JP2004324246A - Thermal storage building material and method of using the same - Google Patents

Thermal storage building material and method of using the same Download PDF

Info

Publication number
JP2004324246A
JP2004324246A JP2003121104A JP2003121104A JP2004324246A JP 2004324246 A JP2004324246 A JP 2004324246A JP 2003121104 A JP2003121104 A JP 2003121104A JP 2003121104 A JP2003121104 A JP 2003121104A JP 2004324246 A JP2004324246 A JP 2004324246A
Authority
JP
Japan
Prior art keywords
heat storage
thermal storage
building material
granular solid
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121104A
Other languages
Japanese (ja)
Inventor
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003121104A priority Critical patent/JP2004324246A/en
Publication of JP2004324246A publication Critical patent/JP2004324246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal storage building material which gradually dissipates heat stored therein by a cooling and heating combination appliance or by using natural energy, and maintains a comfortable room temperature over a long time even if large change is generated in an ambient temperature. <P>SOLUTION: Granular solid matters each formed of a plurality of microcapsules encapsulating therein a thermal storage material are filled in an enclosing material. Preferably a mean grain size of the microcapsule is in the range of 0.5 to 100 μm and a mean grain size of the granular solid matter is in the range of 1 μm to 50 mm. Also preferably the thermal storage building material containing therein the granular solid materials each formed of the microcapsules encapsulating therein a thermal storage material having a melting point of 5 to 40°C is for use as an inner finish building material, and the thermal storage building material containing therein the granular solid materials each formed of the microcapsules encapsulating therein a thermal storage material having a melting point of 20 to 60°C is for use as a floor heating thermal storage material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱性を有する建材に関するものであり、更に詳しくは本発明の蓄熱性建材を建築物、住宅やビルの床材、壁材、天井材等の内装材、畳用芯材または床暖房用蓄熱材として用いることにより冷暖房のためのエネルギーが著しく節約可能で、快適な温度域を長時間維持しうる新規な蓄熱性ボードに関するものである。
【0002】
【従来の技術】
近年、地球温暖化抑制が世界的に重要視されるようになり、その対策として化石燃料を燃焼させた際に多量に発生する二酸化炭素の削減化策が大きな問題となっている。特に建物の居住環境や作業環境を維持するために消費するエネルギーは膨大な量となり、その削減や有効利用等の省エネルギー対策が不可欠である。通常、外気温の変動に対し室内の温度を快適な範囲の温度域に維持するために、建物自体の機密性を高めたり、壁や天井、床などの建物の中に断熱材を配する対策が広く一般に用いられており、室内と室外の熱移動を極力抑える対策がとられている。
【0003】
これに対し、太陽熱や冷暖房などのエネルギーを水や建物の躯体の一部に顕熱として蓄えたり、潜熱材を用いた建材や蓄熱技術が提案されており、球状蓄熱材を建築壁内に配した蓄熱体(例えば、特許文献1参照)。無機系の蓄熱材を合成樹脂製チューブに充填したものを内接した蓄断熱材(例えば、特許文献2参照)。蓄熱材を植設した複合板(例えば、特許文献1参照)、断熱材と潜熱蓄熱材との組み合わせ(例えば、特許文献3参照)が提案されているが、一般にこれらの潜熱蓄熱材の熱伝導性が悪いため蓄放熱特性が低下し、効率よく潜熱を使い切らない場合が多かった。その対策として複数の潜熱蓄熱材をカプセル化して基材中に分散し放熱面温度をほぼ一定に保つことができる蓄熱建材が紹介されている。(例えば、特許文献4参照)
【0004】
【特許文献1】
特開昭57−202493号公報
【特許文献2】
特開昭58−2379号公報
【参考文献3】
特開昭62−117931号公報
【参考文献4】
特公平6−33633号公報
【0005】
【発明が解決しようとする課題】
本発明の課題は、住宅の壁、天井、床などの室内側面、及び畳の芯材や床暖房用蓄熱材として配置することにより、予め冷暖房器具又は自然エネルギーで蓄熱した熱が徐々に放熱して、外気温に大きな変化が生じても快適な室温を長時間維持する蓄熱性建材を提供することにある。
【0006】
【課題を解決するための手段】
本発明の課題は、蓄熱材を内包するマイクロカプセルの複数個から成る粒状固形物を包材に充填することにより達成される。
【0007】
【発明の実施の形態】
本発明の蓄熱性建材は、蓄熱材を内包するマイクロカプセルを粉末、ペレット等の粒状に固形化したものを、丈夫な包材の中に充填することにより得られる。本発明の蓄熱性建材は重量が軽くしかも薄手に加工が可能で、多量の蓄熱量を有することが特徴である。
【0008】
本発明の蓄熱性建材の製法は、1.マイクロカプセルの製造工程、2.マイクロカプセルの固形化工程、3.マイクロカプセル粒状固形化物の包材への充填工程、の3工程から成る。1.のマイクロカプセルは蓄熱材を内包した微少な粒子である。一般に蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(同62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(同62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(同62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法を用いることができる。
【0009】
カプセル膜材としては、界面重合法、インサイチュー法、ラジカル重合法等の手法で得られる、ポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、熱的に安定な熱硬化性樹脂皮膜を有するマイクロカプセルが好ましく、特に脂肪族系炭化水素化合物でも良好な品質のマイクロカプセルが得られるインサイチュー法による尿素ホルマリン樹脂、メラミンホルマリン樹脂皮膜を用いたマイクロカプセルが好ましい。
【0010】
本発明に係るマイクロカプセルの粒子経は、2.の固形化する工程で物理的圧力による破壊を防止するために0.5〜100μmの範囲、好ましくは1〜30μmの範囲にすることが好ましい。マイクロカプセルの粒子径は、乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(攪拌回転数、時間等)等を適宜調節して所望の粒子径に設定する。この粒子径以上になるとマイクロカプセルが外圧で容易に壊れやすくなったり、浮遊、沈降等の要因となるので好ましくない。
【0011】
本発明で用いられる蓄熱材の相変化点、即ち融点は生活温度域において快適と感じられる下限と、床暖房などの蓄熱温度域を含めた温度域に設定することが好ましく、5〜60℃の範囲に設定されることが好ましい。具体的には、炭素数が約14〜30程度のn−パラフィン類や、無機系共晶物及び無機系水和物、パルミチン酸、ミリスチン酸等の脂肪酸類、ベンゼン、p−キシレン等の芳香族炭化水素化合物、パルミチン酸イソプロピル、ステアリン酸ブチル等のエステル化合物、ステアリルアルコール等のアルコール類等の化合物が挙げられ、化学的、物理的に安定でしかも安価なものが用いられる。これらは混合して用いても良いし、必要に応じ過冷却防止材、比重調節材、劣化防止剤等を添加することができる。また、融点の異なる2種以上のマイクロカプセルを混合して用いることも可能である。
【0012】
本発明の蓄熱性建材の具体的な利用方法として、建築物の内装材としての応用と床暖房用蓄熱材としての利用方法が挙げられる。前者の建築物の内装材とは、室内側に直に面した建材のみならず、床下や天井裏等の直接室内側面に面していない部分に配された建材も含む。建築物の内装材としての使用方法は、通常人間が適温と感じられる温度域を長時間持続することを目的としており、この用途に用いられる蓄熱材の融点は5〜40℃の範囲に設定されることが好ましい。
【0013】
本発明の蓄熱性建材のもう一つの好ましい利用方法として、床暖房用蓄熱材が挙げられる。床暖房は電気やガスのエネルギーを元に床面の温度を暖め輻射熱で屋内を暖房するもので、輻射熱による穏和な暖房方法として著しい普及を遂げている。しかしながら、加熱面積が広面積に及び加熱時間も長時間に及ぶため効率的な蓄熱が必要とされていた。床暖房用蓄熱材として本発明の蓄熱性建材を用いることにより効率的な省エネ暖房が可能となる。この用途に用いられる蓄熱材の融点は20〜60℃の範囲に設定されることが好ましい。
【0014】
2.の工程で示されるマイクロカプセルの粒状固形物の具体的な形態として、粉体、顆粒状、ペレット状等、平均粒子径が約1μm〜50mmの範囲、好ましくは10μm〜10mmの範囲に揃えられることが好ましい。マイクロカプセルの粒状固形物は、1.の工程で得られたマイクロカプセルスラリーをドラムドライヤー、スプレードライヤー、フリーズドライヤー等の各種粉体化装置や、押し出し造粒機、転動造粒機等、流動乾燥装置等の各種造粒装置を用いて複数個集合させ粒状に成形されるが、単純な球状ではなく、円柱状、立方体、直方体、卵型、星形などの形状に加工することも可能である。粉体化または造粒化の際に必要であれば各種バインダー、防黴剤、防虫剤、難燃化のための薬剤をこの工程で添加しても良い。更に、劣化防止剤、酸化防止剤、可塑剤、粘着付与剤、滑剤、着色剤、硬化剤、発泡剤、合成繊維、合成樹脂類、断熱材、VOC除去材、活性炭、吸放湿剤などを添加、塗工、注入、貼り合わせが可能である。
【0015】
本発明の工程3.で用いられる包材は、熱的及び物理的圧力や化学的浸食にも耐え得る丈夫な包材であることが好ましく、更に不燃性及びまたはガス不透過性の包材であることが好ましい。包材の具体例として、アルミニウム、銅、鉄、等の金属シートやポリ塩化ビニル、ポリ塩化ビニリデン等の材料が好ましい。本包材を用いた充填物の大きさは建材を施工するに際し扱いやすい大きさに設定されるが、厚み方向の熱伝導性を高めるため、厚みは10mm以下、好ましくは2mm以下にすることが好ましい。更にマイクロカプセル固形物を充填した後、内部の空気を極力排気することによりボードとしての強度と密度が増すため好ましい態様である。
【0016】
本発明の蓄熱性建材は住宅やビルの床下あるいは天井裏に貼り付けることにより蓄熱性を有する建築材料として使用することができる。また、防音性にも優れるという効果も有しているため、二世代住宅や集合住宅のように複数の世帯から成る住宅ではとかく苦情の原因となる騒音や振動を吸収できる利点が発揮される。本発明の蓄熱性建材は、ガラスウール、中空粒子、ウレタンフォーム、発泡性樹脂などの断熱材と組み合わせて用いることにより断熱性と蓄熱性の相乗効果が得られるため好ましい態様である。
【0017】
【実施例】
以下に本発明の実施例を示す。実施例中の部数は固形質量部を表す。また、融点及び融解熱量は示差熱熱量計(米国パーキンエルマー社製、DSC−7型)を用いて測定した。
【0018】
実施例1
メラミン粉末12質量部に37%ホルムアルデヒド水溶液15.4質量部と水40質量部を加え、pHを8に調整した後、約70℃まで加熱してメラミン−ホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整した10%スチレン−無水マレイン酸共重合体のナトリウム塩水溶液100質量部中に、蓄熱材として、n−オクタデカン(融点26〜28℃)80質量部を激しく撹拌しながら添加し、粒子径が3.0μmになるまで乳化を行った。
【0019】
得られた乳化液に、上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加し70℃で2時間撹拌を施した後、pHを9まで上げて水を添加して乾燥固形分濃度40%の蓄熱材マイクロカプセル分散液を得た。
【0020】
このマイクロカプセル分散液をスプレードライヤーで水分含有率3%以下まで乾燥し粒子径約30μmのマイクロカプセル粉体を得た。次に包材として厚さ120μmのナイロン製包材に上記マイクロカプセル粉体4.5kgを充填し、厚み10mmで1m四方のボード状蓄熱性建材を得た。
【0021】
この蓄熱性建材と厚さ8mmの断熱用ウレタンフォームを貼り合わせ、蓄熱性建材を得た。この蓄熱性建材を広さ6畳の部屋のフローリングの下部一面に配置したところ、真夏の暑い日でも室温が28℃を上回ることが少なかった。
【0022】
実施例2
蓄熱材としてステアリン酸メチル(融点37℃)90質量部と、芳香族イソシアネート(商品名スミジュール44V10、ポリメリックジフェニルメタンジイソシアネート)10質量部を混合した溶液を、室温で5%ポリビニルアルコール水溶液100質量部中に激しく撹拌しながら添加し、粒子径が5μmになるまで乳化を行った。乳化終了後、撹拌を施しながら3%ジエチレントリアミンの水溶液50質量部を徐々に添加した後、60℃で1時間撹拌を続けてステアリン酸メチルのマイクロカプセル分散液を得た。
【0023】
このマイクロカプセル分散液をスプレードライヤーで水分含有率3%以下まで乾燥し粒子径約50μmのマイクロカプセル粉体を得た。次に包材としてアルミワリフ(日本石油化学(株)製)を素材に用いた包材に上記マイクロカプセル粉体6.2kgを充填し、厚み20mmの1m四方のボード状蓄熱材を得た。このボード状蓄熱性建材を床暖房ヒーターと共に床下に配置したところ、夜間の安価な深夜電力を用いて蓄熱しておくことにより、昼間の快適な暖房と消費電力の節約が可能であった。
【0024】
【発明の効果】
実施例の結果からも明らかなように、本発明で示される蓄熱建材は見かけ上通常の木質建材、プラスティック建材と同様の形態であるが蓄熱性を有するために住宅やビルの内装材として使用することにより、多量の温熱又は冷熱を蓄えることが可能となり、冷暖房に要するエネルギーの節約、及び太陽光エネルギーの有効利用に大きく役立つものである。また、床材として使用することにより、床暖房用蓄熱材として電力消費量が著しく削減可能で、防音性、吸音性に優れる優れた建材であることが確認できた。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-accumulating building material, and more particularly, to a heat-accumulating building material of the present invention, such as a building, a floor material of a house or a building, a wall material, an interior material such as a ceiling material, a tatami core material or a floor material. The present invention relates to a novel heat storage board capable of remarkably saving energy for cooling and heating by using as a heat storage material for heating and maintaining a comfortable temperature range for a long time.
[0002]
[Prior art]
In recent years, suppression of global warming has been regarded as important worldwide, and as a countermeasure, a measure to reduce a large amount of carbon dioxide generated when fossil fuels are burnt has been a serious problem. In particular, the amount of energy consumed to maintain the living environment and working environment of a building is enormous, and energy saving measures such as reduction and effective use are indispensable. In general, measures to increase the confidentiality of the building itself and to arrange heat insulating materials in the building, such as walls, ceilings, and floors, in order to maintain the indoor temperature within a comfortable temperature range against fluctuations in the outside temperature Is widely and generally used, and measures have been taken to minimize heat transfer between indoor and outdoor areas.
[0003]
On the other hand, energy such as solar heat and cooling / heating is stored as sensible heat in water or a part of the building frame, and building materials and heat storage technology using latent heat materials have been proposed, and spherical heat storage materials are distributed in building walls. (See, for example, Patent Document 1). A thermal storage material in which a tube made of a synthetic resin filled with an inorganic thermal storage material is insulated (for example, see Patent Document 2). A composite plate (for example, see Patent Document 1) in which a heat storage material is implanted, and a combination of a heat insulating material and a latent heat storage material (for example, see Patent Document 3) have been proposed. Due to the poor performance, the heat storage and radiation characteristics deteriorated, and in many cases, the latent heat was not used up efficiently. As a countermeasure, a heat storage building material capable of encapsulating a plurality of latent heat storage materials and dispersing the same in a base material so as to maintain a heat radiation surface temperature substantially constant is introduced. (For example, see Patent Document 4)
[0004]
[Patent Document 1]
JP-A-57-202493 [Patent Document 2]
JP-A-58-2379 [Reference Document 3]
JP-A-62-117931 [Reference 4]
Japanese Patent Publication No. 6-33633
[Problems to be solved by the invention]
An object of the present invention is to dispose heat stored in advance with a cooling / heating appliance or natural energy by arranging it as a wall material of a house, a ceiling, a floor or other indoor side surface, and a tatami mat core material or a floor heat storage material. Another object of the present invention is to provide a heat storage building material that maintains a comfortable room temperature for a long time even when a large change occurs in the outside temperature.
[0006]
[Means for Solving the Problems]
The object of the present invention is achieved by filling a packaging material with a granular solid material comprising a plurality of microcapsules containing a heat storage material.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat storage building material of the present invention is obtained by filling micro-capsules encapsulating the heat storage material into granules such as powder and pellets into a durable packing material. The heat storage building material of the present invention is characterized in that it is light in weight and can be processed thinly, and has a large amount of heat storage.
[0008]
The manufacturing method of the heat storage building material of the present invention is as follows. 1. manufacturing process of microcapsules; 2. solidification step of microcapsules; And a step of filling the solidified microcapsule into a packaging material. 1. Are microscopic particles containing a heat storage material. In general, as a method of microencapsulating a heat storage material, a method of encapsulation by a composite emulsion method (Japanese Patent Application Laid-Open No. 62-1452) and a method of spraying a thermoplastic resin onto the surface of heat storage material particles (Japanese Patent Application Laid-Open No. 62-45680). ), A method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Application Laid-Open No. 62-149334), a method of polymerizing and coating a monomer on the surface of the heat storage material particles (Japanese Patent Application No. 62-225241), A method described in, for example, a method for producing a polyamide-coated microcapsule by a polycondensation reaction (JP-A-2-258052) can be used.
[0009]
As the capsule membrane material, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethylcellulose, polyurethane, aminoplast resin, and gelatin and carboxymethylcellulose or gum arabic obtained by techniques such as interfacial polymerization, in situ, and radical polymerization Synthetic or natural resins utilizing the coacervation method are used, but microcapsules having a thermostable thermosetting resin film are preferred, and even microcapsules of good quality, especially with aliphatic hydrocarbon compounds A microcapsule using a urea formalin resin or melamine formalin resin film by an in-situ method, which yields the following.
[0010]
The particle size of the microcapsule according to the present invention is: In order to prevent destruction due to physical pressure in the solidification step, the thickness is preferably in the range of 0.5 to 100 μm, and more preferably in the range of 1 to 30 μm. The particle size of the microcapsules depends on the type and concentration of the emulsifier, the temperature of the emulsified liquid during emulsification, the emulsification ratio (volume ratio of the aqueous phase and the oil phase), and the operating conditions of the atomizing device called an emulsifier, disperser, etc. (Agitation speed, time, etc.) are appropriately adjusted to set a desired particle size. When the particle size is larger than this, the microcapsules are easily broken by an external pressure, or cause factors such as floating and sedimentation.
[0011]
The phase change point of the heat storage material used in the present invention, that is, the melting point, is preferably set to the lower limit where comfort is felt in the living temperature range and the temperature range including the heat storage temperature range such as floor heating, and 5 to 60 ° C. It is preferable to set the range. Specifically, n-paraffins having about 14 to 30 carbon atoms, inorganic eutectics and inorganic hydrates, fatty acids such as palmitic acid and myristic acid, and aromatic compounds such as benzene and p-xylene. Examples include aromatic hydrocarbon compounds, ester compounds such as isopropyl palmitate and butyl stearate, and compounds such as alcohols such as stearyl alcohol. Chemically and physically stable and inexpensive compounds are used. These may be used as a mixture, and if necessary, a supercooling preventing material, a specific gravity adjusting material, a deterioration preventing agent and the like can be added. It is also possible to use a mixture of two or more kinds of microcapsules having different melting points.
[0012]
Specific usage of the heat storage building material of the present invention includes application as a building interior material and usage as a floor heating heat storage material. The interior material of the former building includes not only the building material directly facing the indoor side, but also the building material arranged on a portion not directly facing the indoor side surface such as under the floor or the ceiling. The method of use as an interior material of a building is intended to maintain a temperature range in which human beings feel appropriate temperature for a long period of time, and the melting point of the heat storage material used for this purpose is set in the range of 5 to 40 ° C. Preferably.
[0013]
Another preferable use of the heat storage building material of the present invention is a heat storage material for floor heating. Floor heating is a method of heating a floor surface based on electricity or gas energy and heating the interior with radiant heat, and has become extremely popular as a mild heating method using radiant heat. However, since the heating area is large and the heating time is long, efficient heat storage is required. By using the heat storage building material of the present invention as a floor storage heat storage material, efficient energy saving heating becomes possible. The melting point of the heat storage material used for this purpose is preferably set in the range of 20 to 60 ° C.
[0014]
2. As the specific form of the granular solid material of the microcapsule shown in the step, powder, granule, pellet, etc., the average particle diameter is in the range of about 1 μm to 50 mm, preferably in the range of 10 μm to 10 mm. Is preferred. The granular solids of the microcapsules are: The microcapsule slurry obtained in the step is subjected to various powdering devices such as a drum dryer, a spray dryer, a freeze dryer, and various granulating devices such as an extrusion granulator, a tumbling granulator, and a fluidized drying device. A plurality of particles are collected and formed into granules, but may be processed into a shape such as a column, a cube, a rectangular parallelepiped, an egg, or a star instead of a simple sphere. If necessary at the time of pulverization or granulation, various binders, fungicides, insect repellents, and agents for flame retardation may be added in this step. Furthermore, a deterioration inhibitor, an antioxidant, a plasticizer, a tackifier, a lubricant, a coloring agent, a curing agent, a foaming agent, a synthetic fiber, a synthetic resin, a heat insulating material, a VOC removing material, an activated carbon, a moisture absorbing and releasing agent, etc. Addition, coating, injection, and lamination are possible.
[0015]
Step 3 of the present invention. Is preferably a durable packaging material that can withstand thermal and physical pressures and chemical erosion, and more preferably a nonflammable and / or gas-impermeable packaging material. As specific examples of the packaging material, metal sheets such as aluminum, copper, and iron, and materials such as polyvinyl chloride and polyvinylidene chloride are preferable. The size of the packing using the present packaging material is set to a size that is easy to handle when constructing the building material, but in order to increase the thermal conductivity in the thickness direction, the thickness should be 10 mm or less, preferably 2 mm or less. preferable. Further, after filling solids of the microcapsules, the inside air is exhausted as much as possible to increase the strength and density of the board, which is a preferable embodiment.
[0016]
The heat storage building material of the present invention can be used as a building material having heat storage by attaching it to the floor of a house or a building or the ceiling. In addition, since it also has an effect of being excellent in soundproofing, an advantage of being able to absorb noise and vibration that causes a complaint is exhibited in a house composed of a plurality of households such as a second-generation house or an apartment house. The heat storage building material of the present invention is a preferred embodiment because a synergistic effect of heat insulation and heat storage can be obtained by using the heat storage building material in combination with a heat insulating material such as glass wool, hollow particles, urethane foam, or foamable resin.
[0017]
【Example】
Examples of the present invention will be described below. The number of parts in the examples represents solid parts by mass. The melting point and the heat of fusion were measured using a differential calorimeter (DSC-7, manufactured by PerkinElmer, USA).
[0018]
Example 1
15.4 parts by mass of a 37% aqueous formaldehyde solution and 40 parts by mass of water were added to 12 parts by mass of the melamine powder, the pH was adjusted to 8, and the mixture was heated to about 70 ° C. to obtain an aqueous solution of a melamine-formaldehyde precondensate. While vigorously stirring 80 parts by mass of n-octadecane (melting point: 26 to 28 ° C.) as a heat storage material in 100 parts by mass of a 10% styrene-maleic anhydride copolymer sodium salt aqueous solution whose pH was adjusted to 4.5. The mixture was added and emulsified until the particle diameter became 3.0 μm.
[0019]
To the obtained emulsion, the whole amount of the melamine-formaldehyde precondensate aqueous solution was added, and the mixture was stirred at 70 ° C. for 2 hours. Then, the pH was raised to 9 and water was added to the heat storage material having a dry solid content of 40%. A microcapsule dispersion was obtained.
[0020]
The microcapsule dispersion was dried with a spray dryer to a water content of 3% or less to obtain microcapsule powder having a particle size of about 30 μm. Next, 4.5 kg of the above microcapsule powder was filled into a nylon packaging material having a thickness of 120 μm as a packaging material to obtain a board-shaped heat storage building material having a thickness of 10 mm and a width of 1 m.
[0021]
The heat storage building material was bonded to an 8 mm thick urethane foam for heat insulation to obtain a heat storage building material. When this heat storage building material was placed on the lower surface of the flooring of a room having a size of 6 tatami mats, the room temperature rarely exceeded 28 ° C. even on a hot summer day.
[0022]
Example 2
A solution obtained by mixing 90 parts by mass of methyl stearate (melting point: 37 ° C.) as a heat storage material and 10 parts by mass of an aromatic isocyanate (trade name: Sumidur 44V10, polymeric diphenylmethane diisocyanate) in 100 parts by mass of a 5% aqueous polyvinyl alcohol solution at room temperature While stirring vigorously, and emulsified until the particle diameter became 5 μm. After completion of the emulsification, 50 parts by mass of an aqueous solution of 3% diethylenetriamine was gradually added while stirring, and then stirring was continued at 60 ° C. for 1 hour to obtain a microcapsule dispersion of methyl stearate.
[0023]
The microcapsule dispersion was dried with a spray dryer to a water content of 3% or less to obtain a microcapsule powder having a particle size of about 50 μm. Next, 6.2 kg of the above-mentioned microcapsule powder was filled in a packaging material using aluminum wallif (manufactured by Nippon Petrochemical Co., Ltd.) as a packaging material to obtain a 1 mm square board-shaped heat storage material having a thickness of 20 mm. When this board-shaped heat storage building material was placed under the floor together with the floor heating heater, it was possible to store heat using inexpensive midnight power at night, thereby enabling comfortable heating during the day and saving power consumption.
[0024]
【The invention's effect】
As is clear from the results of the examples, the heat storage building material shown in the present invention is apparently a normal woody building material, and has the same form as a plastic building material, but has a heat storage property and is used as an interior material of a house or a building. This makes it possible to store a large amount of hot or cold heat, which greatly contributes to saving energy required for cooling and heating and effective use of solar energy. In addition, it was confirmed that the use as a floor material could significantly reduce power consumption as a heat storage material for floor heating, and was an excellent building material having excellent soundproofing and sound absorbing properties.

Claims (4)

蓄熱材を内包するマイクロカプセルの複数個から成る粒状固形物を包材に充填した蓄熱性建材。A heat storage building material in which a packing material is filled with a granular solid material comprising a plurality of microcapsules containing a heat storage material. マイクロカプセルの平均粒子径が0.5〜100μmの範囲で、粒状固形物の平均粒子径が1μm〜50mmの範囲である請求項1記載の蓄熱性建材。The heat storage building material according to claim 1, wherein the average particle size of the microcapsules is in the range of 0.5 to 100 µm, and the average particle size of the granular solid is in the range of 1 µm to 50 mm. 融点が5〜40℃の範囲の蓄熱材を内包するマイクロカプセルの粒状固形物を用いた請求項1記載の蓄熱性建材を内装材して利用する方法。The method of using a heat storage building material as an interior material according to claim 1, wherein the heat storage material has a melting point in the range of 5 to 40 ° C. and uses a granular solid material of microcapsules containing the heat storage material. 融点が20〜60℃の範囲の蓄熱材を内包するマイクロカプセルの粒状固形物を用いた請求項1記載の蓄熱性建材を床暖房用蓄熱材として利用する方法。The method according to claim 1, wherein the heat storage building material is a heat storage material for floor heating, wherein the heat storage material has a melting point in the range of 20 to 60 ° C and uses a granular solid material of microcapsules containing the heat storage material.
JP2003121104A 2003-04-25 2003-04-25 Thermal storage building material and method of using the same Pending JP2004324246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121104A JP2004324246A (en) 2003-04-25 2003-04-25 Thermal storage building material and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121104A JP2004324246A (en) 2003-04-25 2003-04-25 Thermal storage building material and method of using the same

Publications (1)

Publication Number Publication Date
JP2004324246A true JP2004324246A (en) 2004-11-18

Family

ID=33499767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121104A Pending JP2004324246A (en) 2003-04-25 2003-04-25 Thermal storage building material and method of using the same

Country Status (1)

Country Link
JP (1) JP2004324246A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509263A (en) * 2004-08-10 2008-03-27 ビーエーエスエフ ソシエタス・ヨーロピア Coarse-grained microcapsule preparation
CN102877553A (en) * 2012-10-17 2013-01-16 肖和平 Energy storage thermal insulation building material
JP2013139867A (en) * 2012-01-02 2013-07-18 Masaru Hiyamizu Vehicle interior and other heat insulation material
JP2014040761A (en) * 2012-08-23 2014-03-06 Masaru Hiyamizu Heat insulation construction building material and storage battery heat insulation material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509263A (en) * 2004-08-10 2008-03-27 ビーエーエスエフ ソシエタス・ヨーロピア Coarse-grained microcapsule preparation
JP2013139867A (en) * 2012-01-02 2013-07-18 Masaru Hiyamizu Vehicle interior and other heat insulation material
JP2014040761A (en) * 2012-08-23 2014-03-06 Masaru Hiyamizu Heat insulation construction building material and storage battery heat insulation material
CN102877553A (en) * 2012-10-17 2013-01-16 肖和平 Energy storage thermal insulation building material
CN102877553B (en) * 2012-10-17 2014-05-07 肖和平 Energy storage thermal insulation building material

Similar Documents

Publication Publication Date Title
US20030211796A1 (en) Flame-inhibiting finishing of articles containing organic latent-heat storage materials
JP5656864B2 (en) Planar component made of composite material
DE102008004485A1 (en) Covering of organic and inorganic phase change material, comprises introducing the phase change material into a porous, open-cellular carrier structure and providing the filled porous granulates with water vapor-tight layer
JP2009138339A (en) Concrete curing sheet and concrete curing method
JP2005320527A (en) Microcapsule of heat accumulating material, dispersion of microcapsule of heat accumulating material, solid material of microcapsule of heat accumulating material and method of utilizing the same
JP2006192428A (en) Solid matter of microcapsule and method for utilizing the same
JP2003260705A (en) Heat accumulation type fiberboard and utilization method therefor
JP2003306672A (en) Heat storage sheet and method of utilizing the same
JP2004324246A (en) Thermal storage building material and method of using the same
JP4845576B2 (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
KR20070070844A (en) Energy storage building materials using phase change material in microcapsule and the method for manufacturing thereof
JP2006063328A (en) Microencapsulated heat-accumulating solid material
JP2003261716A (en) Rubber material with heat storage effect and method of utilizing the same
JP2004301397A (en) Heat storage board
JP2006097000A (en) Heat storage material-microencapsulated solid material
JP2004316245A (en) Heat storage resin board and its utilization method
JP2003090124A (en) Heat storage material for floor heating
JP2005068954A (en) Heat accumulating building material and its use
JPH11264561A (en) Heat storage building material and method of heat storage
JP2006096999A (en) Heat storage material-microencapsulated solid material
JP2001081447A (en) Solid heat accumulating material and regenerative air conditioning method
JP2003034993A (en) Building skeleton structure
JP2003155789A (en) Heat accumulating board
JP4173666B2 (en) Microcapsule solidified material and method of using the same
JPH10297950A (en) Concrete for accumulating cold heat