JP2006213914A - Thermal storage material microcapsule granule - Google Patents

Thermal storage material microcapsule granule Download PDF

Info

Publication number
JP2006213914A
JP2006213914A JP2005371470A JP2005371470A JP2006213914A JP 2006213914 A JP2006213914 A JP 2006213914A JP 2005371470 A JP2005371470 A JP 2005371470A JP 2005371470 A JP2005371470 A JP 2005371470A JP 2006213914 A JP2006213914 A JP 2006213914A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
material microcapsule
microcapsule
granulated product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005371470A
Other languages
Japanese (ja)
Inventor
Koshiro Ikegami
幸史郎 池上
Yuichiro Konishi
雄一朗 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2005371470A priority Critical patent/JP2006213914A/en
Publication of JP2006213914A publication Critical patent/JP2006213914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal storage material microcapsule granule that can be used for a long period of time without the decrease of the thermal storage effect even when it is used in an environment where an outer pressure is applied to a packed material or a processed product of the microcapsule granule containing a latent heat storaging material. <P>SOLUTION: The thermal storage material microcapsule granule is formed by combining a plurality of thermal storage material microcapsules containing a heat storaging material together with a binder, and a value obtained by dividing a press-crashing strength of the thermal storage material microcapsule granule measured by the JIS Z 8841 by a projection cross-sectional area of the thermal storage material microcapsule granule is set within the range of 0.2-50 N/mm<SP>2</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は蓄熱材を内包したマイクロカプセル造粒物に関するものである。   The present invention relates to a microcapsule granulated product containing a heat storage material.

近年、熱エネルギーを有効に利用することにより、省エネルギー化を図ることが求められている。その有効な方法として、物質の相変化に伴う潜熱を利用して蓄熱を行う方法が考えられてきた。相変化を伴わない顕熱のみを利用する方法に比べ、融点を含む狭い温度域に大量の熱エネルギーを高密度に貯蔵できるため、蓄熱材容量の縮小化がなされるだけでなく、蓄熱量が大きい割に大きな温度差が生じないため熱損失を少量に抑えられる利点を有する。   In recent years, it has been required to save energy by effectively using thermal energy. As an effective method, a method of storing heat by using latent heat accompanying a phase change of a substance has been considered. Compared to the method using only sensible heat without phase change, it can store a large amount of heat energy in a narrow temperature range including the melting point, thus not only reducing the capacity of the heat storage material but also reducing the amount of heat storage. Since a large temperature difference does not occur for a large amount, there is an advantage that heat loss can be suppressed to a small amount.

蓄熱材の熱交換効率を高めるために、蓄熱材をマイクロカプセル化する方法が提案されている。一般に蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(例えば、特許文献1参照)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(例えば、特許文献2参照)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(例えば、特許文献3参照)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(例えば、特許文献4参照)等の方法を用いることができる。   In order to increase the heat exchange efficiency of the heat storage material, a method of encapsulating the heat storage material has been proposed. In general, as a method for microencapsulating a heat storage material, an encapsulation method by a composite emulsion method (for example, see Patent Document 1), a method for forming a thermoplastic resin in a liquid on the surface of the heat storage material particles (for example, Patent Document 2) And a method of polymerizing and coating the monomer on the surface of the heat storage material particles (for example, see Patent Document 3), a method for producing a polyamide-coated microcapsule by an interfacial polycondensation reaction (for example, see Patent Document 4), and the like. Can do.

上記のマイクロカプセル化する方法では多くの場合、蓄熱材マイクロカプセルは媒体に分散した状態で得られる。それを乾燥させ固形物として取り出すことにより、内包された潜熱蓄熱材の相状態に関係なく固形状態を保つことができる。そのため、より広範囲の用途での利用が可能となる。蓄熱材マイクロカプセルの固形物はマイクロカプセルを作製する際に用いた媒体を乾燥させただけの粉体状態では飛散しやすく取り扱いに制限を受けることがあるため、蓄熱材マイクロカプセルを結着剤とともに複数個固着せしめて、飛散しにくい大きさまで造粒した蓄熱材マイクロカプセル造粒物が提案されている(例えば、特許文献5、6参照)。   In many cases, the above-described microencapsulation method obtains heat storage material microcapsules in a state of being dispersed in a medium. By drying it and taking it out as a solid material, the solid state can be maintained regardless of the phase state of the contained latent heat storage material. Therefore, it can be used in a wider range of applications. The solid material of the heat storage material microcapsule is likely to be scattered in the powdered state just by drying the medium used to make the microcapsule and may be restricted in handling, so the heat storage material microcapsule together with the binder A heat storage material microcapsule granulated product in which a plurality of particles are fixed and granulated to a size that is difficult to scatter is proposed (see, for example, Patent Documents 5 and 6).

しかし、蓄熱材マイクロカプセル造粒物のなかには、造粒物の一部分が崩壊していき微粉化する、いわゆる粉落ち現象を起こすものがあり、蓄熱材マイクロカプセル造粒物の充填物から蓄熱材マイクロカプセルが脱落したり、蓄熱材マイクロカプセル造粒物の加工物の耐久性が低下してしまうなど、長期間にわたって利用するには問題点があった。   However, some of the heat storage material microcapsule granulated products may cause a so-called pulverization phenomenon in which a part of the granulated material collapses and pulverizes. There are problems in using the capsule for a long period of time, such as the capsule falling off or the durability of the processed product of the heat storage material microcapsule granulated product being lowered.

一方、蓄熱材マイクロカプセル以外のマイクロカプセルにおいては、感圧性や徐放性などを制御するためにマイクロカプセル単体の圧壊強度や破壊強度、圧縮強度などを規定した提案例(例えば、特許文献7〜9参照)はあるものの、マイクロカプセルを結着剤とともに複数個固着せしめたマイクロカプセル造粒物全体の圧壊強度などを規定した例は見当たらない。
特開昭62−1452号公報 特開昭62−149334号公報 特開昭62−225241号公報 特開平2−258052号公報 特開平2−222483号公報 特開2001−303032号公報 特開平8−325117号公報 特公平7−121850号公報 特開平6−3209号公報
On the other hand, in microcapsules other than the heat storage material microcapsule, a proposal example in which the crushing strength, breaking strength, compressive strength, etc. of the microcapsule itself are defined in order to control pressure sensitivity, sustained release properties, etc. 9)), but there is no example that defines the crushing strength of the whole microcapsule granulated product in which a plurality of microcapsules are fixed together with a binder.
Japanese Patent Laid-Open No. 62-1452 Japanese Patent Laid-Open No. 62-149334 JP-A-62-2225241 Japanese Patent Laid-Open No. 2-258052 JP-A-2-222483 JP 2001-303032 A JP-A-8-325117 Japanese Examined Patent Publication No. 7-121850 JP-A-6-3209

本発明の課題は、潜熱蓄熱材を内包するマイクロカプセルの造粒物において、その蓄熱材マイクロカプセル造粒物の充填物や加工物を外力のかかる環境下で使用しても、耐擦過性に優れて粉舞いしにくく、かつ高熱量な蓄熱性能を持ち長期間にわたって利用可能な蓄熱材マイクロカプセル造粒物を提供することにある。   The object of the present invention is to provide a microcapsule granulated product containing a latent heat storage material, which is resistant to scratching even when the heat storage material microcapsule granulated product is used in an environment where external force is applied. An object of the present invention is to provide a heat storage material microcapsule granulated product that is excellent in resistance to dust and has a high heat storage performance and can be used for a long period of time.

本発明者らは鋭意検討した結果、次の発明を見出した。
(1)蓄熱材を内包する蓄熱材マイクロカプセルを結着剤とともに複数個固着せしめた蓄熱材マイクロカプセル造粒物において、該蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が、0.2〜50N/mm2の範囲であることを特徴とする蓄熱材マイクロカプセル造粒物、
(2)蓄熱材マイクロカプセル造粒物中の結着剤の添加割合が0.1〜20質量%の範囲である上記(1)記載の蓄熱材マイクロカプセル造粒物、
(3)蓄熱材マイクロカプセル造粒物の短径方向平均径が0.1〜100mmの範囲である上記(1)または(2)に記載の蓄熱材マイクロカプセル造粒物、
(4)結着剤がポリアミドエピハロヒドリン樹脂である上記(1)〜(3)いずれか1項に記載の蓄熱材マイクロカプセル造粒物。
As a result of intensive studies, the present inventors have found the following invention.
(1) In a heat storage material microcapsule granulated product in which a plurality of heat storage material microcapsules encapsulating the heat storage material are fixed together with a binder, the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granulated material is divided by the projected cross-sectional area of the thermal storage material microcapsule granules are thermal storage material microcapsule granules, characterized in that in the range of 0.2~50N / mm 2,
(2) The heat storage material microcapsule granulated product according to the above (1), wherein the addition ratio of the binder in the heat storage material microcapsule granulated product is in the range of 0.1 to 20% by mass,
(3) The heat storage material microcapsule granulated product according to (1) or (2) above, wherein the average diameter in the minor axis direction of the heat storage material microcapsule granulated product is in the range of 0.1 to 100 mm,
(4) The heat storage material microcapsule granulated product according to any one of (1) to (3) above, wherein the binder is a polyamide epihalohydrin resin.

本発明で示される蓄熱材マイクロカプセル造粒物は、蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が、0.2〜50N/mm2の範囲とすることにより、その蓄熱材マイクロカプセル造粒物の充填物や加工物を外力のかかる環境下で使用しても、耐擦過性に優れて粉舞いしにくく、かつ高熱量な蓄熱性能を長期間にわたって維持することが可能となった。 The heat storage material microcapsule granulated product shown in the present invention has a value obtained by dividing the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granulated product by the projected cross-sectional area of the heat storage material microcapsule granulated product. By setting the range of 2 to 50 N / mm 2 , even if the heat storage material microcapsule granulated filler or processed material is used in an environment where external force is applied, it has excellent scratch resistance and is difficult to dust. In addition, it has become possible to maintain a high heat storage performance over a long period of time.

本発明のような蓄熱材マイクロカプセル造粒物においては、蓄熱材マイクロカプセル1個1個単体の強度もさることながら、蓄熱材マイクロカプセル造粒物全体の強度が重要であり、造粒物全体の強度を適切な範囲に設定することにより、造粒物の一部分が崩壊していき微粉化する、いわゆる粉落ち現象を抑制し、蓄熱材マイクロカプセル造粒物の充填物から蓄熱材マイクロカプセルが脱落するのを防止したり、蓄熱材マイクロカプセル造粒物の加工物の耐久性が低下するのを防止したりすることができ、高熱量で長期間にわたって利用可能な性能を維持することが達成できた。   In the heat storage material microcapsule granulated product as in the present invention, the strength of the entire heat storage material microcapsule granule is important as well as the strength of each single heat storage material microcapsule. By setting the strength of the material within an appropriate range, a part of the granulated material collapses and pulverizes, so-called powder falling phenomenon is suppressed, and the heat storage material microcapsule is filled with the heat storage material microcapsule. It can be prevented from falling off, and the durability of the heat storage material microcapsule granulated product can be prevented from being lowered. did it.

本発明のマイクロカプセルで内包される潜熱蓄熱材は相転移に伴う潜熱を利用して蓄熱する目的で用いられるものであり、融点あるいは凝固点を有する化合物であれば使用可能である。具体的な蓄熱材としては、テトラデカン、ヘキサデカン、オクタデカン、パラフィンワックス等の脂肪族炭化水素化合物(パラフィン類化合物)、無機系共晶物及び無機系水和物、パルミチン酸、ミリスチン酸等の脂肪酸類、ベンゼン、p−キシレン等の芳香族炭化水素化合物、パルミチン酸イソプロピル、ステアリン酸ブチル、ステアリン酸ステアリル等のエステル化合物、ステアリルアルコール等のアルコール類等の化合物が挙げられ、好ましくは融解熱量が約80kJ/kg以上の化合物で、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止材、比重調節材、劣化防止剤等を添加することができる。また、融点の異なる2種以上のマイクロカプセルを混合して用いることも可能である。   The latent heat storage material included in the microcapsule of the present invention is used for the purpose of storing heat using latent heat accompanying phase transition, and any compound having a melting point or a freezing point can be used. Specific heat storage materials include aliphatic hydrocarbon compounds (paraffin compounds) such as tetradecane, hexadecane, octadecane, and paraffin wax, inorganic eutectics and inorganic hydrates, and fatty acids such as palmitic acid and myristic acid. , Aromatic hydrocarbon compounds such as benzene and p-xylene, ester compounds such as isopropyl palmitate, butyl stearate and stearyl stearate, and alcohols such as stearyl alcohol, preferably having a heat of fusion of about 80 kJ / Kg or more of a compound that is chemically and physically stable and inexpensive. These may be used as a mixture, and a supercooling preventing material, a specific gravity adjusting material, a deterioration preventing agent and the like may be added as necessary. It is also possible to use a mixture of two or more microcapsules having different melting points.

本発明のマイクロカプセルの製法として物理的方法と化学的方法が知られているが、特に潜熱蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(特開昭62−45680号号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(特開昭62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(特開昭62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法が用いられる。   As a method for producing the microcapsules of the present invention, a physical method and a chemical method are known. In particular, as a method for microencapsulating a latent heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. Sho 62-1452). Gazette), a method of spraying a thermoplastic resin on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-45680), a method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Laid-Open No. Sho 62- 149334), a method of polymerizing and coating the monomer on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-225241), a method for producing a polyamide-coated microcapsule by interfacial polycondensation reaction (Japanese Patent Laid-Open No. 2-258052), etc. Is used.

本発明に係るマイクロカプセルの膜材としては、界面重合法、インサイチュー(in−situ)法、ラジカル重合法等の手法で得られるポリスチレン、ポリアクリロニトリル、ポリ(メタ)アクリレート、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またはゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、メラミンホルマリン樹脂、尿素ホルマリン樹脂、ポリアミド、ポリウレア、ポリウレタンウレアが好ましく、さらに物理的、化学的に安定なインサイチュー法によるメラミンホルマリン樹脂皮膜、尿素ホルマリン樹脂皮膜を用いたマイクロカプセルを使用することが特に好ましい。   As the membrane material of the microcapsule according to the present invention, polystyrene, polyacrylonitrile, poly (meth) acrylate, polyamide, polyacrylamide, which are obtained by a method such as an interfacial polymerization method, an in-situ method, or a radical polymerization method, Ethyl cellulose, polyurethane, aminoplast resin, or synthetic or natural resin using a coacervation method of gelatin and carboxymethyl cellulose or gum arabic is used. Melamine formalin resin, urea formalin resin, polyamide, polyurea, polyurethane urea are used. It is particularly preferable to use a microcapsule using a melamine formalin resin film or a urea formalin resin film by a physically and chemically stable in situ method.

本発明に係る蓄熱材マイクロカプセルの体積平均粒子径は0.5〜50μmの範囲にすることが好ましく、さらに好ましくは1〜20μmの範囲にすることが好ましい。50μmより大きい粒子径では機械的剪断力に極めて弱くなることがあり、0.5μmより小さい粒子径では破壊は抑えられるものの膜厚が薄くなり耐熱性に乏しくなることがある。本発明で述べる体積平均粒子径とはマイクロカプセル粒子の体積換算値の平均粒子径を表わすものであり、原理的には一定体積の粒子を小さいものから順に篩分けし、その50%体積に当たる粒子が分別された時点での粒子径を意味する。体積平均粒子径の測定は顕微鏡観察による実測でも算定可能であるが市販の電気的、光学的粒子径測定装置を用いることにより自動的に測定可能であり、本発明における体積平均粒子径は米国コールター社製粒度測定装置マルチサイザーII型を用いて測定を行なった。   The volume average particle diameter of the heat storage material microcapsules according to the present invention is preferably in the range of 0.5 to 50 μm, more preferably in the range of 1 to 20 μm. When the particle diameter is larger than 50 μm, the mechanical shearing force may be extremely weak, and when the particle diameter is smaller than 0.5 μm, the fracture is suppressed, but the film thickness becomes thin and the heat resistance may be poor. The volume average particle diameter described in the present invention represents the average particle diameter of the microcapsule particles in terms of volume, and in principle, particles having a fixed volume are sieved in order from the smallest, and the particles corresponding to 50% of the volume. Means the particle size at the time of separation. The volume average particle diameter can be calculated by actual measurement by microscopic observation, but it can be automatically measured by using a commercially available electrical and optical particle diameter measuring apparatus. Measurement was carried out using a particle size measuring device, Multisizer II, manufactured by the company.

本発明の蓄熱材マイクロカプセル造粒物を得る方法としては、水分散液の状態で作製されるマイクロカプセル分散液に結着剤を加えて又は加えずにスプレードライヤー、ドラムドライヤー、フリーズドライヤー、フィルタープレスなどの各種乾燥装置を用いて媒体の水を蒸発・脱水させて粉体や固形体の状態にした後に、結着剤を加えて、押出し造粒、転動造粒、撹拌造粒など各種造粒法を用いて造粒することにより造粒物を作製することができる。またはマイクロカプセル分散液に増粘剤や脱水剤を加えるとともに結着剤を加えて、同様の各種造粒法を用いて造粒することにより造粒物を作製することもできる。さらに、乾燥時、あるいは造粒時に、酸化防止剤、VOC吸着剤、活性炭、光触媒、有機または無機顔料、不燃材、難燃剤粉体等を添加することも可能である。蓄熱材マイクロカプセル造粒物の形状としては球状、楕円形、立方体、直方体、円柱状、円錐状、俵状、桿状、正多面体、星形、筒型等如何なる形状でも良い。   As a method for obtaining the heat storage material microcapsule granulated product of the present invention, a spray dryer, drum dryer, freeze dryer, filter with or without a binder added to the microcapsule dispersion prepared in the state of an aqueous dispersion Various types of drying equipment such as presses are used to evaporate and dehydrate the water of the medium to form a powder or solid, and then add a binder to the various types such as extrusion granulation, tumbling granulation, stirring granulation, etc. A granulated product can be produced by granulating using a granulation method. Alternatively, a granulated product can be prepared by adding a thickener or a dehydrating agent to the microcapsule dispersion and adding a binder, followed by granulation using the same various granulation methods. Furthermore, an antioxidant, a VOC adsorbent, activated carbon, a photocatalyst, an organic or inorganic pigment, an incombustible material, a flame retardant powder, and the like can be added during drying or granulation. The shape of the heat storage material microcapsule granule may be any shape such as a sphere, an ellipse, a cube, a rectangular parallelepiped, a cylinder, a cone, a bowl, a bowl, a regular polyhedron, a star, a cylinder, and the like.

本発明に係る蓄熱材マイクロカプセル造粒物の短径方向平均径は0.1〜100mmの範囲にすることが好ましく、さらに好ましくは0.5〜50mmの範囲にすることが好ましい。0.1mmより小さい平均径では造粒物が飛散しやすくなる、いわゆる粉舞いが起こりやすくなりハンドリング性が悪化することがある。100mmよりも大きい平均径では体積に比して表面積の割合が小さくなり、外部との熱交換の効率が低下することがある。本発明で述べる短径方向平均径とはマイクロカプセル造粒物の最短径方向の平均直径を表わすものであり、その短径方向平均径の測定は工業用ノギスなどで実測できるほか、市販の光学的粒子径測定装置等を用いることにより自動的に測定することも可能である。   The average diameter in the minor axis direction of the heat storage material microcapsule granulated product according to the present invention is preferably in the range of 0.1 to 100 mm, and more preferably in the range of 0.5 to 50 mm. When the average diameter is less than 0.1 mm, the granulated product is likely to be scattered, so-called dusting is likely to occur, and handling properties may be deteriorated. When the average diameter is larger than 100 mm, the ratio of the surface area is smaller than the volume, and the efficiency of heat exchange with the outside may be reduced. The short diameter direction average diameter described in the present invention represents the average diameter in the shortest diameter direction of the microcapsule granulated product, and the short diameter direction average diameter can be measured with industrial calipers or the like, as well as commercially available optical It is also possible to measure automatically by using an automatic particle size measuring device or the like.

本発明に係る造粒物の圧壊強度とは、造粒物の圧縮による破壊に対する抵抗を表す強度であり、JIS Z 8841(造粒物−強度試験方法)に規定される試験方法で測定することができ、JIS Z 8841による圧壊強度の単位はN(ニュートン)で表される。しかしながら、圧壊強度の単位をNのままで扱うと、造粒物の大きさが大きい時には圧壊強度は大きい値が得られ、造粒物の大きさが小さい時には圧壊強度は小さい値が得られる傾向にあるので、本発明では、造粒物の大きさの要因を補正するために、測定の供試物となる造粒物の圧縮方向の投影断面積で、圧壊強度を除した値を強度の指標として扱うこととした。本発明における圧壊強度測定時の圧縮方向は測定の供試物となる造粒物の最短径方向とした。なお造粒物の圧縮方向の投影断面積は測定の供試物となる造粒物を圧縮方向と垂直な面に投影したときの面積として求められる。圧壊強度は市販の各種材料強度試験機などを用いて測定することができる。   The crushing strength of the granulated product according to the present invention is a strength representing the resistance against fracture of the granulated product, and is measured by a test method defined in JIS Z 8841 (granulated product-strength test method). The unit of crushing strength according to JIS Z 8841 is represented by N (Newton). However, when the unit of the crushing strength is handled as N, when the size of the granulated material is large, a large value of the crushing strength is obtained, and when the size of the granulated material is small, the value of the crushing strength tends to be small. Therefore, in the present invention, in order to correct the factor of the size of the granulated product, the value obtained by dividing the crushing strength by the projected cross-sectional area in the compression direction of the granulated product to be measured is a strength value. It was decided to treat it as an indicator. The compression direction at the time of crushing strength measurement in the present invention was set to the shortest diameter direction of the granulated material to be measured. The projected cross-sectional area of the granulated product in the compression direction is obtained as an area when the granulated product to be measured is projected onto a plane perpendicular to the compression direction. The crushing strength can be measured using various commercially available material strength testers.

本発明の蓄熱材マイクロカプセル造粒物は、蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が、0.2〜50N/mm2の範囲とすることにより、その蓄熱材マイクロカプセル造粒物の充填物や加工物を外力のかかる環境下で使用しても、高熱量な蓄熱性能を長期間にわたって維持することが可能である。さらに好ましくは、0.5〜20N/mm2の範囲であることがより好ましい。圧壊強度を投影断面積で除した該数値が0.2N/mm2よりも小さいと強度が不十分となり、造粒物の一部分が崩壊して微粉化する粉落ち現象が生じてしまったり、マイクロカプセルが破壊して蓄熱成分が外部に滲み出してしまうことがあり、長期にわたる蓄熱性能の維持が困難になる。また、該数値が50N/mm2よりも大きいと強度的には十分にはなるが、蓄熱材マイクロカプセル造粒物に相変化温度を挟む温度域で温度変化を繰り返し与えた際の膨張と収縮によるマイクロカプセルの体積変動がマイクロカプセルの周囲に存在する結着剤にその体積変動の変位が吸収されず、カプセル皮膜に損傷が生じてしまい徐々に蓄熱効果が低下してしまうことがあり、高熱量な蓄熱性能を長期間にわたって維持するのが困難になる。加えて蓄熱材マイクロカプセル造粒物中の結着剤量が多くなりすぎることで蓄熱量が小さくなってしまうこともある。 The heat storage material microcapsule granulated product of the present invention has a value obtained by dividing the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granulated product by the projected cross-sectional area of the heat storage material microcapsule granulated product. Maintaining high heat storage performance over a long period of time even if the heat storage material microcapsule granulated filler or processed product is used in an environment where external force is applied by setting the range to -50 N / mm 2 Is possible. More preferably, it is more preferably in the range of 0.5 to 20 N / mm 2 . If the numerical value obtained by dividing the crushing strength by the projected cross-sectional area is less than 0.2 N / mm 2 , the strength becomes insufficient, and a part of the granulated material may collapse and cause a pulverization phenomenon in which the powder falls. The capsule may be broken and the heat storage component may ooze out to the outside, making it difficult to maintain the heat storage performance over a long period of time. In addition, when the numerical value is larger than 50 N / mm 2 , the strength is sufficient, but expansion and contraction when the temperature change is repeatedly applied to the heat storage material microcapsule granulated material in the temperature range sandwiching the phase change temperature. The volume fluctuation of the microcapsule due to the above may not be absorbed by the binder present around the microcapsule, resulting in damage to the capsule film and gradually reducing the heat storage effect. It becomes difficult to maintain heat storage performance with a large amount of heat over a long period of time. In addition, the amount of heat storage may become small because the amount of the binder in the heat storage material microcapsule granulated product becomes too large.

蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が、0.2〜50N/mm2の範囲にするには、次の各要素をバランス良く調整することで初めて達成できた。つまり、粉体や固形体の状態を経由して造粒物を得る場合には、粉体や固形体の吸水量、結着剤の種類と添加形態と添加量、添加水の量をそれぞれ最適化した。あるいはマイクロカプセル分散液に増粘剤や脱水剤を加えるとともに結着剤を加えて、粉体や固形体を経由しないで造粒物を得る場合には、増粘剤や脱水剤の種類と添加形態と添加量、結着剤の種類と添加形態と添加量をそれぞれ最適化した。さらに、各材料の添加順序、添加方法、混合方法も最適化した。押出し造粒、転動造粒、撹拌造粒などの各種造粒法では、それぞれ最適な、押出し方法や押し出し条件、転動方法や転動条件、撹拌方法や撹拌条件を設定した。造粒後の乾燥方法と乾燥条件の最適化も行った。これらをすべてバランス良く最適化することで、蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値を、0.2〜50N/mm2の範囲にすることが達成できた。 To obtain a value obtained by dividing the crushing strength of the heat storage material microcapsule granulated material according to JIS Z 8841 by the projected cross-sectional area of the heat storage material microcapsule granulated material, within a range of 0.2 to 50 N / mm 2 , This was achieved for the first time by adjusting the following factors in a balanced manner. In other words, when obtaining a granulated product via the state of the powder or solid, the water absorption amount of the powder or solid, the type and addition form of the binder, the addition amount, and the amount of added water are optimal. Turned into. Alternatively, when adding a thickener or dehydrating agent to a microcapsule dispersion and adding a binder to obtain a granulated product without going through a powder or solid, the type and addition of the thickener or dehydrating agent The form and addition amount, the kind of binder, the addition form and addition amount were optimized, respectively. Furthermore, the order of addition of each material, the addition method, and the mixing method were also optimized. In various granulation methods such as extrusion granulation, rolling granulation and stirring granulation, optimum extrusion method, extrusion condition, rolling method and rolling condition, stirring method and stirring condition were set respectively. The drying method after granulation and the drying conditions were also optimized. By optimizing all of these in a well-balanced manner, a value obtained by dividing the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granulated product by the projected cross-sectional area of the heat storage material microcapsule granulated product is 0.2 to A range of 50 N / mm 2 could be achieved.

本発明の蓄熱材マイクロカプセル造粒物に用いられる結着剤は、マイクロカプセル同士の凝集力、融着力、耐水性を高める作用ももたらす成分であり、蓄熱材マイクロカプセルと結着剤が一体となって本発明の蓄熱材マイクロカプセル造粒物の強度を発現させるものである。本発明で用いられる結着剤としては、上記の強度が得られるものであればいずれの結着剤も使用可能であるが、具体例としては結着能及び皮膜形成能を有する従来より公知の天然高分子、天然高分子変性品(半合成品)、合成高分子および無機系化合物を用いることができる。   The binder used in the heat storage material microcapsule granulated product of the present invention is a component that also brings the action of enhancing the cohesive force, fusion power, and water resistance between the microcapsules, and the heat storage material microcapsule and the binder are integrated. Thus, the strength of the heat storage material microcapsule granulated product of the present invention is expressed. As the binder used in the present invention, any binder can be used as long as the above-mentioned strength can be obtained. Specific examples thereof include conventionally known binding ability and film forming ability. Natural polymers, natural polymer modified products (semi-synthetic products), synthetic polymers and inorganic compounds can be used.

天然高分子物質としては、酸化でんぷん、リン酸エステル化でんぷん等の多糖類、並びにゼラチン、カゼイン、にかわ、及びコラーゲン等のタンパク質等が挙げられる。また、半合成品としては、アルギン酸プロピレングリコールエステル、ビスコース、メチルセルロース、エチルセルロース、メチルエチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、カルボキシメチルヒドロキシエチルセルロース、及びヒドロキシプロピルメチルセルロースフタレート等の繊維素誘導体が用いられる。   Examples of natural polymer substances include polysaccharides such as oxidized starch and phosphated starch, and proteins such as gelatin, casein, glue and collagen. Semi-synthetic products include propylene glycol alginate, viscose, methylcellulose, ethylcellulose, methylethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylethylcellulose, carboxymethylhydroxyethylcellulose, and hydroxypropylmethylcellulose. Fibrin derivatives such as phthalate are used.

また、合成高分子としては、ポリビニルアルコール、部分アセタール化ポリビニルアルコール、アリル変性ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルエチルエーテル、及びポリビニルイソブチルエーテル等の変性ポリビニルアルコール、ポリ(メタ)アクリル酸およびそのエステル類、ポリ(メタ)アクリル酸エステル部分けん化物、及びポリ(メタ)アクリルアマイド等のポリ(メタ)アクリル酸誘導体、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン、及びビニルピロリドン酢酸ビニル共重合体の親水性高分子や、ポリ酢酸ビニル、ポリウレタン、スチレンブタジエン共重合体、カルボキシ変性スチレンブタジエン共重合体、ポリ(メタ)アクリル酸エステル類、アクリロニトリルブタジエン共重合体、アクリル酸メチルブタジエン共重合体、エチレン酢酸ビニル共重合体等のラテックス類、ポリウレタンエラストマー分散液、ポリシロキサンアクリルグラフトポリマー分散液、シリコン系ポリマー類、メラミンホルムアルデヒド初期縮合物、尿素ホルマリン初期縮合物、ポリアミドエピハロヒドリン類、ポリアミンエピハロヒドリン類、熱可塑性エラストマー等が挙げられる。とりわけ、ポリアミドエピハロヒドリン樹脂類およびポリアミンエピハロヒドリン樹脂類、さらに好適なものとしてポリアミドエピクロルヒドリン樹脂は、少量の添加量でも十分な圧壊強度を発現するとともに、蓄熱材マイクロカプセル造粒物に優れた耐溶剤性も付与することができることから、特に好適に使用することができる。   Synthetic polymers include polyvinyl alcohol, partially acetalized polyvinyl alcohol, allyl modified polyvinyl alcohol, modified polyvinyl alcohol such as polyvinyl methyl ether, polyvinyl ethyl ether, and polyvinyl isobutyl ether, poly (meth) acrylic acid and esters thereof. , Poly (meth) acrylic acid ester partial saponification products, and poly (meth) acrylic acid derivatives such as poly (meth) acrylic amide, polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone, and vinylpyrrolidone vinyl acetate Molecules, polyvinyl acetate, polyurethane, styrene-butadiene copolymer, carboxy-modified styrene-butadiene copolymer, poly (meth) acrylates, acrylonitrile butane Latexes such as ene copolymers, methyl butadiene acrylate copolymers, ethylene vinyl acetate copolymers, polyurethane elastomer dispersions, polysiloxane acrylic graft polymer dispersions, silicone polymers, melamine formaldehyde precondensates, urea formalin Examples include initial condensates, polyamide epihalohydrins, polyamine epihalohydrins, and thermoplastic elastomers. In particular, polyamide epihalohydrin resins and polyamine epihalohydrin resins, and more preferably polyamide epichlorohydrin resin, exhibit sufficient crushing strength even with a small amount of addition, and also have excellent solvent resistance in the heat storage material microcapsule granulated product. Since it can be given, it can be used particularly preferably.

蓄熱材マイクロカプセル造粒物中の結着剤の添加割合は、マイクロカプセル固形分質量に対して0.1〜20質量%の範囲が好ましく、さらに0.5〜15質量%の範囲がより好ましい。20質量%以上であると蓄熱量の低下が生じることがあり、0.1質量%以下であると結着能力の低下が生じることがある。   The addition ratio of the binder in the heat storage material microcapsule granulated product is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 0.5 to 15% by mass with respect to the mass of the microcapsule solid content. . When the amount is 20% by mass or more, the amount of stored heat may decrease, and when the amount is 0.1% by mass or less, the binding ability may decrease.

本発明の蓄熱材マイクロカプセル造粒物は、それ単独でも利用可能であるが、繊維、樹脂などの中に分散・混合したり、吸着材や発熱材と複合したり、包材中に充填して利用することが可能である。   Although the heat storage material microcapsule granulated product of the present invention can be used alone, it can be dispersed and mixed in fibers, resins, etc., combined with an adsorbent or a heat generating material, or filled in a packaging material. Can be used.

本発明の蓄熱材マイクロカプセル造粒物を寝具に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル造粒物を用いる寝具とは、枕、ベッドパッド、シーツ、布団、毛布などが挙げられ、天然繊維や合成繊維からなる布地を単独で使用したもの、若しくはその内部に綿、ウレタンフォーム、スポンジ、ゲル状クッション材、蕎麦殻、プラスチックビーズなどの合成素材や天然素材からなる充填物が充填されているものであり、蓄熱材マイクロカプセル造粒物は布地内に単独で充填されたり、上記充填物と共に充填されたりして用いられる。ここで、蓄熱材マイクロカプセル造粒物の強度を適切な範囲にすることによって、使用中や洗濯中に造粒物の一部分が崩壊して微粉化する粉落ち現象などが生じず、長期にわたって高熱量な蓄熱性能を維持して快適に使用することが可能となる。この用途では、蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が0.2N/mm2より低いと、強度不足となり、使用時や洗濯時に粉落ち・粉舞いして、蓄熱量が低下したり、喘息の原因になったりすることがあるので好ましくない。また該圧壊強度を投影断面積で除した値が50N/mm2より高いと、結着剤が多すぎて蓄熱量が不足するので好ましくない。 Utilizing the heat storage material microcapsule granulated product of the present invention for bedding is an example of use that can effectively demonstrate the effects of the present invention. The bedding using the heat storage material microcapsule granulated material mentioned here includes pillows, bed pads, sheets, futons, blankets, etc., using fabrics made of natural fibers or synthetic fibers alone, or inside thereof Filled with synthetic or natural materials such as cotton, urethane foam, sponge, gel cushion, buckwheat husk, plastic beads, etc. It is used by being filled or filled with the above filling. Here, by setting the strength of the heat storage material microcapsule granulated product to an appropriate range, a part of the granulated product will collapse during use or washing, and the powder falling phenomenon that does not occur will not occur. It is possible to maintain a heat storage performance with a large amount of heat and use it comfortably. In this application, when the value obtained by dividing the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granule by the projected cross-sectional area of the heat storage material microcapsule granulation is lower than 0.2 N / mm 2 , the strength is insufficient. Therefore, it is not preferable because it may cause powder fall or powder at the time of use or washing, resulting in a decrease in heat storage amount or asthma. On the other hand, if the value obtained by dividing the crushing strength by the projected cross-sectional area is higher than 50 N / mm 2, it is not preferable because there are too many binders and the heat storage amount is insufficient.

また、本発明の蓄熱材マイクロカプセル造粒物をマイクロ波照射により加熱及び蓄熱する保温材に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル造粒物を用いる、マイクロ波照射により加熱及び蓄熱する保温材とは、例えば特開2001−303032号公報や特開2005−179458号公報に記載のように、シリカゲル等の吸水性化合物あるいは極性構造を有する化合物と蓄熱材マイクロカプセル造粒物とを単独または適当な包材に充填し、マイクロ波を照射することにより吸水性化合物あるいは極性構造を有する化合物が発熱して、その熱が直接または間接的に接触している蓄熱材マイクロカプセル造粒物に伝熱され蓄熱が可能となる。ここで、蓄熱材マイクロカプセル造粒物の強度を適切な範囲にすることによって、加熱時や使用時における蓄熱材マイクロカプセル造粒物の破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。この用途では、蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が0.2N/mm2より低いと、発熱素材であるシリカゲルなどの吸水性化合物あるいは極性構造を有する化合物と擦れて粉落ちし、粉舞いして喘息の原因になったり、蓄熱量が低下したりするので、好ましくない。また該圧壊強度を投影断面積で除した値が50N/mm2より高いと、結着剤が多すぎて蓄熱量が不足してしまうので好ましくない。 Moreover, utilization of the heat storage material microcapsule granulated product of the present invention as a heat insulating material that heats and stores heat by microwave irradiation is an example of use that can effectively exhibit the effects of the present invention. The heat insulating material that heats and stores heat by microwave irradiation using the heat storage material microcapsule granulated material referred to here is, for example, silica gel or the like as described in JP-A-2001-303032 and JP-A-2005-179458. The water-absorbing compound or the compound having the polar structure and the heat storage material microcapsule granulated product are filled alone or in a suitable packaging material, and the microwave is irradiated to generate the water-absorbing compound or the compound having the polar structure. The heat is transferred to the heat storage material microcapsule granulated product that is in direct or indirect contact, and heat storage is possible. Here, by setting the strength of the heat-storing material microcapsule granules to an appropriate range, the heat-storing material microcapsule granules can be prevented from being destroyed or deteriorated during heating or use, and the heat storage performance has a high calorific value over a long period of time. Can be maintained. In this application, when the value obtained by dividing the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granule by the projected cross-sectional area of the heat storage material microcapsule granulation is lower than 0.2 N / mm 2 , It is not preferable because it is rubbed with a water-absorbing compound such as silica gel or a compound having a polar structure and powdered, and causes powdery asthma and a decrease in heat storage. On the other hand, if the value obtained by dividing the crushing strength by the projected cross-sectional area is higher than 50 N / mm 2, the amount of heat storage becomes insufficient due to too much binder, which is not preferable.

さらに、本発明の蓄熱材マイクロカプセル造粒物を建築材料に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル造粒物を用いる建築材料とは、コンクリート、セメントボード、石膏ボード、樹脂ボード、木質繊維・鉱物性繊維・合成樹脂繊維等を用いた繊維質ボードなどへ蓄熱材マイクロカプセル造粒物を混合させたものであり、これらを躯体、天井、壁、床などへ利用することにより室内温度が上がりにくい、もしくは下がりにくい環境を作ることが可能となる。ここで、蓄熱材マイクロカプセル造粒物の強度を適切な範囲にすることによって、成形時やその後の使用時における蓄熱材マイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。この用途では、蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が0.2N/mm2より低いと、蓄熱材マイクロカプセルが十分には保護されずに、成形時に破壊されたり、繰り返し使用された時の耐久性が低下したりするので好ましくない。また該圧壊強度を投影断面積で除した値が50N/mm2より高いと、結着剤が多すぎて蓄熱量が不足したり、蓄熱材の融解と凝固に伴う蓄熱材マイクロカプセルの膨張と収縮による体積変動の変位が十分には吸収されず繰り返し使用された時にカプセル皮膜に損傷が生じて耐久性が低下したりするので好ましくない。これら蓄熱性建築材料中に占める蓄熱材マイクロカプセル造粒物の含有質量比率は、5〜70質量%、好ましくは10〜50質量%の範囲に設定することが好ましい。70質量%以上であると建材としての強度に乏しくなることがあり、また5質量%以下であると蓄熱性能に乏しくなることがある。 Furthermore, utilization of the heat storage material microcapsule granulated material of the present invention as a building material is an example of use that can effectively exhibit the effects of the present invention. The building material using the heat storage material microcapsule granulated material here refers to concrete, cement board, gypsum board, resin board, fiber board using wood fiber, mineral fiber, synthetic resin fiber, etc. It is a mixture of capsule granulated products, and by using these for a casing, ceiling, wall, floor, etc., it becomes possible to create an environment in which the indoor temperature is hardly raised or lowered. Here, by setting the strength of the heat storage material microcapsule granulated product to an appropriate range, the heat storage material microcapsule can be prevented from being destroyed or deteriorated during molding or subsequent use, and a high heat storage performance can be obtained over a long period of time. Can be maintained. In this application, when the value obtained by dividing the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granule by the projected cross-sectional area of the heat storage material microcapsule granulation is lower than 0.2 N / mm 2 , the heat storage material Since the microcapsules are not sufficiently protected, they are destroyed during molding, and the durability when repeatedly used is not preferable. Further, if the value obtained by dividing the crushing strength by the projected cross-sectional area is higher than 50 N / mm 2, the amount of heat storage is insufficient due to too much binder, and the expansion of the heat storage material microcapsules accompanying the melting and solidification of the heat storage material Displacement of volume fluctuation due to shrinkage is not sufficiently absorbed, and it is not preferable because the capsule film is damaged when it is used repeatedly, and durability is lowered. The mass ratio of the heat storage material microcapsule granules in the heat storage building material is preferably set in the range of 5 to 70% by mass, and preferably 10 to 50% by mass. If it is 70% by mass or more, the strength as a building material may be poor, and if it is 5% by mass or less, the heat storage performance may be poor.

加えて、本発明の蓄熱材マイクロカプセル造粒物を空間充填式空調に利用することは、本発明の効果を有効に発揮できる使用例である。ここで言う蓄熱材マイクロカプセル造粒物を用いる空間充填式空調とは、例えば特開2001−81447号公報に記載の如く、建造物内の壁内、床下、天井裏などの居住空間以外の遊休空間に、蓄熱材マイクロカプセル造粒物を配置して用いられる。ここで、蓄熱材マイクロカプセル造粒物の強度を適切な範囲にすることによって、施工時やその後の使用時における蓄熱材マイクロカプセルの破壊や劣化を防止して、長期にわたって高熱量な蓄熱性能を維持することが可能となる。この用途では、蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が0.2N/mm2より低いと、施工時や使用時に破損して、十分な蓄熱性能を発揮しなくなったり、粉舞いを起こしたりするので、好ましくない。また該圧壊強度を投影断面積で除した値が50N/mm2より高いと、結着剤が多すぎて蓄熱量が不足してしまうので好ましくない。 In addition, utilizing the heat storage material microcapsule granulated product of the present invention for space-filling air conditioning is an example of use that can effectively demonstrate the effects of the present invention. The space-filling type air conditioner using the heat storage material microcapsule granulated material as referred to herein is an idle space other than a living space such as a wall in a building, under a floor, or a ceiling, as described in, for example, JP-A-2001-81447. A heat storage material microcapsule granulated product is disposed and used in the space. Here, by setting the strength of the heat storage material microcapsule granules to an appropriate range, the heat storage material microcapsules are prevented from being destroyed or deteriorated during construction or subsequent use, and a high heat storage performance is achieved over a long period of time. Can be maintained. In this application, when the value obtained by dividing the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granule by the projected cross-sectional area of the heat storage material microcapsule granulation is lower than 0.2 N / mm 2 , It is not preferable because it is damaged at the time of use and does not exhibit sufficient heat storage performance or causes powdering. On the other hand, if the value obtained by dividing the crushing strength by the projected cross-sectional area is higher than 50 N / mm 2, the amount of heat storage becomes insufficient due to too much binder, which is not preferable.

(実施例)
以下、実施例によって本発明を更に詳しく説明する。なお、実施例中の部数や百分率は特にことわりがない限り質量基準である。
〈圧壊強度〉
卓上型材料試験機(株式会社オリエンテック製、STA−1150)を用いて、圧縮速度0.2mm/secにて圧壊強度を測定した。
〈熱履歴耐久性〉
温度制御が可能な恒温槽中に蓄熱材マイクロカプセル造粒物を入れ、相変化温度を挟む温度域として−10℃から60℃までを温度変化させ、(昇温に1時間、60℃で30分保持、降温に1時間、−10℃で30分保持のサイクルを1回として)、1000回の温度変化を与えた後の蓄熱量を測定し、温度変化を与える前の熱量との比を熱履歴耐久性とした。数値が大きいほど温度変化を与えた後での蓄熱性の保持性に優れていることを示す。なお、蓄熱量については示差走査熱量計(米国パーキンエルマー社製、DSC7)で測定される融解熱量により決定した。
(Example)
Hereinafter, the present invention will be described in more detail by way of examples. In addition, as long as there is no notice in particular, the number of parts and percentage in an Example are mass references | standards.
<Crushing strength>
The crushing strength was measured at a compression rate of 0.2 mm / sec using a desktop material testing machine (STA-1150, manufactured by Orientec Co., Ltd.).
<Heat history durability>
The heat storage material microcapsule granulated material is put in a thermostat capable of temperature control, and the temperature is changed from −10 ° C. to 60 ° C. as a temperature range sandwiching the phase change temperature. Measure the amount of heat stored after giving a temperature change 1000 times, and determine the ratio of the amount of heat before giving the temperature change. Thermal history durability. It shows that it is excellent in the heat retention property after giving a temperature change, so that a numerical value is large. The heat storage amount was determined by the heat of fusion measured with a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer, USA).

蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点28℃のn-オクタデカン80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン6gと37%ホルムアルデヒド水溶液12g及び水20gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了し、蓄熱材マイクロカプセル分散液を得た。得られたマイクロカプセルの体積平均粒子径は1.7μmであった。   Preparation of heat storage material microcapsule dispersion: 100 g of sodium salt aqueous solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5 was charged with 80 g of n-octadecane having a melting point of 28 ° C. as a latent heat storage material. The mixture was added with vigorous stirring and emulsified. Next, 6 g of melamine, 12 g of 37% formaldehyde aqueous solution and 20 g of water were mixed, adjusted to pH 8, and a melamine-formalin initial condensate aqueous solution was prepared at about 80 ° C. The total amount was added to the above emulsion and heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of this dispersion was adjusted to 9 to complete the encapsulation, and the heat storage material microcapsule dispersion Got. The volume average particle diameter of the obtained microcapsules was 1.7 μm.

上記蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてウレタンエラストマー分散液(第一工業製薬(株)製、スーパーフレックス200、固形分濃度30質量%)17質量部と適当量の添加水を加えて混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて、短径方向平均径が1.9mm、長径方向平均径が5.3mmの蓄熱材マイクロカプセル造粒物を得た。   The heat storage material microcapsule dispersion was spray-dried by spray drying to obtain a heat storage material microcapsule powder. To 100 parts by mass of the obtained heat storage material microcapsule powder, 17 parts by mass of urethane elastomer dispersion (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Superflex 200, solid content concentration 30% by mass) as a binder and an appropriate amount After adding and mixing the added water, extrusion molding is performed by an extrusion granulator, and drying is performed at 100 ° C., and a heat storage material microcapsule having a minor axis direction average diameter of 1.9 mm and a major axis direction average diameter of 5.3 mm A granulated product was obtained.

得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は3.0N/mm2となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は96%であった。 When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 3.0 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 96%.

実施例1と全く同様の操作で作製した蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてウレタンエラストマー分散液(第一工業製薬(株)製、スーパーフレックス200、固形分濃度30質量%)17質量部及びポリアミドエピクロルヒドリン水溶液(住友化学工業(株)製、スミレーズ レジン675A、固形分濃度25質量%)4質量部、並びに適当量の添加水を加えて混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて、短径方向平均径が1.9mm、長径方向平均径が5.3mmの蓄熱材マイクロカプセル造粒物を得た。   The heat storage material microcapsule dispersion prepared in exactly the same manner as in Example 1 was spray-dried by spray drying to obtain a heat storage material microcapsule powder. To 100 parts by mass of the obtained heat storage material microcapsule powder, 17 parts by mass of a urethane elastomer dispersion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 200, solid content concentration: 30% by mass) as a binder and an aqueous polyamide epichlorohydrin solution (Made by Sumitomo Chemical Co., Ltd., Sumires Resin 675A, solid content concentration 25% by mass) 4 parts by mass and an appropriate amount of added water were added and mixed, and then extrusion molding was performed with an extrusion granulator, 100 ° C. To obtain a heat storage material microcapsule granulated product having a minor axis direction average diameter of 1.9 mm and a major axis direction average diameter of 5.3 mm.

得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は12.5N/mm2となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は91%であった。 When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 12.5 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 91%.

蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点52℃のパラフィンワックス80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン8gと37%ホルムアルデヒド水溶液12g及び水20gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了し、蓄熱材マイクロカプセル分散液を得た。得られたマイクロカプセルの体積平均粒子径は2.7μmであった。   Preparation of heat storage material microcapsule dispersion: Into 100 g of sodium salt aqueous solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5, 80 g of paraffin wax having a melting point of 52 ° C. was vigorously added as a latent heat storage material. The mixture was added with stirring and emulsified. Next, 8 g of melamine, 12 g of 37% aqueous formaldehyde solution and 20 g of water were mixed, adjusted to pH 8, and an aqueous solution of melamine-formalin initial condensate was prepared at about 80 ° C. The total amount was added to the above emulsion and heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of this dispersion was adjusted to 9 to complete the encapsulation, and the heat storage material microcapsule dispersion Got. The volume average particle diameter of the obtained microcapsules was 2.7 μm.

上記蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤として水性ウレタン分散液(大日本インキ化学工業(株)製、ハイドランHW−920、固形分濃度50質量%)10質量部と適当量の添加水を加えて混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて、短径方向平均径が2.1mm、長径方向平均径が4.2mmの蓄熱材マイクロカプセル造粒物を得た。   The heat storage material microcapsule dispersion was spray-dried by spray drying to obtain a heat storage material microcapsule powder. 10 parts by mass of an aqueous urethane dispersion (manufactured by Dainippon Ink & Chemicals, Ltd., Hydran HW-920, solid content concentration 50% by mass) as a binder is appropriately added to 100 parts by mass of the obtained heat storage material microcapsule powder. After adding an amount of added water and mixing, extrusion molding is performed with an extrusion granulator and dried at 100 ° C., and the heat storage material has a minor axis direction average diameter of 2.1 mm and a major axis direction average diameter of 4.2 mm. A microcapsule granulated product was obtained.

得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は3.6N/mm2となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は96%であった。 When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 3.6 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 96%.

蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に対して、結着剤としての水性ウレタン分散液の添加量を2質量部にした以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は0.8N/mm2であった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は94%であった。 The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. Heat storage material microcapsule granulation in the same manner as in Example 3 except that 100 parts by weight of the obtained heat storage material microcapsule powder was changed to 2 parts by weight of the aqueous urethane dispersion as a binder. I got a thing. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 0.8 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 94%.

蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に対して、結着剤としてポリアミドエピクロルヒドリン水溶液(住友化学工業(株)製、スミレーズ レジン675A、固形分濃度25質量%)2質量部を用いた以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は1.7N/mm2であった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は95%であった。 The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. Other than using 2 parts by mass of polyamide epichlorohydrin aqueous solution (Sumitomo Chemical Co., Ltd., Sumire's Resin 675A, solid content concentration 25% by mass) as a binder for 100 parts by mass of the obtained heat storage material microcapsule powder. Was similar to Example 3 to obtain a heat storage material microcapsule granulated product. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 1.7 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 95%.

蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に対して、結着剤としてポリアミドエピクロルヒドリン水溶液(住友化学工業(株)製、スミレーズ レジン675A、固形分濃度25質量%)2質量部及び水性ウレタン分散液(大日本インキ化学工業(株)製、ハイドランHW−920、固形分濃度50質量%)10質量部を用いた以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は8.2N/mm2であった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は96%であった。 The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. With respect to 100 parts by mass of the obtained heat storage material microcapsule powder, 2 parts by mass of a polyamide epichlorohydrin aqueous solution (manufactured by Sumitomo Chemical Co., Ltd., Sumires Resin 675A, solid content concentration 25% by mass) as a binder and aqueous urethane dispersion A heat storage material microcapsule granulated product was obtained in the same manner as in Example 3 except that 10 parts by mass of liquid (Dainippon Ink and Chemicals, Hydran HW-920, solid content concentration 50% by mass) was used. . When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area of the heat storage material microcapsule granulation was 8.2 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 96%.

蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に対して、結着剤としての水性ウレタン分散液の添加量を20質量部にした以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は15N/mm2であった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は90%であった。 The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. Heat storage material microcapsule granulation in the same manner as in Example 3 except that the amount of aqueous urethane dispersion added as a binder was 20 parts by weight with respect to 100 parts by weight of the obtained heat storage material microcapsule powder. I got a thing. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 15 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 90%.

蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に対して、結着剤としてカルボキシメチルセルロース水溶液(固形分濃度10質量%)5質量部を用いた以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は0.3N/mm2であった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は92%であった。 The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. In the same manner as in Example 3, except that 5 parts by mass of a carboxymethyl cellulose aqueous solution (solid content concentration: 10% by mass) was used as a binder with respect to 100 parts by mass of the obtained heat storage material microcapsule powder. Capsule granules were obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 0.3 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 92%.

蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に対して、結着剤としてポリビニルアルコール水溶液((株)クラレ製、PVA−235、固形分濃度20質量%)100質量部を用いた以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は34N/mm2であった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は85%であった。 The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. Implemented except that 100 parts by mass of polyvinyl alcohol aqueous solution (manufactured by Kuraray Co., Ltd., PVA-235, solid content concentration 20% by mass) was used as a binder for 100 parts by mass of the obtained heat storage material microcapsule powder. In the same manner as in Example 3, a heat storage material microcapsule granulated product was obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 34 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 85%.

蓄熱材マイクロカプセル分散液の作製:pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液100gの中に、潜熱蓄熱材として融点22℃のn-ヘプタデカン80gを激しく撹拌しながら添加し、乳化を行なった。次にメラミン8gと37%ホルムアルデヒド水溶液16g及び水30gを混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了し、蓄熱材マイクロカプセル分散液を得た。得られたマイクロカプセルの体積平均粒子径は1.7μmであった。   Preparation of heat storage material microcapsule dispersion liquid: 100 g of sodium salt aqueous solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5 was charged with 80 g of n-heptadecane having a melting point of 22 ° C. as a latent heat storage material. The mixture was added with vigorous stirring and emulsified. Next, 8 g of melamine, 16 g of 37% formaldehyde aqueous solution and 30 g of water were mixed, adjusted to pH 8, and a melamine-formalin initial condensate aqueous solution was prepared at about 80 ° C. The total amount was added to the above emulsion and heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of this dispersion was adjusted to 9 to complete the encapsulation, and the heat storage material microcapsule dispersion Got. The volume average particle diameter of the obtained microcapsules was 1.7 μm.

上記蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてポリシロキサンアクリルグラフトポリマー分散液((株)日本触媒製、GF255、固形分濃度40質量%)25質量部と適当量の添加水を加えて混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて、短径方向平均径が1.1mm、長径方向平均径が2.3mmの蓄熱材マイクロカプセル造粒物を得た。   The heat storage material microcapsule dispersion was spray-dried by spray drying to obtain a heat storage material microcapsule powder. To 100 parts by mass of the obtained heat storage material microcapsule powder, 25 parts by mass of polysiloxane acrylic graft polymer dispersion (manufactured by Nippon Shokubai Co., Ltd., GF255, solid content concentration 40% by mass) and an appropriate amount are added. After adding water and mixing, extrusion molding is performed by an extrusion granulator, and drying is performed at 100 ° C., and a heat storage material microcapsule having a minor axis direction average diameter of 1.1 mm and a major axis direction average diameter of 2.3 mm is manufactured. Grains were obtained.

得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は5.1N/mm2となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は95%であった。 When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area of the heat storage material microcapsule granulation was 5.1 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 95%.

蓄熱材マイクロカプセル分散液の作製:潜熱蓄熱材として融点23℃のデカン酸ドデシル80gに多価イソシアネートとして、ジシクロヘキシルメタン4,4−ジイソシアネート(住化バイエルウレタン(株)製、脂肪族イソシアネート、商品名デスモジュールW)14gを溶解した物を、5%ポリビニルアルコール((株)クラレ製、商品名ポバールPVA−117)水溶液100g中に添加し、平均粒径が1.6μmになるまで室温で撹拌乳化を行った。次にこの乳化液に3%ポリエーテル水溶液(旭電化工業(株)製、ポリエーテル、商品名アデカポリエーテルEDP−450)55gを添加した後、60℃で加熱と撹拌を施した。低粘度で分散安定性が良好な、蓄熱材マイクロカプセル分散液が得られた。得られたマイクロカプセルの体積平均粒子径は1.7μmであった。   Preparation of heat storage material microcapsule dispersion: 80 g of dodecyl decanoate having a melting point of 23 ° C. as a latent heat storage material, polycyclohexyl isocyanate, dicyclohexylmethane 4,4-diisocyanate (manufactured by Sumika Bayer Urethane Co., Ltd., aliphatic isocyanate, trade name) Desmodur W) 14g dissolved in 5% polyvinyl alcohol (Kuraray Co., Ltd., trade name POVAL PVA-117) in 100g aqueous solution, stirred and emulsified at room temperature until the average particle size becomes 1.6μm Went. Next, 55 g of a 3% aqueous polyether solution (manufactured by Asahi Denka Kogyo Co., Ltd., polyether, trade name Adeka Polyether EDP-450) was added to the emulsion, and the mixture was heated and stirred at 60 ° C. A heat storage material microcapsule dispersion having low viscosity and good dispersion stability was obtained. The volume average particle diameter of the obtained microcapsules was 1.7 μm.

上記蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてSBRラテックス(JSR(株)製、0640、固形分濃度40質量%)8質量部と適当量の添加水を加えて混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて、短径方向平均径が2.0mm、長径方向平均径が4.5mmの蓄熱材マイクロカプセル造粒物を得た。   The heat storage material microcapsule dispersion was spray-dried by spray drying to obtain a heat storage material microcapsule powder. To 100 parts by mass of the obtained heat storage material microcapsule powder, 8 parts by mass of SBR latex (manufactured by JSR Co., Ltd., 0640, solid content concentration 40% by mass) and an appropriate amount of added water were added and mixed. Then, extrusion molding was performed with an extrusion granulator and dried at 100 ° C. to obtain a heat storage material microcapsule granulated product having a minor axis direction average diameter of 2.0 mm and a major axis direction average diameter of 4.5 mm.

得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は1.5N/mm2となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は93%であった。 When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 1.5 N / mm 2 . Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 93%.

(比較例1)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例1と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてカルボキシメチルセルロース水溶液(固形分濃度10質量%)2質量部を用いた以外は実施例1と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は0.08N/mm2となり、強度が劣る結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は87%であった。
(Comparative Example 1)
The heat storage material microcapsule powder was obtained in the same manner as in Example 1 until the heat storage material microcapsule powder was obtained. In the same manner as in Example 1, except that 2 parts by mass of an aqueous carboxymethyl cellulose solution (solid content concentration: 10% by mass) was used as a binder for 100 parts by mass of the obtained heat storage material microcapsule powder, Grains were obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 0.08 N / mm 2 , and the strength was inferior. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 87%.

(比較例2)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例1と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてポリビニルアルコール水溶液((株)クラレ製、PVA−235、固形分濃度30質量%)100質量部を用いた以外は実施例1と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は65N/mm2となり、強度が過剰である結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は76%となり、熱履歴耐久性が劣る結果となった。
(Comparative Example 2)
The heat storage material microcapsule powder was obtained in the same manner as in Example 1 until the heat storage material microcapsule powder was obtained. Example 1 except that 100 parts by mass of the obtained heat storage material microcapsule powder was used as a binder, 100 parts by mass of a polyvinyl alcohol aqueous solution (manufactured by Kuraray Co., Ltd., PVA-235, solid content concentration: 30% by mass). In the same manner, a heat storage material microcapsule granulated product was obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 65 N / mm 2 , and the strength was excessive. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 76%, resulting in poor heat history durability.

(比較例3)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてカルボキシメチルセルロース水溶液(固形分濃度10質量%)2質量部を用いた以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は0.1N/mm2となり、強度が劣る結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は88%であった。
(Comparative Example 3)
The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. In the same manner as in Example 3, except that 2 parts by mass of an aqueous carboxymethyl cellulose solution (solid content concentration: 10% by mass) was used as a binder for 100 parts by mass of the obtained heat storage material microcapsule powder. Grains were obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 0.1 N / mm 2 , and the strength was inferior. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 88%.

(比較例4)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例3と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてポリビニルアルコール水溶液((株)クラレ製、PVA−235、固形分濃度30質量%)100質量部を用いた以外は実施例3と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は76N/mm2となり、強度が過剰である結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は73%となり、熱履歴耐久性が劣る結果となった。
(Comparative Example 4)
The heat storage material microcapsule powder was obtained in the same manner as in Example 3 until the heat storage material microcapsule powder was obtained. Example 3 except that 100 parts by mass of the obtained heat storage material microcapsule powder was used as a binder, 100 parts by mass of an aqueous polyvinyl alcohol solution (manufactured by Kuraray Co., Ltd., PVA-235, solid content concentration: 30% by mass). In the same manner, a heat storage material microcapsule granulated product was obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 76 N / mm 2 , and the strength was excessive. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 73%, resulting in poor heat history durability.

(比較例5)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例10と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてカルボキシメチルセルロース水溶液(固形分濃度10質量%)2質量部を用いた以外は実施例10と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は0.13N/mm2となり、強度が劣る結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は89%であった。
(Comparative Example 5)
The heat storage material microcapsule powder was obtained in the same manner as in Example 10 until the heat storage material microcapsule powder was obtained. In the same manner as in Example 10, except that 2 parts by mass of an aqueous carboxymethyl cellulose solution (solid content concentration: 10% by mass) was used as a binder for 100 parts by mass of the obtained heat storage material microcapsule powder, Grains were obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 0.13 N / mm 2 , and the strength was inferior. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 89%.

(比較例6)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例10と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてポリビニルアルコール水溶液((株)クラレ製、PVA−235、固形分濃度30質量%)100質量部を用いた以外は実施例10と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は82N/mm2となり、強度が過剰である結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は72%となり、熱履歴耐久性が劣る結果となった。
(Comparative Example 6)
The heat storage material microcapsule powder was obtained in the same manner as in Example 10 until the heat storage material microcapsule powder was obtained. Example 10 except that 100 parts by mass of the obtained heat storage material microcapsule powder was used as a binder, 100 parts by mass of an aqueous polyvinyl alcohol solution (manufactured by Kuraray Co., Ltd., PVA-235, solid content concentration: 30% by mass). In the same manner, a heat storage material microcapsule granulated product was obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 82 N / mm 2 , and the strength was excessive. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 72%, resulting in poor heat history durability.

(比較例7)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例11と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてカルボキシメチルセルロース水溶液(固形分濃度10質量%)2質量部を用いた以外は実施例11と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は0.17N/mm2となり、強度が劣る結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は86%であった。
(Comparative Example 7)
The heat storage material microcapsule powder was obtained by the same operation as in Example 11 until the heat storage material microcapsule powder was obtained. In the same manner as in Example 11, except that 2 parts by mass of a carboxymethyl cellulose aqueous solution (solid content concentration: 10% by mass) was used as a binder for 100 parts by mass of the obtained heat storage material microcapsule powder, Grains were obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 0.17 N / mm 2 , and the strength was inferior. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 86%.

(比較例8)
蓄熱材マイクロカプセル粉体を得るところまでは、実施例11と全く同様の操作で蓄熱材マイクロカプセル粉体を得た。得られた蓄熱材マイクロカプセル粉体100質量部に、結着剤としてポリビニルアルコール水溶液((株)クラレ製、PVA−235、固形分濃度30質量%)100質量部を用いた以外は実施例11と同様にして、蓄熱材マイクロカプセル造粒物を得た。得られた蓄熱材マイクロカプセル造粒物の圧壊強度を測定したところ、圧壊強度を蓄熱材マイクロカプセル造粒物の圧縮方向投影断面積で除した値は91N/mm2となり、強度が過剰である結果となった。また、得られた蓄熱材マイクロカプセル造粒物の熱履歴耐久性は67%となり、熱履歴耐久性が劣る結果となった。
(Comparative Example 8)
The heat storage material microcapsule powder was obtained by the same operation as in Example 11 until the heat storage material microcapsule powder was obtained. Example 11 except that 100 parts by mass of the obtained heat storage material microcapsule powder was used as a binder, 100 parts by mass of an aqueous polyvinyl alcohol solution (manufactured by Kuraray Co., Ltd., PVA-235, solid content concentration: 30% by mass). In the same manner, a heat storage material microcapsule granulated product was obtained. When the crushing strength of the obtained heat storage material microcapsule granule was measured, the value obtained by dividing the crushing strength by the projected sectional area in the compression direction of the heat storage material microcapsule granulation was 91 N / mm 2 , and the strength was excessive. As a result. Moreover, the heat history durability of the obtained heat storage material microcapsule granulated product was 67%, resulting in poor heat history durability.

〈評価A〉寝具における評価
実施例1、2および比較例1、2で得られた蓄熱材マイクロカプセル造粒物をそれぞれ用いて、蓄熱材マイクロカプセル造粒物100質量部と蕎麦殻100質量部とを混合した後、綿製布地をタテ40cm×ヨコ60cmの袋状に縫製したものに充填して、蓄熱性を有する枕をそれぞれ得た。これらの枕を室温25℃の部屋に6時間放置した後の使用時の体感を評価した。
<Evaluation A> Evaluation in bedding Using the heat storage material microcapsule granules obtained in Examples 1 and 2 and Comparative Examples 1 and 2, respectively, 100 parts by mass of the heat storage material microcapsule granules and 100 parts by weight of buckwheat husk Then, the cotton fabric was filled into a bag having a length of 40 cm and a width of 60 cm, and pillows having heat storage properties were obtained. These pillows were evaluated for the experience during use after being left in a room at room temperature of 25 ° C. for 6 hours.

本発明である実施例1の蓄熱材マイクロカプセル造粒物を用いた場合は、快適な冷涼感が1時間持続し、さらにこの枕を重さ10kgのゴム製球状体で1000回叩いても、蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、耐久性に優れた蓄熱性を有する枕であった。   When the heat storage material microcapsule granulated product of Example 1 according to the present invention is used, a comfortable cooling feeling lasts for 1 hour, and even if this pillow is struck 1000 times with a rubber spherical body weighing 10 kg, The phenomenon that the heat storage material microcapsule granulated material collapses and was pulverized was not observed, and the pillow had excellent heat storage properties.

また、本発明である実施例2の蓄熱材マイクロカプセル造粒物を用いた場合も、快適な冷涼感が1時間持続し、さらにこの枕を重さ10kgのゴム製球状体で1000回叩いても、蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、耐久性に優れた蓄熱性を有する枕であった。   In addition, when the heat storage material microcapsule granulated product of Example 2 which is the present invention is used, a comfortable cooling feeling lasts for 1 hour, and this pillow is struck 1000 times with a rubber spherical body weighing 10 kg. However, the phenomenon that the heat storage material microcapsule granulated material collapses and was pulverized was not observed, and the pillow had excellent heat storage properties.

一方、本発明外である比較例1の蓄熱材マイクロカプセル造粒物を用いた場合は、快適な冷涼感は1時間持続したものの、この枕を重さ10kgのゴム製球状体で1000回叩いたところ、蓄熱材マイクロカプセル造粒物の一部が崩壊して微粉化し、微粉化した物が枕の外部にまで粉落ちしてくる現象が見られ、これらが粉舞いするとともに、蓄熱性が次第に損なわれていくものとなった。   On the other hand, when the heat storage material microcapsule granulated product of Comparative Example 1 which is outside the present invention was used, although a comfortable cooling sensation lasted for 1 hour, this pillow was struck 1000 times with a rubber spherical body weighing 10 kg. As a result, a part of the heat storage material microcapsule granulated material collapsed and pulverized, and the pulverized product was seen to fall to the outside of the pillow. It was gradually damaged.

また、本発明外である比較例2の蓄熱材マイクロカプセル造粒物を用いた場合は、快適な冷涼感は30分しか持続せず、蓄熱性能が劣るものとなった。   Moreover, when the heat storage material microcapsule granulated product of Comparative Example 2 which is outside the present invention was used, the comfortable cooling feeling lasted only 30 minutes, and the heat storage performance was inferior.

〈評価B〉マイクロ波照射型保温材における評価
実施例3〜9および比較例3、4で得られた蓄熱材マイクロカプセル造粒物をそれぞれ用いて、蓄熱材マイクロカプセル造粒物30質量部と粒径2mmのシリカゲル粒子70質量部とを混合し、木綿製の袋に500gを充填してマイクロ波照射型保温材をそれぞれ得た。これらの保温材を家庭用の電子レンジ(高周波出力=500W)を用いて2分間加熱を行って電子レンジから取り出して使用した際の体感温度感覚を観測した。
<Evaluation B> Evaluation in microwave irradiation type heat insulating material Using each of the heat storage material microcapsule granules obtained in Examples 3 to 9 and Comparative Examples 3 and 4, 30 parts by mass of the heat storage material microcapsule granules and The mixture was mixed with 70 parts by mass of silica gel particles having a particle diameter of 2 mm, and 500 g was filled in a cotton bag to obtain microwave irradiation type heat insulating materials. These thermal insulation materials were heated for 2 minutes using a household microwave oven (high-frequency output = 500 W), and the temperature sensation when they were taken out from the microwave oven and used was observed.

本発明である実施例3の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が70分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を100回繰り返しても蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、43℃以上の温度を持続する時間にも変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 3 according to the present invention was used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasted for 70 minutes, and a heat insulating material that maintained warmth for a long time was obtained. . Further, even when this operation was repeated 100 times, the phenomenon of the heat storage material microcapsule granulated material collapsing and pulverizing was not observed, and no change occurred in the time for maintaining the temperature of 43 ° C. or higher.

本発明である実施例4の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が73分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を100回繰り返しても蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、43℃以上の温度を持続する時間にも変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 4 according to the present invention was used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasted for 73 minutes, and a heat insulating material that maintained warmth for a long time was obtained. . Further, even when this operation was repeated 100 times, the phenomenon of the heat storage material microcapsule granulated material collapsing and pulverizing was not observed, and no change occurred in the time for maintaining the temperature of 43 ° C. or higher.

本発明である実施例5の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が72分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を100回繰り返しても蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、43℃以上の温度を持続する時間にも変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 5 according to the present invention was used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasted for 72 minutes, and a heat insulating material that maintained warmth for a long time was obtained. . Further, even when this operation was repeated 100 times, the phenomenon of the heat storage material microcapsule granulated material collapsing and pulverizing was not observed, and no change occurred in the time for maintaining the temperature of 43 ° C. or higher.

本発明である実施例6の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が66分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を100回繰り返しても蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、43℃以上の温度を持続する時間にも変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 6 according to the present invention was used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasted for 66 minutes, and a heat insulating material that maintained warmth for a long time was obtained. . Further, even when this operation was repeated 100 times, the phenomenon of the heat storage material microcapsule granulated material collapsing and pulverizing was not observed, and no change occurred in the time for maintaining the temperature of 43 ° C. or higher.

本発明である実施例7の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が60分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を100回繰り返しても蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、43℃以上の温度を持続する時間にも変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 7 according to the present invention was used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasted for 60 minutes, and a heat insulating material that maintained warmth for a long time was obtained. . Further, even when this operation was repeated 100 times, the phenomenon of the heat storage material microcapsule granulated material collapsing and pulverizing was not observed, and no change occurred in the time for maintaining the temperature of 43 ° C. or higher.

本発明である実施例8の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が75分間持続し、長時間暖かさが持続する保温材が得られた。また、この操作を100回繰り返したところ、蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象が若干ながら見られたが、43℃以上の温度を持続する時間には変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 8 according to the present invention was used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasted for 75 minutes, and a heat insulating material that maintained warmth for a long time was obtained. . Moreover, when this operation was repeated 100 times, a phenomenon that the heat storage material microcapsule granulated material collapsed and was pulverized was slightly seen, but there was no change in the time for maintaining the temperature of 43 ° C. or higher. .

本発明である実施例9の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が50分間持続し、暖かさを比較的長く持続する保温材が得られた。また、この操作を100回繰り返しても蓄熱材マイクロカプセル造粒物が崩壊して微粉化する現象は見られず、43℃以上の温度を持続する時間にも変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 9 according to the present invention is used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasts for 50 minutes, and a heat insulating material that maintains warmth for a relatively long time is obtained. It was. Further, even when this operation was repeated 100 times, the phenomenon of the heat storage material microcapsule granulated material collapsing and pulverizing was not observed, and no change occurred in the time for maintaining the temperature of 43 ° C. or higher.

一方、本発明外である比較例3の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度が76分間持続し、長時間暖かさが持続する保温材は得られた。しかし、この操作を100回繰り返したところ、蓄熱材マイクロカプセル造粒物の一部が崩壊して微粉化し、微粉化した物が袋の外部にまで粉落ちしてくる現象が見られ、これらが粉舞いするとともに、43℃以上の温度を持続する時間も徐々に短くなり蓄熱性が次第に損なわれていくものとなってしまった。   On the other hand, when the heat storage material microcapsule granulated product of Comparative Example 3 that is outside the present invention is used, a temperature of 43 ° C. or more, which is a comfortable temperature range, lasts for 76 minutes, and the heat retaining material that maintains warmth for a long time is Obtained. However, when this operation was repeated 100 times, a part of the heat storage material microcapsule granulated material collapsed and pulverized, and a phenomenon in which the pulverized material pulverized to the outside of the bag was observed. As the powder fluttered, the time for maintaining the temperature of 43 ° C. or higher was gradually shortened, and the heat storage property gradually deteriorated.

また、本発明外である比較例4の蓄熱材マイクロカプセル造粒物を用いた場合は、心地よい温度域である43℃以上の温度は30分間しか持続せず、蓄熱性能が劣るものとなった。   Moreover, when the heat storage material microcapsule granulated product of Comparative Example 4 which is outside the present invention was used, a comfortable temperature range of 43 ° C. or higher lasted only for 30 minutes, resulting in poor heat storage performance. .

〈評価C〉木質ボードにおける評価
実施例10および比較例5、6で得られた蓄熱材マイクロカプセル造粒物をそれぞれ用いて、蓄熱材マイクロカプセル造粒物25質量部と充填用素材として長径3mm以下の木材粉末75質量部、及び濃度30質量%の尿素ホルマリン樹脂初期縮合物水溶液30質量部をよく混合した後、圧力3MPa、温度160℃の条件下で加圧、加熱成形を行い、縦横40cm四方で厚さ5mmの蓄熱性を有する木質ボードをそれぞれ得た。
<Evaluation C> Evaluation on wooden board Using the heat storage material microcapsule granulated product obtained in Example 10 and Comparative Examples 5 and 6, respectively, 25 parts by mass of the heat storage material microcapsule granulated product and a major axis of 3 mm as a filling material After thoroughly mixing 75 parts by mass of the following wood powder and 30 parts by mass of an initial condensate aqueous solution of urea formalin having a concentration of 30% by mass, pressure and heat molding are performed under conditions of a pressure of 3 MPa and a temperature of 160 ° C. Wood boards having a heat storage property of 5 mm in thickness on each side were obtained.

本発明である実施例10の蓄熱材マイクロカプセル造粒物を用いた場合は、得られた木質ボードは建材として充分な強度を有するものであった。木質ボードを6枚組み合わせて立方体状の箱を作製した。立方体状の箱を大型恒温チャンバーに入れてチャンバー庫内温度15℃で6時間放置した後、チャンバー庫内温度を30℃に切り替えたところ、立方体状箱内部中央部の空気温度は25℃以下を3時間維持することができた。また、大型恒温チャンバーの庫内温度を10℃と35℃とに交互に2時間ごとに切り替える操作を10回繰り返したところ、箱内部中央部の空気温度は17〜28℃の比較的狭い範囲での温度変動に留まり、優れた蓄熱性能が確認できた。さらに、この操作を100回繰り返しても、蓄熱材マイクロカプセル造粒物から蓄熱成分が滲み出すこともなく、箱内部中央部の空気温度の変動範囲にも変化は生じなかった。   When the heat storage material microcapsule granulated product of Example 10 according to the present invention was used, the obtained wooden board had sufficient strength as a building material. A cubic box was made by combining six wooden boards. After putting the cubic box in a large constant temperature chamber and leaving it in the chamber chamber temperature of 15 ° C. for 6 hours, switching the chamber chamber temperature to 30 ° C., the air temperature inside the cubic box inside is 25 ° C. or less. It could be maintained for 3 hours. Further, when the operation of switching the internal temperature of the large constant temperature chamber alternately between 10 ° C. and 35 ° C. every 2 hours was repeated 10 times, the air temperature in the central part of the box was within a relatively narrow range of 17 to 28 ° C. The thermal storage performance was excellent, and excellent heat storage performance was confirmed. Furthermore, even when this operation was repeated 100 times, the heat storage component did not ooze out from the heat storage material microcapsule granulated product, and no change occurred in the air temperature fluctuation range in the central portion of the box.

一方、本発明外である比較例5の蓄熱材マイクロカプセル造粒物を用いた場合は、得られた木質ボードを観察すると蓄熱材マイクロカプセル造粒物は一部が崩壊して、その崩壊物が木質ボードの片面に局在化して、木質ボードは建材としての充分な強度を有するものではなかった。木質ボードを6枚組み合わせて立方体状の箱を作製して、立方体状の箱を大型恒温チャンバーに入れてチャンバー庫内温度15℃で6時間放置した後、チャンバー庫内温度を30℃に切り替えたところ、立方体状箱内部中央部の空気温度は25℃以下を3時間維持することはできた。しかし、大型恒温チャンバーの庫内温度を10℃と35℃とに交互に2時間ごとに切り替える操作を100回繰り返したところ、木質ボード中に蓄熱材マイクロカプセル造粒物から蓄熱成分が滲み出す現象が見られ、蓄熱性能が徐々に低下していくものとなった。   On the other hand, when the heat storage material microcapsule granulated product of Comparative Example 5 which is outside the present invention is used, when the obtained wooden board is observed, the heat storage material microcapsule granulated product partially collapses and the collapsed material However, it was localized on one side of the wooden board, and the wooden board did not have sufficient strength as a building material. A cube-shaped box was prepared by combining six wooden boards, and the cubic box was placed in a large constant temperature chamber and allowed to stand at a chamber temperature of 15 ° C. for 6 hours, and then the chamber temperature was switched to 30 ° C. However, the air temperature inside the cubic box was maintained at 25 ° C. or lower for 3 hours. However, when the operation of switching the internal temperature of the large temperature chamber alternately between 10 ° C. and 35 ° C. every 2 hours is repeated 100 times, the heat storage component oozes out from the granule of the heat storage material into the wooden board. As a result, heat storage performance gradually decreased.

本発明外である比較例6の蓄熱材マイクロカプセル造粒物を用いた場合は、得られた木質ボードは建材として充分な強度を有するものではあった。しかし、この木質ボードを6枚組み合わせて立方体状の箱を作製して、立方体状の箱を大型恒温チャンバーに入れてチャンバー庫内温度15℃で6時間放置した後、チャンバー庫内温度を30℃に切り替えたところ、立方体状箱内部中央部の空気温度は25℃以下を1時間半しか維持することができず、蓄熱性能が劣るものとなった。また、大型恒温チャンバーの庫内温度を10℃と35℃とに交互に2時間ごとに切り替える操作を10回繰り返したところ、箱内部中央部の空気温度は13〜30℃と比較的広い範囲での温度変動となり、蓄熱性能が劣る結果となった。   When the heat storage material microcapsule granulated product of Comparative Example 6 which is outside the present invention was used, the obtained wood board did not have sufficient strength as a building material. However, six wooden boards are combined to produce a cubic box, the cubic box is placed in a large constant temperature chamber and left at a chamber temperature of 15 ° C. for 6 hours, and then the chamber temperature is set to 30 ° C. As a result, the air temperature in the central part inside the cubic box could only be maintained at 25 ° C. or lower for 1 hour and a half, resulting in poor heat storage performance. In addition, when the operation of alternately switching the internal temperature of the large constant temperature chamber between 10 ° C. and 35 ° C. every 2 hours was repeated 10 times, the air temperature in the central portion of the box was in a relatively wide range of 13-30 ° C. As a result, the heat storage performance was inferior.

〈評価D〉空間充填式空調における評価
厚さ20mmのガラスウールを厚さ10mmの木材で挟み込んだ断熱板を加工して一辺1mの立方体空間を作製し、さらに内部床面から15cmの高さに同じ材質で80cm四方の断熱板を、各壁面から10cmの隙間が空くように施工して、二重床構造の立体空間を作製した。この二重床構造の立体空間の下部床面に、実施例11および比較例7、8で得られた蓄熱材マイクロカプセル造粒物をそれぞれ用いて、蓄熱材マイクロカプセル造粒物を3kg敷き詰めるとともに、床下空間の中央部に小型送気ファンをそれぞれ設置した。次に、設置した小型送気ファンを運転させながら、これらの立体空間箱の周囲の環境温度を0〜40℃間で1℃/分の速度にて温度昇降させた時の箱内空間中央部の空気温度をそれぞれ測定した。
<Evaluation D> Evaluation in space-filling type air conditioning A heat insulating plate sandwiched between 20 mm thick glass wool and 10 mm thick wood is processed to produce a cubic space of 1 m on each side, and further 15 cm above the inner floor surface. A heat insulating plate of 80 cm square was made of the same material so that a 10 cm gap was left from each wall surface, and a three-dimensional space having a double floor structure was produced. While using the heat storage material microcapsule granules obtained in Example 11 and Comparative Examples 7 and 8, respectively, 3 kg of the heat storage material microcapsule granules are spread on the lower floor surface of the three-dimensional space of the double floor structure. A small air supply fan was installed in the center of the underfloor space. Next, while operating the installed small air supply fan, the central portion of the space in the box when the ambient temperature around these three-dimensional space boxes is raised or lowered at a rate of 1 ° C./min between 0 to 40 ° C. Each air temperature was measured.

本発明である実施例11の蓄熱材マイクロカプセル造粒物を用いた場合は、箱内空間の空気温度は15〜28℃の範囲でのみ推移し、いわゆる快適温度の範囲内に保持された。また、粉舞いなども見られなかった。   When the heat storage material microcapsule granulated product of Example 11 according to the present invention was used, the air temperature in the box space changed only in the range of 15 to 28 ° C., and was maintained within the so-called comfortable temperature range. Also, no powder was seen.

一方、本発明外である比較例7の蓄熱材マイクロカプセル造粒物を用いた場合は、箱内空間の空気温度は13〜29℃の範囲で推移したものの、蓄熱材マイクロカプセル造粒物の一部が崩壊してできた微粉化物が送気ファンによって粉舞いし、上部床面の上が微粉化物で汚染される現象が生じてしまい、好ましくない結果となってしまった。   On the other hand, when the heat storage material microcapsule granulated product of Comparative Example 7 that is outside the present invention was used, the air temperature in the space in the box changed in the range of 13 to 29 ° C, but the heat storage material microcapsule granulated product Partly disintegrated pulverized material was blown away by the air supply fan, causing a phenomenon that the upper floor surface was contaminated with the pulverized material, resulting in an undesirable result.

本発明外である比較例8の蓄熱材マイクロカプセル造粒物を用いた場合は、箱内空間の空気温度は7〜34℃の範囲と外部の環境温度に大きく影響されるように変動し、蓄熱性能が劣るものとなった。   When the heat storage material microcapsule granulated product of Comparative Example 8 that is outside the present invention is used, the air temperature in the box space fluctuates so as to be greatly influenced by the range of 7 to 34 ° C. and the external environmental temperature, The heat storage performance was inferior.

以上のことから明らかなように、蓄熱材を内包する蓄熱材マイクロカプセルを結着剤とともに複数個固着せしめた蓄熱材マイクロカプセル造粒物において、該蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値を、0.2〜50N/mm2の範囲にすることにより、該蓄熱材マイクロカプセル造粒物が適度な強度を有することになり、その蓄熱材マイクロカプセル造粒物の充填物や加工物を外力のかかる環境下で使用しても、蓄熱効果が低減せずに長期間にわたって利用可能な性能を維持することが可能となった。 As is clear from the above, in the heat storage material microcapsule granulated product in which a plurality of heat storage material microcapsules encapsulating the heat storage material are fixed together with the binder, the heat storage material microcapsule granulated product according to JIS Z 8841 the divided by the projected cross-sectional area of the measured compressive strength accumulating Netsuzai microcapsule granules, by a range of 0.2~50N / mm 2, accumulating Netsuzai microcapsules granulation is moderate strength Even if the heat storage material microcapsule granulated filler or processed material is used in an environment where external force is applied, the heat storage effect will not be reduced and the performance that can be used over a long period of time will be maintained. Became possible.

本発明による蓄熱材マイクロカプセル造粒物は、枕・ベッドパッド・シーツ・布団・毛布などの寝具、マイクロ波照射により加熱及び蓄熱する保温材、天井・壁・床などの建築材料、建築物の躯体蓄熱・空間充填式空調に加え、被服材料などの繊維加工物、電子部品やガス吸着材などの過熱抑制材及び/または過冷抑制材、床暖房用、空調用途、道路や橋梁などの土木用材料、燃料電池や焼却炉などの廃熱利用設備、給湯蓄熱用途、産業用保温材料、農業用保温材料、家庭用品、健康用品、医療用材料など様々な利用分野に応用できる。   The heat storage material microcapsule granulated product according to the present invention includes pillows, bed pads, sheets, futons, blankets, etc., heat insulation materials that heat and store heat by microwave irradiation, building materials such as ceilings, walls, floors, etc. In addition to frame heat storage and space-filling air conditioning, fabric processed materials such as clothing materials, overheating and / or supercooling suppression materials such as electronic parts and gas adsorbents, floor heating, air conditioning applications, civil engineering such as roads and bridges It can be applied to various fields of use, such as materials for use, waste heat utilization equipment such as fuel cells and incinerators, hot water heat storage applications, industrial heat insulation materials, agricultural heat insulation materials, household goods, health supplies, and medical materials.

Claims (4)

蓄熱材を内包する蓄熱材マイクロカプセルを結着剤とともに複数個固着せしめた蓄熱材マイクロカプセル造粒物において、該蓄熱材マイクロカプセル造粒物のJIS Z 8841により測定した圧壊強度を該蓄熱材マイクロカプセル造粒物の投影断面積で除した値が、0.2〜50N/mm2の範囲であることを特徴とする蓄熱材マイクロカプセル造粒物。 In a heat storage material microcapsule granulated product in which a plurality of heat storage material microcapsules encapsulating the heat storage material are fixed together with a binder, the crushing strength measured by JIS Z 8841 of the heat storage material microcapsule granulation product is measured. A heat storage material microcapsule granulated product, wherein the value obtained by dividing the capsule granulated product by the projected cross-sectional area is in the range of 0.2 to 50 N / mm 2 . 蓄熱材マイクロカプセル造粒物中の結着剤の添加割合が0.1〜20質量%の範囲である請求項1記載の蓄熱材マイクロカプセル造粒物。   The heat storage material microcapsule granulated product according to claim 1, wherein the addition ratio of the binder in the heat storage material microcapsule granulated product is in the range of 0.1 to 20% by mass. 蓄熱材マイクロカプセル造粒物の短径方向平均径が0.1〜100mmの範囲である請求項1または2に記載の蓄熱材マイクロカプセル造粒物。   The heat storage material microcapsule granulated product according to claim 1 or 2, wherein the heat storage material microcapsule granulated product has a minor axis direction average diameter of 0.1 to 100 mm. 結着剤がポリアミドエピハロヒドリン樹脂である請求項1〜3いずれか1項に記載の蓄熱材マイクロカプセル造粒物。   The heat storage material microcapsule granulated product according to any one of claims 1 to 3, wherein the binder is a polyamide epihalohydrin resin.
JP2005371470A 2005-01-05 2005-12-26 Thermal storage material microcapsule granule Pending JP2006213914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371470A JP2006213914A (en) 2005-01-05 2005-12-26 Thermal storage material microcapsule granule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005000676 2005-01-05
JP2005371470A JP2006213914A (en) 2005-01-05 2005-12-26 Thermal storage material microcapsule granule

Publications (1)

Publication Number Publication Date
JP2006213914A true JP2006213914A (en) 2006-08-17

Family

ID=36977390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371470A Pending JP2006213914A (en) 2005-01-05 2005-12-26 Thermal storage material microcapsule granule

Country Status (1)

Country Link
JP (1) JP2006213914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088376A (en) * 2006-10-05 2008-04-17 As R&D合同会社 Heat storage composition
JP2009286811A (en) * 2008-05-27 2009-12-10 Aisan Ind Co Ltd Granulated heat-storage material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088376A (en) * 2006-10-05 2008-04-17 As R&D合同会社 Heat storage composition
JP2009286811A (en) * 2008-05-27 2009-12-10 Aisan Ind Co Ltd Granulated heat-storage material and method for producing the same

Similar Documents

Publication Publication Date Title
Khadiran et al. Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review
ES2338180T3 (en) MICROCAPSULES MODIFIED BY POLYELECTROLYTES.
ES2573254T3 (en) Microcapsules
Phadungphatthanakoon et al. Increasing the thermal storage capacity of a phase change material by encapsulation: preparation and application in natural rubber
JP2012531509A (en) Foam composition
US20040234738A1 (en) Use of microcapsules in gypsum plasterboards
JP2007119656A (en) Heat accumulation board
JP2006192428A (en) Solid matter of microcapsule and method for utilizing the same
JP2009024086A (en) Method of manufacturing supported type solid heat storing material
JP2016176013A (en) Accumulation material microcapsule granule
JP2006263681A (en) Microcapsule granule and its usage
JP2005320527A (en) Microcapsule of heat accumulating material, dispersion of microcapsule of heat accumulating material, solid material of microcapsule of heat accumulating material and method of utilizing the same
JP2006063328A (en) Microencapsulated heat-accumulating solid material
JP2006213914A (en) Thermal storage material microcapsule granule
JP2006097000A (en) Heat storage material-microencapsulated solid material
JP4845576B2 (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
JP2003306672A (en) Heat storage sheet and method of utilizing the same
JP2006096999A (en) Heat storage material-microencapsulated solid material
US20090169893A1 (en) Thermal Storage Material Microcapsules, Thermal Storage Material Microcapsule Dispersion and Thermal Storage Material Microcapsule Solid
JP2006097002A (en) Heat storage material-microencapsulated solid material
JP2006097001A (en) Heat storage material-microencapsulated solid material
JP2006176761A (en) Microcapsule solid material including thermal storage material
JP2003261716A (en) Rubber material with heat storage effect and method of utilizing the same
JP2009203352A (en) Method for producing granular heat storage material
JP2004301397A (en) Heat storage board