JP2003253371A - Composite material with high thermal conductivity and manufacturing method therefor - Google Patents

Composite material with high thermal conductivity and manufacturing method therefor

Info

Publication number
JP2003253371A
JP2003253371A JP2002369198A JP2002369198A JP2003253371A JP 2003253371 A JP2003253371 A JP 2003253371A JP 2002369198 A JP2002369198 A JP 2002369198A JP 2002369198 A JP2002369198 A JP 2002369198A JP 2003253371 A JP2003253371 A JP 2003253371A
Authority
JP
Japan
Prior art keywords
composite material
aluminum
high thermal
thermal conductivity
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002369198A
Other languages
Japanese (ja)
Other versions
JP2003253371A5 (en
Inventor
Mitsutomo Nagano
充朋 長野
Akiyoshi Nishino
明義 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002369198A priority Critical patent/JP2003253371A/en
Publication of JP2003253371A publication Critical patent/JP2003253371A/en
Publication of JP2003253371A5 publication Critical patent/JP2003253371A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material with high thermal conductivity, which can acquire the high thermal conductivity and a high-precision flat face, and to provide a manufacturing method therefor. <P>SOLUTION: The composite material with high thermal conductivity 1 comprises a main body 2 of the composite material consisting of 40-85 vol.% of ceramic particles and 15-60 vol.% of aluminum or an aluminum alloy, which has a continuous phase of aluminum or the aluminum alloy formed in gaps among the ceramic particles, and has no gap in interfaces between the ceramic particles 4 and the aluminum or the aluminum alloy, and a coating member 3 superior in workability, which is integrally provided on at least one side of the front or the back of the composite body 2. Thereby, the composite material can acquire very high thermal conductivity and an excellent dimensional stability. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高熱伝導性複合材
およびその製造方法に係り、詳しくは、MPUやパワー
モジュール等の半導体から発生した熱を吸収、放熱する
放熱用基板や、基板の表面に薄膜を形成する成膜装置と
しての、真空蒸着装置、スパッタリング装置、CVD
(化学的気相成長)装置等に用いられる放熱用基板ある
いは搬送用基板、プラズマテレビ製造用の均熱板、小型
パソコン、測定機器等の電子機器に用いられる筐体、ヒ
ートシンク材、さらに、車両の制御部等で発生した熱を
吸収、放熱し、あるいは、ブレーキ部等に用いられる放
熱特性のよい高熱伝導性複合材およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high thermal conductivity composite material and a method for manufacturing the same, and more particularly, to a heat dissipation substrate that absorbs and dissipates heat generated from a semiconductor such as an MPU or a power module, and the surface of the substrate Vacuum deposition apparatus, sputtering apparatus, CVD as a film forming apparatus for forming a thin film on
(Chemical Vapor Deposition) Heat dissipation substrate or transport substrate used in devices, etc., soaking plate for plasma television production, small personal computer, housing used for electronic equipment such as measuring equipment, heat sink material, and vehicle The present invention relates to a highly heat-conductive composite material that absorbs and radiates heat generated in the control section or the like, or that is used in the brake section or the like and has good heat dissipation characteristics, and a manufacturing method thereof.

【0002】[0002]

【背景技術】例えば、パワー半導体素子は大電流で駆動
されるため発熱し、素子特性を維持するための放熱性に
優れた放熱板が必要とされる。特に、近年高密度集積化
や制御回路との混載による小型、軽量化が進められてい
るため、高密度熱流の放散が重要な課題となっており、
高熱伝導性の放熱基板が求められている。また、プラズ
マテレビ製造用の均熱板や、液晶パネル用ガラス基板に
真空中でパターンを蒸着する際にも高熱が発生するため
高熱伝導性の放熱基板が求められている。
2. Description of the Related Art For example, a power semiconductor element is driven by a large current and therefore generates heat. Therefore, a heat radiating plate having excellent heat radiating property for maintaining element characteristics is required. In particular, in recent years, since miniaturization and weight reduction have been promoted by high-density integration and mixed mounting with control circuits, dissipation of high-density heat flow has become an important issue.
There is a demand for a heat dissipation board having high thermal conductivity. Further, since a high heat is generated when a pattern is vapor-deposited on a glass plate for a liquid crystal panel or a soaking plate for manufacturing a plasma television in a vacuum, a heat dissipation substrate having a high thermal conductivity is required.

【0003】さらに、小型パソコンや測定機器、プロジ
ェクタ等の分野においては、半導体素子の高密度集積化
が進むに従って、半導体素子の発熱量が増大する一方
で、機器の小型化によって、放熱に困難な構造となる傾
向にある。このように、筐体、ヒートシンク材に対して
も高熱伝導性の放熱基板が求められている。また、車両
においては、例えば、制動の分野においてブレーキディ
スクには高い放熱性が要求されており、パワートランジ
スタ等を使うような部分では、高熱伝導性の放熱基板が
求められている。さらに、調理等の際に、ガスや電気等
の熱を有効に使用するため、あるいは短時間で調理でき
るように、高熱伝導性の器具が求められている。また、
例えばパネルヒータのパネル本体や、遠赤外線ヒータの
発熱面や、アイロンの掛け面用等用としても、より効率
的に熱を伝えることができる高熱伝導性の材料が望まれ
ている。以上のように、様々な分野で熱伝導性の高い材
料が求められており、この要望に対して、従来はSiC
/Al系複合材が提案されている。
Further, in the fields of small personal computers, measuring instruments, projectors, etc., as the high density integration of semiconductor elements progresses, the amount of heat generated by the semiconductor elements increases, while the miniaturization of the equipment makes it difficult to dissipate heat. It tends to be structured. As described above, a heat dissipation board having high thermal conductivity is required for the housing and the heat sink material. Further, in vehicles, for example, in the field of braking, brake disks are required to have high heat dissipation, and in parts such as power transistors, a heat dissipation substrate having high heat conductivity is required. Furthermore, in order to effectively use heat such as gas and electricity at the time of cooking or the like, a device having high thermal conductivity is required so that cooking can be performed in a short time. Also,
For example, for a panel body of a panel heater, a heating surface of a far-infrared heater, an ironing surface, and the like, a material having high thermal conductivity that can transfer heat more efficiently is desired. As described above, materials with high thermal conductivity are required in various fields, and in response to this demand, SiC is conventionally used.
/ Al-based composite materials have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、金属板は熱膨
張係数が大きい問題があり、一方、SiC/Al系複合
材は熱伝導率が充分ではないという問題がある。また、
従来のSiC/Al系複合材では、アルミニウム溶湯の
中にSiC粉末を分散させる方法、SiC粒子とアルミ
ニウムまたはアルミニウム合金粒子をバインダーや焼結
助剤を加えて成形し、次いで焼結する方法などがある。
これらの方法において熱伝導率が充分でないのは、以下
に示す理由によるものと考えられている。 1)SiCの含有率が20%容積程度と低いため、 2)SiCの粒径が10μ〜100μと非常に細かく、
アルミニウムとの接触面積が非常に大きくなるため、 3)SiCとアルミニウムとの界面にバインダーや焼結
助剤の残留物が異物として残るため、 4)SiCとアルミニウムとの界面に空気を含んだ空隙
が存在するため、などである。
However, the metal plate has a problem that the coefficient of thermal expansion is large, while the SiC / Al-based composite material has a problem that the thermal conductivity is not sufficient. Also,
Conventional SiC / Al-based composite materials include a method of dispersing SiC powder in an aluminum melt, a method of molding SiC particles and aluminum or aluminum alloy particles with a binder or a sintering aid, and then sintering. is there.
The insufficient thermal conductivity in these methods is considered to be due to the following reasons. 1) Since the content rate of SiC is as low as about 20% by volume, 2) The particle size of SiC is very fine from 10 μ to 100 μ,
Since the contact area with aluminum becomes very large, 3) the residue of the binder and the sintering aid remains as foreign matter at the interface between SiC and aluminum, and 4) the void containing air at the interface between SiC and aluminum. And so on, and so on.

【0005】また、このようなSiC/Al系複合材
を、例えば放熱基板として、MPUやパワーモジュール
等の半導体と接続して使用する場合、接着したり、ねじ
止めしたりして行っている。しかし、複合材の表面が、
SiCとAlの収縮率の違い等により必ずしも平滑に仕
上がっていない。そのため、SiC/Al系複合材とパ
ワーモジュール等の半導体とを接着、固定する際に、互
いの表面間に隙間が生じたりして充分に密着せず、その
結果、放熱基板としての充分な機能を果たせないという
問題が生じている。そこで、平滑性を得て密着性をよく
するために、SiC/Al系複合材の表面を研削するこ
とが行われるが、SiCの硬度が大きいため、研削加工
が困難であり、工具の損傷も早い。また、SiC/Al
系複合材をねじ止めで取り付けようとする場合も、穴あ
け加工が困難であり、工具の損傷も早い。また、研削加
工して取り付け面を平滑に仕上げたものを、半導体等の
被取り付け部材に取り付けたとしても、SiC/Al系
複合材と被取り付け部材との膨張率の違いから、繰り返
し使用のうちに、互いが剥離してしまうという問題も生
じている。
When such a SiC / Al-based composite material is used as a heat dissipation substrate by connecting to a semiconductor such as an MPU or a power module, it is bonded or screwed. However, the surface of the composite is
The finish is not always smooth due to the difference in shrinkage between SiC and Al. Therefore, when the SiC / Al-based composite material and the semiconductor such as the power module are bonded and fixed to each other, a gap is generated between the surfaces of the SiC / Al-based composite material and they are not sufficiently adhered to each other. There is a problem that it can not fulfill. Therefore, in order to obtain smoothness and improve adhesion, the surface of the SiC / Al-based composite material is ground, but since the hardness of SiC is large, the grinding process is difficult and the tool is damaged. early. In addition, SiC / Al
Even when trying to attach a composite material with screws, drilling is difficult and the tool is damaged quickly. In addition, even when a product whose grinding surface is finished to be smooth is attached to a member to be attached such as a semiconductor, due to the difference in expansion coefficient between the SiC / Al-based composite material and the member to be attached, it is repeatedly used. In addition, there is a problem that they are separated from each other.

【0006】本発明の一つの目的は、高熱伝導性を得る
ことができる高熱伝導性複合材およびその製造方法を提
供することにある。本発明の他の目的は、上記目的の他
に、容易に平滑面を得ることができて被取り付け部材と
の間で充分な密着性を確保して取り付けることができる
とともに、被取り付け部材に取り付け繰り返し使用して
も剥離することがない高熱伝導性複合材およびその製造
方法を提供することにある。
An object of the present invention is to provide a high thermal conductivity composite material which can obtain high thermal conductivity and a method for producing the same. Another object of the present invention is, in addition to the above object, that a smooth surface can be easily obtained, and that the device can be mounted while ensuring sufficient adhesion with the member to be mounted, and can also be mounted to the member to be mounted. It is an object of the present invention to provide a high thermal conductivity composite material that does not peel off even if it is repeatedly used and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の高熱伝導性複合材は、セラミック粒子が4
0〜85容積%、アルミニウムまたはアルミニウム合金
が15〜60容積%からなるとともに、前記セラミック
粒子間の間隙に前記アルミニウムまたはアルミニウム合
金が連続相を形成し、かつ、前記セラミック粒子とアル
ミニウムまたはアルミニウム合金との界面に隙間がない
ようにした複合材本体を備え、この複合材本体の表裏面
の少なくとも一面には、加工性に優れた被覆部材が一体
的に設けられていることを特徴とするものである。
In order to achieve the above-mentioned object, the high thermal conductive composite material of the present invention comprises 4 ceramic particles.
0 to 85% by volume and 15 to 60% by volume of aluminum or aluminum alloy, the aluminum or aluminum alloy forms a continuous phase in the gap between the ceramic particles, and the ceramic particles and aluminum or aluminum alloy. The composite material main body is made so that there is no gap at the interface, and at least one of the front and back surfaces of the composite material main body is integrally provided with a coating member having excellent workability. is there.

【0008】このような本発明によれば、アルミニウム
を連続相とする複合材本体中に、比較的粒度が大きいセ
ラミック粒子をできるだけ多く含有させ、しかも、セラ
ミック粒子とアルミニウム連続相との密着性を高めたの
で、熱伝導率が非常に大きく、かつ、寸法安定性のきわ
めて優れた材料が得られる。また、高熱伝導性複合材の
複合材本体における表裏の少なくとも一面に加工性に優
れた被覆部材を一体的に設けたので、その被覆部材を研
削すれば容易に平滑面を得ることができるとともに、穴
加工も容易となり、被取り付け部材との取り付けを、高
精度の密着性を維持して行うことができ、放熱基板とし
ての十分な機能を発揮することができる。さらに、比較
的粒度が大きいセラミック粒子を比較的多量に含有させ
たので、熱伝導率を向上させることができる他、線膨張
率を小さくして膨張を抑えることができるので、被接続
部材と接続したとき、互いの膨張率の違いから、繰り返
し使用による剥がれ等を防止することができ、耐用期間
を長くすることができる。
According to the present invention as described above, the composite material main body containing aluminum as the continuous phase contains as much ceramic particles as possible having a relatively large particle size, and the adhesion between the ceramic particles and the aluminum continuous phase is improved. Since it has been increased, it is possible to obtain a material having very high thermal conductivity and excellent dimensional stability. Further, since the coating member excellent in workability is integrally provided on at least one surface of the front and back surfaces of the composite body of the high thermal conductive composite material, a smooth surface can be easily obtained by grinding the coating member, Drilling is also facilitated, and attachment with a member to be attached can be performed while maintaining highly accurate adhesion, and a sufficient function as a heat dissipation substrate can be exhibited. Further, since a relatively large amount of ceramic particles having a relatively large particle size is contained, the thermal conductivity can be improved, and the linear expansion coefficient can be reduced to suppress the expansion, so that it can be connected to the connected member. At this time, it is possible to prevent peeling due to repeated use due to the difference in expansion coefficient between each other, and it is possible to prolong the service life.

【0009】また、発明の他の高熱伝導性複合材は、セ
ラミック粒子が40〜85容積%、アルミニウムまたは
アルミニウム合金が15〜60容積%からなるととも
に、前記セラミック粒子間の間隙に前記アルミニウムま
たはアルミニウム合金が連続相を形成し、かつ、前記セ
ラミック粒子とアルミニウムまたはアルミニウム合金と
の界面に隙間がないようにし、かつ、セラミック粒子が
表面に露出しないようにして複合材本体を形成し、この
複合材本体の表裏面の少なくとも一面には、加工性に優
れた被覆部材が一体的に設けられていることを特徴とす
るものである。
Another high thermal conductivity composite material of the present invention comprises ceramic particles of 40 to 85% by volume and aluminum or aluminum alloy of 15 to 60% by volume, and the aluminum or aluminum is provided in the gaps between the ceramic particles. The alloy forms a continuous phase, and there is no gap at the interface between the ceramic particles and aluminum or an aluminum alloy, and the ceramic particles are not exposed on the surface to form a composite material body. At least one of the front and back surfaces of the main body is integrally provided with a coating member having excellent workability.

【0010】以上の高熱伝導性複合材において、高熱伝
導性複合材の熱伝導率は200W/mK以上を期待でき
ることが好ましい。そして、以上の高熱伝導性複合材に
おけるセラミック粒子としては、SiC以外にAlN、
BN、カーボン等の粒体を用いることが好ましい。ま
た、被覆部材としては、アルミニウム、アルミニウム合
金およびアルミニウムと亜鉛との合金のいずれかを使用
することが好ましく、その厚さは、例えば、0.5mm
〜2mmの範囲であることが好ましいが、材料が少なく
て済み、かつ、容易に高精度の平滑面を得ることができ
る寸法であれば限定されない。
In the above high thermal conductive composite material, it is preferable that the thermal conductivity of the high thermal conductive composite material can be expected to be 200 W / mK or more. And, as the ceramic particles in the above-mentioned high thermal conductive composite material, in addition to SiC, AlN,
It is preferable to use particles such as BN and carbon. As the covering member, it is preferable to use any one of aluminum, an aluminum alloy, and an alloy of aluminum and zinc, and the thickness thereof is, for example, 0.5 mm.
It is preferably in the range of ˜2 mm, but it is not limited as long as the amount of the material is small and the dimension is such that a highly accurate smooth surface can be easily obtained.

【0011】上記の高熱伝導性複合材を製造するため、
この発明では、熱伝導性の良好なセラミック粒子を金型
のキャビティに充填し、そこにアルミニウムまたはアル
ミニウム合金の溶湯を含浸させる。複合材本体の凝固過
程で溶湯が反凝固状態にあるときに十分な圧力をかけて
凝固させてもよく、また、別の方法としてキャビティ内
を真空で吸引しながら、アルミニウム溶湯を注入してい
るときに、同時にアルミニウム溶湯を加圧してもよい。
次いで、溶湯を凝固させて高熱伝導性の複合材本体を製
造する。その後、複合材本体の表裏面の少なくとも一面
に加工性に優れた被覆部材を一体的に設け、高熱伝導性
複合材を製造する。
In order to produce the above high thermal conductivity composite material,
In the present invention, the ceramic particles having good thermal conductivity are filled in the cavity of the mold, and the molten aluminum or aluminum alloy is impregnated therein. When the molten metal is in the anti-solidification state in the solidification process of the composite material body, sufficient pressure may be applied to solidify it. Alternatively, the molten aluminum is injected while vacuuming the inside of the cavity. At the same time, the molten aluminum may be pressurized at the same time.
Then, the molten metal is solidified to manufacture a composite body having high thermal conductivity. Then, a coating member having excellent workability is integrally provided on at least one of the front and back surfaces of the composite material body to manufacture a high thermal conductivity composite material.

【0012】通常の凝固を行い、セラミック粒子とアル
ミニウムとの界面に空隙ができたものについて、その空
隙を除去する方法として以下の方法が有効である。 1)高熱伝導性複合材の複合材本体を、アルミニウムま
たはアルミニウム合金が半溶融状態になる温度まで加熱
し、圧力をかけて空隙を埋めてしまう方法。 2)高熱伝導性複合材の複合材本体を、アルミニウムま
たはアルミニウム合金が軟化する温度で押出加工する方
法。 3)高熱伝導性複合材の複合材本体を、アルミニウムま
たはアルミニウム合金が軟化する温度で熱間圧延する方
法。 4)高熱伝導性複合材の複合材本体を、アルミニウムま
たはアルミニウム合金が軟化する温度で熱間鍛造する方
法。
The following method is effective as a method for removing the voids in the case where voids are formed at the interface between the ceramic particles and aluminum by performing ordinary solidification. 1) A method of heating the composite material body of the high thermal conductivity composite material to a temperature at which aluminum or an aluminum alloy is in a semi-molten state and applying pressure to fill the voids. 2) A method of extruding a composite body of a high thermal conductivity composite at a temperature at which aluminum or an aluminum alloy softens. 3) A method of hot rolling the composite material body of the high thermal conductivity composite material at a temperature at which aluminum or an aluminum alloy softens. 4) A method of hot forging the composite material body of the high thermal conductivity composite material at a temperature at which aluminum or an aluminum alloy softens.

【0013】前記記載のすべての方法において使用され
る溶湯について、セラミックの微粒子を、溶融したアル
ミニウムまたはアルミニウム合金の中に混入して攪拌し
た溶湯に使うことで、セラミック微粒子の含有量をさら
に多くすることができる。また、セラミック微粒子とア
ルミニウムまたはアルミニウム合金との濡れをよくする
ために、ニッケルのメッキをセラミック粒子に施しても
よい。
Regarding the molten metal used in all of the above-mentioned methods, the fine ceramic particles are mixed with molten aluminum or aluminum alloy and used for stirring the molten metal to further increase the content of the ceramic fine particles. be able to. Further, nickel plating may be applied to the ceramic particles in order to improve the wetting of the ceramic particles and aluminum or aluminum alloy.

【0014】そして、このようにして製造された高熱伝
導性複合材における複合材本体の表裏面の少なくとも一
面に加工性に優れた被覆部材を一体的に設ける。この
際、金型を可動型のものとし、金型のキャビティ内にお
いて形成された後の複合材本体を所定の支持手段で支持
しておいて、金型の表裏面の少なくとも一面側を開いて
所定の隙間を形成し、その隙間に溶融したアルミニウ
ム、アルミニウム合金およびアルミニウムと亜鉛の合金
のいずれかからなる被覆部材を注入して一体化させる方
法で行ってもよい。このようにすると、被覆部材がアル
ミニウム、アルミニウム合金およびアルミニウムと亜鉛
の合金のいずれかで形成されているので、複合材本体の
アルミニウムまたはアルミニウム合金の表面と融合し合
い、その結果、良好な一体化状態が形成される。
Then, a coating member having excellent workability is integrally provided on at least one of the front and back surfaces of the composite material body in the high thermal conductive composite material manufactured in this manner. At this time, the mold is a movable mold, and the composite material body formed in the mold cavity is supported by predetermined supporting means, and at least one of the front and back surfaces of the mold is opened. Alternatively, a predetermined gap may be formed, and a coating member made of molten aluminum, an aluminum alloy, or an alloy of aluminum and zinc may be injected into the gap and integrated. In this case, since the covering member is formed of aluminum, an aluminum alloy, or an alloy of aluminum and zinc, the covering member is fused with the surface of the aluminum or the aluminum alloy of the composite body, resulting in good integration. A state is formed.

【0015】可動型の金型を使用する場合、金型の表面
に細かな凹凸(例えばシボ加工のような凹凸)を多数形
成してもよい。このようにすることによって、複合材本
体の表面に細かな凹凸が形成され、その細かな凹凸に溶
融した被覆部材が入り込み、より強固に一体化される。
When a movable die is used, a large number of fine irregularities (for example, irregularities such as graining) may be formed on the surface of the die. By doing so, fine irregularities are formed on the surface of the composite material main body, and the molten coating member enters the fine irregularities, and is more firmly integrated.

【0016】また、金型の表面に、予めアルミニウム、
アルミニウム合金およびアルミニウムと亜鉛の合金のい
ずれかで形成された被覆部材を取り付け、金型を所定の
間隔に設定しておいて、複合材本体を形成するために、
溶融したアルミニウムまたはアルミニウム合金を注入
し、複合材本体と被覆部材とを一体化する方法で行って
もよい。この場合、被覆部材と複合材本体を形成するた
めの隙間との間に、アルミニウムまたはアルミニウム合
金からなる衝立を立てておいて、その隙間に溶融したア
ルミニウムまたはアルミニウム合金を注入してもよい。
このとき、金型の外側面を例えば水で急冷するような構
成としておけば、溶融したアルミニウムまたはアルミニ
ウム合金と、被覆部材とが外側まで完全に融合すること
が防止され、複合材本体のセラミック粒子が表面に現れ
ない。
In addition, aluminum is preliminarily attached to the surface of the mold.
In order to form a composite material body by attaching a covering member formed of an aluminum alloy or an alloy of aluminum and zinc and setting a mold at a predetermined interval,
Alternatively, a method of injecting molten aluminum or aluminum alloy and integrating the composite material main body and the covering member may be performed. In this case, a partition made of aluminum or an aluminum alloy may be set up between the covering member and the gap for forming the composite material body, and the molten aluminum or aluminum alloy may be injected into the gap.
At this time, if the outer surface of the mold is configured to be rapidly cooled with water, for example, the molten aluminum or aluminum alloy and the covering member are prevented from completely fusing to the outside, and the ceramic particles of the composite material main body are prevented. Does not appear on the surface.

【0017】あるいは、被覆部材を構成する溶融したア
ルミニウム、アルミニウム合金およびアルミニウムと亜
鉛の合金のいずれかの中に、複合材本体を瞬間的に没入
させて複合材本体の表面に被覆部材を付着させ、複合材
本体と被覆部材とを一体的に設けてもよい。さらに、複
合材本体表面にアルミニウム、アルミニウム合金および
アルミニウムと亜鉛の合金のいずれかの粉体をまぶし、
熱を加えながら加圧装置で徐々に加圧するホットプレス
によって被覆部材と複合材本体とを一体化する方法で行
ってもよい。また、誘導加熱によって複合材本体の表裏
面のいずれかの面に被覆部材を溶融させて一体化する方
法で行ってもよい。
Alternatively, the composite material main body is momentarily immersed in any of molten aluminum, aluminum alloy and aluminum-zinc alloy constituting the coating material to adhere the coating material to the surface of the composite material main body. The composite material main body and the covering member may be integrally provided. Furthermore, the surface of the composite body is sprinkled with powder of aluminum, an aluminum alloy, or an alloy of aluminum and zinc,
It may be performed by a method of integrating the covering member and the composite material main body by hot pressing in which a pressure device gradually pressurizes while applying heat. Alternatively, a method may be used in which the covering member is melted and integrated on either surface of the composite material body by induction heating.

【0018】さらに、複合材本体と所定厚さの被覆部材
を別体で形成した後、両者の対向面に、例えばリン酸ア
ルミニウム水溶液を塗布するとともに、複合材本体と被
覆部材とを圧着し、複合材本体のアルミニウムと被覆部
材のアルミニウムとを化学反応させることで融合させ、
複合材本体と被覆部材とを一体的に形成する方法で行っ
てもよい。また、例えば高温に強いソーダ系の無機接着
剤で複合材本体と被覆部材材とを接着して両者を一体的
に形成してもよい。その他、複合材本体と被覆部材とを
一体的に形成できるものであれば、いかなる方法で行っ
てもよい。
Furthermore, after the composite material main body and the covering member having a predetermined thickness are separately formed, the opposing surfaces of the composite material main body and the composite material main body and the covering member are pressure-bonded to each other, for example. The aluminum of the composite material main body and the aluminum of the covering member are chemically reacted to be fused,
It may be performed by a method of integrally forming the composite material main body and the covering member. Further, for example, the composite material main body and the covering member material may be bonded to each other with a soda-based inorganic adhesive resistant to high temperature to integrally form both. In addition, any method may be used as long as the composite material main body and the covering member can be integrally formed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づいて説明する。図1,2に示すように、この発
明の高熱伝導性複合材1は、複合材本体2と、この複合
材本体2の表裏面を被った被覆部材3とを含み構成され
ている。複合材本体2は、分散したセラミック粒子4の
間に、アルミニウムまたはアルミニウム合金を隙間なく
混入して形成された連続相を有するものであり、その厚
さTは、例えば、3mmに形成されている。しかし、こ
の厚さTは、3mm以上でもよく、あるいは3mm以下
でもよい。また、被覆部材3は、アルミニウムまたはア
ルミニウム合金で形成されており、その厚さTは、例え
ば、0.5mm〜2.0mmの範囲の厚さとなってい
る。しかし、この厚さTは上記寸法範囲に限定されな
い。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIGS. 1 and 2, the high thermal conductive composite material 1 of the present invention includes a composite material main body 2 and a covering member 3 covering the front and back surfaces of the composite material main body 2. The composite material main body 2 has a continuous phase formed by mixing aluminum or aluminum alloy between the dispersed ceramic particles 4 without a gap, and the thickness T thereof is formed to, for example, 3 mm. . However, this thickness T may be 3 mm or more, or 3 mm or less. The covering member 3 is made of aluminum or an aluminum alloy, and the thickness T thereof is in the range of 0.5 mm to 2.0 mm, for example. However, the thickness T is not limited to the above size range.

【0020】前記セラミック粒子4としては、SiCの
他、AlN、BN、カーボン等の粒体が用いられ、その
粒度は0.15mm(100meshふるい上)以上あ
ればよいが、製品の厚さなどを考慮に入れると、0.3
mm〜2.0mm(48〜9mesh)程度の粒度範囲
が好ましい。粒度が0.15mm未満であると、セラミ
ック粒子4間の間隔が小さくなりすぎて、後述するアル
ミニウムまたはアルミニウム合金(以下、実施形態にお
いては単にアルミニウムという)の溶湯が入り込まなく
なり、含浸不良を起こす。なお、セラミックは粒体ばか
りでなく、繊維状のものを併用してもよく、カーボンと
しては、例えばカーボンブラック、カーボンバルーン等
を用いることができる。
As the ceramic particles 4, not only SiC but also particles of AlN, BN, carbon, etc. are used, and the particle size may be 0.15 mm (on a 100 mesh sieve) or more, but the thickness of the product, etc. Considering that, 0.3
A particle size range of about mm to 2.0 mm (48 to 9 mesh) is preferable. If the particle size is less than 0.15 mm, the spacing between the ceramic particles 4 becomes too small, and the molten metal of aluminum or aluminum alloy (hereinafter, simply referred to as aluminum in the embodiment) described later does not enter, resulting in impregnation failure. The ceramics may be used not only in the form of particles but also in the form of fibers, and as the carbon, for example, carbon black, carbon balloons or the like can be used.

【0021】セラミック粒子4の量は、40〜85容積
%が適当である。40容積%未満であれば、高熱伝導性
複合材1における複合材本体2の熱伝導率が高くなら
ず、85容積%を越えると複合材本体2の強度が不充分
となる。一方、アルミニウムの量は、セラミック粒子4
に対応して15〜60容積%とする。
An appropriate amount of ceramic particles 4 is 40 to 85% by volume. If it is less than 40% by volume, the thermal conductivity of the composite material body 2 in the high thermal conductivity composite material 1 will not be high, and if it exceeds 85% by volume, the strength of the composite material body 2 will be insufficient. On the other hand, the amount of aluminum is 4
Corresponding to the above, it is set to 15-60% by volume.

【0022】このように、複合材本体2の中に、比較的
粒度が大きいセラミック粒子4を比較的多量に含有させ
たので、熱伝導率を200W/mK以上、線膨張係数を
9〜12×10−6程度にすることができる。その結
果、高熱伝導性複合材1の膨張を抑えることができる。
セラミック粒子4は、複合材本体2の表面に露出しない
ようにするのが好ましい。そのためには、後述する複合
材本体2の成形用金型のキャビティ内壁にセラミック粒
子4よりも小さい溝を縦横に設けて、アルミニウムの溶
湯だけが流入するようにし、複合材本体2の表面をアル
ミニウムで被うなどの方法がある。
As described above, since the composite material main body 2 contained a relatively large amount of the ceramic particles 4 having a relatively large particle size, the thermal conductivity was 200 W / mK or more, and the linear expansion coefficient was 9 to 12 ×. It can be about 10 −6 . As a result, expansion of the high thermal conductivity composite material 1 can be suppressed.
It is preferable that the ceramic particles 4 are not exposed on the surface of the composite body 2. For that purpose, grooves smaller than the ceramic particles 4 are provided in the cavity inner wall of the molding die of the composite material main body 2 which will be described later so that only the molten aluminum flows in, and the surface of the composite material main body 2 is made of aluminum. There are methods such as covering with.

【0023】複合材本体2は、図3に示すような製造装
置20で製造することができる。すなわち、この製造装
置20は、可動型の金型30と、注湯部40と、吸引部
50を含み構成されている。金型30は、板状体31m
32に挟まれたキャビティ30aを有し、注湯部40
は、キャビティ30aの上端に連通する湯道41を有
し、キャビティ30aの下端は、真空ポンプPによって
吸引される真空ボックス51に連通している。
The composite material body 2 can be manufactured by the manufacturing apparatus 20 as shown in FIG. That is, the manufacturing apparatus 20 is configured to include the movable mold 30, the pouring unit 40, and the suction unit 50. The mold 30 is a plate-shaped body 31 m
Has a cavity 30a sandwiched between 32,
Has a runner 41 communicating with the upper end of the cavity 30a, and the lower end of the cavity 30a communicates with a vacuum box 51 sucked by a vacuum pump P.

【0024】いま、粒度が0.15mm以上のセラミッ
ク粒子4を金型30のキャビティ30a内に、キャビテ
ィ空間の40容積%以上充填し、その後、キャビティ3
0a内をポンプPによって真空で吸引し、セラミック粒
子4の間隙にある空気を排除し、そこに湯道41からア
ルミニウムの溶湯を流し込み、セラミック粒子4の間隙
に溶湯を含浸させ、その後、溶湯を凝固させる。この凝
固の時に、普通に凝固させると、アルミニウム溶湯の凝
固収縮が大きいために、セラミック粒子4とアルミニウ
ムとの界面に真空の空隙ができてしまう。この真空の空
隙は熱伝導率を著しく低下させる。従って、この真空の
空隙は除去しなければならない。そのための一つの方法
として、凝固過程で溶湯が半凝固状態にあるときに十分
な圧力をかけて凝固させる方法が挙げられる。また、別
の方法としてキャビティ30a内を真空で吸引しなが
ら、アルミニウム溶湯を注入している間に、同時にアル
ミニウム溶湯を加圧してもよい。
Now, the ceramic particles 4 having a particle size of 0.15 mm or more are filled in the cavity 30a of the mold 30 in an amount of 40% by volume or more of the cavity space.
0a is vacuumed by a pump P to remove the air in the gaps between the ceramic particles 4, the molten aluminum is poured into the gaps from the runner 41, and the gaps between the ceramic particles 4 are impregnated with the molten metal. Solidify. If solidified normally during this solidification, a vacuum void will be formed at the interface between the ceramic particles 4 and aluminum because the solidification shrinkage of the molten aluminum is large. This vacuum void significantly reduces the thermal conductivity. Therefore, this vacuum void must be removed. One method for that purpose is to apply sufficient pressure to solidify the molten metal when it is in a semi-solidified state during the solidification process. Alternatively, the molten aluminum may be pressurized at the same time while the molten aluminum is being injected while the inside of the cavity 30a is being vacuumed.

【0025】通常の凝固を行い、セラミック粒子4とア
ルミニウムとの界面に真空の空隙ができてしまったもの
について、その真空の空隙を除去する方法として以下の
方法が有効である。 1)複合材本体2を、その構成要素のアルミニウムが半
溶融状態になる温度まで加熱し、圧力をかけて、アルミ
ニウムで真空の空隙を生めてしまう方法。 2)複合材本体2を、その構成要素のアルミニウムが軟
化する温度で押し出し加工する方法。この方法では、押
し出し加工時に、軟化状態のアルミニウムが真空の空隙
を生めてしまう。 3)複合材本体2を、その構成要素のアルミニウムが軟
化する温度で熱間圧延する方法。 4)複合材本体2を、その構成要素のアルミニウムが軟
化する温度で熱間鍛造する方法。
The following method is effective as a method for removing the vacuum voids in the case where the vacuum voids are formed at the interface between the ceramic particles 4 and aluminum after the normal solidification. 1) A method in which the composite material body 2 is heated to a temperature at which aluminum, which is a constituent element of the composite material body 2, is in a semi-molten state, and pressure is applied to form a vacuum void in the aluminum. 2) A method of extruding the composite material body 2 at a temperature at which the aluminum of its constituent elements softens. In this method, the aluminum in the softened state creates a vacuum void during extrusion. 3) A method of hot rolling the composite material main body 2 at a temperature at which the aluminum of its constituent elements softens. 4) A method of hot forging the composite material main body 2 at a temperature at which the aluminum of its constituent elements softens.

【0026】前記いずれの方法においても、セラミック
粒子4の粒度を0.15mm以上と大きくすることがで
きる。また、その含有量も40容積%以上とすることが
できる。さらに、セラミック粒子4とアルミニウム以外
は特に何も使わないでよい。そして、最後にセラミック
粒子4とアルミニウムとの界面にできる空隙を除去する
ことが可能となる。その結果、高熱伝導性の複合材本体
2の製造が可能となる。
In any of the above methods, the particle size of the ceramic particles 4 can be increased to 0.15 mm or more. Further, the content thereof can be 40% by volume or more. Further, nothing may be used except for the ceramic particles 4 and aluminum. Then, finally, it becomes possible to remove voids formed at the interface between the ceramic particles 4 and aluminum. As a result, it is possible to manufacture the composite material body 2 having high thermal conductivity.

【0027】前記各方法において使用されるアルミニウ
ム溶湯について、セラミックの微粒子を、溶融したアル
ミニウムの中に混入して攪拌したものを使用することに
より、セラミック微粒子の含有量をさらに多くすること
ができる。その結果、熱伝導率の向上につながる。ま
た、セラミック粒子4とアルミニウムの濡れをよくする
ために、ニッケル等のメッキをセラミック粒子に施して
もよい。
The content of the ceramic fine particles can be further increased by using, as the molten aluminum used in each of the above methods, ceramic fine particles mixed in molten aluminum and stirred. As a result, the thermal conductivity is improved. Further, in order to improve the wettability of the ceramic particles 4 and aluminum, the ceramic particles may be plated with nickel or the like.

【0028】このようにして製造した複合材本体2の両
面は、アルミニウム、アルミニウム合金およびアルミニ
ウムと亜鉛の合金のいずれかからなる被覆部材3で被わ
れている。この被覆部材3で複合材本体2を被うには、
例えば、前記金型30のキャビティ30a内において、
複合材本体2を形成した後、その両面と板状体31,3
2との間に所定の隙間をあけ、溶融した例えばアルミニ
ウム、アルミニウム合金およびアルミニウムと亜鉛の合
金のいずれかを注入することにより行われる。ここで、
被覆部材3の厚さtは、前述のように、例えば、0.5
mm〜2mmとされている。ただし、この範囲に限定さ
れない。
Both sides of the composite body 2 thus manufactured are covered with a covering member 3 made of any one of aluminum, an aluminum alloy and an alloy of aluminum and zinc. To cover the composite material body 2 with this covering member 3,
For example, in the cavity 30a of the mold 30,
After the composite material main body 2 is formed, its both surfaces and the plate-like bodies 31, 3 are formed.
A predetermined gap is formed between the two and the molten metal, for example, aluminum, an aluminum alloy, or an alloy of aluminum and zinc is injected. here,
The thickness t of the covering member 3 is, for example, 0.5 as described above.
It is set to mm to 2 mm. However, it is not limited to this range.

【0029】以上のような高熱伝導性複合材1の使用状
態が、図4に示されている。例えば、MPU用のパワー
半導体素子10は、AlNチップ11に固着されてお
り、このAlNチップ11は、被覆部材3の一表面をエ
ンドミル等の工具により研削した高精度の平滑面3Aに
固着されている。AlNチップ11には、ワイヤ12に
より導体回路配線13により接続されている。
The usage state of the high thermal conductive composite material 1 as described above is shown in FIG. For example, the power semiconductor element 10 for MPU is fixed to an AlN chip 11, and this AlN chip 11 is fixed to a highly accurate smooth surface 3A obtained by grinding one surface of the covering member 3 with a tool such as an end mill. There is. A wire 12 is connected to the AlN chip 11 by a conductor circuit wiring 13.

【0030】以上のような本実施形態によれば、次のよ
うな効果がある。 (1)複合材本体2が、セラミック粒子が40〜85容
積%、アルミニウムまたはアルミニウム合金が15〜6
0容積%からなり、セラミック粒子間の間隙にアルミニ
ウムまたはアルミニウム合金が連続相を形成し、かつ、
セラミック粒子とアルミニウムまたはアルミニウム合金
との界面に隙間がないように形成されているので、熱伝
導率を200W/mK以上にすることができて高熱伝導
性の複合材本体2とすることができる。その結果、MP
Uやパワーモジュール等の半導体から発生した熱を吸
収、放熱する放熱用基板や、基板の表面に薄膜を形成す
る成膜装置としての、真空蒸着装置、スパッタリング装
置、CVD(化学的気相成長)装置等に用いられる放熱
用基板あるいは搬送用基板、プラズマテレビ製造用の均
熱板、小型パソコン、測定機器等の電子機器に用いられ
る筐体、ヒートシンク材、さらに、車両の制御部等で発
生した熱を急速に吸収、放熱し、あるいは、ブレーキ部
等用の優れた放熱基板として利用することができる。
According to this embodiment as described above, the following effects can be obtained. (1) In the composite material body 2, 40 to 85% by volume of ceramic particles and 15 to 6 of aluminum or aluminum alloy are used.
0% by volume, the aluminum or aluminum alloy forms a continuous phase in the gaps between the ceramic particles, and
Since it is formed so that there is no gap at the interface between the ceramic particles and aluminum or aluminum alloy, the thermal conductivity can be 200 W / mK or more, and the composite material main body 2 having high thermal conductivity can be obtained. As a result, MP
Vacuum vapor deposition equipment, sputtering equipment, CVD (chemical vapor deposition) as a heat dissipation substrate that absorbs and radiates heat generated from semiconductors such as U and power modules, and as a film formation device that forms a thin film on the surface of the substrate Occurred in heat dissipation boards or transfer boards used in devices, etc., heat equalizers for plasma TV manufacturing, small personal computers, housings used in electronic devices such as measuring instruments, heat sink materials, and vehicle control units. It can rapidly absorb and radiate heat, or can be used as an excellent heat dissipation substrate for a brake part or the like.

【0031】(2)複合材本体2の両面に一体的に設け
られた被覆部材が、アルミニウム、アルミニウム合金お
よびアルミニウムと亜鉛の合金のいずれかで形成されて
いるので研削が容易であり、例えば、エンドミル等の工
具で、容易に平面研削加工をすることができ、高精度な
平滑面を得ることができる。また、穴加工も容易であ
る。従って、熱伝導率が200W/mK以上ある高熱伝
導性複合材1を、パワートランジスタ、液晶パネル用の
ガラス基板、プラズマテレビ製造用の均熱板等の被接続
部材と、高精度の密着性を維持して接続させることがで
きるので、高熱伝導性複合材1の全面で放熱でき、被接
続部材側で生じた高熱を急速に逃がすことができ、放熱
基板としての機能を充分に果たすことができる。
(2) Since the covering members integrally provided on both surfaces of the composite material body 2 are made of any one of aluminum, aluminum alloy and aluminum-zinc alloy, grinding is easy. Surface grinding can be easily performed with a tool such as an end mill, and a highly accurate smooth surface can be obtained. In addition, drilling is easy. Therefore, the highly heat-conductive composite material 1 having a thermal conductivity of 200 W / mK or more can be attached to the connected members such as the power transistor, the glass substrate for the liquid crystal panel and the heat equalizing plate for manufacturing the plasma TV with high accuracy. Since they can be maintained and connected, heat can be dissipated on the entire surface of the high thermal conductive composite material 1, high heat generated on the connected member side can be rapidly released, and the function as a heat dissipation substrate can be sufficiently achieved. .

【0032】(3)高熱伝導性複合材1の複合材本体2
が、前述のように、線膨張係数を9〜12×10−6
度に抑えることができ、膨張しにくいので、被接続部材
と接続したとき、互いの膨張率の違いから、繰り返し使
用による剥がれ等を防止することができ、耐用期間を長
くすることができる。
(3) Composite body 2 of high thermal conductivity composite 1
However, as described above, the linear expansion coefficient can be suppressed to about 9 to 12 × 10 −6, and it is difficult to expand. Therefore, when connected to the connected member, peeling due to repeated use due to difference in expansion coefficient between each other. Etc. can be prevented and the service life can be extended.

【0033】(4)高熱伝導性複合材1が、その熱伝導
率が前述のように200W/mK以上となって、高熱伝
導性のものとなっているので、高熱伝導性複合材1を、
高熱伝導性が必要な製品、例えばパネルヒータのパネル
本体や、遠赤外線ヒータの発熱面や、アイロンの掛け面
用等として用いることができる。このようなものに高熱
伝導性複合材1を使用すれば、短時間で効果を得ること
ができる。
(4) Since the high thermal conductivity composite material 1 has a high thermal conductivity of 200 W / mK or more as described above, the high thermal conductivity composite material 1 is
It can be used as a product requiring high thermal conductivity, for example, a panel body of a panel heater, a heating surface of a far-infrared heater, or an ironing surface. If the high thermal conductive composite material 1 is used for such a material, the effect can be obtained in a short time.

【0034】(5)高熱伝導性複合材1が、前述のよう
に、熱伝導性に優れているので、例えばフライパンや、
炊飯器の釜や、調理用の鍋等、料理用の器具に用いるこ
ともできる。このようなものに高熱伝導性複合材1を使
用すれば、短時間で調理が可能となり、結果的に電気、
ガス等の燃料が少なくてすみ、燃料費を節約することが
できる。ここで、例えばフライパンの表面の被覆部材
に、フッ素加工を施せば、焦げ付を防止することができ
るし、周囲に深溝を形成すれば、例えば肉汁を容易に逃
がせるし、料理の幅を広げることができる。
(5) Since the high thermal conductivity composite material 1 has excellent thermal conductivity as described above, for example, a frying pan,
It can also be used in cooking utensils such as a rice cooker pot and a cooking pot. If the high thermal conductive composite material 1 is used for such a thing, it becomes possible to cook in a short time, and as a result, electricity,
It requires less fuel such as gas and can save fuel costs. Here, for example, if the coating material on the surface of the frying pan is subjected to a fluorine treatment, it is possible to prevent charring, and if a deep groove is formed in the periphery, for example, meat juice can be easily released and the breadth of cooking is widened. be able to.

【0035】(6)高熱伝導性複合材1が、熱伝導性に
優れているので、例えば冷凍食品等の自然解凍用とし
て、トレイ状に形成してもよい。この場合、例えば四隅
に穴をあけておくことにより、解けた氷が流れ出すの
で、より早く解凍でき、利用価値が大きい。一般に、電
子レンジ等で解凍することが日常的に行われるが、解凍
にムラがあり、味に悪影響が出ると考えられるが、高熱
伝導性複合材1を使用した場合は、均一に、かつ素早く
解凍できる。ここで、冷蔵庫の氷を使って実際に解凍し
た結果、通常のガラスの皿に載せた場合と比較して格段
に短時間で解凍できた。すなわち、50mm×70mm
×厚さ3mmに形成した高熱伝導性複合材1の上に、底
面が40mm×40mm、上面が25mm×25mm、
高さが30mm程度の氷を載せ、一方、150mm×9
0mm×深さが10mmのガラスの皿に載せ、室温20
度の部屋で完全に溶けるまでの時間を計ってみた。その
結果、高熱伝導性複合材1の上に載せた氷が、約50分
で完全に溶けたのに対して、ガラスの皿に載せた氷は、
完全に溶けるまで約100分かかった。つまり、高熱伝
導性複合材1を使った場合、半分の時間で解凍できた。
(6) Since the high thermal conductivity composite material 1 is excellent in thermal conductivity, it may be formed in a tray shape for natural thawing of frozen food or the like. In this case, for example, by opening holes in the four corners, the melted ice flows out, so that it can be thawed more quickly and its utility value is great. Generally, thawing is performed on a daily basis in a microwave oven or the like, but it is thought that the thawing is uneven and the taste is adversely affected. However, when the high thermal conductive composite material 1 is used, it is uniformly and quickly. Can be unzipped. Here, as a result of actually thawing using ice in the refrigerator, it was possible to thaw in a much shorter time as compared with the case of placing it on a normal glass plate. That is, 50 mm x 70 mm
× On the high thermal conductive composite material 1 formed to have a thickness of 3 mm, the bottom surface is 40 mm × 40 mm, the upper surface is 25 mm × 25 mm,
Place ice with a height of about 30 mm, while 150 mm x 9
Place on a glass dish with 0 mm x 10 mm depth, room temperature 20
I tried to measure the time until it completely melted in the room. As a result, the ice placed on the high thermal conductive composite material 1 was completely melted in about 50 minutes, while the ice placed on the glass dish was
It took about 100 minutes to completely melt. That is, when the high thermal conductive composite material 1 was used, it could be thawed in half the time.

【0036】(7)高熱伝導性複合材1が、熱伝導性に
優れているので、高熱伝導性複合材1を、例えば20〜
30mmの幅に形成したものを複数枚準備し、それぞれ
を下面側に凹むように緩やかな湾曲形状に形成し、それ
ぞれを並列させて土台に被せて枕を形成してもよい。昔
から頭寒足熱といわれ、頭を冷やすことは健康によいと
言われているので、高熱伝導性複合材1を枕に使うこと
で、頭の熱を取り去り、快適な睡眠を得ることができ
る。
(7) Since the high thermal conductivity composite material 1 is excellent in thermal conductivity, the high thermal conductivity composite material 1 is, for example, 20 to
It is also possible to prepare a plurality of sheets having a width of 30 mm, form each of them into a gently curved shape so as to be recessed on the lower surface side, and arrange each of them side by side to cover the base to form a pillow. It has long been called cold head and foot fever, and it is said that cooling the head is good for health. Therefore, by using the high thermal conductive composite material 1 for the pillow, the heat of the head can be removed and comfortable sleep can be obtained.

【0037】[0037]

【実施例1】前記高熱伝導性複合材1の複合材本体2を
製造するために、厚さ3mmのキャビティを有する金型
に、0.35〜0.85mmの粒度(42〜20mes
hの粒度)のSiC粒体をキャビティ容積の58%の量
だけ充填し、同時に金型の下端から真空ポンプによりキ
ャビティ内を真空に吸引した。吸引を続けながら、金型
上部より、鋳物用アルミニウムAC3Aの690℃〜7
00℃の溶湯を注入し、SiC粒子の間隙にアルミニウ
ム溶湯を含浸させた。ここまでは、金型の温度は550
℃であり、次に凝固させるために金型温度を530℃に
して、3分間保持した。これにより、金型はアルミニウ
ムが流れない程度に冷却されているので、金型を開いて
板状成形体、つまり、複合材本体2を取り出して、室温
で完全に凝固させた。
Example 1 In order to manufacture the composite material main body 2 of the high thermal conductive composite material 1, a mold having a cavity with a thickness of 3 mm was used, and a particle size of 0.35 to 0.85 mm (42 to 20 mes).
58% of the volume of the cavity was filled with SiC particles having a grain size of h), and at the same time, the inside of the cavity was vacuumed by a vacuum pump from the lower end of the mold. While continuing suction, from the upper part of the mold, cast aluminum AC3A at 690 ° C to 7 ° C.
A molten metal of 00 ° C. was injected to impregnate the gap between the SiC particles with the molten aluminum. Up to this point, the mold temperature is 550
C., then the mold temperature was set to 530.degree. C. for solidification and held for 3 minutes. As a result, the mold is cooled to such an extent that aluminum does not flow, so the mold was opened and the plate-shaped molded body, that is, the composite material main body 2 was taken out and completely solidified at room temperature.

【0038】この複合材本体2について、電子顕微鏡観
察とレーザフラッシュ法による熱伝導率測定を行った。
その結果、図5に示すように、SiC粒子4とアルミニ
ウムとの界面に空隙6が存在していることがわかった。
一方、熱伝導率は138W/mKであった。SiC粒子
4とアルミニウムとの界面にある空隙6をなくして、さ
らに熱伝導率を向上させるために以下の処理を行った。 1)アルミニウムAC3Aが半溶融状態または軟化状態
になる温度450℃、500℃、550℃で、それぞれ
2トン/cm2の圧力を5分間かけ処理した。その結
果、図6に示すように、SiC粒子4とアルミニウムと
の界面の空隙がほぼなくなったことがわかる。一方、熱
伝導率は450℃のとき212W/mK、500℃のと
き280W/mK、550℃のとき280W/mKであ
り、非常に高い熱伝導率が得られた。 2)炉で450℃に加熱した後、炉より取り出して、圧
延率10%で1.3mmまで圧延した。このものについ
ても、SiC粒子4とアルミニウムの界面の空隙がほぼ
なくなっていた。また、熱伝導率も205W/mKであ
り、この場合にも高い値が得られた。 3)上記板状成形体、つまり、複合材本体2を鍛造温度
460℃で鍛造処理を行った。その結果、SiC粒子4
とアルミニウムの界面の空隙がほぼなくなっていた。ま
た、熱伝導率も240W/mKであり、この場合にも良
好な結果が得られた。
The composite material body 2 was observed by an electron microscope and the thermal conductivity was measured by the laser flash method.
As a result, it was found that voids 6 were present at the interface between the SiC particles 4 and aluminum, as shown in FIG.
On the other hand, the thermal conductivity was 138 W / mK. The following treatment was performed in order to eliminate the voids 6 at the interface between the SiC particles 4 and aluminum and further improve the thermal conductivity. 1) Aluminum AC3A was treated at a temperature of 450 ° C., 500 ° C. and 550 ° C. at which it becomes a semi-molten state or a softened state, and a pressure of 2 ton / cm 2 was applied for 5 minutes. As a result, as shown in FIG. 6, it can be seen that the voids at the interface between the SiC particles 4 and aluminum have almost disappeared. On the other hand, the thermal conductivity was 212 W / mK at 450 ° C., 280 W / mK at 500 ° C., and 280 W / mK at 550 ° C., and extremely high thermal conductivity was obtained. 2) After being heated to 450 ° C. in the furnace, it was taken out of the furnace and rolled to 1.3 mm at a rolling rate of 10%. Also in this case, the voids at the interface between the SiC particles 4 and aluminum were almost eliminated. The thermal conductivity was 205 W / mK, and a high value was obtained in this case as well. 3) The plate-shaped molded body, that is, the composite material main body 2 was subjected to a forging treatment at a forging temperature of 460 ° C. As a result, SiC particles 4
The void at the interface between aluminum and aluminum was almost gone. The thermal conductivity was 240 W / mK, and good results were obtained in this case as well.

【0039】また、複合材本体2の両面に被覆部材3を
被覆した後、高熱伝導性複合材1の所定の部位あるいは
全面を、被覆部材3の表面が高精度の平滑面となるよう
に、例えばエンドミルで研削した。被覆部材はアルミニ
ウムで形成されているので、研削が非常に容易で、きわ
めて容易に高精度の平滑面を得ることができた。また、
穴あけ加工に際しても、ドリルの先端が被覆部材3に食
い込みやすく、加工がきわめて容易であった。
Further, after covering both surfaces of the composite material main body 2 with the covering member 3, a predetermined portion or the whole surface of the high thermal conductive composite material 1 is made so that the surface of the covering member 3 becomes a highly accurate smooth surface. For example, grinding was performed with an end mill. Since the covering member was made of aluminum, it was very easy to grind, and a highly accurate smooth surface could be obtained very easily. Also,
Even in the drilling process, the tip of the drill was likely to bite into the covering member 3, and the drilling was extremely easy.

【0040】[0040]

【実施例2】複合材本体2を製造するために、直径10
0mmの円柱のキャビティを有する金型に、0.7〜7
mmの粒度(24〜10meshの粒度)のSiC粒体
をキャビティ容積の52%の量だけ充填し、同時に金型
の下端から真空ポンプによりキャビティ内を真空に吸引
した。吸引を続けながら、金型上部から鋳物用アルミニ
ウムAC3Aの690℃〜700℃の溶湯を注入し、S
iC粒子の間隙にアルミニウム溶湯を含浸させた。ここ
までは金型の温度は550℃であり、次に凝固させるた
めに金型温度を530℃にして、3分間保持した。これ
により、金型が、アルミニウムが流れない程度に冷却さ
れているので、金型を開いて円柱の複合材本体を取り出
して室温で完全に凝固させた。
Example 2 In order to manufacture the composite body 2, a diameter of 10
For a mold having a 0 mm cylindrical cavity, 0.7 to 7
SiC particles having a particle size of 24 mm (particle size of 24 to 10 mesh) were filled in an amount of 52% of the cavity volume, and at the same time, the inside of the cavity was vacuumed by a vacuum pump from the lower end of the mold. While continuing the suction, the molten metal of casting aluminum AC3A at 690 ° C to 700 ° C is injected from the upper part of the mold, and S
The gap between the iC particles was impregnated with molten aluminum. Up to this point, the temperature of the mold was 550 ° C., and then the mold temperature was set to 530 ° C. for solidification and held for 3 minutes. As a result, the mold was cooled to such an extent that aluminum did not flow, so the mold was opened and the cylindrical composite material body was taken out and completely solidified at room temperature.

【0041】この直径100mmの円柱の複合材本体を
600℃の温度で、6mm厚さ、幅50mmの板に押し
出し加工した。この板状の複合材本体について、前記実
施例1と同じように評価したところ、SiC粒子4とア
ルミニウムとの界面に空隙がほとんど認められなかっ
た。また、熱伝導率は265W/mKと非常に高い値を
示した。
The columnar composite material body having a diameter of 100 mm was extruded at a temperature of 600 ° C. into a plate having a thickness of 6 mm and a width of 50 mm. When this plate-shaped composite material body was evaluated in the same manner as in Example 1, almost no voids were observed at the interface between the SiC particles 4 and aluminum. The thermal conductivity was 265 W / mK, which was a very high value.

【0042】[0042]

【実施例3】複合材本体2を製造するために、厚さ3m
mのキャビティを有する金型に、0.35〜0.85m
mの粒度(42〜20meshの粒度)のSiC粒体を
キャビティ容積の58%の量だけ充填し、同時に金型の
下端から真空ポンプによりキャビティ内を真空に吸引し
た。吸引を続けながら、金型上部より、鋳物用アルミニ
ウムAC3Aの690℃〜700℃の溶湯を注入し、S
iC粒子の間隙にアルミニウム溶湯を含浸させた。ここ
までは金型の温度は550℃であり、次に凝固させるた
めに金型温度を530℃にして、3分間保持した。これ
により、金型が、アルミニウムが流れない程度に冷却さ
れているので、金型を開いて圧力状成形体、つまり複合
材本体を取り出した。金型から取り出して、すぐに55
0℃に設定したホットプレスに複合材本体を入れ、10
00Kg/cmの圧力で押さえた。この圧力をかけた
まま冷却凝固を行った。できあがった複合材本体を前記
第1、第2実施例と同様に評価した。その結果、SiC
粒子とアルミニウムとの界面にはほとんど空隙が認めら
れず、また、熱伝導率は250W/mKであり、この場
合も非常に良好な結果が得られた。
Example 3 In order to manufacture the composite material main body 2, a thickness of 3 m
0.35 to 0.85 m in a mold with m cavity
SiC particles having a particle size of m (particle size of 42 to 20 mesh) were filled in an amount of 58% of the cavity volume, and at the same time, the inside of the cavity was sucked into a vacuum by a vacuum pump from the lower end of the mold. While continuing the suction, from the upper part of the die, inject the molten aluminum AC3A for casting at 690 ° C to 700 ° C, and
The gap between the iC particles was impregnated with molten aluminum. Up to this point, the temperature of the mold was 550 ° C., and then the mold temperature was set to 530 ° C. for solidification and held for 3 minutes. As a result, the mold was cooled to such an extent that aluminum did not flow, so the mold was opened and the pressure-formed body, that is, the composite material body was taken out. 55 out of the mold
Put the composite body into a hot press set at 0 ° C and
It was pressed with a pressure of 00 Kg / cm 2 . Cooling and solidification were performed while applying this pressure. The resulting composite material main body was evaluated in the same manner as in the first and second examples. As a result, SiC
Almost no voids were observed at the interface between the particles and aluminum, and the thermal conductivity was 250 W / mK. In this case also, very good results were obtained.

【0043】[0043]

【比較例1】実施例と同様に、厚さ3mmのキャビティ
を有する金型に、0.35〜0.85mmの粒度のSi
C粒体をキャビティ容積の58%の量だけ充填した。し
かし、金型の下から真空で吸引することはせず、金型上
部より、鋳物用アルミニウムAC3Aの690℃〜70
0℃の溶湯を注入し、SiC粒子の間隙にアルミニウム
溶湯を含浸させようとした。冷却凝固後、金型をひらい
たところアルミニウムが十分に含浸されていなかった。
Comparative Example 1 Similar to the example, a mold having a cavity with a thickness of 3 mm was charged with Si having a grain size of 0.35 to 0.85 mm.
The C particles were filled in an amount of 58% of the cavity volume. However, vacuum suction is not performed from below the mold, and from the upper part of the mold, 690 ° C. to 70 ° C. of aluminum AC3A for casting.
A molten metal of 0 ° C. was poured to try to impregnate the gap between the SiC particles with the molten aluminum. After cooling and solidifying, when the mold was opened, aluminum was not sufficiently impregnated.

【0044】[0044]

【発明の効果】以上のように、本発明の高熱伝導性複合
材およびその製造方法によれば、アルミニウムを連続相
とする複合材本体中に、比較的粒度が大きいセラミック
粒子をできるだけ多く含有させ、しかも、セラミック粒
子とアルミニウム連続相との密着性を高めたので、熱伝
導率が非常に大きく、かつ、寸法安定性のきわめて優れ
た材料が得られる。
As described above, according to the high thermal conductivity composite material of the present invention and the method for producing the same, the composite material main body containing aluminum as the continuous phase should contain as many ceramic particles having a relatively large particle size as possible. Moreover, since the adhesion between the ceramic particles and the aluminum continuous phase is improved, a material having a very high thermal conductivity and an extremely excellent dimensional stability can be obtained.

【0045】また、高熱伝導性複合材の複合材本体にお
ける表裏の少なくとも一面に加工性に優れた被覆部材を
一体的に設けたので、加工精度が向上し、その被覆部材
を研削すれば容易に平滑面を得ることができるととも
に、穴加工も容易となる。従って、被取り付け部材との
取り付けを、高精度の密着性を維持して行うことがで
き、放熱基板としての十分な機能を発揮することができ
る。
Further, since the covering member excellent in workability is integrally provided on at least one surface of the front and back surfaces of the composite body of the high thermal conductive composite material, the processing accuracy is improved and it is easy to grind the covering member. A smooth surface can be obtained and drilling becomes easy. Therefore, the attachment to the member to be attached can be performed while maintaining the close contact with high accuracy, and the sufficient function as the heat dissipation substrate can be exhibited.

【0046】さらに、比較的粒度が大きいセラミック粒
子を比較的多量に含有させたので、熱伝導率を向上させ
ることができる他、線膨張率を小さくして膨張を抑える
ことができるので、被接続部材と接続したとき、互いの
膨張率の違いから、繰り返し使用による剥がれ等を防止
することができ、耐用期間を長くすることができる。
Further, since a relatively large amount of ceramic particles having a relatively large particle size is contained, the thermal conductivity can be improved, and the linear expansion coefficient can be reduced to suppress the expansion. When connected to a member, due to the difference in expansion coefficient between them, peeling due to repeated use can be prevented, and the service life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高熱伝導性複合材の一例を示す縦断面
図である。
FIG. 1 is a longitudinal sectional view showing an example of a high thermal conductive composite material of the present invention.

【図2】本発明の高熱伝導性複合材の一例を示す断面模
式図である。
FIG. 2 is a schematic sectional view showing an example of the high thermal conductivity composite material of the present invention.

【図3】本発明の高熱伝導性複合材の製造装置の一例を
示す縦断面模式図である。
FIG. 3 is a schematic vertical sectional view showing an example of an apparatus for producing a high thermal conductive composite material of the present invention.

【図4】本発明の高熱伝導性複合材の使用状態を示す縦
断面図である。
FIG. 4 is a vertical sectional view showing a usage state of the high thermal conductive composite material of the present invention.

【図5】実施例1によって製造した高熱伝導性複合材を
示す断面模式図である。
5 is a schematic cross-sectional view showing a high thermal conductive composite material manufactured according to Example 1. FIG.

【図6】実施例1によって製造した高熱伝導性複合材を
示す断面模式図である。
FIG. 6 is a schematic sectional view showing a high thermal conductive composite material manufactured according to Example 1.

【符号の説明】[Explanation of symbols]

1 高熱伝導性複合材 2 複合材本体 3 被覆部材 4 セラミック粒子 5 連続相 10 パワー半導体素子 11 AlNチップ 13 導体回路 20 製造装置 30 金型 30a キャビティ 31,32 板状部材 40 注湯部 41 湯道 50 吸引部 51 真空ボックス P 真空ポンプ 1 High thermal conductivity composite material 2 Composite material body 3 Cover member 4 Ceramic particles 5 continuous phase 10 Power semiconductor element 11 AlN chip 13 conductor circuit 20 Manufacturing equipment 30 molds 30a cavity 31, 32 plate-shaped member 40 pouring part 41 Runway 50 suction unit 51 vacuum box P vacuum pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 29/16 C22C 29/16 H 32/00 32/00 Q H01L 23/36 H01L 23/36 C 23/373 M Fターム(参考) 4K020 AA26 AB01 AB02 AC01 AC07 BB29 5F036 AA01 BA23 BB08 BD03 BD14─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 29/16 C22C 29/16 H 32/00 32/00 Q H01L 23/36 H01L 23/36 C 23 / 373 MF term (reference) 4K020 AA26 AB01 AB02 AC01 AC07 BB29 5F036 AA01 BA23 BB08 BD03 BD14

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 セラミック粒子が40〜85容積%、ア
ルミニウムまたはアルミニウム合金が15〜60容積%
からなるとともに、前記セラミック粒子間の間隙に前記
アルミニウムまたはアルミニウム合金が連続相を形成
し、かつ、前記セラミック粒子とアルミニウムまたはア
ルミニウム合金との界面に隙間がないようにした複合材
本体を備え、この複合材本体の表裏面の少なくとも一面
には、加工性に優れた被覆部材が一体的に設けられてい
ることを特徴とする高熱伝導性複合材。
1. Ceramic particles in an amount of 40 to 85% by volume and aluminum or an aluminum alloy in an amount of 15 to 60% by volume.
And a composite material body in which the aluminum or aluminum alloy forms a continuous phase in the gaps between the ceramic particles, and there is no gap at the interface between the ceramic particles and the aluminum or aluminum alloy, A high thermal conductive composite material, characterized in that a covering member excellent in workability is integrally provided on at least one of the front and back surfaces of the composite material main body.
【請求項2】 セラミック粒子が40〜85容積%、ア
ルミニウムまたはアルミニウム合金が15〜60容積%
からなるとともに、前記セラミック粒子間の間隙に前記
アルミニウムまたはアルミニウム合金が連続相を形成
し、かつ、前記セラミック粒子とアルミニウムまたはア
ルミニウム合金との界面に隙間がないようにし、さら
に、セラミック粒子が表面に露出しないようにして複合
材本体を形成し、この複合材本体の表裏面の少なくとも
一面には、加工性に優れた被覆部材が一体的に設けられ
ていることを特徴とする高熱伝導性複合材。
2. Ceramic particles of 40 to 85% by volume and aluminum or aluminum alloy of 15 to 60% by volume.
And the aluminum or aluminum alloy forms a continuous phase in the gaps between the ceramic particles, and there is no gap at the interface between the ceramic particles and aluminum or aluminum alloy, further, the ceramic particles on the surface. A high thermal conductivity composite material, characterized in that a composite material body is formed so as not to be exposed, and at least one of front and back surfaces of the composite material body is integrally provided with a coating member having excellent workability. .
【請求項3】 請求項1または請求項2に記載の高熱伝
導性複合材において、前記複合材本体は、熱伝導率が2
00W/mK以上であることを特徴とする高熱伝導性複
合材。
3. The high thermal conductivity composite material according to claim 1 or 2, wherein the composite material main body has a thermal conductivity of 2 or less.
A highly heat-conductive composite material characterized by having a power of at least 00 W / mK.
【請求項4】 請求項1ないし請求項3のいずれかに記
載の高熱伝導性複合材において、前記セラミック粒子
は、SiC、AlN、BN、カーボンから選ばれた少な
くとも1種であることを特徴とする高熱伝導性複合材。
4. The high thermal conductive composite material according to claim 1, wherein the ceramic particles are at least one selected from SiC, AlN, BN and carbon. High thermal conductivity composite material.
【請求項5】 請求項1ないし請求項4のいずれかに記
載の高熱伝導性複合材において、前記複合材本体は、ア
ルミニウム、アルミニウム合金、およびアルミニウムと
亜鉛との合金のいずれかで形成されていることを特徴と
する高熱伝導性複合材。
5. The high thermal conductivity composite material according to claim 1, wherein the composite material body is formed of aluminum, an aluminum alloy, or an alloy of aluminum and zinc. High thermal conductivity composite material characterized by being
【請求項6】 請求項1ないし請求項5のいずれかに記
載の高熱伝導性複合材を製造する方法であって、熱伝導
性のよい前記セラミック粒子とアルミニウムまたはアル
ミニウム合金とを複合する際に、金型のキャビティに前
記セラミック粒子を充填し、このセラミック粒子間の間
隙に前記アルミニウムまたはアルミニウム合金の溶湯を
含浸させるとともに凝固を行って複合材本体を製造した
後、この複合材本体の表裏面の少なくとも一面に加工性
に優れた前記被覆部材を一体的に設けることを特徴とす
る高熱伝導性複合材の製造方法。
6. A method for producing the high thermal conductivity composite material according to claim 1, wherein the ceramic particles having good thermal conductivity and aluminum or aluminum alloy are compounded. After filling the cavity of the mold with the ceramic particles and impregnating the gap between the ceramic particles with the molten aluminum or aluminum alloy and solidifying the composite material body, the front and back surfaces of the composite material body are manufactured. A method for producing a highly heat-conductive composite material, characterized in that the coating member having excellent workability is integrally provided on at least one surface of.
【請求項7】 請求項6に記載の高熱伝導性複合材の製
造方法において、前記溶湯含浸時に、前記セラミック粒
子の入った前記キャビティ内を真空で吸引しながら前記
溶湯を入れることを特徴とする高熱伝導性複合材の製造
方法。
7. The method for manufacturing a high thermal conductive composite material according to claim 6, wherein the molten metal is charged while vacuuming the inside of the cavity containing the ceramic particles at the time of impregnating the molten metal. Manufacturing method of high thermal conductive composite material.
【請求項8】 請求項1ないし請求項5のいずれかに記
載の高熱伝導性複合材を製造する方法であって、セラミ
ックの微粒子を溶融したアルミニウムまたはアルミニウ
ム合金の中に混入するとともに攪拌し、攪拌して得られ
た溶湯を所定形状に成形した後、凝固を行って複合材本
体を製造し、次いで、この複合材本体の表裏面の少なく
とも一面を加工性に優れた前記被覆部材で一体的に被う
ことを特徴とする高熱伝導性複合材の製造方法。
8. A method for producing the high thermal conductivity composite material according to claim 1, wherein fine particles of ceramic are mixed into molten aluminum or aluminum alloy and stirred, After the molten metal obtained by stirring is molded into a predetermined shape, solidification is performed to manufacture a composite material main body, and then at least one of the front and back surfaces of the composite material main body is integrally formed with the coating member having excellent workability. A method for producing a high thermal conductive composite material, comprising:
【請求項9】 請求項6または請求項8に記載の高熱伝
導性複合材の製造方法において、前記凝固過程におい
て、圧力をかけたまま凝固を終わらせることを特徴とす
る高熱伝導性複合材の製造方法。
9. The method for producing a highly heat-conductive composite material according to claim 6 or 8, wherein in the solidifying step, the solidification is completed while pressure is applied. Production method.
【請求項10】 請求項6、8または請求項9に記載の
高熱伝導性複合材の製造方法において、前記凝固後の複
合材本体をアルミニウムまたはアルミニウム合金の半溶
融の温度まで加熱し、同時に圧力をかけることを特徴と
する高熱伝導性複合材の製造方法。
10. The method for producing a highly heat-conductive composite material according to claim 6, 8 or 9, wherein the solidified composite material body is heated to a temperature at which aluminum or an aluminum alloy is semi-melted, and at the same time, pressure is applied. A method for producing a highly heat-conductive composite material, which comprises applying heat.
【請求項11】 請求項6、8または請求項9に記載の
高熱伝導性複合材の製造方法において、前記凝固後の複
合材本体に押出加工を行うようにしたことを特徴とする
高熱伝導性複合材の製造方法。
11. The method for producing a highly heat-conductive composite material according to claim 6, 8 or 9, wherein the composite material body after solidification is extruded. Manufacturing method of composite material.
【請求項12】 請求項6、8または請求項9に記載の
高熱伝導性複合材の製造方法において、前記凝固後の複
合材本体に熱間で圧延加工を加えることを特徴とする高
熱伝導性複合材の製造方法。
12. The method for producing a highly heat-conductive composite material according to claim 6, 8 or 9, wherein the composite material body after solidification is hot-rolled. Manufacturing method of composite material.
【請求項13】 請求項6、8または請求項9に記載の
高熱伝導性複合材の製造方法において、前記凝固後の複
合材本体に熱間で鍛造またはプレス処理を行うようにし
たことを特徴とする高熱伝導性複合材の製造方法。
13. The method for producing a highly heat-conductive composite material according to claim 6, 8, or 9, wherein the solidified composite material body is hot forged or pressed. And a method for producing a high thermal conductive composite material.
【請求項14】 請求項6ないし請求項13のいずれか
に記載の高熱伝導性複合材の製造方法において、前記ア
ルミニウムまたはアルミニウム合金との濡れ性をよくす
るために、前記セラミックの粒子の表面に予めニッケル
のメッキ処理を施すことを特徴とする高熱伝導性複合材
の製造方法。
14. The method for producing a highly heat-conductive composite material according to claim 6, wherein a surface of the ceramic particles is coated on the surface of the ceramic particles in order to improve wettability with the aluminum or aluminum alloy. A method for producing a high thermal conductive composite material, which comprises subjecting nickel to a plating treatment in advance.
JP2002369198A 2001-12-21 2002-12-20 Composite material with high thermal conductivity and manufacturing method therefor Pending JP2003253371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369198A JP2003253371A (en) 2001-12-21 2002-12-20 Composite material with high thermal conductivity and manufacturing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-388670 2001-12-21
JP2001388670 2001-12-21
JP2002369198A JP2003253371A (en) 2001-12-21 2002-12-20 Composite material with high thermal conductivity and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2003253371A true JP2003253371A (en) 2003-09-10
JP2003253371A5 JP2003253371A5 (en) 2005-08-11

Family

ID=28676965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369198A Pending JP2003253371A (en) 2001-12-21 2002-12-20 Composite material with high thermal conductivity and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003253371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077755A1 (en) * 2005-01-20 2006-07-27 A.L.M.T.Corp. Member for semiconductor device and method for manufacture thereof
US7746207B2 (en) 2003-11-05 2010-06-29 Tdk Corporation Coil device
JP2016184700A (en) * 2015-03-26 2016-10-20 株式会社アライドマテリアル Heat spreader
CN115138842A (en) * 2022-06-23 2022-10-04 洛阳科威钨钼有限公司 Preparation method of high-temperature-oxidation-resistant high-temperature air direct-ignition combustion stabilizer shell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746207B2 (en) 2003-11-05 2010-06-29 Tdk Corporation Coil device
WO2006077755A1 (en) * 2005-01-20 2006-07-27 A.L.M.T.Corp. Member for semiconductor device and method for manufacture thereof
US7749430B2 (en) 2005-01-20 2010-07-06 A.L.M.T. Corp. Member for semiconductor device and production method thereof
JP4913605B2 (en) * 2005-01-20 2012-04-11 株式会社アライドマテリアル Method for manufacturing member for semiconductor device
JP2016184700A (en) * 2015-03-26 2016-10-20 株式会社アライドマテリアル Heat spreader
CN115138842A (en) * 2022-06-23 2022-10-04 洛阳科威钨钼有限公司 Preparation method of high-temperature-oxidation-resistant high-temperature air direct-ignition combustion stabilizer shell
CN115138842B (en) * 2022-06-23 2023-10-20 洛阳科威钨钼有限公司 Preparation method of high-temperature air direct ignition flame stabilizer shell resistant to high-temperature oxidation

Similar Documents

Publication Publication Date Title
CN106688092B (en) Thermal component and its manufacturing method
CN100472765C (en) Heat sink made from diamond-copper composite material containing boron
JP2000077584A (en) Metal matrix composite body
CN104962771B (en) Preparation method of directional porous SiC and diamond reinforced Al base composite material
CN105803241A (en) Spiral-body-enhanced metal-based or polymer-based composite and preparation method
JP2005238331A (en) Composite material and its manufacturing method
CN105506355B (en) Diamond/copper gradient composite material and preparation method thereof
JP2000336438A (en) Metal-ceramics composite material and its manufacture
CN104625077A (en) High-heat-conduction diamond/copper composite material and manufacturing method of high-heat-conduction diamond/copper composite material
CN105755308B (en) A kind of high conductivity diamond/aluminum composite material and preparation method thereof
JP2004281851A (en) High-thermal-conductivity heat-dissipating material and its manufacture
JP2003253371A (en) Composite material with high thermal conductivity and manufacturing method therefor
CN111607716B (en) Method for preparing diamond/copper composite material with high surface finish by combining ultrasonic electrodeposition
CN106232845A (en) Aluminium gold hard rock system&#39;s complex and use its thermal component
JP2001105124A (en) Heat radiation substrate for semi conductor device
JP2002066724A (en) Compound material and manufacturing method thereof
JP6940997B2 (en) Aluminum-ceramic bonded substrate and its manufacturing method
JPH11307701A (en) Heat sink and manufacture therefor
US6597574B2 (en) Radiator plate and process for manufacturing the same
JP2004091862A (en) Composite material with high thermal conductivity, and manufacturing method therefor
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP2003078087A (en) Exoergic composite substrate with fin for semiconductor element
KR101891405B1 (en) Metal foam and manufacturing method of the metal foam
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP2007299789A (en) Thermal dissipation substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20051215

Free format text: JAPANESE INTERMEDIATE CODE: A871

A521 Written amendment

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A821

A975 Report on accelerated examination

Effective date: 20060313

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060529

Effective date: 20060529

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060808

Free format text: JAPANESE INTERMEDIATE CODE: A02