganic filler and a thermoplastic resin. 無機系充填剤が水に不溶性の炭酸塩化合物である請求項1記載の蓄熱性ボード。The heat storage board according to claim 1, wherein the inorganic filler is a carbonate compound insoluble in water. 融点が5〜50℃の範囲の蓄熱材を内包するマイクロカプセルを含む請求項1記載の蓄熱性ボード。The heat storage board according to claim 1, comprising a microcapsule containing a heat storage material having a melting point in the range of 5 to 50C.
JP2003093287A 2003-03-31 2003-03-31 Heat storage board Pending JP2004301397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093287A JP2004301397A (en) 2003-03-31 2003-03-31 Heat storage board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093287A JP2004301397A (en) 2003-03-31 2003-03-31 Heat storage board

Publications (1)

Publication Number Publication Date
JP2004301397A true JP2004301397A (en) 2004-10-28

Family

ID=33406124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093287A Pending JP2004301397A (en) 2003-03-31 2003-03-31 Heat storage board

Country Status (1)

Country Link
JP (1) JP2004301397A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002153A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Resin composition for artificial marble
JP2008069293A (en) * 2006-09-15 2008-03-27 Achilles Corp Heat storage acrylic resin composition and heat storage sheet-like molding using it
JP2008533238A (en) * 2005-03-11 2008-08-21 アウトラスト テクノロジーズ,インコーポレイティド Polymer composite having highly reversible thermal properties and method for forming the same
KR101283793B1 (en) * 2009-09-21 2013-07-08 (주)엘지하우시스 Functional inorganic board and manufacturing method thereof
JP2014040761A (en) * 2012-08-23 2014-03-06 Masaru Hiyamizu Heat insulation construction building material and storage battery heat insulation material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533238A (en) * 2005-03-11 2008-08-21 アウトラスト テクノロジーズ,インコーポレイティド Polymer composite having highly reversible thermal properties and method for forming the same
JP2007002153A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Resin composition for artificial marble
JP2008069293A (en) * 2006-09-15 2008-03-27 Achilles Corp Heat storage acrylic resin composition and heat storage sheet-like molding using it
KR101283793B1 (en) * 2009-09-21 2013-07-08 (주)엘지하우시스 Functional inorganic board and manufacturing method thereof
JP2014040761A (en) * 2012-08-23 2014-03-06 Masaru Hiyamizu Heat insulation construction building material and storage battery heat insulation material

Similar Documents

Publication Publication Date Title
ES2785954T3 (en) Use of microcapsules in plasterboard
US20030211796A1 (en) Flame-inhibiting finishing of articles containing organic latent-heat storage materials
ES2573254T3 (en) Microcapsules
US20110108241A1 (en) Method for making phase change products from an encapsulated phase change material
CN104520365A (en) Aerogel-containing polyurethane composite material
JP2007196465A (en) Non-flammable heat storage panel
JP2003306672A (en) Heat storage sheet and method of utilizing the same
JP2006225986A (en) Plaster board
JP2004301397A (en) Heat storage board
JP2005320527A (en) Microcapsule of heat accumulating material, dispersion of microcapsule of heat accumulating material, solid material of microcapsule of heat accumulating material and method of utilizing the same
JP2003260705A (en) Heat accumulation type fiberboard and utilization method therefor
JP2006263681A (en) Microcapsule granule and its usage
KR20030085368A (en) Paint Composition Using a Phase Change Material
JP4632507B2 (en) Latent heat storage cement building material
JP2003261716A (en) Rubber material with heat storage effect and method of utilizing the same
JP4173666B2 (en) Microcapsule solidified material and method of using the same
JP2006063328A (en) Microencapsulated heat-accumulating solid material
JPH10297950A (en) Concrete for accumulating cold heat
JP2006097000A (en) Heat storage material-microencapsulated solid material
JP2004324246A (en) Thermal storage building material and method of using the same
JP2003155789A (en) Heat accumulating board
JP2004060350A (en) Heat storage board
JP2003034993A (en) Building skeleton structure
JP2003090124A (en) Heat storage material for floor heating
JP2006096999A (en) Heat storage material-microencapsulated solid material