JP2004091862A - Composite material with high thermal conductivity, and manufacturing method therefor - Google Patents

Composite material with high thermal conductivity, and manufacturing method therefor Download PDF

Info

Publication number
JP2004091862A
JP2004091862A JP2002255128A JP2002255128A JP2004091862A JP 2004091862 A JP2004091862 A JP 2004091862A JP 2002255128 A JP2002255128 A JP 2002255128A JP 2002255128 A JP2002255128 A JP 2002255128A JP 2004091862 A JP2004091862 A JP 2004091862A
Authority
JP
Japan
Prior art keywords
composite material
metal
ceramic particles
aluminum
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002255128A
Other languages
Japanese (ja)
Inventor
Shoichi Makimoto
牧本 昭一
Mitsutomo Nagano
長野 充朋
Katsushi Kashiwakura
柏倉 克至
Kazufusa Mitani
三谷 一房
Osao Hori
堀 長生
Satohiro Nagao
長尾 覚博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIGAI TECHNOS KK
Obayashi Corp
Original Assignee
NAIGAI TECHNOS KK
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIGAI TECHNOS KK, Obayashi Corp filed Critical NAIGAI TECHNOS KK
Priority to JP2002255128A priority Critical patent/JP2004091862A/en
Publication of JP2004091862A publication Critical patent/JP2004091862A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a composite material with high thermal conductivity comprising a continuous phase of a metal and ceramic particles. <P>SOLUTION: The composite material contains ceramic particles of 40-85 vol.%, has the continuous phase of the metal formed in gaps among the above ceramic particles, and has a density of C*V+M*(1-V)*0.6 or higher, wherein C expresses the density of the above ceramic particle, V the volumetric fraction of the above ceramic particles in the composite material, and M the density of the above metal. The ceramic is SiC for instance, and the metal is aluminum or an aluminum alloy for instance. The composite material may have a metal-sprayed layer and a metallic foil layer such as aluminum provided on the surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、MPUやパワーモジュール等の半導体の放熱用基板や、小型パソコン、測定機器等の電子機器に用いられる筐体、ヒートシンク材、車両のブレーキ等に用いられる放熱特性の良いディスク等、各種放熱材料として用いるのに好適な高熱伝導性複合材料およびその製造方法に関する。
【0002】
【従来の技術】
パワー半導体素子は大電流駆動されるため発熱量が大きく、素子特性を維持するために放熱性に優れた放熱板を必要とする。特に、近年、高密度集積化や制御回路との混載による小型化・軽量化が進められているため、高密度熱流の放散が重要な課題となっている。このために、高熱伝導性の放熱基板が求められている。
【0003】
また、小型パソコンや測定機器等の分野でも、半導体素子の高集積化が進むに従って、半導体素子の発熱量が増大する一方、機器の小型化によって放熱に困難な構造となる傾向にある。このため、筐体やヒートシンク材に対しても、高熱伝導性の放熱基板が求められている。
【0004】
さらに、車両ブレーキ装置の分野においても、ブレーキディスクには高い放熱性が要求される。したがって、この分野でも高熱伝導性の基板が求められている。
【0005】
【発明が解決しようとする課題】
上述のように、様々な分野で高熱伝導性の基板が求められており、従来より、基板やSiC/Al系複合材料が提案されている。しかしながら、金属板は熱膨張係数が大きいという問題があり、また、SiC/Al系複合材では十分に高い熱伝導率が得られていないという問題がある。
【0006】
従来、SiC/Al系複合材料はアルミ溶湯の中にSiC粉末を分散させる方法や、SiC粒子とアルミまたはアルミ合金粒子をバインダーや焼結助剤を加えて成形し、次いで、焼結する方法などがある。これらの方法で十分に高い熱伝導率が得られないのは、以下の理由によると考えられる。
(1)SiCの含有率が20容積%と低いため。
(2)SiCの粒径が10μm〜100μmと非常に細かいため、アルミとの界面が非常に多くなり、熱伝導率が低くなる。
(3)SiCとアルミとの界面にバインダーや焼結助剤の残留物が異物として残り、熱伝導を妨げる。
(4)SiCとアルミとの界面に空気を含んだ空間が存在し、これが熱伝導率を低くしている。
【0007】
本発明は、上記の問題点を解決して、高い熱伝導性を有する複合材料およびその製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明の高熱伝導性の複合材料は、セラミック粒子を40〜85容積%含み、前記セラミック粒子の粒子間の間隙に金属が連続相を形成し、当該複合材料の密度がC*V+M*(1−V)*0.6以上であることを特徴とする。ただし、Cは前記セラミック粒子の密度、Vは当該複合材料の中で前記セラミック粒子の占める容積割合、Mは前記金属の密度を表す。
【0009】
また、前記セラミック粒子が当該複合材料の表面に露出しないように表面が前記金属で覆われるようにすれば、表面の空隙が少なくなって、当該複合材料を放熱材として用いた際の放熱効果が高まる。
【0010】
前記セラミック粒子としては、SiC、AlN、BN、カーボンのうちから選ばれた少なくとも一種類の材料を用いることができる。
【0011】
また、前記金属としては、アルミニウム、アルミニウム合金、銅、銅合金、鉄、鉄合金、マグネシウム、マグネシウム合金の何れかから選ばれた少なくとも一種類の材料を用いることができる。
【0012】
前記セラミック粒子の粒度は好ましくは0.3〜2.0mmである。
【0013】
また、表面の少なくとも一部に金属溶射層を設けることにより、あるいは、表面の少なくとも一部に金属箔の層を設けることにより、複合材料表面の空隙を少なくすることができる。
【0014】
また、本発明では、金型により形成されたキャビティにセラミック粒子を所定の容積%の量だけ充填する充填工程と、該充填したセラミック粒子の間隙に金属の溶湯を含浸させる含浸工程と、該含浸させた溶湯を凝固させる凝固工程とを含む方法により、複合材料を製造する。
【0015】
この場合、前記含浸工程では、前記キャビティの内部を減圧させながら、当該キャビティに前記金属の溶湯を注入することとしてもよい。
【0016】
また、前記キャビティの内壁を構成する金型面の少なくとも一部に、前記セラミック粒子が侵入できない程度の寸法の凹部を含んだ凹凸部を設けることで、製造された複合材料の表面にセラミック粒子が表面に露出しないように表面を金属で覆うことができる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
図1は、本発明の一実施形態である高熱伝導性複合材料1を示す。同図に示すように、高熱伝導性複合材料1は、分散したセラミック粒子2の間に、アルミニウム又はアルミニウム合金(以下、単にアルミニウムという)等の金属によりできるだけ隙間が無いように連続相3を形成し、複合材料の密度をC*V+M*(1−V)*0.6以上としたものである。ただし、Cは前記セラミック粒子の密度、Vは当該複合材料の中で前記セラミック粒子の占める容積割合、Mは前記金属の密度を表す。
【0018】
セラミック粒子2としては、SiC、AlN,BN,カーボン等の材料が用いられる。セラミック粒子2の粒度は0.15mm(100meshふるい以上)あればよいが、製品の厚さなどを考慮に入れると、0.3mm〜2.0mm(48〜49mesh)程度の粒度範囲が好ましい。粒度が0.15mm未満であると、セラミック粒子2間の間隔が小さくなり過ぎて、金属の溶湯が入り込まなくなり、含浸不良を起こす。なお、セラミックは粒体だけでなく、繊維状のものを併用してもよい。
【0019】
また、連続相3を構成する金属として、アルミニウムやアルミニウム合金のほか、銅、銅合金、鉄、鉄合金、マグネシウム、マグネシウム合金を用いることもできる。
【0020】
セラミック粒子2の量は、40〜85容積%が好適である。40容積%未満であれば、複合材料1の熱伝導率が十分に高くならず、85容積%を超えると複合材料の強度が不十分となる。一方、金属の量は、セラミック粒子2に対応して15〜60容積%となるが、複合材料の密度がC*V+M*(1−V)*0.6以上となるように、できるだけ隙間のないように入れる必要がある。この密度に関する条件の根拠については後述する。
【0021】
以上のように、粒度の比較的大きいセラミック粒子2を比較的多量に含有させたので、熱伝導率を200W/mK以上、線膨張係数を9〜12×10−6程度にすることができる。
【0022】
上記複合材料1の密度がC*V+M*(1−V)*0.6未満になると、複合材料内部又は表面の空隙が多くなり、この空隙が熱伝導性を阻害して熱伝導性の良好な複合材料が得られない。
【0023】
上記セラミック粒子2は、複合材料表面に露出しないようにするのがより好ましい。そのためには、後述する複合材料1の成形用金型のキャビティ内壁に、セラミック粒子よりも小さい溝を縦横に設けてゆず肌模様とし、アルミニウムの溶湯だけが前記溝に流入するようにすることで、複合材料1の表面をアルミニウムで覆うこともできる。こうすることによって、複合材料1の表面の空隙を少なくして、熱伝導性を向上させることができる。また、空隙が少なくなれば、複合材料1の密度も大きくなる。
【0024】
複合材料1は、図2に示すような装置で製造することができる。同図に示すように、この装置は、金型10と、注湯部20と、吸引部30とにより構成される。金型10は板状体11,12の間に形成されたキャビティ10aを有し、注湯部20はキャビティ10aの上端に連通する湯道21を有し、キャビティ10aの下端は真空ポンプPによって吸引される真空ボックス31に連通している。
【0025】
金型10のキャビティ10aの中に、粒径が0.15mm以上のセラミック粒子2をキャビティ空間の40容積%以上充填する。次に、キャビティ10a内を真空ポンプPによって真空引きし、セラミック粒子の間隙にある空気を排除し、そこに湯道21からアルミニウムの溶湯を流し込んでセラミック粒子の間隙に溶湯を含浸させた後、溶湯を凝固させる。この凝固過程で溶湯が半凝固状態にあるときに十分な圧力をかけて凝固させ、形成される複合材料の密度がC*V+M*(1−V)*0.6以上になるようにする。また、別の方法として、アルミニウム溶湯を注入しているときに、同時にアルミニウム溶湯を加圧してもよい。
【0026】
通常の凝固を行いセラミック粒子とアルミニウムとの界面に生じた真空の空隙によって、複合材料の密度が上記条件を満たさない場合には、以下に示す方法で処理することが有効である。
(1)当該複合材料をアルミニウムが半溶融状態になる温度まで加熱し、圧力をかけてアルミニウムを空隙を埋めてしまうことで複合材料の密度を大きくする。
(2)当該複合材料をアルミニウムが軟化する温度で押し出し加工する。押し出し加工時に軟化状態のアルミニウムが真空の空隙を埋めることで複合材料の密度が大きくなる。
(3)当該複合材料をアルミニウムが軟化する温度で熱間圧延する。
(4)当該複合材料をアルミニウムが軟化する温度で熱間鍛造する。
【0027】
ここで、複合材料の加熱には、ヒーター加熱、高周波誘導加熱等の方法を利用することができる。
【0028】
上記(1)〜(4)の何れの方法でも、セラミック粒子の粒度を0.15mm以上と大きくできる。また、その含有量も40容積%以上にできる。さらに、セラミック粒子とアルミニウム以外は何も使わなくてよい。そして最後にセラミック粒子とアルミニウムとの界面に生ずる空隙を除去して、複合材料の密度をC*V+M*(1−V)*0.6以上に大きくすることができる。これにより、高熱伝導性の複合材料の製造が可能となる。
【0029】
アルミニウム溶湯として、溶融したアルミニウムの中にセラミック粒子を混入して攪拌したものを使用することにより、セラミック粒子の含有量をさらに多くすることができる。その結果、熱伝導率の向上につながる。また、セラミック粒子とアルミニウムとの濡れをよくするために、ニッケル等のメッキをセラミック粒子に施してもよい。
【0030】
また、図3に示すように、複合材料1の表面に金属溶射層5を設けることにより、複合材料の表面近傍の空隙による熱伝導率の低下を防止することができる。溶射層の形成は、溶融した金属を吹き付けた後、加熱圧縮することにより行える。溶射する金属としては、アルミニウム、アルミニウム合金、銅、亜鉛、銀等の熱伝導性の良好な金属を用いることが効果的である。
【0031】
また、表面への金属溶射に代えて、図4に示すように、複合材料1の表面に金属箔6を積層することにより、複合材料の表面近傍の空隙による熱伝導率の低下を防止することもできる。金属箔の積層は、複合材料1の表面に金属箔を載せ、加熱圧縮することにより行える。金属箔として、アルミニウム箔、銅箔等の熱伝導性の良い金属箔を用いることが効果的である。
【0032】
以上のように、表面に金属を溶射し、あるいは、金属箔の層を設ける場合には、金型内壁を、小さい溝を縦横に設けたゆず肌模様としなくても、セラミック粒子が表面に露出するのを防止することができるから、金型の製造コストを低減できる。
【0033】
なお、複合材料の密度がC*V+M*(1−V)*0.6以上であるという条件は、以下の検証実験により見出されたものである。
【0034】
図2に示す装置において、0.35〜0.85mmの粒度(42〜20mesh)の粒度のSiC粒子をキャビティ容積の59%の量だけ充填した。次に、SiCの粒子の間隙(41容積%)に、充填量を変えながらアルミニウムを充填して種々の試料を作成した。そして、各試料について、密度と熱伝導率を測定した。なお、本検証実験および以下の各実施例における熱伝導率の測定はレーザーフラッシュ法により行なった。その結果、図5に示すような密度と熱伝導率との関係が得られ、その実験式として、
Y=590.87*X−1497(X:密度、Y:熱伝導率)
が得られた。
【0035】
試料の密度Xとアルミニウムの充填率Aとの関係は次式で表される。
X=C*V+M*(1−V)*A
ただし、C:セラミックSiCの密度=3.2
V:SiCの充填量=59容積%
M:アルミニウムAC3Aの密度=2.66
である。
【0036】
したがって、
X=1.096*A+1.888
が得られ、これを上記実験式に代入して
Y=644.4A−381.4
が得られる。この式をグラフ化すると図6のようになる。
【0037】
図6より、SiC粒子の間隙へのアルミニウムの充填率Aが0.6未満になると、熱伝導率は計算上0以下となる。したがって、充填率Aは0.6以上であることが必要であり、好ましくはA=0.8〜1.0である。そして、充填率Aが大きいほど、複合材料の密度も大きくなることから、複合材料の密度がC*V+M*(1−V)*0.6以上という条件が得られることになる。
【0038】
【実施例】
(実施例1)
厚さ3mmのキャビティを有する金型に、0.35〜0.85mmの粒度(42〜20mesh)の粒度のSiC粒子をキャビティ容積の56%の量だけ充填し、同時に金型の下端から真空ポンプによりキャビティ内部を真空に吸引した。吸引を続けながら、金型上部より、鋳物用アルミニウムAC3Aの690〜700℃の溶湯を注入し、SiC粒子の間隙にアルミニウム溶湯を含浸させた。ここまでは、金型の温度は550℃であり、次に、溶湯を凝固させるために金型温度を530℃にして3分間保持した。これにより、アルミニウムが流れ出さない程度に冷却されるので、この状態で金型を開き、複合材料の板状成形体を取り出して室温で完全に凝固させた。
【0039】
この板状成形体について、密度と熱伝導率を測定した。その結果、複合材料の密度は2.76g/cmで、熱伝導率は152W/mKであった。
【0040】
さらに、熱伝導率を向上させるために以下の処理を行った。
(1)アルミニウムAC3Aが半溶融状態又は軟化状態になる温度450℃、500℃、550℃で1トン/cmの圧力を5分間かけて処理した。その結果、板状成形体の密度および熱伝導率は以下のようになり、密度の増加および熱伝導率の向上が確認できた。
処理温度     密 度        熱伝導率
450℃   2.85g/cm   210W/mK
500℃   2.90g/cm   250W/mK
550℃   2.98g/cm   270W/mK
(2)板状成形体を炉で450℃に加熱した後、炉から取り出して、圧延率10%で厚さ1.3mmまで圧延した。その結果、密度2.80g/cm、熱伝導率205W/mKとなり、やはり、密度の増加および熱伝導率の向上が確認できた。
【0041】
図7は、本実施例で製造した複合材料の板状成形体の断面を模式的に示す。同図に示すように、板状成形体の表面にSiC粒子2が所々で露出する構造となった。また、板状成形体の内部において、SiC粒子とアルミニウムとの界面の一部に空隙4が見られた。
【0042】
なお、本実施例においてC*V+M*(1−V)*0.6の値は、2.49g/cmであり、上記板状成形体の密度は何れもこの値より大きい。
【0043】
(実施例2)
厚さ3mmのキャビティを有し、表面に縦横の細かい溝が形成されたゆず肌模様の凹凸を有する金型に、0.35〜0.85mmの粒度(42〜20meshの粒度)のSiC粒子をキャビティ容積の58%の量だけ充填し、同時に金型の下端から真空ポンプによりキャビティ内を真空に吸引した。吸引を続けながら、金型上部より、鋳物用アルミニウムAC3Aの690〜700℃の溶湯を注入し、SiC粒子の間隙にアルミニウムを含浸させた。ここまでは、金型の温度は550℃であり、次に、溶湯を凝固させるために金型温度を530℃にして、3分間保持した。これにより、アルミニウムが流れ出さない程度に冷却されるので、この状態で金型を開いて、板状成形体を取り出した。金型から取り出してすぐに、温度を550℃に設定したホットプレスに板を入れ、1000kg/cmの圧力で加圧し、加圧したまま冷却凝固を行った。そして、冷却凝固した板状成形体について密度および熱伝導率の測定を行った。その結果、密度は2.95g/cm、熱伝導率は250W/mKとなった。
【0044】
図8は、本実施例で製造した複合材料の板状成形体の断面を模式的に示す。同図に示すように、板状成形体の表面は、両側共に0.5mm程度の厚さのアルミニウム単体の層で覆われており、SiC粒子が表面に露出することはなかった。これは、表面にゆず肌模様を有する金型を用いたことで、金型とSiC粒子との間にアルミニウムが入り込んだことによるものである。SiC粒子が表面に露出せず、表面の凹凸が少なくなることにより、複合材料の放熱材としての放熱特性が向上する。
【0045】
(実施例3)
上記実施例1と同様の条件で製造した板状成形体の両面にアルミニウムを溶射した。溶射したアルミニウムの厚みは片面250μmずつとした。
この板状成形体について、密度および熱伝導率を測定した。その結果、密度は2.78g/cm、熱伝導率は160W/mKであった。さらに、熱伝導率を向上させるため、上記実施例1の(1)と同様に、アルミニウムAC3Aが半溶融状態又は軟化状態になる温度450℃、500℃、550℃で1トン/cmの圧力を5分間かけて処理した。その結果、板状成形体の密度および熱伝導率は以下のようになり、密度の増加および熱伝導率の向上が確認できた。
処理温度     密 度        熱伝導率
450℃   2.87g/cm   215W/mK
500℃   2.90g/cm   260W/mK
550℃   2.96g/cm   270W/mK
【0046】
図9は、本実施例により製造した複合材料の板状成形体の断面を模式的に示す。同図に示すように、表面は溶射アルミニウム5に覆われて、SiC粒子が露出することはなかった。また、板状成形体の内部において、SiC粒子とアルミニウムとの界面の一部に空隙4が見られた。
【0047】
なお、本実施例においてC*V+M*(1−V)*0.6の値は、2.53g/cmであり、上記した板状成形体の密度は何れもこの値より大きい。
【0048】
(実施例4)
厚さ3mmのキャビティを有する金型に、0.35〜0.85mmの粒度(42〜20mesh)の粒度)のSiC粒子をキャビティ容積の58%の量だけ充填し、同時に金型の下端から真空ポンプによりキャビティ内を真空に吸引した。吸引を続けながら、金型上部より、鋳物用アルミニウムAC3Aの690〜700℃の溶湯を注入し、SiC粒子の間隙にアルミニウムを含浸させた。ここまでは、金型の温度は550℃であり、次に、溶湯を凝固させるために金型温度を530℃にして、3分間保持した。これにより、アルミニウムが流れ出さない程度に冷却されるので、この状態で金型を開いて、板状成形体を取り出した。金型から取り出してすぐにアルミニウムの溶射を両面に行った。溶射したアルミニウムの厚みは片面250μmずつとした。その後、温度を550℃に設定したホットプレスに板を入れ、1000kg/cmの圧力で加圧し、この加圧状態で冷却凝固を行った。そして、冷却凝固した板状成形体について密度および熱伝導率の測定を行った。その結果、密度は2.98g/cm、熱伝導率は275W/mKとなった。
【0049】
図10は、本実施例で製造した複合材料の板状成形体の断面を模式的に示す。同図に示すように、板状成形体の表面は、両側共に0.2mm程度の厚さのアルミニウム溶射層5で覆われており、SiC粒子が表面に露出することはなかった。
【0050】
(実施例5)
上記実施例1の製造条件において、流れ出さない程度に冷却して金型から取り出した直後の板状成形体の両面に、厚さ12μmのアルミニウム箔を積層した。アルミニウム箔の積層は、板状成形体の表面にアルミニウム箔を載せて加熱圧縮することにより行なった。加熱圧縮の条件として、例えば、圧力1000kg/cmのとき温度400℃〜500℃で5分間、圧力60kg/cmのとき温度590〜620℃で5分間等を用いた。
【0051】
こうしてアルミニウム箔を積層した板状成形体について、さらに、熱伝導率を向上させるため、上記実施例1の(1)と同様に、アルミニウムAC3Aが半溶融状態又は軟化状態になる温度450℃、500℃、550℃で1トン/cmの圧力を5分間かけて処理した。その結果、板状成形体の密度および熱伝導率は以下のようになった。
処理温度     密 度        熱伝導率
450℃   2.85g/cm   210W/mK
500℃   2.89g/cm   250W/mK
550℃   2.95g/cm   290W/mK
【0052】
図11は、本実施例により製造した複合材料の板状成形体の断面を模式的に示す。同図に示すように、表面は厚さ約12μmのアルミニウム箔の層に覆われて、SiC粒子が露出することはなかった。また、板状成形体の内部において、SiC粒子とアルミニウムとの界面の一部に空隙4が見られた。
【0053】
(実施例6)
厚さ3mmのキャビティを有する金型と、フラットの金型両方に、厚さ7μmのアルミニウム箔を貼り付け、0.35〜0.85mmの粒度(42〜20mesh)の粒度)のSiC粒子をキャビティ容積の58%の量だけ充填し、同時に金型の下端から真空ポンプによりキャビティ内を真空に吸引した。吸引を続けながら、金型上部より、鋳物用アルミニウムAC3Aの690〜700℃の溶湯を注入し、SiC粒子の間隙にアルミニウムを含浸させた。ここまでは、金型の温度は550℃であり、次に、溶湯を凝固させるために金型温度を530℃にして、3分間保持した。これにより、アルミニウムが流れ出さない程度に冷却されるので、この状態で金型を開いて、板状成形体を取り出した。金型から取り出してすぐに、温度を550℃に設定したホットプレスに板を入れ、1000kg/cmの圧力で加圧し、この加圧状態で冷却凝固を行った。そして、冷却凝固した板状成形体について密度および熱伝導率の測定を行った。その結果、密度は2.90g/cm、熱伝導率は270W/mKとなった。
【0054】
図12は、本実施例で製造した複合材料の板状成形体の断面を模式的に示す。同図に示すように、板状成形体の表面は、両側共に12μm程度の厚さのアルミニウム箔の層で覆われており、SiC粒子が表面に露出することはなかった。
【0055】
(比較例)
実施例1と同様に、厚さ3mmのキャビティを有する金型に、0.35〜0.85mmの粒度のSiC粒子をキャビティ容積の58%の量だけ充填した。そして、実施例1とは異なり、キャビティを吸引することなく、金型上部より鋳物用アルミニウムAC3Aの690〜700℃の溶湯を注入し、SiC粒子の間隙にアルミニウム溶湯を含浸させようとした。しかし、冷却凝固後に金型を開いたところアルミニウムは十分に含浸されていなかった。
【0056】
【発明の効果】
本発明によれば、金属の連続相とセラミック粒子とからなる複合材料の密度を所定の値以上とすることにより、熱伝導率が高い複合材料を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である高熱伝導性複合材料の断面を模式的に示す図である。
【図2】複合材料の製造装置を示す図である。
【図3】表面に金属溶射層を設けた複合材料の断面を模式的に示す図である。
【図4】表面に金属箔の層を設けた複合材料の断面を模式的に示す図である。
【図5】複合材料の密度と熱伝導率との関係を示す図である。
【図6】SiCの充填量と熱伝導率との関係を示す図である。
【図7】実施例1で製造した複合材料の板状成形体の断面を模式的に示す図である。
【図8】実施例2で製造した複合材料の板状成形体の断面を模式的に示す図である。
【図9】実施例3で製造した複合材料の板状成形体の断面を模式的に示す図である。
【図10】実施例4で製造した複合材料の板状成形体の断面を模式的に示す図である。
【図11】実施例5で製造した複合材料の板状成形体の断面を模式的に示す図である。
【図12】実施例6で製造した複合材料の板状成形体の断面を模式的に示す図である。
【符号の説明】
1 複合材料
2 セラミック粒子
3 金属の連続相
10 金型
10a キャビティ
20 注湯部
30 吸引部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is applicable to various types of substrates such as a substrate for heat radiation of a semiconductor such as an MPU and a power module, a housing used for electronic devices such as a small personal computer and a measuring device, a heat sink material, and a disk having good heat radiation characteristics used for a brake of a vehicle. The present invention relates to a high heat conductive composite material suitable for use as a heat dissipation material and a method for producing the same.
[0002]
[Prior art]
The power semiconductor element is driven by a large current and generates a large amount of heat, and requires a heat radiating plate excellent in heat radiation to maintain the element characteristics. In particular, in recent years, miniaturization and weight reduction due to high-density integration and mixed mounting with a control circuit have been promoted, and thus, dissipation of high-density heat flow has become an important issue. For this reason, a heat dissipation board having high thermal conductivity is required.
[0003]
Also, in the field of small personal computers, measuring instruments, and the like, the amount of heat generated by the semiconductor elements increases as the degree of integration of the semiconductor elements increases, and the structure tends to be difficult to dissipate heat due to the downsizing of the devices. For this reason, there is a demand for a heat-radiating substrate having high thermal conductivity for the case and the heat sink material.
[0004]
Further, also in the field of a vehicle brake device, a high heat radiation property is required for a brake disk. Therefore, a substrate having high thermal conductivity is also required in this field.
[0005]
[Problems to be solved by the invention]
As described above, substrates having high thermal conductivity are required in various fields, and conventionally, substrates and SiC / Al-based composite materials have been proposed. However, the metal plate has a problem that the coefficient of thermal expansion is large, and the SiC / Al-based composite material has a problem that a sufficiently high thermal conductivity is not obtained.
[0006]
Conventionally, SiC / Al-based composite materials include a method of dispersing SiC powder in molten aluminum, a method of forming SiC particles and aluminum or aluminum alloy particles by adding a binder or a sintering aid, and then sintering. There is. It is considered that the reason why a sufficiently high thermal conductivity cannot be obtained by these methods is as follows.
(1) The content of SiC is as low as 20% by volume.
(2) Since the particle size of SiC is very small, 10 μm to 100 μm, the number of interfaces with aluminum is very large, and the thermal conductivity is low.
(3) Residues of the binder and the sintering aid remain at the interface between SiC and aluminum as foreign matters, hindering heat conduction.
(4) A space containing air exists at the interface between SiC and aluminum, which lowers the thermal conductivity.
[0007]
An object of the present invention is to solve the above problems and to provide a composite material having high thermal conductivity and a method for producing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the highly thermally conductive composite material of the present invention contains 40 to 85% by volume of ceramic particles, and a metal forms a continuous phase in a gap between the particles of the ceramic particles. The density is not less than C * V + M * (1-V) * 0.6. Here, C represents the density of the ceramic particles, V represents the volume ratio of the ceramic particles in the composite material, and M represents the density of the metal.
[0009]
In addition, if the surface is covered with the metal so that the ceramic particles are not exposed to the surface of the composite material, voids on the surface are reduced, and the heat radiation effect when the composite material is used as a heat radiation material is reduced. Increase.
[0010]
As the ceramic particles, at least one material selected from SiC, AlN, BN, and carbon can be used.
[0011]
In addition, as the metal, at least one material selected from any of aluminum, aluminum alloy, copper, copper alloy, iron, iron alloy, magnesium, and magnesium alloy can be used.
[0012]
The particle size of the ceramic particles is preferably 0.3 to 2.0 mm.
[0013]
Further, by providing a metal spray layer on at least a part of the surface, or by providing a metal foil layer on at least a part of the surface, voids on the surface of the composite material can be reduced.
[0014]
Further, in the present invention, a filling step of filling ceramic particles into a cavity formed by a mold by a predetermined volume%, an impregnating step of impregnating a gap between the filled ceramic particles with a molten metal, And a solidifying step of solidifying the molten metal to produce a composite material.
[0015]
In this case, in the impregnation step, the molten metal of the metal may be injected into the cavity while reducing the pressure inside the cavity.
[0016]
Further, by providing at least a part of the mold surface constituting the inner wall of the cavity with a concave and convex portion including a concave portion having such a size that the ceramic particles cannot enter, the ceramic particles are formed on the surface of the manufactured composite material. The surface can be covered with a metal so as not to be exposed on the surface.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a highly thermally conductive composite material 1 according to one embodiment of the present invention. As shown in FIG. 1, the high thermal conductive composite material 1 forms a continuous phase 3 between dispersed ceramic particles 2 with a metal such as aluminum or an aluminum alloy (hereinafter, simply referred to as aluminum) such that there is as little gap as possible. The density of the composite material is C * V + M * (1-V) * 0.6 or more. Here, C represents the density of the ceramic particles, V represents the volume ratio of the ceramic particles in the composite material, and M represents the density of the metal.
[0018]
As the ceramic particles 2, materials such as SiC, AlN, BN, and carbon are used. The particle size of the ceramic particles 2 may be 0.15 mm (100 mesh sieve or more), but a particle size range of about 0.3 mm to 2.0 mm (48 to 49 mesh) is preferable considering the thickness of the product. If the particle size is less than 0.15 mm, the interval between the ceramic particles 2 becomes too small, so that the molten metal does not enter and causes impregnation failure. The ceramic may be a fibrous material in addition to the granular material.
[0019]
Further, as the metal constituting the continuous phase 3, besides aluminum and aluminum alloy, copper, copper alloy, iron, iron alloy, magnesium, and magnesium alloy can also be used.
[0020]
The amount of the ceramic particles 2 is preferably from 40 to 85% by volume. If it is less than 40% by volume, the thermal conductivity of the composite material 1 will not be sufficiently high, and if it exceeds 85% by volume, the strength of the composite material will be insufficient. On the other hand, the amount of the metal is 15 to 60% by volume corresponding to the ceramic particles 2, but the gap is as small as possible so that the density of the composite material is C * V + M * (1-V) * 0.6 or more. It is necessary to insert it. The grounds for this density condition will be described later.
[0021]
As described above, since the ceramic particles 2 having a relatively large particle size are contained in a relatively large amount, the thermal conductivity can be 200 W / mK or more and the linear expansion coefficient can be about 9 to 12 × 10 −6 .
[0022]
When the density of the composite material 1 is lower than C * V + M * (1-V) * 0.6, the number of voids inside or on the surface of the composite material increases, and these voids impair the thermal conductivity, thereby improving the thermal conductivity. A complex material cannot be obtained.
[0023]
More preferably, the ceramic particles 2 are not exposed on the surface of the composite material. For this purpose, grooves smaller than the ceramic particles are provided vertically and horizontally on the inner wall of the cavity of the molding die for the composite material 1 described later to form a citron texture so that only the molten aluminum flows into the grooves. Alternatively, the surface of the composite material 1 can be covered with aluminum. By doing so, the voids on the surface of the composite material 1 can be reduced, and the thermal conductivity can be improved. In addition, the density of the composite material 1 increases as the number of voids decreases.
[0024]
The composite material 1 can be manufactured by an apparatus as shown in FIG. As shown in the figure, this device is composed of a mold 10, a pouring section 20, and a suction section 30. The mold 10 has a cavity 10a formed between the plate-like bodies 11, 12, the pouring section 20 has a runner 21 communicating with the upper end of the cavity 10a, and the lower end of the cavity 10a is operated by a vacuum pump P. It communicates with the vacuum box 31 to be sucked.
[0025]
The cavity 10a of the mold 10 is filled with ceramic particles 2 having a particle size of 0.15 mm or more by 40% by volume or more of the cavity space. Next, the interior of the cavity 10a is evacuated by the vacuum pump P to eliminate air in the gap between the ceramic particles, and a molten metal of aluminum is poured from the runner 21 to impregnate the molten metal into the gap between the ceramic particles. Solidifies the melt. In the solidification process, when the molten metal is in a semi-solidified state, the molten metal is solidified by applying a sufficient pressure so that the density of the formed composite material is C * V + M * (1-V) * 0.6 or more. As another method, the molten aluminum may be simultaneously pressurized while the molten aluminum is being injected.
[0026]
When the density of the composite material does not satisfy the above conditions due to vacuum voids generated at the interface between the ceramic particles and aluminum by performing normal solidification, it is effective to perform the treatment by the following method.
(1) The density of the composite material is increased by heating the composite material to a temperature at which aluminum is in a semi-molten state and applying pressure to fill the voids with aluminum.
(2) Extruding the composite material at a temperature at which aluminum softens. During extrusion, the softened aluminum fills the voids in the vacuum, thereby increasing the density of the composite material.
(3) Hot rolling the composite material at a temperature at which aluminum softens.
(4) Hot forging the composite material at a temperature at which aluminum softens.
[0027]
Here, a method such as heater heating or high-frequency induction heating can be used for heating the composite material.
[0028]
In any of the above methods (1) to (4), the particle size of the ceramic particles can be increased to 0.15 mm or more. Further, the content can be 40% by volume or more. Furthermore, nothing needs to be used except for the ceramic particles and aluminum. Finally, voids generated at the interface between the ceramic particles and aluminum are removed, and the density of the composite material can be increased to C * V + M * (1-V) * 0.6 or more. This enables the production of a composite material having high thermal conductivity.
[0029]
As the molten aluminum, a mixture of ceramic particles mixed with molten aluminum and stirred is used, whereby the content of the ceramic particles can be further increased. As a result, the thermal conductivity is improved. Further, in order to improve the wettability between the ceramic particles and aluminum, the ceramic particles may be plated with nickel or the like.
[0030]
Further, as shown in FIG. 3, by providing the metal sprayed layer 5 on the surface of the composite material 1, it is possible to prevent a decrease in thermal conductivity due to voids near the surface of the composite material. The sprayed layer can be formed by spraying a molten metal, followed by heating and compression. As the metal to be sprayed, it is effective to use a metal having good thermal conductivity, such as aluminum, an aluminum alloy, copper, zinc, and silver.
[0031]
Further, instead of metal spraying on the surface, as shown in FIG. 4, a metal foil 6 is laminated on the surface of the composite material 1 to prevent a decrease in thermal conductivity due to voids near the surface of the composite material. You can also. The lamination of the metal foil can be performed by placing the metal foil on the surface of the composite material 1 and heating and compressing it. It is effective to use a metal foil having good thermal conductivity such as an aluminum foil and a copper foil as the metal foil.
[0032]
As described above, when metal is sprayed on the surface or when a metal foil layer is provided, the ceramic particles are exposed to the surface even if the inner wall of the mold does not have a yuzu skin pattern in which small grooves are provided vertically and horizontally. Therefore, it is possible to reduce the manufacturing cost of the mold.
[0033]
The condition that the density of the composite material is C * V + M * (1-V) * 0.6 or more was found by the following verification experiment.
[0034]
In the apparatus shown in FIG. 2, SiC particles having a particle size of 0.35 to 0.85 mm (42 to 20 mesh) were filled in an amount of 59% of the cavity volume. Next, various samples were prepared by filling the gaps (41% by volume) of the SiC particles with aluminum while changing the filling amount. And about each sample, the density and the thermal conductivity were measured. The measurement of the thermal conductivity in this verification experiment and each of the following examples was performed by a laser flash method. As a result, a relationship between the density and the thermal conductivity as shown in FIG. 5 is obtained.
Y = 590.87 * X-1497 (X: density, Y: thermal conductivity)
was gotten.
[0035]
The relationship between the density X of the sample and the aluminum filling rate A is expressed by the following equation.
X = C * V + M * (1-V) * A
Here, C: density of ceramic SiC = 3.2
V: Filling amount of SiC = 59% by volume
M: density of aluminum AC3A = 2.66
It is.
[0036]
Therefore,
X = 1.096 * A + 1.888
Was obtained and substituted into the above empirical formula to obtain Y = 644.4A-381.4.
Is obtained. FIG. 6 shows a graph of this equation.
[0037]
As shown in FIG. 6, when the filling rate A of aluminum into the gaps of the SiC particles is less than 0.6, the thermal conductivity is calculated to be 0 or less. Therefore, the filling rate A needs to be 0.6 or more, and preferably A = 0.8 to 1.0. Since the density of the composite material increases as the filling rate A increases, the condition that the density of the composite material is C * V + M * (1-V) * 0.6 or more is obtained.
[0038]
【Example】
(Example 1)
A mold having a cavity having a thickness of 3 mm is filled with SiC particles having a grain size of 0.35 to 0.85 mm (42 to 20 mesh) in an amount of 56% of the cavity volume, and at the same time, a vacuum pump is supplied from the lower end of the mold. Evacuated the inside of the cavity to a vacuum. While continuing the suction, a molten aluminum of AC3A for casting at 690 to 700 ° C. was injected from the upper part of the mold to impregnate the gap between the SiC particles with the molten aluminum. Up to this point, the temperature of the mold was 550 ° C., and then the mold temperature was kept at 530 ° C. for 3 minutes to solidify the molten metal. As a result, the aluminum was cooled to such an extent that the aluminum did not flow out. In this state, the mold was opened, the plate-shaped formed body of the composite material was taken out, and completely solidified at room temperature.
[0039]
The density and thermal conductivity of this plate-like molded product were measured. As a result, the density of the composite material was 2.76 g / cm 3 , and the thermal conductivity was 152 W / mK.
[0040]
Further, the following treatment was performed to improve the thermal conductivity.
(1) A pressure of 1 ton / cm 2 was applied for 5 minutes at a temperature of 450 ° C., 500 ° C., and 550 ° C. at which the aluminum AC3A was in a semi-molten state or a softened state. As a result, the density and the thermal conductivity of the plate-shaped molded body were as follows, and it was confirmed that the density and the thermal conductivity were increased.
Processing temperature Density Thermal conductivity 450 ° C 2.85 g / cm 3 210 W / mK
500 ° C 2.90 g / cm 3 250 W / mK
550 ° C. 2.98 g / cm 3 270 W / mK
(2) The plate-like molded body was heated to 450 ° C. in a furnace, taken out of the furnace, and rolled to a thickness of 1.3 mm at a rolling reduction of 10%. As a result, the density was 2.80 g / cm 3 and the thermal conductivity was 205 W / mK, again confirming an increase in density and an improvement in thermal conductivity.
[0041]
FIG. 7 schematically shows a cross section of a plate-shaped formed body of a composite material manufactured in this example. As shown in the figure, the structure was such that the SiC particles 2 were exposed in some places on the surface of the plate-like molded body. In addition, voids 4 were found in a part of the interface between the SiC particles and aluminum inside the plate-like molded body.
[0042]
In this example, the value of C * V + M * (1-V) * 0.6 is 2.49 g / cm 3 , and the density of each of the plate-shaped compacts is larger than this value.
[0043]
(Example 2)
SiC particles having a particle size of 0.35 to 0.85 mm (particle size of 42 to 20 mesh) were placed in a mold having a cavity with a thickness of 3 mm and irregularities of a yuzu skin pattern having fine vertical and horizontal grooves formed on the surface. The cavity was filled by an amount of 58% of the volume of the cavity, and at the same time, the inside of the cavity was evacuated from the lower end of the mold by a vacuum pump. While continuing the suction, a melt of 690-700 ° C. of aluminum for casting AC3A was injected from the upper part of the mold to impregnate the gaps between the SiC particles with aluminum. Up to this point, the temperature of the mold was 550 ° C., and then the mold temperature was set to 530 ° C. for solidification of the molten metal, and held for 3 minutes. As a result, the aluminum was cooled to such an extent that the aluminum did not flow out. In this state, the mold was opened and the plate-like molded body was taken out. Immediately after being taken out of the mold, the plate was put into a hot press set to a temperature of 550 ° C., pressurized at a pressure of 1000 kg / cm 2 , and cooled and solidified while keeping the pressure. Then, the density and the thermal conductivity were measured for the plate-shaped compact that had been cooled and solidified. As a result, the density was 2.95 g / cm 3 and the thermal conductivity was 250 W / mK.
[0044]
FIG. 8 schematically shows a cross section of a plate-shaped formed body of a composite material manufactured in this example. As shown in the figure, the surface of the plate-shaped compact was covered with a layer of aluminum alone having a thickness of about 0.5 mm on both sides, and the SiC particles were not exposed on the surface. This is because aluminum entered between the mold and the SiC particles by using the mold having a yuzu skin pattern on the surface. Since the SiC particles are not exposed to the surface and the surface irregularities are reduced, the heat dissipation characteristics of the composite material as a heat dissipation material are improved.
[0045]
(Example 3)
Aluminum was sprayed on both surfaces of the plate-like molded body manufactured under the same conditions as in Example 1 above. The thickness of the sprayed aluminum was 250 μm on each side.
The density and the thermal conductivity of this plate-like molded body were measured. As a result, the density was 2.78 g / cm 3 and the thermal conductivity was 160 W / mK. Further, in order to improve the thermal conductivity, as in the case of (1) in Example 1, the pressure at which the aluminum AC3A becomes a semi-molten state or a softened state is 450 ° C., 500 ° C., 550 ° C., and 1 ton / cm 2 . Was treated for 5 minutes. As a result, the density and the thermal conductivity of the plate-shaped molded body were as follows, and it was confirmed that the density and the thermal conductivity were increased.
Processing temperature Density Thermal conductivity 450 ° C 2.87 g / cm 3 215 W / mK
500 ° C. 2.90 g / cm 3 260 W / mK
550 ° C. 2.96 g / cm 3 270 W / mK
[0046]
FIG. 9 schematically illustrates a cross section of a plate-shaped molded product of a composite material manufactured according to this example. As shown in the figure, the surface was covered with sprayed aluminum 5 and the SiC particles were not exposed. In addition, voids 4 were found in a part of the interface between the SiC particles and aluminum inside the plate-like molded body.
[0047]
In this example, the value of C * V + M * (1-V) * 0.6 is 2.53 g / cm 3 , and the density of each of the above-mentioned plate-shaped moldings is larger than this value.
[0048]
(Example 4)
A mold having a cavity with a thickness of 3 mm is filled with SiC particles having a particle size of 0.35 to 0.85 mm (particle size of 42 to 20 mesh) by an amount of 58% of the cavity volume, and at the same time, vacuum is applied from the lower end of the mold. The inside of the cavity was evacuated to a vacuum by a pump. While continuing the suction, a melt of 690-700 ° C. of aluminum for casting AC3A was injected from the upper part of the mold to impregnate the gaps between the SiC particles with aluminum. Up to this point, the temperature of the mold was 550 ° C., and then the mold temperature was set to 530 ° C. for solidification of the molten metal, and held for 3 minutes. As a result, the aluminum was cooled to such an extent that the aluminum did not flow out. In this state, the mold was opened and the plate-like molded body was taken out. Immediately after removal from the mold, aluminum was sprayed on both sides. The thickness of the sprayed aluminum was 250 μm on each side. Thereafter, the plate was placed in a hot press set at a temperature of 550 ° C., and pressurized at a pressure of 1000 kg / cm 2 , and cooled and solidified in this pressurized state. Then, the density and the thermal conductivity were measured for the plate-shaped compact that had been cooled and solidified. As a result, the density was 2.98 g / cm 3 and the thermal conductivity was 275 W / mK.
[0049]
FIG. 10 schematically shows a cross section of a plate-shaped formed body of the composite material manufactured in this example. As shown in the figure, the surface of the plate-shaped molded body was covered with the aluminum sprayed layer 5 having a thickness of about 0.2 mm on both sides, and the SiC particles were not exposed on the surface.
[0050]
(Example 5)
Under the production conditions of Example 1 described above, a 12-μm-thick aluminum foil was laminated on both surfaces of the plate-like molded body immediately after being cooled to such a degree that it did not flow out and taken out of the mold. The lamination of the aluminum foil was performed by placing the aluminum foil on the surface of the plate-shaped compact and heating and compressing it. As a condition of heating and compression, for example, 5 minutes at a temperature 400 ° C. to 500 ° C. when the pressure 1000 kg / cm 2, using 5 minutes, etc. at a temperature five hundred and ninety to six hundred twenty ° C. when the pressure 60 kg / cm 2.
[0051]
In order to further improve the thermal conductivity of the plate-shaped formed body on which the aluminum foils are laminated in this manner, the temperature at which the aluminum AC3A becomes a semi-molten state or a softened state is 450 ° C. and 500 ° C., similarly to (1) of Example 1 above. At 550 ° C., a pressure of 1 ton / cm 2 was applied for 5 minutes. As a result, the density and thermal conductivity of the plate-shaped molded product were as follows.
Processing temperature Density Thermal conductivity 450 ° C 2.85 g / cm 3 210 W / mK
500 ° C. 2.89 g / cm 3 250 W / mK
550 ° C. 2.95 g / cm 3 290 W / mK
[0052]
FIG. 11 schematically shows a cross section of a plate-shaped formed body of a composite material manufactured according to this example. As shown in the figure, the surface was covered with a layer of aluminum foil having a thickness of about 12 μm, and the SiC particles were not exposed. In addition, voids 4 were found in a part of the interface between the SiC particles and aluminum inside the plate-like molded body.
[0053]
(Example 6)
An aluminum foil having a thickness of 7 μm is attached to both a mold having a cavity having a thickness of 3 mm and a flat mold, and SiC particles having a particle size of 0.35 to 0.85 mm (particle size of 42 to 20 mesh) are formed in the cavity. Filling was performed by 58% of the volume, and at the same time, the inside of the cavity was evacuated from the lower end of the mold by a vacuum pump. While continuing the suction, a melt of 690-700 ° C. of aluminum for casting AC3A was injected from the upper part of the mold to impregnate the gaps between the SiC particles with aluminum. Up to this point, the temperature of the mold was 550 ° C., and then the mold temperature was set to 530 ° C. for solidification of the molten metal, and held for 3 minutes. As a result, the aluminum was cooled to such an extent that the aluminum did not flow out. In this state, the mold was opened and the plate-like molded body was taken out. Immediately after being taken out of the mold, the plate was put into a hot press set to a temperature of 550 ° C., pressurized at a pressure of 1000 kg / cm 2 , and cooled and solidified in this pressurized state. Then, the density and the thermal conductivity were measured for the plate-shaped compact that had been cooled and solidified. As a result, the density was 2.90 g / cm 3 and the thermal conductivity was 270 W / mK.
[0054]
FIG. 12 schematically shows a cross section of a plate-shaped formed body of a composite material manufactured in this example. As shown in the figure, the surface of the plate-shaped formed body was covered with an aluminum foil layer having a thickness of about 12 μm on both sides, and the SiC particles were not exposed on the surface.
[0055]
(Comparative example)
As in Example 1, a mold having a cavity having a thickness of 3 mm was filled with SiC particles having a particle size of 0.35 to 0.85 mm in an amount of 58% of the cavity volume. Then, unlike in Example 1, a molten aluminum of AC3A for casting at 690 to 700 ° C. was injected from the upper part of the mold without sucking the cavity, so that the gap between the SiC particles was impregnated with the molten aluminum. However, when the mold was opened after cooling and solidification, the aluminum was not sufficiently impregnated.
[0056]
【The invention's effect】
According to the present invention, a composite material having a high thermal conductivity can be obtained by setting the density of a composite material composed of a metal continuous phase and ceramic particles to a predetermined value or more.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a cross section of a high thermal conductive composite material according to an embodiment of the present invention.
FIG. 2 is a diagram showing an apparatus for manufacturing a composite material.
FIG. 3 is a diagram schematically showing a cross section of a composite material provided with a metal sprayed layer on the surface.
FIG. 4 is a diagram schematically showing a cross section of a composite material having a surface provided with a metal foil layer.
FIG. 5 is a diagram showing the relationship between the density of a composite material and thermal conductivity.
FIG. 6 is a diagram showing a relationship between a filling amount of SiC and a thermal conductivity.
FIG. 7 is a diagram schematically showing a cross section of a plate-shaped molded product of a composite material manufactured in Example 1.
FIG. 8 is a diagram schematically showing a cross section of a plate-shaped molded product of a composite material manufactured in Example 2.
FIG. 9 is a view schematically showing a cross section of a plate-shaped formed body of a composite material manufactured in Example 3.
FIG. 10 is a diagram schematically showing a cross section of a plate-shaped molded product of a composite material manufactured in Example 4.
FIG. 11 is a view schematically showing a cross section of a plate-shaped formed body of a composite material manufactured in Example 5.
FIG. 12 is a view schematically showing a cross section of a plate-shaped formed body of a composite material manufactured in Example 6.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 composite material 2 ceramic particles 3 continuous phase of metal 10 mold 10 a cavity 20 pouring section 30 suction section

Claims (19)

高熱伝導性の複合材料であって、
セラミック粒子を40〜85容積%含み、前記セラミック粒子の粒子間の間隙に金属が連続相を形成し、当該複合材料の密度がC*V+M*(1−V)*0.6以上であることを特徴とする複合材料。ただし、Cは前記セラミック粒子の密度、Vは当該複合材料の中で前記セラミック粒子の占める容積割合、Mは前記金属の密度を表す。
A composite material having high thermal conductivity,
40 to 85% by volume of ceramic particles, metal forms a continuous phase in the gaps between the ceramic particles, and the density of the composite material is C * V + M * (1-V) * 0.6 or more A composite material characterized by the above. Here, C represents the density of the ceramic particles, V represents the volume ratio of the ceramic particles in the composite material, and M represents the density of the metal.
前記セラミック粒子が当該複合材料の表面に露出しないように表面が前記金属で覆われていることを特徴とする複合材料。A composite material, wherein the surface is covered with the metal so that the ceramic particles are not exposed on the surface of the composite material. 前記セラミック粒子はSiC、AlN、BN、カーボンのうちから選ばれた少なくとも一種類の材料であることを特徴とする請求項1または2記載の複合材料。The composite material according to claim 1, wherein the ceramic particles are at least one material selected from SiC, AlN, BN, and carbon. 前記金属は、アルミニウム、アルミニウム合金、銅、銅合金、鉄、鉄合金、マグネシウム、マグネシウム合金の何れかから選ばれた少なくとも一種類の材料であることを特徴とする請求項1〜3のうち何れか1項記載の複合材料。The metal according to any one of claims 1 to 3, wherein the metal is at least one material selected from the group consisting of aluminum, aluminum alloy, copper, copper alloy, iron, iron alloy, magnesium, and magnesium alloy. The composite material according to claim 1. 前記セラミック粒子は密度3.2g/cmのSiCであり、前記金属は、密度が2.66のアルミニウム合金であり、当該複合体の密度は2.24以上であることを特徴とする請求項1または2記載の複合材料。The ceramic particles are SiC having a density of 3.2 g / cm 3 , the metal is an aluminum alloy having a density of 2.66, and the composite has a density of 2.24 or more. 3. The composite material according to 1 or 2. 前記セラミック粒子の粒度は0.3〜2.0mmであることを特徴とする請求項1〜5のうち何れか1項記載の複合材料。The composite material according to claim 1, wherein the ceramic particles have a particle size of 0.3 to 2.0 mm. 表面の少なくとも一部に金属溶射層を設けたことを特徴とする請求項1〜6のうち何れか1項記載の複合材料。The composite material according to any one of claims 1 to 6, wherein a metal spray layer is provided on at least a part of the surface. 前記金属溶射層はアルミニウム溶射層であることを特徴とする請求項7記載の複合材料。The composite material according to claim 7, wherein the metal sprayed layer is an aluminum sprayed layer. 表面の少なくとも一部に金属箔の層を設けたことを特徴とする請求項1〜6のうち何れか1項記載の複合材料。The composite material according to any one of claims 1 to 6, wherein a metal foil layer is provided on at least a part of the surface. 前記金属箔はアルミニウム箔であることを特徴とする請求項9記載の複合材料。The composite material according to claim 9, wherein the metal foil is an aluminum foil. 金型により形成されたキャビティにセラミック粒子を所定の容積%の量だけ充填する充填工程と、該充填したセラミック粒子の間隙に金属の溶湯を含浸させる含浸工程と、該含浸させた溶湯を凝固させる凝固工程とを含むことを特徴とする複合材料の製造方法。A filling step of filling the cavities formed by the mold with ceramic particles by a predetermined volume%, an impregnating step of impregnating a molten metal of metal in gaps between the filled ceramic particles, and solidifying the impregnated molten metal A method for producing a composite material, comprising: a solidification step. 前記充填工程では、前記セラミック粒子をキャビティの容積に対して40〜85容積%の量だけ充填することを特徴とする請求項11記載の複合材料の製造方法。The method according to claim 11, wherein in the filling step, the ceramic particles are filled in an amount of 40 to 85% by volume based on the volume of the cavity. 前記含浸工程では、前記キャビティの内部を減圧させながら、当該キャビティに前記金属の溶湯を注入することを特徴とする請求項11または12記載の複合材料の製造方法。The method for producing a composite material according to claim 11, wherein in the impregnating step, the molten metal is injected into the cavity while reducing the pressure inside the cavity. 前記キャビティの内壁を構成する金型面の少なくとも一部に、前記セラミック粒子が侵入できない程度の寸法の凹みを含んだ凹凸部を設けたことを特徴とする請求項11〜13のうち何れか1項記載の複合材料の製造方法。14. An uneven part including a recess having a size such that said ceramic particles cannot enter is provided on at least a part of a mold surface forming an inner wall of said cavity. The method for producing a composite material according to the above item. 前記凝固工程では、前記溶湯に圧力をかけた状態で凝固させることを特徴とする請求項11〜14のうち何れか1項記載の複合材料の製造方法。The method for producing a composite material according to any one of claims 11 to 14, wherein in the solidification step, the molten metal is solidified while applying pressure. 前記凝固工程の後、表面に金属溶射を行うことを特徴とする請求項11〜15のうち何れか1項記載の複合材料の製造方法。The method for producing a composite material according to any one of claims 11 to 15, wherein metal spraying is performed on a surface after the solidification step. 前記凝固工程の後、表面に金属箔の層を積層することを特徴とする請求項11〜15のうち何れか1項記載の複合材料の製造方法。The method according to any one of claims 11 to 15, wherein a metal foil layer is laminated on the surface after the solidification step. 前記充填工程の前に、前記金型のキャビティ内壁面に金属箔を貼付しておくことを特徴とする請求項11〜15のうち何れか1項記載の複合材料の製造方法。The method for manufacturing a composite material according to any one of claims 11 to 15, wherein a metal foil is attached to an inner wall surface of the cavity of the mold before the filling step. 請求項10〜18のうち何れか1項記載の方法で製造した複合材料を、前記金属が半溶融状態になる温度まで加熱しながら圧力をかける工程を含むことを特徴とする複合材料の製造方法。19. A method for producing a composite material, comprising applying pressure while heating the composite material produced by the method according to any one of claims 10 to 18 to a temperature at which the metal is in a semi-molten state. .
JP2002255128A 2002-08-30 2002-08-30 Composite material with high thermal conductivity, and manufacturing method therefor Withdrawn JP2004091862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255128A JP2004091862A (en) 2002-08-30 2002-08-30 Composite material with high thermal conductivity, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255128A JP2004091862A (en) 2002-08-30 2002-08-30 Composite material with high thermal conductivity, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004091862A true JP2004091862A (en) 2004-03-25

Family

ID=32060727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255128A Withdrawn JP2004091862A (en) 2002-08-30 2002-08-30 Composite material with high thermal conductivity, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004091862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077755A1 (en) * 2005-01-20 2006-07-27 A.L.M.T.Corp. Member for semiconductor device and method for manufacture thereof
WO2008146646A1 (en) * 2007-05-29 2008-12-04 A.L.M.T.Corp. Heat spreader for semiconductor device and method for manufacturing the heat spreader
JP2011049437A (en) * 2009-08-28 2011-03-10 Denki Kagaku Kogyo Kk Led mounting structure, method of manufacturing the same, and substrate for mounting led

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077755A1 (en) * 2005-01-20 2006-07-27 A.L.M.T.Corp. Member for semiconductor device and method for manufacture thereof
US7749430B2 (en) 2005-01-20 2010-07-06 A.L.M.T. Corp. Member for semiconductor device and production method thereof
JP4913605B2 (en) * 2005-01-20 2012-04-11 株式会社アライドマテリアル Method for manufacturing member for semiconductor device
WO2008146646A1 (en) * 2007-05-29 2008-12-04 A.L.M.T.Corp. Heat spreader for semiconductor device and method for manufacturing the heat spreader
JP2008300450A (en) * 2007-05-29 2008-12-11 Allied Material Corp Heat spreader for semiconductor device, and manufacturing method for the heat spreader
JP2011049437A (en) * 2009-08-28 2011-03-10 Denki Kagaku Kogyo Kk Led mounting structure, method of manufacturing the same, and substrate for mounting led

Similar Documents

Publication Publication Date Title
US20170287810A1 (en) Heat radiating member and method for producing the same
CN105886849B (en) Plate the preparation method of W diamond/aluminum composites
CN104962771B (en) Preparation method of directional porous SiC and diamond reinforced Al base composite material
CN108251733A (en) A kind of preparation method of high heat-conductive diamond/carbon/carbon-copper composite material
WO2010027504A1 (en) Machinable metal/diamond metal matrix composite compound structure and method of making same
CN105506355B (en) Diamond/copper gradient composite material and preparation method thereof
JP2000336438A (en) Metal-ceramics composite material and its manufacture
JPH11277217A (en) Substrate for heat radiation, and its manufacture
CN1291419C (en) SiC/Cu composite materrial and preparation material
JP2001105124A (en) Heat radiation substrate for semi conductor device
JP2004091862A (en) Composite material with high thermal conductivity, and manufacturing method therefor
JP2003100968A (en) Heat radiation member and its manufacturing method
JPH11307701A (en) Heat sink and manufacture therefor
JP2003253371A (en) Composite material with high thermal conductivity and manufacturing method therefor
JP3913130B2 (en) Aluminum-silicon carbide plate composite
JP2003078087A (en) Exoergic composite substrate with fin for semiconductor element
KR101891405B1 (en) Metal foam and manufacturing method of the metal foam
JP2002322531A (en) High heat conductivity composite material and method for producing the same
KR102064053B1 (en) Manufacturing method of heat conductive particle with mixing metal and non-metal
JP4014433B2 (en) Method for producing aluminum alloy-silicon carbide composite and structure used therefor
JPS59143347A (en) Manufacture of material for semiconductor substrate
JP2005240057A (en) Network composite material and its manufacturing method
JP2003188324A (en) Heat dissipating base material, method of manufacturing the same, and semiconductor device containing the same
JP3871421B2 (en) Complex and heat sink using it
JP4265247B2 (en) High heat dissipation alloy, heat dissipation plate, package for semiconductor element, and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20040924

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

RD02 Notification of acceptance of power of attorney

Effective date: 20050722

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050722

A131 Notification of reasons for refusal

Effective date: 20081014

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

A521 Written amendment

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A821

A761 Written withdrawal of application

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A761