JP2006097000A - Heat storage material-microencapsulated solid material - Google Patents

Heat storage material-microencapsulated solid material Download PDF

Info

Publication number
JP2006097000A
JP2006097000A JP2005248062A JP2005248062A JP2006097000A JP 2006097000 A JP2006097000 A JP 2006097000A JP 2005248062 A JP2005248062 A JP 2005248062A JP 2005248062 A JP2005248062 A JP 2005248062A JP 2006097000 A JP2006097000 A JP 2006097000A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
solid
thermal expansion
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005248062A
Other languages
Japanese (ja)
Inventor
Koshiro Ikegami
幸史郎 池上
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2005248062A priority Critical patent/JP2006097000A/en
Publication of JP2006097000A publication Critical patent/JP2006097000A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage material-microencapsulated solid material including a latent heat storage material, causing no damage of microcapsules in making the solid material and usable over a long period without declining in heat storage effect even if temperature change is applied repeatedly in the temperature range including the phase change temperature. <P>SOLUTION: The heat storage material-microencapsulated solid material is such that microcapsules including a heat storage material are made to adhere to one another together with a binder, wherein the coefficient of thermal expansion of the binder is greater than that of a resin constituting the film of the microcapsules. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は蓄熱材を内包したマイクロカプセル固形物に関するものであり、具体的には蓄熱材の融点付近で極めて温度緩衝性に優れるマイクロカプセル固形物に関するものである。   The present invention relates to a microcapsule solid that contains a heat storage material, and specifically relates to a microcapsule solid that has excellent temperature buffering properties near the melting point of the heat storage material.

近年、熱エネルギーを有効に利用することにより、省エネルギー化を図ることが求められている。その有効な方法として、物質の相変化に伴う潜熱を利用して蓄熱を行う方法が考えられてきた。相変化を伴わない顕熱のみを利用する方法に比べ、融点を含む狭い温度域に大量の熱エネルギーを高密度に貯蔵できるため、蓄熱材容量の縮小化がなされるだけでなく、蓄熱量が大きい割に大きな温度差が生じないめ熱損失を少量に抑えられる利点を有する。   In recent years, it has been required to save energy by effectively using thermal energy. As an effective method, a method of storing heat by using latent heat accompanying a phase change of a substance has been considered. Compared to the method using only sensible heat without phase change, it can store a large amount of heat energy in a narrow temperature range including the melting point, thus not only reducing the capacity of the heat storage material but also reducing the amount of heat storage. There is an advantage that heat loss can be suppressed to a small amount because a large temperature difference does not occur for a large amount.

蓄熱材の熱交換効率を高めるために、蓄熱材をマイクロカプセル化する方法が提案されている。一般に蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(例えば、特許文献1参照)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(例えば、特許文献2参照)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(例えば、特許文献3参照)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(例えば、特許文献4参照)等の方法を用いることができる。   In order to increase the heat exchange efficiency of the heat storage material, a method of encapsulating the heat storage material has been proposed. In general, as a method for microencapsulating a heat storage material, an encapsulation method by a composite emulsion method (for example, see Patent Document 1), a method for forming a thermoplastic resin in a liquid on the surface of the heat storage material particles (for example, Patent Document 2) And a method of polymerizing and coating the monomer on the surface of the heat storage material particles (for example, see Patent Document 3), a method for producing a polyamide-coated microcapsule by an interfacial polycondensation reaction (for example, see Patent Document 4), and the like. Can do.

上記のマイクロカプセル化する方法では多くの場合、蓄熱材マイクロカプセルは水等の媒体に分散した状態で得られる。それを乾燥させ固形物として取り出すことにより、内包された潜熱蓄熱材の相状態に関係なく常に固形状態を保つことができる。そのため、より広範囲の用途での利用が可能となる。蓄熱材マイクロカプセルの固形物は、マイクロカプセルを作製する際に用いた媒体を乾燥させただけのマイクロカプセル単体ではなく、マイクロカプセルが複数個固着した状態を保持させるために結着剤が併用されるのが通例である(例えば、特許文献5参照)。   In many cases, the above-described microencapsulation method obtains the heat storage material microcapsules in a state of being dispersed in a medium such as water. By drying it and taking it out as a solid matter, the solid state can always be maintained regardless of the phase state of the contained latent heat storage material. Therefore, it can be used in a wider range of applications. The solid material of the heat storage material microcapsule is not a microcapsule alone, which is simply a dried medium used to make the microcapsule, but a binder is used in combination to maintain a state in which a plurality of microcapsules are fixed. It is customary (see, for example, Patent Document 5).

しかし、蓄熱材マイクロカプセルを固形化すると媒体に分散していた時には見られない問題点があった。すなわち、固形物を作製する際に成型時の外部圧力や内部応力により、マイクロカプセルが損傷を受けたり、蓄熱材マイクロカプセル固形物に相変化温度をはさむ温度域で、繰り返し温度変化を与えると蓄熱効果が低減してしまうという問題点があった。
特開昭62−1452号公報 特開昭62−149334号公報 特開昭62−225241号公報 特開平2−258052号公報 特開平2−222483号公報
However, when the heat storage material microcapsules are solidified, there is a problem that cannot be seen when dispersed in the medium. That is, when a solid is produced, the microcapsule is damaged by external pressure or internal stress at the time of molding, or the temperature is repeatedly stored in the temperature range where the phase change temperature is sandwiched in the heat storage material microcapsule solid. There was a problem that the effect was reduced.
Japanese Patent Laid-Open No. 62-1452 Japanese Patent Laid-Open No. 62-149334 JP-A-62-2225241 Japanese Patent Laid-Open No. 2-258052 JP-A-2-222483

本発明の課題は、潜熱蓄熱材を内包するマイクロカプセルの固形物において、その固形物作製の際にマイクロカプセルの損傷を起こすことなく、かつ相変化温度を挟む温度域で温度変化を繰り返し与えても蓄熱効果が低減せずに長期間にわたって利用可能な、蓄熱材マイクロカプセル固形物を提供することにある。   An object of the present invention is to provide a microcapsule solid material containing a latent heat storage material without causing damage to the microcapsule during the production of the solid material, and repeatedly applying a temperature change in a temperature range sandwiching the phase change temperature. Another object is to provide a heat storage material microcapsule solid that can be used for a long period of time without reducing the heat storage effect.

本発明者らは、鋭意検討した結果、次の発明を見出した。
(1)蓄熱材を内包する蓄熱材マイクロカプセルを結着剤とともに固着せしめた蓄熱材マイクロカプセル固形物において、該結着剤の熱膨張係数が該蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数よりも大きい値を持つ結着剤を用いることを特徴とする蓄熱材マイクロカプセル固形物、
(2)蓄熱材マイクロカプセル固形物の形態が粉体や固形体である場合に、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値が1.05以上50以下である上記(1)記載の蓄熱材マイクロカプセル固形物、
(3)蓄熱材マイクロカプセル固形物の形態が造粒体である場合に、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値が1.1以上30以下である上記(1)記載の蓄熱材マイクロカプセル固形物、
(4)蓄熱材を内包する蓄熱材マイクロカプセルの体積平均粒子径が0.5〜50μmの範囲である上記(1)〜(3)いずれか1項に記載の蓄熱材マイクロカプセル固形物、
(5)蓄熱材マイクロカプセル固形物の体積平均径が10μm〜100mmの範囲である上記(1)〜(4)いずれか1項に記載の蓄熱材マイクロカプセル固形物。
As a result of intensive studies, the present inventors have found the following invention.
(1) In a heat storage material microcapsule solid body in which a heat storage material microcapsule enclosing the heat storage material is fixed together with a binder, the thermal expansion coefficient of the binder is a capsule film constituting resin that forms the heat storage material microcapsule. A heat storage material microcapsule solid, characterized by using a binder having a value larger than the thermal expansion coefficient;
(2) When the form of the heat storage material microcapsule solid is powder or solid, the value of the thermal expansion coefficient of the binder is 1. The heat storage material microcapsule solid according to the above (1), which is from 05 to 50,
(3) When the form of the heat storage material microcapsule solid is a granulated body, the value of the thermal expansion coefficient of the binder is 1.1 or more when the value of the thermal expansion coefficient of the capsule film-forming resin is 1. The heat storage material microcapsule solid according to the above (1), which is 30 or less,
(4) The heat storage material microcapsule solid according to any one of (1) to (3) above, wherein the volume average particle diameter of the heat storage material microcapsules enclosing the heat storage material is in the range of 0.5 to 50 μm,
(5) The heat storage material microcapsule solid according to any one of (1) to (4), wherein the volume average diameter of the heat storage material microcapsule solid is in the range of 10 μm to 100 mm.

本発明で示される蓄熱材マイクロカプセル固形物は、蓄熱材マイクロカプセルを複数個固着せしめる際に用いる結着剤の熱膨張係数を、蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数よりも大きい値を持つ樹脂を用いることにより、固形物作製の際にマイクロカプセルの破壊を生ずることなく、かつ相変化温度を挟む温度域で温度変化を繰り返し与えても蓄熱効果が低減せずに長期間にわたって性能を維持することが可能となった。すなわち、蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数と、蓄熱材マイクロカプセルの周囲に存在する結着剤の熱膨張係数とを適切に設定することにより、初期段階での所望の性能と、耐久性を向上させることができた。   The solid material of the heat storage material microcapsule shown in the present invention has a coefficient of thermal expansion of a binder used when a plurality of heat storage material microcapsules are fixed, from the coefficient of thermal expansion of the capsule film constituent resin that forms the heat storage material microcapsule. By using a resin having a large value, the microcapsules are not destroyed during solid production, and the heat storage effect is not reduced even if temperature changes are repeatedly applied in the temperature range sandwiching the phase change temperature. It became possible to maintain performance over a period of time. That is, by appropriately setting the thermal expansion coefficient of the capsule film constituting resin forming the heat storage material microcapsule and the thermal expansion coefficient of the binder existing around the heat storage material microcapsule, a desired value in the initial stage can be obtained. Performance and durability could be improved.

固形物作製の際には、乾燥装置や造粒装置などを用いて、蓄熱材マイクロカプセル及び水で湿潤した結着剤を主な成分とする混合物から固形物を作製するが、熱をかけて乾燥する工程で、水分が抜けた後の結着剤は熱により体積膨張し、カプセル皮膜も熱により体積膨張する。このとき、蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数よりも、結着剤の熱膨張係数の方が小さいと、カプセル皮膜は結着剤からストレスを受けて、カプセル皮膜に損傷を受け得る。これに対して、カプセル皮膜構成樹脂の熱膨張係数よりも大きい値を持つ結着剤を用いることにより、カプセル皮膜は結着剤からのストレスを受けにくくなり、カプセル皮膜の損傷を抑止することができた。   In the production of solid matter, a solid matter is produced from a mixture containing heat storage material microcapsules and a binder wetted with water as main components using a drying device or a granulating device. In the drying step, the binder after moisture is removed undergoes volume expansion due to heat, and the capsule film also undergoes volume expansion due to heat. At this time, if the thermal expansion coefficient of the binder is smaller than the thermal expansion coefficient of the capsule film constituent resin that forms the heat storage material microcapsule, the capsule film receives stress from the binder and damages the capsule film. Can receive. On the other hand, by using a binder having a value larger than the thermal expansion coefficient of the capsule film constituent resin, the capsule film becomes less susceptible to stress from the binder and can suppress damage to the capsule film. did it.

相変化温度を挟む温度域で温度変化を繰り返し与えると、蓄熱材マイクロカプセルの内部に存在する相変化化合物である蓄熱材は、融解と凝固を繰り返すことになるが、これら蓄熱材は凝固状態から融解状態に変化する時は体積が増大し、逆に融解状態から凝固状態に変化する時は体積が減少する。このことに連動して、蓄熱材を内包する蓄熱材マイクロカプセルも、蓄熱材が凝固状態から融解状態に変化する時には膨張し、逆に蓄熱材が融解状態から凝固状態に変化する時には収縮する。この蓄熱材マイクロカプセルの膨張と収縮による体積変動は、媒体に分散された状態ではその体積変動の変位は媒体に吸収されるのでカプセル皮膜には何らダメージは生じない。一方、マイクロカプセル固形物ではマイクロカプセルの周囲に存在する結着剤がその体積変動の変位をうまく吸収しないと、カプセル皮膜はカプセル内部の蓄熱材とカプセル外部の結着剤の両方からストレスを受け、膨張と収縮を繰り返すとカプセル皮膜に損傷が生じて、そこからカプセル内部の蓄熱材が徐々に外部に漏れだして蓄熱効果が低減していくという現象が起こり得る。   When the temperature change is repeatedly applied in the temperature range sandwiching the phase change temperature, the heat storage material that is a phase change compound existing inside the heat storage material microcapsule repeats melting and solidification, but these heat storage materials are in a solid state. When changing to the molten state, the volume increases. Conversely, when changing from the molten state to the solidified state, the volume decreases. In conjunction with this, the heat storage material microcapsules enclosing the heat storage material also expand when the heat storage material changes from the solidified state to the molten state, and conversely contract when the heat storage material changes from the molten state to the solidified state. The volume variation due to the expansion and contraction of the heat storage material microcapsules is absorbed by the medium in a state where it is dispersed in the medium, so that no damage is caused to the capsule film. On the other hand, in the case of a microcapsule solid, if the binder present around the microcapsule does not absorb the displacement of the volume variation well, the capsule film is stressed by both the heat storage material inside the capsule and the binder outside the capsule. If the expansion and contraction are repeated, the capsule film is damaged, and the heat storage material inside the capsule gradually leaks to the outside, and the heat storage effect is reduced.

これに対して、蓄熱材マイクロカプセルを複数個固着せしめる際に用いる結着剤の熱膨張係数を、蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数よりも大きい値を持つ結着剤を用いることにより、マイクロカプセルの周囲に存在する結着剤に膨張と収縮による体積変動の変位は吸収されるようになり、カプセル皮膜には損傷が生じなくなる。すなわち相変化温度を挟む温度域で温度変化を繰り返し与えても蓄熱効果が低減せずに長期間にわたって利用可能な性能を維持することが達成できた。   On the other hand, the binder having a value larger than the thermal expansion coefficient of the capsule film constituting resin forming the heat storage material microcapsule is used when the heat storage material microcapsules are fixed to each other. By using, volumetric displacement due to expansion and contraction is absorbed by the binder present around the microcapsule, and the capsule film is not damaged. In other words, even if the temperature change is repeatedly applied in the temperature range sandwiching the phase change temperature, it has been possible to maintain the usable performance over a long period without reducing the heat storage effect.

本発明に係わるマイクロカプセルで内包される潜熱蓄熱材は相転移に伴う潜熱を利用して蓄熱する目的で用いられるものであり、融点あるいは凝固点を有する化合物であれば使用可能である。具体的な蓄熱材としては、テトラデカン、ヘキサデカン、オクタデカン、パラフィンワックス等の脂肪族炭化水素化合物(パラフィン類化合物)、無機系共晶物及び無機系水和物、パルミチン酸、ミリスチン酸等の脂肪酸類、ベンゼン、p−キシレン等の芳香族炭化水素化合物、パルミチン酸イソプロピル、ステアリン酸ブチル等のエステル化合物、ステアリルアルコール等のアルコール類等の化合物が挙げられ、好ましくは融解熱量が約80kJ/kg以上の化合物で、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止材、比重調節材、劣化防止剤等を添加することができる。また、融点の異なる2種以上のマイクロカプセルを混合して用いることも可能である。   The latent heat storage material contained in the microcapsules according to the present invention is used for the purpose of storing heat using latent heat accompanying phase transition, and any compound having a melting point or a freezing point can be used. Specific heat storage materials include aliphatic hydrocarbon compounds (paraffin compounds) such as tetradecane, hexadecane, octadecane, and paraffin wax, inorganic eutectics and inorganic hydrates, and fatty acids such as palmitic acid and myristic acid. , Aromatic hydrocarbon compounds such as benzene and p-xylene, ester compounds such as isopropyl palmitate and butyl stearate, and compounds such as alcohols such as stearyl alcohol, preferably having a heat of fusion of about 80 kJ / kg or more. Compounds that are chemically and physically stable and inexpensive are used. These may be used as a mixture, and a supercooling preventing material, a specific gravity adjusting material, a deterioration preventing agent and the like may be added as necessary. It is also possible to use a mixture of two or more microcapsules having different melting points.

本発明に係わるマイクロカプセルの製法として物理的方法と化学的方法が知られているが、特に潜熱蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(特開昭62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(特開昭62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(特開昭62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法が用いられる。   A physical method and a chemical method are known as a method for producing a microcapsule according to the present invention. In particular, as a method for microencapsulating a latent heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. 62-1452). No.), a method of spraying a thermoplastic resin on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-45680), and a method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Laid-Open No. Sho 62- 149334), a method of polymerizing and coating monomers on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-225241), a method for producing a polyamide-coated microcapsule by interfacial polycondensation reaction (Japanese Patent Laid-Open No. 2-258052) Is used.

本発明に係わる蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂としては、界面重合法、インサイチュー(in−situ)重合法、ラジカル重合法等の手法で得られるポリスチレン類、ポリアクリロニトリル類、ポリ(メタ)アクリレート類、ポリアミド類、ポリアクリルアミド類、エチルセルロース類、ポリウレタン類、アミノプラスト樹脂類、またはゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられる。特に、インサイチュー重合法によるメラミンホルマリン樹脂類や尿素ホルマリン樹脂類、界面重合法によるポリアミド類、ポリウレア類、ポリウレタンウレア類及びポリウレタン類、ラジカル重合法によるポリメタクリレート類が好ましく用いることができる。   Examples of the capsule film constituting resin for forming the heat storage material microcapsules according to the present invention include polystyrenes, polyacrylonitriles, poly (poly (nitrides) obtained by techniques such as interfacial polymerization, in-situ polymerization, and radical polymerization. A (meth) acrylate, polyamide, polyacrylamide, ethyl cellulose, polyurethane, aminoplast resin, or a synthetic or natural resin using a coacervation method between gelatin and carboxymethyl cellulose or gum arabic is used. In particular, melamine formalin resins and urea formalin resins by in situ polymerization method, polyamides by interfacial polymerization method, polyureas, polyurethane ureas and polyurethanes, and polymethacrylates by radical polymerization method can be preferably used.

本発明に係わる蓄熱材マイクロカプセルの体積平均粒子径は0.5〜50μmの範囲にすることが好ましく、さらに好ましくは1〜20μmの範囲にすることが好ましい。この範囲より大きい粒子径では機械的剪断力に極めて弱くなることがあり、この範囲より小さい粒子径では破壊は抑えられるものの膜厚が薄くなり耐熱性に乏しくなることがある。本発明で述べる体積平均粒子径とはマイクロカプセル粒子の体積換算値の平均粒子径を表わすものであり、原理的には一定体積の粒子を小さいものから順に篩分けし、その50%体積に当たる粒子が分別された時点での粒子径を意味する。体積平均粒子径の測定は顕微鏡観察による実測でも算定可能であるが市販の電気的、光学的粒子径測定装置を用いることにより自動的に測定可能であり、本発明における体積平均粒子径は米国コールター社製粒度測定装置マルチサイザーII型を用いて測定を行なった。   The volume average particle diameter of the heat storage material microcapsules according to the present invention is preferably in the range of 0.5 to 50 μm, more preferably in the range of 1 to 20 μm. When the particle diameter is larger than this range, the mechanical shearing force may be extremely weak. When the particle diameter is smaller than this range, the fracture may be suppressed, but the film thickness may be reduced and the heat resistance may be poor. The volume average particle diameter described in the present invention represents the average particle diameter of the microcapsule particles in terms of volume, and in principle, particles having a fixed volume are sieved in order from the smallest, and the particles corresponding to 50% of the volume. Means the particle size at the time of separation. The volume average particle diameter can be calculated by actual measurement by microscopic observation, but it can be automatically measured by using a commercially available electrical and optical particle diameter measuring apparatus. Measurement was carried out using a particle size measuring device, Multisizer II, manufactured by the company.

本発明の蓄熱材マイクロカプセル固形物を得る方法としては、水分散液の状態で作製されるマイクロカプセル分散液に結着剤を加えて、スプレードライヤー、ドラムドライヤー、フリーズドライヤー、フィルタープレスなどの各種乾燥装置・脱水装置を用いて媒体の水を蒸発・脱水させて粉体や固形体の形態にする方法を挙げることができる。また、結着剤を加えて又は加えずに上記の装置で粉体や固形体の形態にした後に、結着剤を加えて、押出し造粒、転動造粒、撹拌造粒など各種造粒法を用いて造粒することで粒径を大きくし、扱いやすくした造粒体の形態にすることも可能である。本発明ではこれら粉体や固形体および造粒体の総称として固形物と呼ぶことにする。なお、固形物の形状としては球状、楕円形、立方体、直方体、円柱状、円錐状、俵状、桿状、正多面体、星形、筒型等如何なる形状でも良い。   As a method of obtaining the heat storage material microcapsule solid material of the present invention, a binder is added to the microcapsule dispersion liquid prepared in the state of an aqueous dispersion, and various types such as a spray dryer, a drum dryer, a freeze dryer, a filter press, etc. Examples thereof include a method of evaporating and dewatering the water of the medium using a drying apparatus / dehydrating apparatus to form a powder or solid form. Also, after adding or binding agent to form powder or solid with the above device, add binder, various types of granulation such as extrusion granulation, rolling granulation, stirring granulation, etc. It is also possible to increase the particle size by granulating using the method, and to make it easy to handle. In the present invention, these powders, solid bodies, and granulated bodies are collectively referred to as solid bodies. The shape of the solid material may be any shape such as a sphere, an ellipse, a cube, a rectangular parallelepiped, a cylinder, a cone, a bowl, a bowl, a regular polyhedron, a star, and a cylinder.

本発明に係わる蓄熱材マイクロカプセル固形物の体積平均径は10μm〜100mmの範囲にすることが好ましく、さらに好ましくは20μm〜50mmの範囲にすることが好ましい。この範囲より小さい平均径では固形物が飛散しやすくなる、いわゆる粉舞いが起こりやすくなりハンドリング性が悪化することがある。この範囲よりも大きい平均径では体積に比して表面積の割合が小さくなり、外部との熱交換の効率が低下することがある。本発明で述べる体積平均径とはマイクロカプセル固形物の体積換算値の平均径を表わすものであり、原理的には一定体積の固形物を小さいものから順に篩分けし、その50%体積に当たる固形物が分別された時点での物体径を意味する。粉体の場合の体積平均径の測定は篩い分け法や顕微鏡観察による実測でも算定可能であるが市販の電気的、光学的粒子径測定装置を用いることにより自動的に測定することも可能である。造粒体や固形体の場合の体積平均径の測定は篩い分け法や工業用ノギス等による実測で算定可能である。造粒体や固形体を工業用ノギスで測定する場合には、無作為抽出した20個以上の造粒体や固形体の最短径と最長径とを実測して、それらの平均値をもって体積平均径としてもよい。   The volume average diameter of the heat storage material microcapsule solid according to the present invention is preferably in the range of 10 μm to 100 mm, more preferably in the range of 20 μm to 50 mm. When the average diameter is smaller than this range, the solid matter is likely to be scattered, so-called dusting is likely to occur, and the handling property may be deteriorated. When the average diameter is larger than this range, the ratio of the surface area becomes smaller than the volume, and the efficiency of heat exchange with the outside may be reduced. The volume average diameter described in the present invention represents the average diameter of the microcapsule solids in terms of volume, and in principle, a fixed volume of solids is sieved in ascending order, and the solid corresponding to 50% of the volume. It means the object diameter at the time when an object is separated. Measurement of volume average diameter in the case of powder can be calculated by sieving method or actual measurement by microscopic observation, but it can also be measured automatically by using commercially available electrical and optical particle size measuring devices. . The measurement of the volume average diameter in the case of a granulated body or a solid body can be calculated by actual measurement using a sieving method or industrial calipers. When measuring granulates and solids with industrial calipers, measure the shortest and longest diameters of 20 or more randomly extracted granulates and solids, and use these average values to determine the volume average It is good also as a diameter.

本発明の蓄熱材マイクロカプセル固形物に用いられる結着剤の、マイクロカプセル成分に対する配合比は、蓄熱材マイクロカプセル固形物の形態により好適な範囲がやや異なる。すなわち、蓄熱材マイクロカプセル固形物の形態が粉体や固形体の場合には、結着剤の配合比は、マイクロカプセル成分に対して質量比で0.2〜50%の範囲が好ましく、さらに0.5〜30%の範囲がより好ましい。蓄熱材マイクロカプセル固形物の形態が造粒体の場合には、結着剤の配合比は、マイクロカプセル成分に対して質量比で1〜80%の範囲が好ましく、さらに3〜50%の範囲がより好ましい。この範囲以上であると蓄熱性能の低下が生じることがある。またこの範囲以下であると結着能力が低下することがあったり、マイクロカプセルの収縮・膨張の際の体積変位吸収には不十分となる場合がある。なお、ここでいうマイクロカプセル成分とは、マイクロカプセルの内包物とカプセル皮膜とを合わせたものを指す。   The blending ratio of the binder used in the heat storage material microcapsule solid of the present invention to the microcapsule component is slightly different in the preferred range depending on the form of the heat storage material microcapsule solid. That is, when the form of the heat storage material microcapsule solid is powder or solid, the blending ratio of the binder is preferably in the range of 0.2 to 50% by mass with respect to the microcapsule component, A range of 0.5 to 30% is more preferable. When the form of the heat storage material microcapsule solid is a granulated body, the compounding ratio of the binder is preferably in the range of 1 to 80% by mass ratio with respect to the microcapsule component, and further in the range of 3 to 50%. Is more preferable. If it is above this range, the heat storage performance may be lowered. If the amount is below this range, the binding ability may be lowered, or the volume displacement may not be sufficiently absorbed when the microcapsules contract or expand. The term “microcapsule component” as used herein refers to a combination of a microcapsule inclusion and a capsule film.

本発明に係る熱膨張係数とは、温度Tの上昇により物質の体積V(または長さL)が増加する割合を表すもので、∂lnV/∂Tまたは∂lnL/∂Tで定義される。前者を体熱膨張係数、後者を線熱膨張係数という。等方性物質では∂lnV/∂T=3∂lnL/∂Tであるが、結晶などの異方性物質では線熱膨張係数は方向により異なる(以上、新版高分子辞典(朝倉書店刊、1988年発行))。本発明では、上記の体熱膨張係数や線熱膨張係数を総称して熱膨張係数と呼ぶことにするが、本発明に係わる熱膨張係数としては、固形物作製時のマイクロカプセル損傷防止や繰り返し使用時の耐久性向上の観点から、体熱膨張係数および線熱膨張係数ともに好適な基準として採用することができる。カプセル皮膜構成樹脂の熱膨張係数や結着剤の熱膨張係数は、各材料の熱膨張係数を収録した便覧類から導き出したり、各種測定装置を用いて実測して算出することができる。なお、線熱膨張係数はASTM−D696に試験規格が制定されている。   The coefficient of thermal expansion according to the present invention represents the rate at which the volume V (or length L) of the substance increases as the temperature T increases, and is defined as ∂lnV / ∂T or ∂lnL / ∂T. The former is called body thermal expansion coefficient, and the latter is called linear thermal expansion coefficient. For isotropic materials, ∂lnV / ∂T = 3∂lnL / ∂T, but for anisotropic materials such as crystals, the coefficient of linear thermal expansion varies depending on the direction (the above is a new version of the Dictionary of Polymers (published by Asakura Shoten, 1988). Issue year)). In the present invention, the above-described body thermal expansion coefficient and linear thermal expansion coefficient are collectively referred to as a thermal expansion coefficient. From the viewpoint of improving durability during use, both the body thermal expansion coefficient and the linear thermal expansion coefficient can be adopted as suitable standards. The thermal expansion coefficient of the capsule film constituting resin and the thermal expansion coefficient of the binder can be derived from a handbook containing the thermal expansion coefficient of each material, or can be calculated by actual measurement using various measuring devices. Note that the test standard for linear thermal expansion coefficient is established in ASTM-D696.

本発明の蓄熱材マイクロカプセル固形物では、上記の如く粉体化や固形体化の工程および/または造粒体化の工程で結着剤を用いるが、この結着剤として、蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数よりも大きい値の熱膨張係数を持つ結着剤を用いることで、本発明の目的が達成できるようになる。カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数の大小関係は、結着剤の熱膨張係数の値がカプセル皮膜構成樹脂の熱膨張係数の値を超えれば本発明の目的は達成されるが、蓄熱材マイクロカプセル固形物の形態によって好ましい範囲は若干異なってくる。すなわち、蓄熱材マイクロカプセル固形物の形態が粉体や固形体の場合は、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値は1.05以上50以下であることが好ましい。蓄熱材マイクロカプセル固形物の形態が造粒体の場合は、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値は1.1以上30以下であることが好ましい。また、結着剤のマイクロカプセル成分に対する配合比によっても好ましい範囲は若干異なってくる。すなわち、蓄熱材マイクロカプセル固形物の形態が粉体や固形体の場合は、結着剤のマイクロカプセル成分に対する配合比が20%未満では上記の範囲が好ましく、結着剤の配合比が20%以上では、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値は1.05以上30以下であることが好ましい。蓄熱材マイクロカプセル固形物の形態が造粒体の場合は、結着剤のマイクロカプセル成分に対する配合比が35%未満では上記の範囲が好ましく、結着剤の配合比が35%以上では、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値は1.1以上20以下であることが好ましい。結着剤の熱膨張係数がこの範囲よりも小さいと膨張と収縮による体積変動の変位の吸収が十分ではない場合がある。結着剤の熱膨張係数がこの範囲よりも大きいと蓄熱材マイクロカプセル固形物同士の不用意な固着(いわゆるブロッキング)が起こることがある。   In the heat storage material microcapsule solid according to the present invention, as described above, a binder is used in the pulverization and solidification step and / or the granulation step. As the binder, the heat storage material microcapsule is used. The object of the present invention can be achieved by using a binder having a thermal expansion coefficient larger than that of the capsule film-constituting resin that forms the capsule. The relationship between the thermal expansion coefficient of the capsule film constituent resin and the thermal expansion coefficient of the binder is such that the object of the present invention can be achieved if the value of the thermal expansion coefficient of the binder exceeds the value of the thermal expansion coefficient of the capsule film constituent resin. However, the preferred range varies slightly depending on the form of the heat storage material microcapsule solid. That is, when the form of the heat storage material microcapsule solid is powder or solid, the value of the thermal expansion coefficient of the binder is 1.05 or more when the value of the thermal expansion coefficient of the capsule film constituent resin is 1. It is preferable that it is 50 or less. When the shape of the heat storage material microcapsule solid is a granulated body, the value of the thermal expansion coefficient of the binder is 1.1 or more and 30 or less when the value of the coefficient of thermal expansion of the capsule film constituent resin is 1. It is preferable. The preferred range varies slightly depending on the blending ratio of the binder to the microcapsule component. That is, when the heat storage material microcapsule solid is in the form of powder or solid, the above range is preferable when the blending ratio of the binder to the microcapsule component is less than 20%, and the blending ratio of the binder is 20%. In the above, it is preferable that the value of the coefficient of thermal expansion of the binder is 1.05 or more and 30 or less when the value of the coefficient of thermal expansion of the capsule film constituent resin is 1. When the form of the heat storage material microcapsule solid is a granulated body, the above range is preferable when the blending ratio of the binder to the microcapsule component is less than 35%, and when the blending ratio of the binder is 35% or more, the capsule The value of the thermal expansion coefficient of the binder is preferably from 1.1 to 20 when the value of the thermal expansion coefficient of the film-constituting resin is 1. If the thermal expansion coefficient of the binder is smaller than this range, the volume variation due to expansion and contraction may not be sufficiently absorbed. If the thermal expansion coefficient of the binder is larger than this range, inadvertent fixation (so-called blocking) between the heat storage material microcapsule solids may occur.

蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂として、インサイチュー重合法によるメラミンホルマリン樹脂類または尿素ホルマリン樹脂類を用いる場合には、これら皮膜構成樹脂の熱膨張係数は線熱膨張係数で3×10-5〜4×10-5/Kであることから、結着剤はその熱膨張係数が上記の比率の範囲内であるものなら好適に使用することができる。これら皮膜構成樹脂の熱膨張係数は比較的低いので、結着剤の選択の幅は広いものとなる。一方、カプセル皮膜構成樹脂として界面重合法によるポリアミド類、ポリウレア類、ポリウレタンウレア類及びポリウレタン類、ラジカル重合法によるポリメタクリレート類を用いる場合には、これら皮膜構成樹脂の熱膨張係数は線熱膨張係数で7×10-5〜15×10-5/Kであるものが多いことから、結着剤は好適に使用するにはその熱膨張係数が上記の比率の範囲内であるものを選択する必要がある。これらの皮膜構成樹脂を用いるときには、メラミンホルマリン樹脂類または尿素ホルマリン樹脂類を用いるときよりも、より慎重に結着剤の熱膨張係数を考慮して、使用する結着剤を選定する必要がある。また、熱膨張係数の異なる2種以上の結着剤を用いる場合は、それら結着剤混合体の熱膨張係数が上記の比率の範囲を満たせば、本発明の目的は達成される。 When melamine formalin resins or urea formalin resins obtained by in situ polymerization are used as the capsule film constituent resin forming the heat storage material microcapsules, the thermal expansion coefficient of these film constituent resins is 3 × 10 in terms of linear thermal expansion coefficient. Since it is −5 to 4 × 10 −5 / K, the binder can be suitably used as long as its thermal expansion coefficient is within the above range. Since the thermal expansion coefficients of these film-constituting resins are relatively low, the selection range of the binder is wide. On the other hand, when polyamides, polyureas, polyurethaneureas and polyurethanes by interfacial polymerization are used as capsule film constituent resins, and polymethacrylates by radical polymerization are used, the thermal expansion coefficient of these film constituent resins is the linear thermal expansion coefficient. 7 × 10 −5 to 15 × 10 −5 / K in many cases, it is necessary to select a binder whose thermal expansion coefficient is within the above-mentioned range in order to use it suitably. There is. When using these film-constituting resins, it is necessary to select the binder to be used in consideration of the thermal expansion coefficient of the binder more carefully than when using melamine formalin resins or urea formalin resins. . Further, when two or more kinds of binders having different thermal expansion coefficients are used, the object of the present invention can be achieved if the thermal expansion coefficients of the binder mixture satisfy the above ratio range.

本発明の蓄熱材マイクロカプセル固形物に用いられる結着剤は、更にはマイクロカプセル同士の凝集力、耐水性、強度を高める作用ももたらす成分でもある。本発明で用いられる結着剤としては、上記の熱膨張係数の条件を満たすものであればいずれの結着剤も単独または2種以上併用しても使用可能であるが、具体例としては結着能及び皮膜形成能を有する従来より公知の天然高分子、天然高分子変性品(半合成品)、合成高分子および無機系化合物の中から熱膨張係数を考慮して選択して用いることができる。   The binder used for the solid material of the heat storage material microcapsule of the present invention is also a component that also brings about an effect of increasing the cohesive strength, water resistance, and strength between the microcapsules. As the binder used in the present invention, any binder can be used alone or in combination of two or more as long as it satisfies the above conditions of thermal expansion coefficient. It is possible to select and use a conventionally known natural polymer having a wearing ability and a film forming ability, a natural polymer modified product (semi-synthetic product), a synthetic polymer and an inorganic compound in consideration of the thermal expansion coefficient. it can.

天然高分子物質としては、酸化でんぷん、リン酸エステル化でんぷん等の多糖類、並びにゼラチン、カゼイン、にかわ、及びコラーゲン等のタンパク質等が挙げられる。また、半合成品としては、アルギン酸プロピレングリコールエステル、ビスコース、メチルセルロース、エチルセルロース、メチルエチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、カルボキシメチルヒドロキシエチルセルロース、及びヒドロキシプロピルメチルセルロースフタレート等の繊維素誘導体が用いられる。   Examples of natural polymer substances include polysaccharides such as oxidized starch and phosphated starch, and proteins such as gelatin, casein, glue and collagen. Semi-synthetic products include propylene glycol alginate, viscose, methylcellulose, ethylcellulose, methylethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylethylcellulose, carboxymethylhydroxyethylcellulose, and hydroxypropylmethylcellulose. Fibrin derivatives such as phthalate are used.

また、合成高分子としては、ポリビニルアルコール、部分アセタール化ポリビニルアルコール、アリル変性ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルエチルエーテル、及びポリビニルイソブチルエーテル等の変性ポリビニルアルコール、ポリ(メタ)アクリル酸エステル、ポリ(メタ)アクリル酸エステル部分けん化物、及びポリ(メタ)アクリルアマイド等のポリ(メタ)アクリル酸誘導体、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン、及びビニルピロリドン酢酸ビニル共重合体の親水性高分子や、ポリ酢酸ビニル、ポリウレタン、スチレンブタジエン共重合体、カルボキシ変性スチレンブタジエン共重合体、アクリロニトリルブタジエン共重合体、アクリル酸メチルブタジエン共重合体、及びエチレン酢酸ビニル共重合体等のラテックス類等、メラミンホルムアルデヒド樹脂(初期縮合物)、尿素ホルマリン樹脂(初期縮合物)、熱可塑性エラストマー等が挙げられる。   Synthetic polymers include polyvinyl alcohol, partially acetalized polyvinyl alcohol, allyl-modified polyvinyl alcohol, modified polyvinyl alcohols such as polyvinyl methyl ether, polyvinyl ethyl ether, and polyvinyl isobutyl ether, poly (meth) acrylic acid esters, poly ( Hydrophilic polymers of meth) acrylic acid ester partial saponified products, poly (meth) acrylic acid derivatives such as poly (meth) acrylic amide, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, and vinyl pyrrolidone vinyl acetate copolymers, Polyvinyl acetate, polyurethane, styrene butadiene copolymer, carboxy-modified styrene butadiene copolymer, acrylonitrile butadiene copolymer, methyl acrylate acrylate copolymer Body, and latexes such as ethylene-vinyl acetate copolymer, melamine-formaldehyde resin (precondensate), urea-formalin resin (precondensate), thermoplastic elastomers, and the like.

本発明の蓄熱材マイクロカプセル固形物は、それ単独で利用可能であるが、繊維、樹脂、無機素材などの中に分散・混合・含浸したり、それらの表面に塗工したり貼り付けたり、あるいは吸着材や発熱材と複合したり、包材中に充填したりして利用することも可能である。   The heat storage material microcapsule solid of the present invention can be used alone, but is dispersed, mixed, impregnated in fiber, resin, inorganic material, etc., coated or pasted on the surface thereof, Alternatively, it can be used in combination with an adsorbent or a heat generating material or filled in a packaging material.

本発明の蓄熱材マイクロカプセル固形物をマイクロ波照射により加熱及び蓄熱する保温材に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる、マイクロ波照射により加熱及び蓄熱する保温材とは、例えば特開2001−303032号公報や特開2005−179458号公報に記載のように、シリカゲル等の吸水性化合物あるいは極性構造を有する化合物と蓄熱材マイクロカプセル固形物とを単独または適当な包材に充填したものである。マイクロ波を照射することにより吸水性化合物あるいは極性構造を有する化合物が発熱して、その熱が直接または間接的に接触している蓄熱材マイクロカプセル固形物に伝熱され蓄熱が可能となる。蓄熱材マイクロカプセル固形物中の蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数と、蓄熱材マイクロカプセルの周囲に存在する結着剤の熱膨張係数との大小関係を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、使用時に人体から受ける圧力によるマイクロカプセルの破壊を抑制したり、加熱(蓄熱)と使用(放熱)とを繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。   Utilizing the heat storage material microcapsule solid material of the present invention as a heat insulating material that heats and stores heat by microwave irradiation is an example of use that can effectively exhibit the effects of the present invention. The heat insulating material that heats and stores heat by microwave irradiation using the heat storage material microcapsule solid material referred to here is, for example, silica gel or the like, as described in JP-A-2001-303032 and JP-A-2005-179458. A water-absorbing compound or a compound having a polar structure and a heat storage material microcapsule solid are filled alone or in a suitable packaging material. By irradiating with microwaves, the water-absorbing compound or the compound having a polar structure generates heat, and the heat is transferred to the solid material of the heat storage material microcapsule which is in direct or indirect contact, thereby enabling heat storage. Heat storage material microcapsule Solid relationship between the thermal expansion coefficient of the capsule film constituent resin that forms the microcapsule and the thermal expansion coefficient of the binder existing around the heat storage material microcapsule within an appropriate range By doing so, the destruction of the microcapsules during solid preparation is suppressed, the destruction of the microcapsules due to the pressure received from the human body during use, or repeated heating (heat storage) and use (heat dissipation)-that is, phase change It is possible to prevent destruction and deterioration of the microcapsules in the solid material of the heat storage material microcapsule when the temperature change is repeatedly applied in the temperature range sandwiching the temperature, and to maintain a high heat storage performance over a long period of time.

本発明の蓄熱材マイクロカプセル固形物を寝具に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる寝具とは、枕、ベッドパッド、シーツ、布団、毛布などが挙げられ、天然繊維や合成繊維からなる布地を単独で使用したもの、若しくはその内部に綿、羊毛、羽毛、ウレタンフォーム、スポンジ、ゲル状クッション材、蕎麦殻、プラスチックビーズなどの合成素材や天然素材からなる充填物が充填されているものである。蓄熱材マイクロカプセル固形物は布地内に単独で充填されたり、上記充填物と共に充填されたりして用いられる。蓄熱材マイクロカプセル固形物中の蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数と、蓄熱材マイクロカプセルの周囲に存在する結着剤の熱膨張係数との大小関係を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、使用時に人体から受ける圧力によるマイクロカプセルの破壊を抑制したり、使用(吸熱)と放置(放冷)とを繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。   Utilizing the heat storage material microcapsule solid of the present invention for bedding is an example of use that can effectively demonstrate the effects of the present invention. The bedding using the heat storage material microcapsule solid material mentioned here includes pillows, bed pads, sheets, futons, blankets, etc., and those using a single fabric made of natural fibers or synthetic fibers, or cotton inside. , Filled with synthetic or natural materials such as wool, feathers, urethane foam, sponges, gel cushions, buckwheat husks, plastic beads. The heat storage material microcapsule solid is used by being filled alone in the fabric or filled together with the filler. Heat storage material microcapsule Solid relationship between the thermal expansion coefficient of the capsule film constituent resin that forms the microcapsule and the thermal expansion coefficient of the binder existing around the heat storage material microcapsule within an appropriate range By doing so, the destruction of the microcapsules at the time of solid preparation is suppressed, the destruction of the microcapsules due to the pressure received from the human body at the time of use, or the repeated use (endothermic) and leaving (cooling) -that is, the phase It is possible to prevent destruction and deterioration of the microcapsules in the solid material of the heat storage material microcapsules when the temperature change is repeatedly given in the temperature range sandwiching the change temperature, and to maintain a high heat storage performance over a long period of time.

本発明の蓄熱材マイクロカプセル固形物を建築材料に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる建築材料とは、コンクリート、セメントボード、石膏ボード、樹脂ボード、木質繊維・鉱物性繊維・合成樹脂繊維等を用いた繊維質ボードなどへ蓄熱材マイクロカプセル固形物を混合・塗工したものである。これらを躯体、天井、壁、床などへ利用することにより室内温度が上がりにくい、もしくは下がりにくい環境を作ることが可能となる。また、加熱器や冷却器と組み合わせて、暖房及び/または冷房システムとして使用することもできる。蓄熱材マイクロカプセル固形物中の蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数と、蓄熱材マイクロカプセルの周囲に存在する結着剤の熱膨張係数との大小関係を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、固形物を用いた建築材料を製造する際に成型時の圧力によるマイクロカプセルの破壊を抑制したり、使用(吸熱と放冷、または蓄熱と放熱)を繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。   Utilization of the heat storage material microcapsule solid of the present invention as a building material is an example of use that can effectively exhibit the effects of the present invention. Heat storage material microcapsule building material that uses solid material here refers to concrete, cement board, gypsum board, resin board, fiber board using wood fiber, mineral fiber, synthetic resin fiber, etc. Solids are mixed and coated. By using these for the frame, ceiling, wall, floor, etc., it becomes possible to create an environment in which the indoor temperature is hardly raised or lowered. Moreover, it can also be used as a heating and / or cooling system in combination with a heater or a cooler. Heat storage material microcapsule Solid relationship between the thermal expansion coefficient of the capsule film constituent resin that forms the microcapsule and the thermal expansion coefficient of the binder existing around the heat storage material microcapsule within an appropriate range By suppressing the destruction of the microcapsule during the production of the solid material, or suppressing the destruction of the microcapsule due to the pressure at the time of molding when manufacturing the building material using the solid material, use (endothermic and cooling) Or heat storage and heat dissipation)-that is, when the temperature change is repeatedly applied in the temperature range sandwiching the phase change temperature, the microcapsules in the solid material of the heat storage material microcapsules are prevented from being destroyed and deteriorated, and the heat quantity is high over a long period of time. It becomes possible to maintain heat storage performance.

本発明の蓄熱材マイクロカプセル固形物をガス吸着材に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル固形物を用いる、ガス吸着材とは、例えば特開2001−145832号公報に記載のように、活性炭、ゼオライト、アルミナ、シリカゲル、有機金属錯体等の吸着材と蓄熱材マイクロカプセル固形物とを複合させたものである。吸着対象のガスとしては、メタンなどの天然ガス系、プロパンやブタンなどの石油ガス系、水素、一酸化炭素や二酸化炭素、酸素、窒素、臭気性ガス、酸性ガス、塩基性ガス、有機溶剤ガスなどが挙げられる。これらのガスを吸着材に吸着させるときに発生する熱(吸着熱)を、蓄熱材マイクロカプセル固形物に蓄熱吸収させて温度上昇を抑制して、吸着効率の低下を抑制することができる。また、吸着材からガスを脱着させるときに吸収する熱(脱着熱)を、蓄熱材マイクロカプセル固形物に蓄熱していた熱から放熱供給して温度低下を抑制して、脱着効率の低下を抑制することができる。蓄熱材マイクロカプセル固形物中の蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数と、蓄熱材マイクロカプセルの周囲に存在する結着剤の熱膨張係数との大小関係を適切な範囲にすることによって、固形物作製時のマイクロカプセルの破壊を抑制したり、使用時の機械的圧力によるマイクロカプセルの破壊を抑制したり、使用(蓄熱と放熱)を繰り返す−すなわち相変化温度を挟む温度域で温度変化を繰り返し与えた際における蓄熱材マイクロカプセル固形物中のマイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。   Utilizing the heat storage material microcapsule solid of the present invention as a gas adsorbent is an example of use that can effectively demonstrate the effects of the present invention. The gas adsorbent using the heat storage material microcapsule solid material referred to here is, for example, an adsorbent such as activated carbon, zeolite, alumina, silica gel, organometallic complex, and the heat storage material as described in JP-A No. 2001-145832. It is a composite of microcapsule solids. Gases to be adsorbed include natural gas such as methane, petroleum gas such as propane and butane, hydrogen, carbon monoxide and carbon dioxide, oxygen, nitrogen, odorous gas, acid gas, basic gas, and organic solvent gas. Etc. The heat (adsorption heat) generated when these gases are adsorbed by the adsorbent can be stored and absorbed in the heat storage material microcapsule solids to suppress the temperature rise, and the decrease in adsorption efficiency can be suppressed. In addition, the heat absorbed when desorbing gas from the adsorbent (desorption heat) is radiated from the heat stored in the heat storage material microcapsule solids to suppress the temperature drop and suppress the decrease in desorption efficiency. can do. Heat storage material microcapsule Solid relationship between the thermal expansion coefficient of the capsule film constituent resin that forms the microcapsule and the thermal expansion coefficient of the binder existing around the heat storage material microcapsule within an appropriate range To suppress the destruction of the microcapsule during solid preparation, to suppress the destruction of the microcapsule due to mechanical pressure during use, or to repeatedly use (heat storage and heat dissipation)-that is, the temperature that sandwiches the phase change temperature It is possible to prevent destruction and deterioration of the microcapsules in the solid material of the heat storage material microcapsules when the temperature change is repeatedly applied in the region, and to maintain a high heat storage performance over a long period of time.

以下実施例によって本発明を更に詳しく説明する。実施例中の部数や百分率は特にことわりがない限り質量基準である。
〈熱履歴耐久性〉
温度制御が可能な恒温槽中に蓄熱カプセル固形物を入れ、相変化温度を挟む温度域として−10℃から60℃までを温度変化させ、(昇温に1時間、60℃で30分保持、降温に1時間、−10℃で30分保持のサイクルを1回として)、1000回の温度変化を与えた後の蓄熱量を測定し、温度変化を与える前の熱量との比を熱履歴耐久性とした。数値が大きいほど温度変化を与えた後での蓄熱性の保持性に優れていることを示す。なお、蓄熱量については示差走査熱量計(米国パーキンエルマー社、DSC7)で測定される融解熱量により決定した。
〈溶剤抽出率〉
作製された蓄熱カプセル固形物1gを、n−ヘキサン50mLで5分間震盪抽出した後、ヘキサン相をガスクロで測定し、検出された蓄熱剤成分量を蓄熱カプセル固形物への仕込み蓄熱剤成分量で除した値を溶剤抽出率(百分率)とし、皮膜破壊の程度の目安とした。この溶剤抽出率が小さいほど皮膜の破壊が少なく良好であることを示す。
Hereinafter, the present invention will be described in more detail with reference to examples. The parts and percentages in the examples are based on mass unless otherwise specified.
<Heat history durability>
Put the heat storage capsule solid in a thermostatic chamber capable of temperature control, change the temperature from −10 ° C. to 60 ° C. as the temperature range sandwiching the phase change temperature, and hold (temperature increase for 1 hour, 60 ° C. for 30 minutes, Measures the amount of heat stored after applying a temperature change of 1000 times, and the ratio with the amount of heat before giving the temperature change is the heat history durability. It was sex. It shows that it is excellent in the heat retention property after giving a temperature change, so that a numerical value is large. The amount of heat stored was determined by the amount of heat of fusion measured with a differential scanning calorimeter (Perkin Elmer, DSC7, USA).
<Solvent extraction rate>
After 1 g of the produced heat storage capsule solid was shaken and extracted with 50 mL of n-hexane for 5 minutes, the hexane phase was measured by gas chromatography, and the amount of the detected heat storage agent component was charged into the heat storage capsule solid as the amount of heat storage agent component. The value obtained by dividing was taken as the solvent extraction rate (percentage), which was a measure of the degree of film destruction. It shows that the smaller the solvent extraction rate is, the less the film is broken.

蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点16℃のn−ヘキサデカン80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン6gと37%ホルムアルデヒド水溶液9g及び水15gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了し、蓄熱材マイクロカプセル分散液を得た。得られたマイクロカプセルの体積平均粒子径は2.5μmであった。この蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂はメラミン−ホルマリン樹脂であり、線熱膨張係数は4.0×10-5/Kであった。 Preparation of heat storage material microcapsule dispersion: In a sodium salt aqueous solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5, 80 g of n-hexadecane having a melting point of 16 ° C. was added as a latent heat storage material. The mixture was added with vigorous stirring and emulsified. Next, 6 g of melamine, 9 g of 37% formaldehyde aqueous solution and 15 g of water were mixed, adjusted to pH 8, and a melamine-formalin initial condensate aqueous solution was prepared at about 80 ° C. The total amount was added to the above emulsion and heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of this dispersion was adjusted to 9 to complete the encapsulation, and the heat storage material microcapsule dispersion Got. The volume average particle size of the obtained microcapsules was 2.5 μm. The capsule film-constituting resin forming the heat storage material microcapsule was melamine-formalin resin, and the linear thermal expansion coefficient was 4.0 × 10 −5 / K.

粉体状の蓄熱材マイクロカプセル固形物の作製:上記蓄熱材マイクロカプセル分散液に、結着剤としてポリメタクリル酸メチルのラテックス(ポリメタクリル酸メチルの線熱膨張係数は7.0×10-5/Kであった)を、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比が100:15の割合になるように添加・混合した後、ドラムドライヤーにより加熱乾燥して、体積平均径が500μmの粉体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1.8である。 Preparation of powdered heat storage material microcapsule solid: In the above heat storage material microcapsule dispersion, polymethyl methacrylate latex as a binder (the linear thermal expansion coefficient of polymethyl methacrylate is 7.0 × 10 −5 / K) was added and mixed so that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was 100: 15, and then heated and dried with a drum dryer to obtain a volume average. A powdery heat storage material microcapsule solid having a diameter of 500 μm was obtained. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 1.8.

得られた粉体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.9%であり、熱履歴耐久性は90%であった。   The solvent extraction rate of the obtained powdery heat storage material microcapsule solid was 0.9%, and the heat history durability was 90%.

蓄熱材マイクロカプセル分散液の作製までは、実施例1と同様に行い、得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセルの粉体を得た。   The process until the production of the heat storage material microcapsule dispersion was performed in the same manner as in Example 1. The obtained heat storage material microcapsule dispersion was spray-dried by spray drying to obtain a heat storage material microcapsule powder.

造粒体状の蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセルの粉体に、結着剤としてエチレン−酢酸ビニル共重合体のラテックス(エチレン−酢酸ビニル共重合体の線熱膨張係数は18×10-5/Kであった)を、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比が100:8の割合になるように添加・混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて体積平均径が2mmの造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:4.5である。 Preparation of granulated heat storage material microcapsule solids: The heat storage material microcapsule powder obtained above was coated with an ethylene-vinyl acetate copolymer latex (ethylene-vinyl acetate copolymer as a binder). Linear thermal expansion coefficient was 18 × 10 −5 / K), and added and mixed so that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was 100: 8, Extrusion molding was performed with an extrusion granulator and dried at 100 ° C. to obtain a granulated heat storage material microcapsule solid having a volume average diameter of 2 mm. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 4.5.

得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.3%であり、熱履歴耐久性は98%であった。   The obtained granulated heat storage material microcapsule solid had a solvent extraction rate of 0.3% and a heat history durability of 98%.

蓄熱材マイクロカプセル分散液の作製:潜熱蓄熱材として融点23℃のデカン酸ドデシル80gに多価イソシアネートとして、ジシクロヘキシルメタン4,4−ジイソシアネート(住友バイエルウレタン(株)製脂肪族イソシアネート、商品名デスモジュールW)15gを溶解した物を、5%ポリビニルアルコール(クラレ(株)製、商品名ポバール117)水溶液100g中に添加し、平均粒径が3μmになるまで室温で撹拌乳化を行った。次にこの乳化液に3%ポリエーテル水溶液(旭電化工業(株)製ポリエーテル、商品名アデカポリエーテルEDP−450)60gを添加した後、60℃で加熱と撹拌を施した。低粘度で分散安定性が良好な、蓄熱材マイクロカプセル分散液が得られた。得られたマイクロカプセルの体積平均粒子径は3.2μmであった。この蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂はポリウレタンウレアであり、線熱膨張係数は15×10-5/Kであった。 Production of heat storage material microcapsule dispersion: 80 g of dodecyl decanoate having a melting point of 23 ° C. as a latent heat storage material, dicyclohexylmethane 4,4-diisocyanate (aliphatic isocyanate manufactured by Sumitomo Bayer Urethane Co., Ltd. W) A solution in which 15 g was dissolved was added to 100 g of an aqueous solution of 5% polyvinyl alcohol (manufactured by Kuraray Co., Ltd., trade name POVAL 117), and stirred and emulsified at room temperature until the average particle size became 3 μm. Next, after adding 60 g of 3% polyether aqueous solution (polyether manufactured by Asahi Denka Kogyo Co., Ltd., trade name Adeka Polyether EDP-450) to this emulsion, heating and stirring were performed at 60 ° C. A heat storage material microcapsule dispersion having low viscosity and good dispersion stability was obtained. The volume average particle size of the obtained microcapsules was 3.2 μm. The capsule film-forming resin forming the heat storage material microcapsules was polyurethane urea, and the linear thermal expansion coefficient was 15 × 10 −5 / K.

粉体状の蓄熱材マイクロカプセル固形物の作製:上記蓄熱材マイクロカプセル分散液に、結着剤としてシリコーン樹脂分散液(シリコーン樹脂の線熱膨張係数は19×10-5/Kであった)を、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比が100:10の割合になるように添加・混合した後、スプレードライヤーにより加熱乾燥して、体積平均径が120μmの粉体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1.3である。 Production of powder-like heat storage material microcapsule solids: Silicone resin dispersion as binder in the heat storage material microcapsule dispersion (linear thermal expansion coefficient of silicone resin was 19 × 10 −5 / K) Is added and mixed so that the mass ratio of the heat storage material microcapsule component and the solid content of the binder is 100: 10, and then heated and dried by a spray dryer to obtain a powder having a volume average diameter of 120 μm. A heat storage material microcapsule solid was obtained. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 1.3.

得られた粉体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.8%であり、熱履歴耐久性は93%であった。   The solvent extraction rate of the obtained powdery heat storage material microcapsule solid was 0.8%, and the heat history durability was 93%.

蓄熱材マイクロカプセル分散液の作製までは、実施例3と同様に行い、得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセルの粉体を得た。   The process until the production of the heat storage material microcapsule dispersion was performed in the same manner as in Example 3. The obtained heat storage material microcapsule dispersion was spray-dried by spray drying to obtain a powder of the heat storage material microcapsule.

造粒体状の蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセルの粉体に、結着剤としてエチレン−酢酸ビニル共重合体のラテックス(エチレン−酢酸ビニル共重合体の線熱膨張係数は18×10-5/Kであった)を、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比が100:12の割合になるように添加・混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて体積平均径が1mmの造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1.2である。 Preparation of granulated heat storage material microcapsule solids: The heat storage material microcapsule powder obtained above was coated with an ethylene-vinyl acetate copolymer latex (ethylene-vinyl acetate copolymer as a binder). Linear thermal expansion coefficient was 18 × 10 −5 / K), and added and mixed so that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was 100: 12, Extrusion molding was performed using an extrusion granulator, and drying was performed at 100 ° C. to obtain a granulated heat storage material microcapsule solid having a volume average diameter of 1 mm. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 1.2.

得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.7%であり、熱履歴耐久性は96%であった。   The obtained granular heat storage material microcapsule solid had a solvent extraction rate of 0.7% and a heat history durability of 96%.

蓄熱材マイクロカプセル分散液の作製:潜熱蓄熱材として融点16℃のn−ヘキサデカン80gにメタクリル酸メチル10gを溶解させ、これを75℃の1%ポリビニルアルコール水溶液300gに入れ、強撹拌により乳化を行った。次にこの乳化液の入った重合容器内を75℃に保ちながら窒素雰囲気にした後、イオン交換水15gに溶解させた2,2′−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}ジハイドロクロライド0.3gを添加した。7時間後に重合を終了し、重合容器内を室温にまで冷却し、カプセル化を終了した。得られたマイクロカプセルの体積平均粒子径は2.3μmであった。この蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂はポリメタクリル酸メチルであり、線熱膨張係数は7.0×10-5/Kであった。 Production of heat storage material microcapsule dispersion: 10 g of methyl methacrylate was dissolved in 80 g of n-hexadecane having a melting point of 16 ° C. as a latent heat storage material, and this was put into 300 g of 1% polyvinyl alcohol aqueous solution at 75 ° C. and emulsified by vigorous stirring. It was. Next, the inside of the polymerization vessel containing the emulsified liquid was kept in a nitrogen atmosphere while maintaining at 75 ° C., and then 2,2′-azobis {2- [1- (2-hydroxyethyl) − dissolved in 15 g of ion-exchanged water. 0.3 g of 2-imidazolin-2-yl] propane} dihydrochloride was added. After 7 hours, the polymerization was completed, the inside of the polymerization vessel was cooled to room temperature, and the encapsulation was completed. The volume average particle diameter of the obtained microcapsules was 2.3 μm. The capsule film constituting resin forming the heat storage material microcapsule was polymethyl methacrylate, and the linear thermal expansion coefficient was 7.0 × 10 −5 / K.

粉体状の蓄熱材マイクロカプセル固形物の作製:上記蓄熱材マイクロカプセル分散液に、結着剤としてシリコーン樹脂分散液(シリコーン樹脂の線熱膨張係数は19×10-5/Kであった)を、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比が100:8の割合になるように添加・混合した後、スプレードライヤーにより加熱乾燥して、体積平均径が100μmの粉体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:2.7である。 Production of powder-like heat storage material microcapsule solids: Silicone resin dispersion as binder in the heat storage material microcapsule dispersion (linear thermal expansion coefficient of silicone resin was 19 × 10 −5 / K) Is added and mixed so that the mass ratio of the heat storage material microcapsule component to the solid content of the binder is 100: 8, and then heated and dried with a spray dryer to obtain a powder having a volume average diameter of 100 μm. A heat storage material microcapsule solid was obtained. In addition, the ratio of the thermal expansion coefficient of the capsule film constituent resin and the thermal expansion coefficient of the binder is 1: 2.7.

得られた粉体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は1.1%であり、熱履歴耐久性は92%であった。   The resulting powdery heat storage material microcapsule solid had a solvent extraction rate of 1.1% and a heat history durability of 92%.

蓄熱材マイクロカプセル分散液の作製までは、実施例5と同様に行い、得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセルの粉体を得た。   The production of the heat storage material microcapsule dispersion was performed in the same manner as in Example 5, and the obtained heat storage material microcapsule dispersion was spray-dried by spray drying to obtain a heat storage material microcapsule powder.

造粒体状の蓄熱材マイクロカプセル固形物の作製:上記で得られた蓄熱材マイクロカプセルの粉体に、結着剤としてエチレン−酢酸ビニル共重合体のラテックス(エチレン−酢酸ビニル共重合体の線熱膨張係数は18×10-5/Kであった)を、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比が100:10の割合になるように添加・混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて体積平均径が1mmの造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:2.6である。 Preparation of granulated heat storage material microcapsule solids: The heat storage material microcapsule powder obtained above was coated with an ethylene-vinyl acetate copolymer latex (ethylene-vinyl acetate copolymer as a binder). Linear thermal expansion coefficient was 18 × 10 −5 / K), and added and mixed so that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was 100: 10, Extrusion molding was performed using an extrusion granulator, and drying was performed at 100 ° C. to obtain a granulated heat storage material microcapsule solid having a volume average diameter of 1 mm. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 2.6.

得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.6%であり、熱履歴耐久性は94%であった。   The resulting granulated heat storage material microcapsule solid had a solvent extraction rate of 0.6% and a heat history durability of 94%.

実施例1において、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:30の割合にした以外は実施例1と同様の操作で、実施例7の粉体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1.8で、実施例1と同様である。得られた粉体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.6%であり、熱履歴耐久性は91%であった。   In Example 1, the powdery heat storage material of Example 7 was prepared in the same manner as in Example 1 except that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was changed to 100: 30. A microcapsule solid was obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 1.8, which is the same as in Example 1. The solvent extraction rate of the obtained powdery heat storage material microcapsule solid was 0.6%, and the heat history durability was 91%.

実施例2において、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:38の割合にした以外は実施例2と同様の操作で、実施例8の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:4.5で、実施例2と同様である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.1%であり、熱履歴耐久性は99%であった。   In Example 2, the granulated body-like heat storage of Example 8 was carried out in the same manner as in Example 2 except that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was changed to a ratio of 100: 38. A material microcapsule solid was obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 4.5, which is the same as in Example 2. The obtained granular heat storage material microcapsule solid had a solvent extraction rate of 0.1% and a heat history durability of 99%.

実施例3において、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:25の割合にした以外は実施例3と同様の操作で、実施例9の粉体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1.3で、実施例3と同様である。得られた粉体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.4%であり、熱履歴耐久性は95%であった。   In Example 3, the powdery heat storage material of Example 9 was prepared in the same manner as in Example 3 except that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was changed to 100: 25. A microcapsule solid was obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 1.3, which is the same as in Example 3. The solvent extraction rate of the obtained powdery heat storage material microcapsule solid was 0.4%, and the heat history durability was 95%.

実施例4において、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:45の割合にした以外は実施例4と同様の操作で、実施例10の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1.2で、実施例4と同様である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.2%であり、熱履歴耐久性は98%であった。   In Example 4, the granulated body-like heat storage of Example 10 was performed in the same manner as in Example 4 except that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was changed to a ratio of 100: 45. A material microcapsule solid was obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 1.2, which is the same as in Example 4. The resulting granulated heat storage material microcapsule solid had a solvent extraction rate of 0.2% and a heat history durability of 98%.

実施例5において、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:23の割合にした以外は実施例5と同様の操作で、実施例11の粉体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:2.7で、実施例5と同様である。得られた粉体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.8%であり、熱履歴耐久性は94%であった。   In Example 5, the powdery heat storage material of Example 11 was prepared in the same manner as in Example 5 except that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was changed to a ratio of 100: 23. A microcapsule solid was obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 2.7, which is the same as in Example 5. The solvent extraction rate of the obtained powdery heat storage material microcapsule solid was 0.8%, and the heat history durability was 94%.

実施例6において、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:40の割合にした以外は実施例6と同様の操作で、実施例12の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:2.6で、実施例6と同様である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.4%であり、熱履歴耐久性は96%であった。   In Example 6, the granulated body-like heat storage of Example 12 was carried out in the same manner as in Example 6, except that the mass ratio of the heat storage material microcapsule component and the solid content of the binder was changed to a ratio of 100: 40. A material microcapsule solid was obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 2.6, which is the same as in Example 6. The obtained granular heat storage material microcapsule solid had a solvent extraction rate of 0.4% and a heat history durability of 96%.

(比較例1)
実施例2において、造粒体状蓄熱材マイクロカプセル固形物作製時の結着剤としてのエチレン−酢酸ビニル共重合体ラテックスに代えてメラミン−ホルマリン樹脂初期縮合物水溶液(メラミン−ホルマリン樹脂の線熱膨張係数は4.0×10-5/Kであった)を用いた以外は実施例2と同様の操作で、比較例1の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は4.1%であり、熱履歴耐久性は66%であった。
(Comparative Example 1)
In Example 2, a melamine-formalin resin initial condensate aqueous solution (linear heat of melamine-formalin resin instead of ethylene-vinyl acetate copolymer latex as a binder at the time of production of granulated heat storage material microcapsule solids The granulated heat storage material microcapsule solid of Comparative Example 1 was obtained in the same manner as in Example 2 except that the expansion coefficient was 4.0 × 10 −5 / K). The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 1. The solvent extraction rate of the obtained granulated heat storage material microcapsule solid was 4.1%, and the heat history durability was 66%.

(比較例2)
実施例4において、造粒体状蓄熱材マイクロカプセル固形物作製時の結着剤としてのエチレン−酢酸ビニル共重合体ラテックスに代えて尿素ホルマリン樹脂初期縮合物水溶液(尿素ホルマリン樹脂の線熱膨張係数は2.9×10-5/Kであった)を用いた以外は実施例4と同様の操作で、比較例2の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:0.19である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は6.2%であり、熱履歴耐久性は37%であった。
(Comparative Example 2)
In Example 4, instead of the ethylene-vinyl acetate copolymer latex as a binder for the production of the granular heat storage material microcapsule solid, an aqueous urea formalin resin condensate aqueous solution (linear thermal expansion coefficient of urea formalin resin) in the same manner as in example 4 except for using which was) a 2.9 × 10 -5 / K, to obtain a granule form of the heat storage material microcapsule solids of Comparative example 2. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 0.19. The resulting granulated heat storage material microcapsule solid had a solvent extraction rate of 6.2% and a thermal history durability of 37%.

(比較例3)
実施例6において、造粒体状蓄熱材マイクロカプセル固形物作製時の結着剤としてのエチレン−酢酸ビニル共重合体ラテックスに代えてメラミン−ホルマリン樹脂初期縮合物水溶液(メラミン−ホルマリン樹脂の線熱膨張係数は4.0×10-5/Kであった)を用いた以外は実施例6と同様の操作で、比較例3の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:0.57である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は4.5%であり、熱履歴耐久性は59%であった。
(Comparative Example 3)
In Example 6, a melamine-formalin resin initial condensate aqueous solution (linear heat of melamine-formalin resin instead of ethylene-vinyl acetate copolymer latex as a binder at the time of preparation of granulated body heat storage material microcapsule solids The granulated heat storage material microcapsule solid of Comparative Example 3 was obtained in the same manner as in Example 6 except that the expansion coefficient was 4.0 × 10 −5 / K). The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 0.57. The obtained granular heat storage material microcapsule solid had a solvent extraction rate of 4.5% and a heat history durability of 59%.

(比較例4)
実施例2において、造粒体状蓄熱材マイクロカプセル固形物作製時の結着剤としてのエチレン−酢酸ビニル共重合体ラテックスに代えてメラミン−ホルマリン樹脂初期縮合物水溶液を用いたことと、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:38の割合にしたこと以外は実施例2と同様の操作で、比較例4の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:1で、比較例1と同様である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は2.9%であり、熱履歴耐久性は59%であった。
(Comparative Example 4)
In Example 2, a melamine-formalin resin initial condensate aqueous solution was used in place of the ethylene-vinyl acetate copolymer latex as a binder at the time of production of the granulated heat storage material microcapsule solid, and the heat storage material The granulated heat storage material microcapsule solid of Comparative Example 4 was obtained in the same manner as in Example 2 except that the mass ratio of the microcapsule component and the solid content of the binder was set to 100: 38. Obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 1, which is the same as in Comparative Example 1. The obtained granular heat storage material microcapsule solid had a solvent extraction rate of 2.9% and a heat history durability of 59%.

(比較例5)
実施例4において、造粒体状蓄熱材マイクロカプセル固形物作製時の結着剤としてのエチレン−酢酸ビニル共重合体ラテックスに代えて尿素ホルマリン樹脂初期縮合物水溶液を用いたことと、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:45の割合にしたこと以外は実施例4と同様の操作で、比較例5の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:0.19で、比較例2と同様である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は4.1%であり、熱履歴耐久性は32%であった。
(Comparative Example 5)
In Example 4, a urea formalin resin initial condensate aqueous solution was used in place of the ethylene-vinyl acetate copolymer latex as a binder when preparing the granulated heat storage material microcapsule solid, and the heat storage material micro The granulated heat storage material microcapsule solid material of Comparative Example 5 is obtained in the same manner as in Example 4 except that the mass ratio of the capsule component and the solid content of the binder is 100: 45. It was. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 0.19, which is the same as in Comparative Example 2. The resulting granulated heat storage material microcapsule solid had a solvent extraction rate of 4.1% and a heat history durability of 32%.

(比較例6)
実施例6において、造粒体状蓄熱材マイクロカプセル固形物作製時の結着剤としてのエチレン−酢酸ビニル共重合体ラテックスに代えてメラミン−ホルマリン樹脂初期縮合物水溶液を用いたことと、蓄熱材マイクロカプセル成分と結着剤の固形分との質量比を100:40の割合にしたこと以外は実施例6と同様の操作で、比較例6の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:0.57で、比較例3と同様である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は3.4%であり、熱履歴耐久性は48%であった。
(Comparative Example 6)
In Example 6, a melamine-formalin resin initial condensate aqueous solution was used in place of the ethylene-vinyl acetate copolymer latex as a binder at the time of preparation of the granulated body heat storage material microcapsule solid, and the heat storage material The granulated heat storage material microcapsule solid material of Comparative Example 6 was obtained in the same manner as in Example 6 except that the mass ratio of the microcapsule component and the solid content of the binder was set to 100: 40. Obtained. The ratio of the thermal expansion coefficient of the capsule film-constituting resin to the thermal expansion coefficient of the binder is 1: 0.57, which is the same as in Comparative Example 3. The obtained granulated heat storage material microcapsule solid had a solvent extraction rate of 3.4% and a heat history durability of 48%.

造粒体状の蓄熱材マイクロカプセル固形物の作製:実施例1の蓄熱材マイクロカプセル分散液の作製において、潜熱蓄熱材としてn−ヘキサデカンに代えて、融点55℃のパラフィンワックスを用いた以外は実施例1と全く同様の操作で蓄熱材マイクロカプセルの分散液を作製した。次に、実施例2と同様の操作を施して、この蓄熱材マイクロカプセル分散液から蓄熱材マイクロカプセル粉体を経由して、実施例13の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:4.5である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.2%であり、熱履歴耐久性は98%であった。   Preparation of granulated heat storage material microcapsule solid: In the preparation of the heat storage material microcapsule dispersion of Example 1, paraffin wax having a melting point of 55 ° C. was used instead of n-hexadecane as the latent heat storage material. A heat storage material microcapsule dispersion was prepared in exactly the same manner as in Example 1. Next, the same operation as in Example 2 is performed, and the heat storage material microcapsule powder of Example 13 is obtained from the heat storage material microcapsule dispersion via the heat storage material microcapsule powder. It was. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 4.5. The resulting granulated heat storage material microcapsule solid had a solvent extraction rate of 0.2% and a heat history durability of 98%.

マイクロ波照射により加熱及び蓄熱する保温材の作製:実施例13で得られた造粒体状の蓄熱材マイクロカプセル固形物33質量部と粒径2mmのシリカゲル粒子67質量部とを混合し、木綿製の袋に600gを充填した。電子レンジを用いて2分間加熱を行ったところ、心地よい温度域である43℃以上の温度が70分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を200回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、43℃以上の温度を持続する時間にも変化は生じなかった。   Preparation of heat insulating material to be heated and stored by microwave irradiation: 33 parts by mass of the granulated heat storage material microcapsule solid obtained in Example 13 and 67 parts by mass of silica gel particles having a particle diameter of 2 mm were mixed, and cotton A bag made of 600 g was filled. When heating was performed using a microwave oven for 2 minutes, a comfortable temperature range of 43 ° C. or higher lasted for 70 minutes, and a heat insulating material that maintained warmth for a long time was obtained. Moreover, even if this operation was repeated 200 times, the heat storage component did not ooze out from the granulated solid heat storage material microcapsule solid, and the time for maintaining the temperature of 43 ° C. or higher did not change.

造粒体状の蓄熱材マイクロカプセル固形物の作製:実施例1の蓄熱材マイクロカプセル分散液の作製において、潜熱蓄熱材としてn−ヘキサデカンに代えて、融点28℃のn−オクタデカンを用いた以外は実施例1と全く同様の操作で蓄熱材マイクロカプセルの分散液を作製した。次に、実施例2と同様の操作を施して、この蓄熱材マイクロカプセル分散液から蓄熱材マイクロカプセル粉体を経由して、実施例14の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:4.5である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.3%であり、熱履歴耐久性は98%であった。   Preparation of granulated heat storage material microcapsule solid: In the preparation of the heat storage material microcapsule dispersion of Example 1, n-octadecane having a melting point of 28 ° C. was used instead of n-hexadecane as the latent heat storage material Prepared a dispersion liquid of heat storage material microcapsules by the same operation as in Example 1. Next, the same operation as in Example 2 is performed to obtain a granulated heat storage material microcapsule solid in Example 14 from this heat storage material microcapsule dispersion via the heat storage material microcapsule powder. It was. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 4.5. The obtained granulated heat storage material microcapsule solid had a solvent extraction rate of 0.3% and a heat history durability of 98%.

枕の作製:実施例14で得られた造粒体状の蓄熱材マイクロカプセル固形物100質量部と蕎麦殻100質量部とを混合した後、この混合物1.5kgを綿製布地をタテ45cm×ヨコ65cmの袋状に縫製したものに充填して、蓄熱性を有する枕を得た。この枕を室温25℃の部屋に6時間放置した後、使用すると快適な冷涼感が1時間持続した。また、この操作を200回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、快適な冷涼感を維持する時間にも変化は生じなかった。   Preparation of pillow: After mixing 100 parts by mass of the granulated heat storage material microcapsule solid material obtained in Example 14 and 100 parts by mass of buckwheat husk, 1.5 kg of this mixture was added to a cotton fabric to a length of 45 cm × A pillow having heat storage properties was obtained by filling a bag that was sewn in a horizontal 65 cm bag. When this pillow was left in a room at room temperature of 25 ° C. for 6 hours, when it was used, a comfortable cooling sensation lasted for 1 hour. Further, even when this operation was repeated 200 times, the heat storage component did not ooze out from the granulated solid heat storage material microcapsule solids, and the time for maintaining a comfortable cool feeling did not change.

造粒体状の蓄熱材マイクロカプセル固形物の作製:実施例1の蓄熱材マイクロカプセル分散液の作製において、潜熱蓄熱材としてn−ヘキサデカンに代えて、融点28℃のn−オクタデカンを用いた以外は実施例1と全く同様の操作で蓄熱材マイクロカプセルの分散液を作製した。次に、実施例2において造粒体状の蓄熱材マイクロカプセル固形物の体積平均径を1mmにした以外は実施例2と全く同様の操作を施して、この蓄熱材マイクロカプセル分散液から蓄熱材マイクロカプセル粉体を経由して、実施例15の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:4.5である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.5%であり、熱履歴耐久性は97%であった。   Preparation of granulated heat storage material microcapsule solid: In the preparation of the heat storage material microcapsule dispersion of Example 1, n-octadecane having a melting point of 28 ° C. was used instead of n-hexadecane as the latent heat storage material Prepared a dispersion liquid of heat storage material microcapsules by the same operation as in Example 1. Next, the same operation as in Example 2 was performed except that the volume average diameter of the granulated body heat storage material microcapsule solids was set to 1 mm in Example 2, and this heat storage material microcapsule dispersion was used as a heat storage material. The granulated body heat storage material microcapsule solid of Example 15 was obtained via the microcapsule powder. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 4.5. The obtained granular heat storage material microcapsule solid had a solvent extraction rate of 0.5% and a heat history durability of 97%.

木質ボードの作製:実施例15で得られた造粒体状の蓄熱材マイクロカプセル固形物30部と充填用素材として長径3mm以下の木材粉末70部、及び30%濃度の尿素ホルマリン樹脂初期縮合物水溶液30部をよく混合した後、圧力3MPa、温度160℃の条件下で加圧、加熱成形を行い、縦横40cm四方で厚さ5mmの蓄熱性を有する木質ボードを得た。この板状成形体を6枚組み合わせて立方体状の箱を作製して、庫内温度15℃の大型恒温チャンバー内に6時間放置した後、庫内温度を33℃に切り替えたところ、箱内部中央部の空気温度は28℃以下を3時間維持することができた。また、大型恒温チャンバーの庫内温度を10℃と35℃とに交互に2時間ごとに切り替える操作を10回繰り返したところ、箱内部中央部の空気温度は19〜28℃の比較的狭い範囲での温度変動に留まり、優れた蓄熱性能が確認できた。さらに、この操作を200回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、箱内部中央部の空気温度の変動範囲にも変化は生じなかった。   Production of wood board: 30 parts of granulated solid heat storage material microcapsule solid material obtained in Example 15, 70 parts of wood powder having a major axis of 3 mm or less as a filling material, and 30% concentration urea formalin resin initial condensate After thoroughly mixing 30 parts of the aqueous solution, pressurization and thermoforming were performed under conditions of a pressure of 3 MPa and a temperature of 160 ° C. to obtain a wooden board having a heat storage property of 40 mm square and 5 mm thick. A cube-shaped box was prepared by combining six of these plate-shaped compacts, left in a large constant temperature chamber with an internal temperature of 15 ° C for 6 hours, and then the internal temperature was switched to 33 ° C. The air temperature of the part was maintained at 28 ° C. or lower for 3 hours. Moreover, when the operation of switching the internal temperature of the large constant temperature chamber alternately between 10 ° C. and 35 ° C. every 2 hours was repeated 10 times, the air temperature in the central part of the box was in a relatively narrow range of 19 to 28 ° C. The thermal storage performance was excellent, and excellent heat storage performance was confirmed. Furthermore, even when this operation was repeated 200 times, the heat storage component did not ooze out from the granulated solid material of the heat storage material microcapsule, and the change range of the air temperature at the center inside the box did not change.

造粒体状の蓄熱材マイクロカプセル固形物の作製:実施例1の蓄熱材マイクロカプセル分散液の作製において、潜熱蓄熱材としてn−ヘキサデカンに代えて、融点36℃のパラフィンワックスを用いた以外は実施例1と全く同様の操作で蓄熱材マイクロカプセルの分散液を作製した。次に、実施例2において造粒体状の蓄熱材マイクロカプセル固形物の体積平均径を1mmにした以外は実施例2と全く同様の操作を施して、この蓄熱材マイクロカプセル分散液から蓄熱材マイクロカプセル粉体を経由して、実施例16の造粒体状の蓄熱材マイクロカプセル固形物を得た。なお、カプセル皮膜構成樹脂の熱膨張係数と結着剤の熱膨張係数との比は、1:4.5である。得られた造粒体状の蓄熱材マイクロカプセル固形物の溶剤抽出率は0.6%であり、熱履歴耐久性は97%であった。   Preparation of granulated heat storage material microcapsule solid: In the preparation of the heat storage material microcapsule dispersion of Example 1, paraffin wax having a melting point of 36 ° C. was used instead of n-hexadecane as the latent heat storage material. A heat storage material microcapsule dispersion was prepared in exactly the same manner as in Example 1. Next, the same operation as in Example 2 was performed except that the volume average diameter of the granulated body heat storage material microcapsule solids was set to 1 mm in Example 2, and this heat storage material microcapsule dispersion was used as a heat storage material. A granulated heat storage material microcapsule solid in Example 16 was obtained via the microcapsule powder. The ratio of the thermal expansion coefficient of the capsule film constituent resin to the thermal expansion coefficient of the binder is 1: 4.5. The resulting granulated heat storage material microcapsule solid had a solvent extraction rate of 0.6% and a heat history durability of 97%.

ガス吸着材の作製:実施例16で得られた造粒体状の蓄熱材マイクロカプセル固形物35部と、平均粒径1.2mmの活性炭100部と混合し、蓄熱材複合吸着剤を得た。この蓄熱材複合吸着剤を用いてメタンガス(供給ガス温度=25℃)の吸着量を測定したところ、圧力1MPaにおけるガス吸着量は蓄熱材複合吸着剤1gあたり43mgであった。また、ガスの圧力を1MPaと0.1MPaとを交互に繰り返してガスの吸着と脱着を50回繰り返したところ、融点付近の36℃前後の温度が長時間持続し、蓄熱材複合吸着剤の温度上昇はほとんど見られず、ガス吸着量も蓄熱材複合吸着剤1gあたり41mgとほとんど低下せず、優れた蓄熱効果が確認できた。さらに、この操作を200回繰り返しても、造粒体状の蓄熱材マイクロカプセル固形物から蓄熱成分が滲み出すこともなく、ガス吸着量にも変化は生じなかった。   Preparation of gas adsorbent: 35 parts of the granulated heat storage material microcapsule solid obtained in Example 16 and 100 parts of activated carbon having an average particle diameter of 1.2 mm were mixed to obtain a heat storage material composite adsorbent. . When the adsorption amount of methane gas (supply gas temperature = 25 ° C.) was measured using this heat storage material composite adsorbent, the gas adsorption amount at a pressure of 1 MPa was 43 mg per 1 g of the heat storage material composite adsorbent. In addition, when gas adsorption and desorption were repeated 50 times by alternately repeating the gas pressure of 1 MPa and 0.1 MPa, the temperature around 36 ° C. near the melting point lasted for a long time, and the temperature of the heat storage material composite adsorbent There was hardly any increase, and the gas adsorption amount was hardly lowered to 41 mg per 1 g of the heat storage material composite adsorbent, and an excellent heat storage effect was confirmed. Furthermore, even when this operation was repeated 200 times, the heat storage component did not ooze out from the granulated solid heat storage material microcapsule solid, and the gas adsorption amount did not change.

本発明による蓄熱材マイクロカプセル固形物は、マイクロ波照射により加熱及び蓄熱する保温材、寝具、建築材料、ガス吸着剤に加え、被服材料などの繊維加工物、電子部品などの過熱抑制材及び/または過冷抑制材、建築物の躯体蓄熱・空間充填式空調、床暖房用、空調用途、道路や橋梁などの土木用材料、燃料電池や焼却炉などの廃熱利用設備、給湯蓄熱用途、産業用保温材料、農業用保温材料、家庭用品、健康用品、医療用材料など様々な利用分野に応用できる。   The heat-storing material microcapsule solid material according to the present invention includes a heat-retaining material, bedding, building material, and gas adsorbent that are heated and stored by microwave irradiation, as well as fiber processed products such as clothing materials, and overheat-suppressing materials such as electronic parts and / or Or supercooling suppression materials, building heat storage / space-filling air conditioning for buildings, floor heating, air conditioning, civil engineering materials such as roads and bridges, waste heat utilization equipment such as fuel cells and incinerators, hot water storage and storage, industrial It can be applied to various fields of use such as thermal insulation materials for agriculture, thermal insulation materials for agriculture, household goods, health supplies, and medical materials.

Claims (5)

蓄熱材を内包する蓄熱材マイクロカプセルを結着剤とともに固着せしめた蓄熱材マイクロカプセル固形物において、該結着剤の熱膨張係数が該蓄熱材マイクロカプセルを形成するカプセル皮膜構成樹脂の熱膨張係数よりも大きい値を持つ結着剤を用いることを特徴とする蓄熱材マイクロカプセル固形物。   In a heat storage material microcapsule solid body in which a heat storage material microcapsule encapsulating the heat storage material is fixed together with a binder, the thermal expansion coefficient of the binder is a thermal expansion coefficient of the capsule film constituting resin forming the heat storage material microcapsule. A heat storage material microcapsule solid, wherein a binder having a larger value is used. 蓄熱材マイクロカプセル固形物の形態が粉体や固形体である場合に、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値が1.05以上50以下である請求項1記載の蓄熱材マイクロカプセル固形物。   When the shape of the heat storage material microcapsule solid is powder or solid, the value of the thermal expansion coefficient of the binder is 1 to 50 when the value of the thermal expansion coefficient of the capsule film constituent resin is 1. The heat storage material microcapsule solid according to claim 1, which is: 蓄熱材マイクロカプセル固形物の形態が造粒体である場合に、カプセル皮膜構成樹脂の熱膨張係数の値を1としたときの結着剤の熱膨張係数の値が1.1以上30以下である請求項1記載の蓄熱材マイクロカプセル固形物。   When the form of the heat storage material microcapsule solid is a granulated body, the value of the thermal expansion coefficient of the binder film resin when the value of the thermal expansion coefficient of the capsule film constituting resin is 1 is 1.1 or more and 30 or less. The heat storage material microcapsule solid according to claim 1. 蓄熱材を内包する蓄熱材マイクロカプセルの体積平均粒子径が0.5〜50μmの範囲である請求項1〜3いずれか1項に記載の蓄熱材マイクロカプセル固形物。   The heat storage material microcapsule solid material according to any one of claims 1 to 3, wherein the heat storage material microcapsule enclosing the heat storage material has a volume average particle diameter in a range of 0.5 to 50 µm. 蓄熱材マイクロカプセル固形物の体積平均径が10μm〜100mmの範囲である請求項1〜4いずれか1項に記載の蓄熱材マイクロカプセル固形物。   The heat storage material microcapsule solid material according to any one of claims 1 to 4, wherein a volume average diameter of the heat storage material microcapsule solid material is in a range of 10 µm to 100 mm.
JP2005248062A 2004-08-30 2005-08-29 Heat storage material-microencapsulated solid material Pending JP2006097000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248062A JP2006097000A (en) 2004-08-30 2005-08-29 Heat storage material-microencapsulated solid material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004249397 2004-08-30
JP2005248062A JP2006097000A (en) 2004-08-30 2005-08-29 Heat storage material-microencapsulated solid material

Publications (1)

Publication Number Publication Date
JP2006097000A true JP2006097000A (en) 2006-04-13

Family

ID=36237109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248062A Pending JP2006097000A (en) 2004-08-30 2005-08-29 Heat storage material-microencapsulated solid material

Country Status (1)

Country Link
JP (1) JP2006097000A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168260A (en) * 2007-01-15 2008-07-24 Osaka Gas Co Ltd Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP2011115792A (en) * 2011-02-14 2011-06-16 Osaka Gas Co Ltd Method for producing adsorbing material with heat storage function, adsorbing material with heat storage function, and canister
JP2011196661A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat accumulator
CN102585772A (en) * 2011-01-18 2012-07-18 上海海事大学 Novel low-temperature phase-change thermal storage material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168260A (en) * 2007-01-15 2008-07-24 Osaka Gas Co Ltd Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP4707683B2 (en) * 2007-01-15 2011-06-22 大阪瓦斯株式会社 Manufacturing method of adsorbent with heat storage function, adsorbent with heat storage function, and canister
JP2011196661A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat accumulator
CN102585772A (en) * 2011-01-18 2012-07-18 上海海事大学 Novel low-temperature phase-change thermal storage material and preparation method thereof
JP2011115792A (en) * 2011-02-14 2011-06-16 Osaka Gas Co Ltd Method for producing adsorbing material with heat storage function, adsorbing material with heat storage function, and canister

Similar Documents

Publication Publication Date Title
Khadiran et al. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review
ES2433246T3 (en) Microcapsules with polyvinyl monomers as crosslinker
JP2012531509A (en) Foam composition
CN1321074A (en) Gelling cold pack
JP2006192428A (en) Solid matter of microcapsule and method for utilizing the same
JPS604792A (en) Encapsulized phase change heat energy storage substance and method
JP2007119656A (en) Heat accumulation board
JP2006097000A (en) Heat storage material-microencapsulated solid material
JP2006263681A (en) Microcapsule granule and its usage
JP2006063328A (en) Microencapsulated heat-accumulating solid material
JP2005320527A (en) Microcapsule of heat accumulating material, dispersion of microcapsule of heat accumulating material, solid material of microcapsule of heat accumulating material and method of utilizing the same
JP2016176013A (en) Accumulation material microcapsule granule
KR100632983B1 (en) An Adhesive Sheet Containing Phase Change Materials
JP2006096999A (en) Heat storage material-microencapsulated solid material
US20090169893A1 (en) Thermal Storage Material Microcapsules, Thermal Storage Material Microcapsule Dispersion and Thermal Storage Material Microcapsule Solid
JP4845576B2 (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
JP2006097002A (en) Heat storage material-microencapsulated solid material
JP2006097001A (en) Heat storage material-microencapsulated solid material
JP2006063327A (en) Microencapsulated heat-accumulating solid material
JP2007137991A (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP2006213914A (en) Thermal storage material microcapsule granule
JP2006176761A (en) Microcapsule solid material including thermal storage material
JP2009203352A (en) Method for producing granular heat storage material
JP4173620B2 (en) Granulated product and heating method thereof
JP2004301397A (en) Heat storage board