JP2003243873A - Flame retardant gasket for shielding electromagnetic wave - Google Patents

Flame retardant gasket for shielding electromagnetic wave

Info

Publication number
JP2003243873A
JP2003243873A JP2002040516A JP2002040516A JP2003243873A JP 2003243873 A JP2003243873 A JP 2003243873A JP 2002040516 A JP2002040516 A JP 2002040516A JP 2002040516 A JP2002040516 A JP 2002040516A JP 2003243873 A JP2003243873 A JP 2003243873A
Authority
JP
Japan
Prior art keywords
flame retardant
resin
metal
electromagnetic wave
gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002040516A
Other languages
Japanese (ja)
Inventor
Susumu Takagi
進 高木
Sachiyo Sakakawa
幸代 坂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2002040516A priority Critical patent/JP2003243873A/en
Publication of JP2003243873A publication Critical patent/JP2003243873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasket Seals (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasket for shielding an electromagnetic wave having an excellent flame retardance without generating a harmful halogen gas at a combustion time, and without using an antimony called to be harmful for a human body in the gasket having the excellent flame retardance and electromagnetic wave shielding properties. <P>SOLUTION: The gasket for shielding the electromagnetic wave comprises a foamed material having the flame retardance as a core, and a metal-coated cloth 2 having a resin layer 1 obtained by adding a flame retardant agent to at least one surface of the cloth by using a halogen flame retardant agent, an antimony flame retardant agent and at least a phosphorus compound flame retardant agent, and an unexpanded thermal expansible graphite except a flame retardant agent containing an allotrope of the phosphorus such as a red phosphorus and laminated on the cloth 2 as the agent on the outer surface of the core and wound on the core. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、難燃性電磁波シー
ルド用ガスケットに関し、燃焼時に有害なハロゲン系ガ
スを発生せず、また、人体に悪影響が有ると言われてい
るアンチモンを用いない、優れた難燃性を有する電磁波
シールド用ガスケットに関するものである。
TECHNICAL FIELD The present invention relates to a flame-retardant electromagnetic wave shielding gasket, which does not generate a harmful halogen-based gas at the time of combustion and does not use antimony which is said to have a bad effect on the human body, and is excellent. And a gasket for electromagnetic wave shielding having flame retardancy.

【0002】[0002]

【従来の技術】近年、家電製品だけでなく、パソコンや
携帯電話、テレビゲームなど、各種情報端末などの普及
に伴い、これら機器から洩れる電磁波による、他のエレ
クトロニクス機器の誤動作や、使用者の健康への影響が
危惧されている。これらの障害を防止するために、優れ
た電磁波遮蔽性能を有する電磁波シールド材が求められ
ている。更に、製造物責任法(PL法)等の施行によ
り、家電製品だけでなく、これらの電磁波シールド材に
対しても、難燃性能が求められてきており、その中で
も、UL規格の難燃性規格を満たすものが求められてき
ている。
2. Description of the Related Art In recent years, along with the spread of not only home electric appliances but also various information terminals such as personal computers, mobile phones, and video games, electromagnetic waves leaking from these devices cause malfunctions of other electronic devices and health of users. There is concern about the impact on. In order to prevent these obstacles, an electromagnetic wave shielding material having excellent electromagnetic wave shielding performance is required. Further, due to the enforcement of the Product Liability Law (PL Law) and the like, flame retardant performance is required not only for home electric appliances but also for these electromagnetic wave shielding materials. There is a demand for products that meet the standards.

【0003】一方、環境汚染問題は地球規模で論議され
るようになり、燃焼時ばかりでなく、廃棄処分時の環境
汚染防止性も要求されるようになってきている。つま
り、焼却したときにダイオキシン等の有害ガスが発生し
ないことはもちろん、電磁波シールド材を廃棄物として
処分した場合、廃棄物中の有害物質が水質や土壌を汚染
しないようにすることも求められるようになってきてい
る。そのため、電磁波シールド材に用いられる難燃剤に
関しても、ダイオキシンの発生の虞のあるハロゲン系難
燃剤、人体に有害とされるアンチモンを用いたアンチモ
ン系難燃剤、或いは、毒性が強かったり、燃焼時にホス
フィンガスなどの発生する赤リンなどのリン同素体の難
燃剤の使用が問題となってきている。
On the other hand, the problem of environmental pollution has come to be discussed on a global scale, and it is required to prevent environmental pollution not only at the time of combustion but also at the time of disposal. In other words, when incinerated, harmful gases such as dioxins are not generated, and when the electromagnetic wave shielding material is disposed of as waste, it is also required that harmful substances in the waste do not contaminate water quality or soil. Is becoming. Therefore, regarding the flame retardant used for the electromagnetic wave shielding material, a halogen-based flame retardant that may generate dioxin, an antimony-based flame retardant that uses antimony that is harmful to the human body, or is highly toxic or phosphine during combustion. The use of flame retardants of phosphorus allotropes such as red phosphorus, which generates gas, has become a problem.

【0004】上述の問題を解決する手段として、特開2
001−111285号公報では難燃性を有するメラミ
ン樹脂から成る発泡体を芯材とし、この芯材の外表面に
難燃剤を含有する樹脂層を成形し、該樹脂層に金属メッ
キ層を成形することで高度な難燃性を有する電磁波シー
ルド用ガスケットを得ることが開示されている。しか
し、この方法で得られた電磁波シールド用ガスケット
は、難燃剤を有する樹脂層が耐摩擦性や耐摩耗性に欠
け、金属メッキ層が剥離しやすいため、難燃性や電磁波
シールド性の低下がおこりやすい等、電磁波シールド用
ガスケットとしての耐久性に問題がある。更に、製造工
程数が多く、加工時間もかかる為、生産性や経済性にも
乏しい。
As a means for solving the above-mentioned problems, Japanese Patent Laid-Open No.
According to Japanese Patent Laid-Open No. 001-11285, a foam made of a melamine resin having flame retardancy is used as a core material, a resin layer containing a flame retardant is formed on the outer surface of the core material, and a metal plating layer is formed on the resin layer. It is disclosed that a gasket for electromagnetic wave shielding having high flame retardancy is obtained. However, the gasket for electromagnetic wave shielding obtained by this method has a resin layer having a flame retardant lacking in abrasion resistance and abrasion resistance, and the metal plating layer is easily peeled off, resulting in deterioration of flame retardancy and electromagnetic wave shielding property. There is a problem with durability as an electromagnetic shield gasket, such as easy occurrence. Furthermore, since the number of manufacturing steps is large and the processing time is long, the productivity and economy are poor.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述の事情
を背景としてなされたもので、その目的は、燃焼時に有
害ガス発生の虞があるハロゲン系化合物、及び人体に有
害とされるアンチモン等を用いずに、優れた難燃性を有
する電磁波シールドガスケットを得ることを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its object is to provide a halogen-based compound which may generate a harmful gas during combustion, and an antimony which is harmful to a human body. It is intended to obtain an electromagnetic wave shield gasket having excellent flame retardancy without using.

【0006】[0006]

【課題を解決する手段】本発明は、前記課題を解決する
ことを目的とし鋭意検討を重ねた結果なされたものであ
り、下記の構成よりなるものである。すなわち、本発明
は第一に、難燃性を有する合成樹脂発泡体から成る芯材
の外側を、少なくともリン系化合物難燃剤と未膨張の熱
膨張性黒鉛を含む樹脂層で積層された金属被覆布帛で回
捲して成る電磁波シールド用ガスケットである。第二
に、リン系化合物難燃剤と未膨張の熱膨張性黒鉛を含む
樹脂層が、金属被覆布帛の少なくとも一方の面に形成さ
れていることを特徴とする第一記載の電磁波シールド用
ガスケットである。第三に、金属被布帛の重量に対し
て、リン系化合物難燃剤が40〜300%、未膨張の熱
膨張性黒鉛が20〜160%含むことを特徴とする第一
乃至二記載の電磁波シールド用ガスケットである。第四
に、リン系化合物難燃剤がポリリン酸アンモニウムであ
ることを特徴とする第一乃至三記載の電磁波シールド用
ガスケットである。
The present invention has been made as a result of intensive studies for the purpose of solving the above problems, and has the following constitution. That is, the present invention is, firstly, a metal coating in which a core material made of a synthetic resin foam having flame retardancy is laminated on the outside with a resin layer containing at least a phosphorus compound flame retardant and unexpanded thermally expansive graphite. It is an electromagnetic wave shielding gasket formed by winding a cloth. Secondly, a resin layer containing a phosphorus-based compound flame retardant and unexpanded thermally expansive graphite, in the electromagnetic shielding gasket according to the first aspect, characterized in that it is formed on at least one surface of the metal-coated cloth. is there. Thirdly, with respect to the weight of the metal cloth, 40 to 300% of phosphorus compound flame retardant and 20 to 160% of unexpanded thermally expansive graphite are contained, and the electromagnetic wave shield according to the first or second aspect. For gasket. Fourthly, there is provided the electromagnetic wave shielding gasket according to the first to third aspects, wherein the phosphorus compound flame retardant is ammonium polyphosphate.

【0007】本発明で芯材として使用する発泡体は、柔
軟で圧縮復元性に富む三次元構造を有する難燃性発泡体
が好ましい。これらの発泡体の例としては、シリコーン
樹脂、メラミン樹脂など難燃性を特徴とする合成樹脂か
ら成る発泡体や、ポリエチレン樹脂、ポリプロピレン樹
脂、ポリウレタン樹脂、ポリエステル樹脂、ポリイミド
樹脂、ポリブタジエン樹脂等に難燃剤を添加した後に発
泡させた発泡体、または、発泡した後に難燃剤を含浸ま
たは、コーティング方や、スプレー法などの方法により
付与させることにより難燃性を付与した発泡体でも良い
が、これらの発泡体の中でも、難燃剤を添加して発泡さ
せたポリウレタン樹脂が、柔軟で圧縮復元性に富み、工
程数も少なく、経済性にも優れるため、好ましく用いら
れる。
The foam used as the core material in the present invention is preferably a flame-retardant foam having a three-dimensional structure which is flexible and rich in compression recovery. Examples of these foams include foams made of silicone resin, melamine resin, and other synthetic resins that are characterized by flame resistance, and polyethylene resin, polypropylene resin, polyurethane resin, polyester resin, polyimide resin, polybutadiene resin, etc. A foam which is foamed after the addition of a flame retardant, or a foam which is impregnated with a flame retardant after foaming or is applied by a coating method or a method such as a spray method may be used. Among the foams, a polyurethane resin foamed by adding a flame retardant is preferably used because it is flexible and rich in compression-restoration, has a small number of steps, and is economical.

【0008】また、用いられる難燃剤は、ハロゲン系難
燃剤やアンチモン系難燃剤やリンの同素体から成る難燃
剤以外の、リン系化合物難燃剤や未膨張の熱膨張性黒鉛
や、その他の、例えば、水酸化マグネシウムや、水酸化
アルミニウムなどの水和金属化合物などの難燃剤が挙げ
られ、これらを併用することも可能であり、特に限定は
されない。
The flame retardant used is not limited to halogen-based flame retardants, antimony-based flame retardants, and flame retardants composed of phosphorus allotrope, but also phosphorus-based compound flame retardants, unexpanded thermally expansive graphite, and the like. Flame retardants such as magnesium hydroxide and hydrated metal compounds such as aluminum hydroxide can be used, and they can be used in combination and are not particularly limited.

【0009】本発明で使用する布帛の形態は、織物、編
物、不織布等が挙げられ特に限定されるものではない。
また、布帛を構成する繊維は、ハロゲン系化合物や酸化
アンチモン、赤リンを含まないポリエステル、ポリアミ
ド、アクリル、ポリオレフィン等の合成繊維や、アセテ
ート等の半合成繊維、レーヨン等の再生繊維、その他の
天然繊維が挙げられるが、加工性と耐久性を考慮すると
ポリエステル繊維が最も好ましい。
The form of the cloth used in the present invention includes woven fabric, knitted fabric and non-woven fabric, and is not particularly limited.
Further, the fibers constituting the cloth are synthetic compounds such as halogen-based compounds, antimony oxide, red phosphorus-free polyester, polyamide, acrylic and polyolefin, semi-synthetic fibers such as acetate, regenerated fibers such as rayon, and other natural fibers. Although fibers may be mentioned, polyester fibers are most preferable in view of processability and durability.

【0010】これらの繊維から成る布帛に対して、金属
被膜の定着を確実にするためには、予め繊維の表面に付
着している糊剤、油剤、ゴミ等の不純物を精練処理によ
り完全に除去することが好ましい。精練処理は従来公知
の方法が用いられ特に限定はされない。
In order to ensure the fixing of the metal coating on the cloth made of these fibers, impurities such as sizing agent, oil agent, dust, etc., which have adhered to the surface of the fiber in advance, are completely removed by a scouring treatment. Preferably. A conventionally known method is used for the scouring treatment and is not particularly limited.

【0011】被覆される金属は、金、銀、銅、亜鉛、ニ
ッケル、およびそれらの合金等が挙げられるが、シール
ド性と製造コストとを考慮すると銅、ニッケルが好まし
い。これらの金属によって形成される被覆層は1層、或
いは2層が好ましい。3層以上にすると金属被覆層が厚
くなり、導電性織物が硬くなったりする虞があり、更
に、加工コストが高くなってしまう。金属被覆層を2層
に積層する場合は、同種の金属を2層に積層しても良
く、また、異なる金属を積層しても良い。これらは、所
望のシールド性や、耐久性を考慮して適宜に設定でき
る。
Examples of the metal to be coated include gold, silver, copper, zinc, nickel, and alloys thereof, but copper and nickel are preferable in view of the shielding property and the manufacturing cost. The coating layer formed of these metals is preferably one layer or two layers. When the number of layers is three or more, the metal coating layer becomes thick, the conductive woven fabric may be hardened, and the processing cost is increased. When the metal coating layer is laminated in two layers, the same kind of metal may be laminated in two layers, or different metals may be laminated. These can be appropriately set in consideration of desired shieldability and durability.

【0012】また、金属被膜形成法は蒸着、スパッタリ
ング、電気メッキ法、無電解メッキ法などが挙げられる
が、形成される金属被膜の均一性及び、生産性の点から
無電解メッキ法、或いは、無電解メッキ法と、電気メッ
キ法の併用が好ましく用いられる。
Further, the metal film forming method includes vapor deposition, sputtering, electroplating method, electroless plating method and the like. In terms of uniformity of the metal film to be formed and productivity, the electroless plating method, or A combination of electroless plating and electroplating is preferably used.

【0013】金属被覆層が形成された布帛に難燃剤を付
与する方法は、難燃剤を分散混合させた樹脂を布帛に付
与する方法が好ましい。用いられる樹脂は、ウレタン樹
脂やアクリル樹脂、エステル樹脂等の合成樹脂が挙げら
れるが、ウレタン樹脂が好ましく用いられる。ウレタン
樹脂は、アクリル樹脂やエステル樹脂に比較して、難燃
性が得やすく、摩擦強度、柔軟性の点で優れている。樹
脂の付与量は60〜400g/m2が好ましく、更に好ま
しくは100〜250g/m2である。この範囲より少な
いと十分な難燃性が得られず、多すぎると風合いが硬く
なり、経済面でも不利である。樹脂の付与法はフローテ
ィング法やナイフコータ法、ロールコータ法等のコーテ
ィング法を用いることができ、特に限定されない。ま
た、難燃剤を含む付与樹脂の粘度は2000〜3000
0cpsの範囲が好ましく、更に好ましくは4000〜
15000cpsの範囲が好ましい。粘度が2000c
psより低いと、反対の面へ樹脂が裏漏れし、外観品位
を阻害する虞がある。また粘度が30000cpsより
高いと、塗工性が悪くなる。また、難燃剤を含む樹脂が
裏漏れするのを防ぐことを目的として、難燃剤を含む樹
脂を付与する前に、予め、同一面に裏漏れ防止用の樹脂
層を形成しても良い。裏漏れ防止用の樹脂としては、加
工性、柔軟性、経済性からアクリル樹脂が好ましい。付
与方法は、フローティング法やナイフコータ法、ロール
コータ法等があり、いずれの方法でも良い。付与する樹
脂の粘度は2000〜30000cps、更に好ましく
は10000〜15000cpsの範囲である。200
0cpsより低いと樹脂が裏漏れして外観を損なう虞が
あり、30000cpsより高いと塗工性が悪くなる。
塗布量は1〜10g/m、好ましくは3〜7g/m
の範囲である。塗布量が1g/mより少ないと、難燃
剤を含む樹脂の裏漏れ防止が十分発揮できず、10g/
より多いと難燃性を阻害する虞がある。
As a method of applying the flame retardant to the cloth on which the metal coating layer is formed, a method of applying a resin in which the flame retardant is dispersed and mixed to the cloth is preferable. Examples of the resin used include synthetic resins such as urethane resin, acrylic resin, and ester resin, and urethane resin is preferably used. Urethane resins are more easily flame-retardant than acrylic resins and ester resins, and are superior in terms of frictional strength and flexibility. The amount of resin applied is preferably 60 to 400 g / m 2, and more preferably 100 to 250 g / m 2 . If it is less than this range, sufficient flame retardancy cannot be obtained, and if it is too large, the texture becomes hard, which is economically disadvantageous. The resin application method may be a coating method such as a floating method, a knife coater method, or a roll coater method, and is not particularly limited. Further, the viscosity of the imparted resin containing the flame retardant is 2000 to 3000.
The range of 0 cps is preferable, and more preferably 4000 to
A range of 15000 cps is preferred. Viscosity is 2000c
If it is lower than ps, the resin may leak back to the opposite surface and hinder the appearance quality. If the viscosity is higher than 30,000 cps, the coatability will be poor. Further, for the purpose of preventing back leakage of the resin containing the flame retardant, a resin layer for preventing back leakage may be formed in advance on the same surface before applying the resin containing the flame retardant. As the resin for preventing back leakage, acrylic resin is preferable from the viewpoint of workability, flexibility and economy. The applying method includes a floating method, a knife coater method, a roll coater method and the like, and any method may be used. The viscosity of the applied resin is 2000 to 30,000 cps, and more preferably 10,000 to 15,000 cps. 200
If it is lower than 0 cps, the resin may be back-leaked to impair the appearance, and if it is higher than 30,000 cps, the coatability is deteriorated.
The coating amount is 1 to 10 g / m 2 , preferably 3 to 7 g / m 2.
Is the range. If the coating amount is less than 1 g / m 2 , the back leakage prevention of the resin containing the flame retardant cannot be sufficiently exerted and 10 g / m 2
If it is more than m 2 , flame retardancy may be impaired.

【0014】金属被覆布帛に用いられる難燃剤は、少な
くとも、リン系化合物難燃剤と未膨張の熱膨張性黒鉛よ
り形成される。リン系化合物難燃剤は、ビスフェノール
Aビス(ジフェニルフォスフェート)やレゾルシノール
ビス(ジ2、6−キシリル)フォスフェートなどのリン
酸エステル系、トリフェニルフォスフォルアミドなどの
リン酸アミド系、ポリリン酸アンモニウム系が挙げら
れ、特にポリリン酸アンモニウムはリン含有率が高く難
燃効果が優れているので好ましく用いられる。また、ポ
リリン酸アンモニウム単体は、耐湿性が悪いため、高湿
度環境下に長時間おかれると分解する虞がある。そこ
で、メラミン樹脂で表面を被覆したタイプのものを用い
ることにより分解劣化を抑えることができる。赤リンな
どのリンの同素体は難燃効果はあるが、毒性が強かった
り、毒性の強いホスフィンガスが発生するため好ましく
ない。また、未膨張の熱膨張性黒鉛は、結晶性黒鉛フレ
ークの内部に硫酸が層状に重なった構造をしており、燃
焼時にこの硫酸が気化することにより黒鉛フレークが元
の厚さの100倍程度にまで膨張する。このため大きな
断熱層を形成し、膨張した黒鉛は発熱速度や熱分解、発
煙を大幅に減少でき、同時に繊維内部で生成した可燃性
化合物の拡散を防止する作用がある。使用できる熱膨張
性黒鉛としては、天然黒鉛、熱分解黒鉛、キッシュ黒鉛
などの黒鉛を無機酸(濃硫酸、硝酸など)と強酸化剤
(過塩素酸、過塩素酸塩、過酸化水素水など)との混合
液で酸処理したものなどが挙げられる。更に過硫酸アン
モニウムなどを配合して酸処理したものなども使用で
き、また、酸処理後に、モノメチルアミンなどの脂肪族
低級アミン、アルカリ金属化合物やアルカリ土類金属化
合物(カリウム、ナトリウム、カルシウム、バリウム、
マグネシウムなどの水酸化物、酸化物、炭酸塩、硫酸鉛
など)などで中和処理を施したものなども使用できる。
具体的には、黒鉛酸性硫酸鉛、ナトリウム黒鉛、カリウ
ム黒鉛、黒鉛酸化物、塩化アルミニウム黒鉛化物、酸化
第二鉄黒鉛などが挙げられ、これらの一つ以上を用いる
ことができる。未膨張の熱膨張性黒鉛の粒径は、10〜
1000μmが好ましい。粒度が10μmより小さい場
合は黒鉛の膨張度が小さく、その結果難燃性が低下し、
逆に1000μmより大きい場合は黒鉛の膨張は大きく
難燃性の点では良いが、樹脂に添加混練する際に分散性
が悪くなり、樹脂塗工面の品位にも影響する。これらの
難燃剤は混合分散された状態で樹脂に含まれていても良
く、難燃剤毎にそれぞれ樹脂に分散配合されていても良
い。これら難燃剤を含む樹脂が繊維に付与され乾燥する
ことにより、樹脂と共に繊維に固着された状態となる。
難燃剤の、難燃剤を添加混練する樹脂に対する比率は固
形分比で、リン系化合物難燃剤は120〜190重量
%、熱膨張性黒鉛は60〜100重量%である。これ以
上の比率になると樹脂被膜が脆くなり、また、少ないと
十分な難燃性が得られない。また、金属被覆布帛の重量
に対して、リン系化合物難燃剤は40〜300重量%、
好ましくは70〜190重量%、未膨張の熱膨張性黒鉛
は20〜160重量%、好ましくは35〜100重量%
の範囲で含まれていることが好ましい。これらの割合よ
り少ないと、十分な難燃性が得られない虞があり、ま
た、これらの割合より多くても難燃性の更なる向上は望
めず、コストが高くなってしまう虞がある。本発明にお
いて、金属被覆布帛に用いられる難燃剤は、上述のよう
に、リン系化合物難燃剤と、未膨張の熱膨張性黒鉛を必
須とするものであるが、更に、ハロゲン系難燃剤やアン
チモン系難燃剤やリンの同素体から成る難燃剤以外の、
例えば、水酸化マグネシウムや、水酸化アルミニウムな
どの水和金属化合物などの難燃剤を併用することも可能
である。また、布帛の片面だけでなく、布帛の両面に上
述の難燃剤を含んだ樹脂層を形成しても良い。すなわ
ち、片面に前述したような難燃剤を含む樹脂を積層させ
た上で、もう片面にも、同様な難燃剤を含む樹脂を積層
させることもできる。反対面への難燃剤を含む樹脂の塗
工量は1〜10g/m、更には3〜8g/mの範囲
が好ましい。1g/m2より少ないと難燃性効果が得ら
れず、10g/m2より多いと表面導電性が悪くなる。
付与方法は、フローティング法やナイフコータ法、ロー
ルコータ法などのコーティング法があり、いずれの方法
でも良い。
The flame retardant used in the metal-coated cloth is formed of at least a phosphorus compound flame retardant and unexpanded thermally expansive graphite. Phosphorus-based compound flame retardants include phosphoric acid ester-based compounds such as bisphenol A bis (diphenyl phosphate) and resorcinol bis (di-2,6-xylyl) phosphate, phosphoric amide-based compounds such as triphenylphosphamide, and ammonium polyphosphate. Examples thereof include ammonium polyphosphate, and ammonium polyphosphate is particularly preferably used because it has a high phosphorus content and an excellent flame retardant effect. Moreover, since the simple substance of ammonium polyphosphate has poor moisture resistance, it may be decomposed if left in a high humidity environment for a long time. Therefore, decomposition and deterioration can be suppressed by using a type whose surface is coated with a melamine resin. Phosphorus allotropes such as red phosphorus have a flame-retardant effect, but are not preferable because they are highly toxic or generate highly toxic phosphine gas. In addition, unexpanded thermally expandable graphite has a structure in which sulfuric acid is layered inside crystalline graphite flakes, and when the sulfuric acid is vaporized during combustion, the graphite flakes are about 100 times the original thickness. Expands to. For this reason, a large heat insulating layer is formed, and the expanded graphite can greatly reduce the heat generation rate, thermal decomposition, and smoke generation, and at the same time, has the effect of preventing the diffusion of the combustible compound generated inside the fiber. Examples of heat-expandable graphite that can be used include natural graphite, pyrolytic graphite, quiche graphite, and other inorganic acids (concentrated sulfuric acid, nitric acid, etc.) and strong oxidizers (perchloric acid, perchlorate, hydrogen peroxide solution, etc.). ) And a mixture treated with an acid. Further, it is also possible to use an acid-treated mixture of ammonium persulfate and the like, and after the acid treatment, an aliphatic lower amine such as monomethylamine, an alkali metal compound or an alkaline earth metal compound (potassium, sodium, calcium, barium,
It is also possible to use those which have been neutralized with hydroxides such as magnesium, oxides, carbonates, lead sulfates, etc.
Specific examples thereof include graphite acid lead sulfate, sodium graphite, potassium graphite, graphite oxide, graphitized aluminum chloride, and ferric oxide graphite, and one or more of these can be used. The particle size of unexpanded thermally expansive graphite is 10-
1000 μm is preferable. When the particle size is smaller than 10 μm, the degree of expansion of graphite is small, and as a result, the flame retardancy is lowered,
On the other hand, if it is larger than 1000 μm, the expansion of the graphite is large and the flame retardancy is good, but the dispersibility becomes poor when it is added to the resin and kneaded, and the quality of the resin coated surface is affected. These flame retardants may be contained in the resin in a mixed and dispersed state, or may be dispersed and blended in the resin for each flame retardant. When the resin containing these flame retardants is applied to the fiber and dried, the resin and the resin are fixed to the fiber.
The ratio of the flame retardant to the resin in which the flame retardant is added and kneaded is a solid content ratio, the phosphorus compound flame retardant is 120 to 190% by weight, and the thermally expandable graphite is 60 to 100% by weight. When the ratio is higher than this range, the resin coating becomes brittle, and when the ratio is low, sufficient flame retardancy cannot be obtained. Further, the phosphorus compound flame retardant is 40 to 300% by weight, based on the weight of the metal-coated cloth,
Preferably 70 to 190% by weight, unexpanded thermally expandable graphite is 20 to 160% by weight, preferably 35 to 100% by weight.
It is preferable to be included in the range of. If it is less than these ratios, sufficient flame retardancy may not be obtained, and if it is more than these ratios, further improvement of flame retardancy may not be expected and the cost may increase. In the present invention, the flame retardant used for the metal-coated cloth, as described above, is essentially a phosphorus compound flame retardant and an unexpanded thermally expansive graphite. Other than flame retardants and flame retardants consisting of allotropes of phosphorus,
For example, a flame retardant such as magnesium hydroxide or a hydrated metal compound such as aluminum hydroxide can be used in combination. Further, the resin layer containing the flame retardant may be formed not only on one surface of the cloth but also on both surfaces of the cloth. That is, the resin containing the flame retardant as described above may be laminated on one surface, and then the resin containing the same flame retardant may be laminated on the other surface. The coating amount of the resin containing the flame retardant on the opposite surface is preferably 1 to 10 g / m 2 , and more preferably 3 to 8 g / m 2 . If it is less than 1 g / m 2 , the flame retardant effect cannot be obtained, and if it is more than 10 g / m 2 , the surface conductivity is deteriorated.
The applying method includes a coating method such as a floating method, a knife coater method, and a roll coater method, and any method may be used.

【0015】芯材となる難燃性を有する発泡体に対す
る、難燃性を有する金属被覆布帛の回捲の方法として、
第一には、発泡体を所望の大きさにカットし、その外表
面に難燃性を有する金属被覆布帛を回捲する方法があ
る。回捲した金属被覆布帛と発泡体との接着方法は、金
属被覆布帛、或いは発泡体の接着面に、接着剤を塗布し
たり、両面粘着テープにより接着する。接着剤などは感
圧性接着剤や感熱性接着剤のいずれも用いることができ
る。更に、ここで用いる接着剤に難燃剤を添加したり、
難燃剤を含む両面粘着テープを使用することにより、よ
り高度な難燃性を得ることができ効果的である。ただ
し、用いられる難燃剤は、ハロゲン系化合物や赤リン、
酸化アンチモンを除く、リン系化合物が好ましい。金属
被覆布帛の発泡体への接着面は、どちら側でも構わない
が、導電性効果を得たい場合は、樹脂塗工のされている
面を発泡体に接着したほうがより好ましい。また、第二
には、あらかじめ所望の大きさの筒状金枠を用意し、難
燃性を有する金属被覆布帛を筒内部に沿わし、その内部
で、難燃性を有する樹脂からなる発泡性樹脂や、難燃剤
を添加した発泡性樹脂を投入、発泡させることによって
も得ることが出来る。
As a method of winding a flame-retardant metal-coated cloth on a flame-retardant foam material as a core material,
First, there is a method in which a foam is cut into a desired size and a metal-coated cloth having flame retardancy is wound on the outer surface of the foam. As a method for adhering the wound metal-coated cloth and the foam, an adhesive is applied to the adhering surface of the metal-coated cloth or the foam, or a double-sided adhesive tape is used for adhesion. As the adhesive or the like, either a pressure sensitive adhesive or a heat sensitive adhesive can be used. Furthermore, adding a flame retardant to the adhesive used here,
By using the double-sided pressure-sensitive adhesive tape containing a flame retardant, higher flame retardancy can be obtained, which is effective. However, the flame retardants used are halogen compounds, red phosphorus,
Phosphorus compounds excluding antimony oxide are preferred. The metal-coated cloth may be bonded to the foam on either side, but it is more preferable to bond the resin-coated surface to the foam in order to obtain a conductive effect. Secondly, a tubular metal frame of a desired size is prepared in advance, a flame-retardant metal-coated cloth is laid along the inside of the tube, and inside the tube, a foaming agent made of a flame-retardant resin is formed. It can also be obtained by adding and foaming a resin or a foaming resin containing a flame retardant.

【0016】[0016]

【実施例】実施例と比較例における本発明品の評価方法
は次の通りである。 難燃性評価 UL94のV−1に準じて評価する。 表面導電性 HIOKI電機株式会社製抵抗値測定器ミリオームハイ
テスター3220を用い、クリップ平行電極幅10c
m、電極間距離10cmにおける抵抗値を測定した。単
位はΩ/□。 シールド性評価 関西電子工業振興センターの生駒電波測定所の考案によ
る測定セルと類似のものを作成し、ヒューレットパッカ
ード社製トラッキングジェネレーター付きスペクトラム
アナライザーHP8591EMにより10MHz〜1G
Hz発振を前述セル受信部にて測定サンプルを経て受信
し、スペクトラムアナライザーで計測した。単位はd
B。
EXAMPLES The evaluation methods for the products of the present invention in Examples and Comparative Examples are as follows. Flame retardance evaluation It is evaluated according to V-1 of UL94. Surface conductivity HIOKI ELECTRIC CO., LTD. Resistance value measuring device Milliohm High Tester 3220 is used, and clip parallel electrode width 10c
The resistance value was measured at m and a distance between the electrodes of 10 cm. The unit is Ω / □. Shielding evaluation A measurement cell similar to the one developed by the Ikoma Radio Measurement Station of Kansai Electronics Industry Promotion Center was created, and a spectrum analyzer with tracking generator HP8591EM manufactured by Hewlett Packard Co. was used for 10 MHz to 1G.
The Hz oscillation was received by the cell receiving section through the measurement sample and measured by the spectrum analyzer. Unit is d
B.

【0017】[0017]

【実施例1】ポリエステル繊維織物(経糸56dtex
/24f、緯糸56dtex/36f)を精練、乾燥、
熱処理して、引き続き、塩化パラジウム0.3g/L、
塩化第一錫30g/L、36%塩酸300ml/Lを含
む40℃の水溶液に2分間浸漬後、水洗した。続いて、
酸濃度0.1Nのホウ沸化水素酸に30℃で5分間浸漬
後、水洗し、次に硫酸銅7.5g/L、37%ホルマリ
ン30ml/L、ロッシェル塩85g/Lから成る無電
解銅メッキ液に30℃で5分間浸漬後水洗した。続い
て、スルファミン酸ニッケル300g/L、ホウ酸30
g/L、塩化ニッケル15g/L、pH3.7の電気ニ
ッケルメッキ液に35℃、10分間、電流密度5A/d
で浸漬しニッケルを積層させた後水洗した。織物に
は銅が10g/m2、ニッケルが4g/m2メッキされた。得
られた金属被覆織物は重量64g/m2であった。得られ
た金属被覆織物の片面に樹脂の裏漏れ防止のために下記
の処方1の樹脂をフローティングナイフ法で塗工し、1
30℃で乾燥した。塗工量は固形分で4g/m2であっ
た。引き続き、同一面に処方2の樹脂をナイフオンロー
ル法にて塗工し、130℃で乾燥した。塗工量は固形分
で140g/mであった。用いられたリン系化合物難
燃剤と熱膨張性黒鉛の、金属被覆織物の重量に対する割
合は、それぞれ100重量%と53重量%であった。更
に、同一面に金属被覆織物と発泡体を接着するために、
処方3の感圧性接着樹脂をフローティングナイフ法にて
固形分で5g/mを塗工し、リン系難燃剤を添加して
発泡させたウレタン樹脂発泡体(株式会社ブリヂストン
社製、エバーライトDO)の外表面に回捲し、電磁波シ
ールド用ガスケット材を得た。性能評価結果を表1に示
す。 処方1 トアクロンSA−6218 100部 (株式会社トウペ社製、アクリル系樹脂、固形分18%) レザミンUD架橋剤 1.5部 (大日精化工業株式会社製、イソシアネート架橋剤、固形分75%) にトルエンを加え粘度を15000cpsに調整する。 処方2 クリスボン5116EL 100部 (大日本インキ化学工業株式会社製、ウレタン樹脂、固形分30%) ポリリン酸アンモニウム 45部 (固形分100%) 未膨張の熱膨張性黒鉛 24部 (固形分100%) にメチルエチルケトンを加え粘度8000cpsに調整する。 処方3 クリスボン TA−465 100部 (大日本インキ化学工業株式会社製、ウレタン樹脂、固形分65%) レザミンUD架橋剤 8部 (大日精化工業株式会社製、ウレタン樹脂架橋剤、固形分75%) クリスボン アクセルHM 3部 (大日本インキ化学工業株式会社製、ウレタン樹脂架橋促進剤、固形分15%) にトルエンを加えて粘度を9000cpsに調整する。
Example 1 Polyester fiber woven fabric (warp yarn 56 dtex
/ 24f, weft 56dtex / 36f) is scoured and dried,
After heat treatment, palladium chloride 0.3g / L,
After dipping in an aqueous solution containing 30 g / L of stannous chloride and 300 ml / L of 36% hydrochloric acid at 40 ° C. for 2 minutes, it was washed with water. continue,
After soaking in hydrofluoric acid having an acid concentration of 0.1 N at 30 ° C. for 5 minutes, washing with water, and then electroless copper comprising copper sulfate 7.5 g / L, 37% formalin 30 ml / L, and Rochelle salt 85 g / L It was immersed in the plating solution at 30 ° C. for 5 minutes and then washed with water. Subsequently, nickel sulfamate 300 g / L, boric acid 30
g / L, nickel chloride 15 g / L, pH 3.7 electro-nickel plating solution at 35 ° C. for 10 minutes, current density 5 A / d
It was dipped in m 2 to stack nickel and then washed with water. Copper 10 g / m 2 in the fabric, the nickel is 4g / m 2 Plating. The metal-coated fabric obtained had a weight of 64 g / m 2 . To prevent back leakage of the resin on one side of the obtained metal-coated woven fabric, a resin of the following formulation 1 was applied by a floating knife method, and 1
It was dried at 30 ° C. The coating amount was 4 g / m 2 in terms of solid content. Subsequently, the resin of Formulation 2 was applied to the same surface by a knife-on-roll method and dried at 130 ° C. The coating amount was 140 g / m 2 in terms of solid content. The proportions of the phosphorus compound flame retardant and the thermally expandable graphite used were 100% by weight and 53% by weight, respectively, with respect to the weight of the metal-coated woven fabric. Furthermore, in order to bond the metal-coated fabric and the foam on the same surface,
A urethane resin foam obtained by coating the pressure-sensitive adhesive resin of Formulation 3 at a solid content of 5 g / m 2 by a floating knife method and adding a phosphorus-based flame retardant (Everlite DO manufactured by Bridgestone Corporation). ) Was wound on the outer surface to obtain a gasket material for electromagnetic wave shielding. The performance evaluation results are shown in Table 1. Prescription 1 Toacron SA-6218 100 parts (Toupe Co., Ltd., acrylic resin, solid content 18%) Resamine UD crosslinking agent 1.5 parts (Dainichi Seika Chemicals Co., Ltd., isocyanate crosslinking agent, solid content 75%) Toluene is added to adjust the viscosity to 15000 cps. Prescription 2 Crisbon 5116EL 100 parts (Dainippon Ink and Chemicals, Inc., urethane resin, solid content 30%) Ammonium polyphosphate 45 parts (solid content 100%) Unexpanded thermally expansive graphite 24 parts (solid content 100%) Methyl ethyl ketone is added to adjust the viscosity to 8000 cps. Prescription 3 Crisbon TA-465 100 parts (Dainippon Ink and Chemicals, Inc., urethane resin, solid content 65%) Resamine UD crosslinking agent 8 parts (Dainichi Seika Chemicals Co., Ltd., urethane resin crosslinking agent, solid content 75%) ) Viscosity is adjusted to 9000 cps by adding toluene to 3 parts of Crisbon Accel HM (manufactured by Dainippon Ink and Chemicals, Inc., urethane resin crosslinking accelerator, solid content 15%).

【0018】[0018]

【実施例2】実施例1で作成した金属被覆織物の片面
に、樹脂の裏漏れを防止するために処方1の樹脂をフロ
ーティングナイフ法で塗工し、130℃で乾燥した。塗
工量は固形分で4g/m2であった。引き続き、同一面に
処方2の樹脂をナイフオンロール法にて塗工し、130
℃で乾燥した。塗工量は固形分で140g/mであっ
た。更に同一面に、金属被覆織物と発泡体を接着するた
めに処方4の樹脂をフローティングナイフ法にて固形分
で20g/mを塗工し、130℃にて乾燥させた。用
いられたリン系化合物難燃剤と熱膨張性黒鉛の、金属被
覆織物の重量に対する割合は、それぞれ112重量%と
53重量%であった。次に、リン系難燃剤をウレタン樹
脂に添加して発泡させた発泡体(株式会社ブリヂストン
社製、エバーライトDO)の外表面に上述した金属被覆
織物の処方4の樹脂積層面を貼りあわせるように回捲
し、金属被覆織物の周囲から130℃の熱プレスにて3
0秒間圧着させ、実施例2の電磁波シールド用ガスケッ
ト材を得た。性能評価結果を表1に示す。 処方4 UD1305 100部 (大日精化工業株式会社、ウレタン樹脂、固形分50%) ノンネン R−0111−4 30部 (丸菱油化工業株式会社、リン・窒素系化合物難燃剤、固形分100%) にメチルエチルケトンを加え、粘度を8000cpsに調整する。
Example 2 On one side of the metal-coated woven fabric prepared in Example 1, the resin of Formula 1 was applied by the floating knife method to prevent back leakage of the resin, and dried at 130 ° C. The coating amount was 4 g / m 2 in terms of solid content. Subsequently, the resin of the formulation 2 is applied to the same surface by a knife-on-roll method,
It was dried at ° C. The coating amount was 140 g / m 2 in terms of solid content. Further, a resin of Formulation 4 was applied to the same surface by a floating knife method so as to have a solid content of 20 g / m 2 for adhering the metal-coated woven fabric and the foam, and dried at 130 ° C. The proportions of the phosphorus compound flame retardant and the thermally expandable graphite used were 112% by weight and 53% by weight, respectively, with respect to the weight of the metal-coated woven fabric. Next, the resin laminated surface of Formulation 4 of the metal-coated woven fabric described above is attached to the outer surface of the foam (Everlite DO manufactured by Bridgestone Corporation) in which the phosphorus-based flame retardant is added to the urethane resin for foaming. And wrap it around the metal-coated fabric with a hot press at 130 ° C for 3
It was pressed for 0 seconds to obtain an electromagnetic wave shielding gasket material of Example 2. The performance evaluation results are shown in Table 1. Prescription 4 UD1305 100 parts (Dainichi Seika Kogyo Co., Ltd., urethane resin, solid content 50%) Nonnene R-0111-4 30 parts (Marubishi Yuka Kogyo Co., Ltd., phosphorus / nitrogen compound flame retardant, solid content 100%) ) Is added with methyl ethyl ketone to adjust the viscosity to 8000 cps.

【0019】[0019]

【実施例3】実施例1で、作成した金属被覆布帛の片面
に処方1の樹脂をフローティングナイフ法で塗工し、1
30℃で乾燥した。塗工量は固形分で4g/mであっ
た。引き続き、同一面に処方2の樹脂をナイフオンロー
ル法にて塗工し、130℃で乾燥した。塗工量は固形分
で140g/mであった。更に、この織物の反対面に
処方5の樹脂をフローティングナイフ法にて塗工し、1
30℃で乾燥した。塗工量は固形分で10g/mであ
った。次に処方2の樹脂を塗工した面に、金属被覆織物
と発泡体を接着するための処方3の樹脂を、フローティ
ングナイフ法にて固形分で140g/mにて塗工し
た。得られた金属被覆織物に用いられたリン系化合物難
燃剤と熱膨張性黒鉛の金属被覆織物の重量に対し、それ
ぞれ108重量%と53重量%であった。引き続き、リ
ン系難燃剤を有する発泡体(株式会社ブリヂストン社
製、エバーライトDO)の外表面に金属被覆織物の処方
3の樹脂を積層した面と貼り合せるように回捲し、電磁
波シールド用ガスケットが得られた。性能評価結果を表
1に示す。 処方5 トアクロンSA−6218 100部 (株式会社トウペ社製、アクリル系樹脂、固形分18%) ノンネンR0111−4 20部 (丸菱油化工業株式会社、リン酸エステル系化合物難燃剤、固形分100%)
Example 3 The resin of Formula 1 was applied to one side of the metal-coated cloth prepared in Example 1 by the floating knife method, and 1
It was dried at 30 ° C. The coating amount was 4 g / m 2 in terms of solid content. Subsequently, the resin of Formulation 2 was applied to the same surface by a knife-on-roll method and dried at 130 ° C. The coating amount was 140 g / m 2 in terms of solid content. Furthermore, the resin of the formulation 5 is applied to the opposite surface of the woven fabric by the floating knife method, and 1
It was dried at 30 ° C. The coating amount was 10 g / m 2 in terms of solid content. Next, the resin of Formulation 3 for adhering the metal-coated woven fabric and the foam was applied to the surface coated with the resin of Formulation 2 by a floating knife method at a solid content of 140 g / m 2 . The phosphorus compound flame retardant used in the obtained metal-coated woven fabric and the heat-expandable graphite metal-coated woven fabric were 108% by weight and 53% by weight, respectively. Subsequently, the foamed material having a phosphorus-based flame retardant (Everlite DO manufactured by Bridgestone Corporation) was wound on the outer surface so as to be bonded to the surface on which the resin of Formula 3 of the metal-coated fabric was laminated, and the gasket for electromagnetic wave shielding. was gotten. The performance evaluation results are shown in Table 1. Prescription 5 Toacron SA-6218 100 parts (manufactured by Tope Co., acrylic resin, solid content 18%) Nonnen R0111-4 20 parts (Maruhishi Yuka Kogyo Co., Ltd., phosphate ester compound flame retardant, solid content 100) %)

【0020】[0020]

【実施例4】実施例1で作成した金属被覆布帛の片面
に、処方1の樹脂をフローティングナイフ法で塗工し、
130℃で乾燥した。塗工量は固形分で4g/mであ
った。引き続き、同一面に処方2に樹脂をナイフオンロ
ール法にて塗工し、130℃で乾燥した。塗工量は固形
分で140g/mであった。用いられたリン系化合物
難燃剤と熱膨張性黒鉛の金属被覆織物の重量に対する割
合は、それぞれ100重量%と53重量%であった。こ
の織物を、樹脂積層面を内側にして、角柱で筒状になっ
た金型枠内の側面に沿わせる。その後、処方6のシリコ
ーン樹脂を調液攪拌後に速やかに流し込み、発泡させ
る。発泡が終了したら金枠から取り出し、電磁波シール
ド用ガスケットが得られた。性能評価結果を表1に示
す。 処方6 SE1900 A 100部 (東レ・ダウコーニング・シリコーン株式会社製、シリコーン樹脂) SE1900 B 100部 (東レ・ダウコーニング・シリコーン株式会社製、シリコーン樹脂)
Example 4 On one side of the metal-coated cloth prepared in Example 1, the resin of Formula 1 was applied by the floating knife method,
It was dried at 130 ° C. The coating amount was 4 g / m 2 in terms of solid content. Subsequently, a resin was applied to Formulation 2 on the same surface by a knife-on-roll method and dried at 130 ° C. The coating amount was 140 g / m 2 in terms of solid content. The proportions of the phosphorus compound flame retardant and the thermally expandable graphite used were 100% by weight and 53% by weight, respectively, with respect to the weight of the metal-coated woven fabric. This woven fabric is made to run along the side surface inside the mold frame that is cylindrical with a prismatic shape with the resin laminated surface inside. After that, the silicone resin of formulation 6 is poured into the solution after stirring the solution, and foamed. When the foaming was completed, it was taken out from the metal frame to obtain an electromagnetic wave shielding gasket. The performance evaluation results are shown in Table 1. Prescription 6 SE1900 A 100 parts (Toray Dow Corning Silicone Co., Ltd. silicone resin) SE1900 B 100 parts (Toray Dow Corning Silicone Co., silicone resin)

【実施例5】実施例1で作成した金属被覆織物の一方の
面に、処方1の樹脂をフローティングナイフ法により塗
工し、130℃で乾燥した。塗工量は固形分で3g/m
であった。次に同一面に、処方7の樹脂をフローティ
ングナイフ法により塗工し、130℃で乾燥した。塗工
量は固形分で140g/mであった。用いられたリン
系化合物難燃剤と熱膨張性黒鉛の金属被覆織物の重量に
対する割合は、それぞれ102重量%と66重量%であ
った。引き続き、同一面に金属被覆織物と発泡体とを接
着するために処方3の樹脂をフローティングナイフ法に
て、固形分で5g/mを塗工し、リン系難燃剤を有す
るウレタン発泡体(株式会社ブリヂストン社製、エバー
ライトDO)の外表面に上述した金属被覆織物の処方3
の樹脂積層面と貼りあわせるように回捲し、電磁波シー
ルド用ガスケットが得られた。性能評価結果を表1に示
す。 処方7 クリスボン5116EL 100部 (大日本インキ化学工業株式会社、ウレタン樹脂) ノンネンR0111−4 60部 (丸菱油化工業株式会社、リン酸エステル系化合物難燃剤) 未膨張の熱膨張性黒鉛 40部 (固形分100%) にメチルエチルケトンを加え粘度を7500cpsに調整する。
Example 5 The resin of Formulation 1 was applied to one surface of the metal-coated woven fabric prepared in Example 1 by the floating knife method and dried at 130 ° C. Coating amount is 3g / m in solid content
It was 2 . Then, the resin of Formulation 7 was applied to the same surface by a floating knife method and dried at 130 ° C. The coating amount was 140 g / m 2 in terms of solid content. The proportions of the phosphorus compound flame retardant and the thermally expandable graphite used were 102% by weight and 66% by weight, respectively, with respect to the weight of the metal-coated woven fabric. Subsequently, in order to adhere the metal-coated woven fabric and the foam to the same surface, a resin of Formulation 3 was applied at a solid content of 5 g / m 2 by a floating knife method, and a urethane foam having a phosphorus-based flame retardant ( Prescription of metal-coated woven fabric mentioned above on the outer surface of Everlight DO manufactured by Bridgestone Corporation 3
It was wound so as to be stuck to the resin laminated surface of (1) to obtain an electromagnetic wave shielding gasket. The performance evaluation results are shown in Table 1. Prescription 7 Crisbon 5116EL 100 parts (Dainippon Ink and Chemicals, Inc., urethane resin) Nonnene R0111-4 60 parts (Marubishi Yuka Kogyo Co., Ltd., phosphate ester compound flame retardant) Unexpanded thermally expansive graphite 40 parts Methyl ethyl ketone is added to (solid content 100%) to adjust the viscosity to 7500 cps.

【0021】[0021]

【比較例1】実施例1で用いた金属被覆織物の一方の面
に、処方1の樹脂をフローティングナイフ法により、塗
工し130℃で乾燥した。塗工量は固形分で3g/m2
あった。次に、同一面に下記の処方8の樹脂をフローテ
ィングナイフ法により塗工し、130℃で乾燥した。塗
工量は固形分で140g/mであった。用いられたリン
系化合物難燃剤の金属被覆織物の重量に対する割合は、
80重量%であった。引き続き、同一面に金属被覆織物
と発泡体を接着するために処方3の樹脂をフローティン
グナイフ法にて固形分で5g/mを塗工し、リン系難
燃剤を有するウレタン発泡体(株式会社ブリヂストン社
製、エバーライトDO)の外表面に上述した金属被覆織
物の処方3の樹脂積層面と貼りあわせるように回捲し、
電磁波シールド用ガスケットを得た。性能評価結果を表
1に示す。 処方8 クリスボン5116EL 100部 (大日本インキ化学工業株式会社、ウレタン樹脂、固形分30%) ポリリン酸アンモニウム 40部 (固形分100%) にメチルエチルケトンを加え粘度10000cpsに調整する。
Comparative Example 1 The resin of Formulation 1 was applied to one surface of the metal-coated woven fabric used in Example 1 by the floating knife method and dried at 130 ° C. The coating amount was 3 g / m 2 in terms of solid content. Next, a resin of the following formulation 8 was applied on the same surface by a floating knife method and dried at 130 ° C. The coating amount was 140 g / m 2 in terms of solid content. The ratio of the phosphorus compound flame retardant used to the weight of the metal-coated fabric is
It was 80% by weight. Subsequently, in order to bond the metal-coated woven fabric and the foam on the same surface, a resin of Formulation 3 was applied at a solid content of 5 g / m 2 by a floating knife method, and a urethane foam having a phosphorus-based flame retardant (K.K. The outer surface of Everstone DO manufactured by Bridgestone Co., Ltd. is wound so as to be bonded to the resin-laminated surface of Formula 3 of the metal-coated fabric described above,
A gasket for electromagnetic wave shielding was obtained. The performance evaluation results are shown in Table 1. Formulation 8 Crisbon 5116EL 100 parts (Dainippon Ink and Chemicals, Inc., urethane resin, solid content 30%) Ammonium polyphosphate 40 parts (solid content 100%) is added with methyl ethyl ketone to adjust the viscosity to 10,000 cps.

【0022】[0022]

【比較例2】実施例1で作成した金属被覆織物の一方の
面に、処方1の樹脂をフローティングナイフ法により、
塗工し130℃で乾燥した。塗工量は固形分で3g/m2
であった。次に、同一面に下記の処方9の樹脂をフロー
ティングナイフ法により塗工し、130℃で乾燥した。
塗工量は固形分で140g/mであった。得られた金属
被覆織物に用いられたリン系化合物難燃剤の金属被覆織
物の重量に対し、44重量%であった。更に、同一面に
金属被覆織物と発泡体を接着するために、処方3の樹脂
をフローティングナイフ法にて固形分で5g/m塗工
し、リン系難燃剤を有するウレタン発泡体(株式会社ブ
リヂストン社製、エバーライトDO)の外表面に上述し
た金属被覆織物の処方3の樹脂積層面と貼りあわせるよ
うに回捲し、電磁波シールド用ガスケットが得られ、性
能評価結果を表1に示す。 処方9 クリスボン5116EL 100部 (大日本インキ化学工業株式会社製、ウレタン樹脂、固形分30%) ヘキサブロモシクロドデカン 30部 (固形分100%) ポリリン酸アンモニウム 20部 (固形分100%) PATOX−M 20部 (日本精鉱株式会社製、三酸化アンチモン、固形分100%) にメチルエチルケトンを加え粘度を8000cpsに調整する。
Comparative Example 2 The resin of Formulation 1 was applied to one surface of the metal-coated fabric prepared in Example 1 by the floating knife method.
It was coated and dried at 130 ° C. Coating amount is 3g / m 2 in solid content
Met. Next, a resin having the following formulation 9 was applied to the same surface by a floating knife method and dried at 130 ° C.
The coating amount was 140 g / m 2 in terms of solid content. It was 44% by weight based on the weight of the metal-coated woven fabric of the phosphorus compound flame retardant used in the obtained metal-coated woven fabric. Furthermore, in order to bond the metal-coated woven fabric and the foam on the same surface, the resin of Formulation 3 was coated at a solid content of 5 g / m 2 by a floating knife method, and a urethane foam having a phosphorus-based flame retardant (K.K. The outer surface of Everstone DO manufactured by Bridgestone Co., Ltd. was wound so as to be bonded to the resin-laminated surface of Formula 3 of the metal-coated woven fabric described above to obtain a gasket for electromagnetic wave shielding, and the performance evaluation results are shown in Table 1. Prescription 9 Crisbon 5116EL 100 parts (Dainippon Ink and Chemicals, Inc., urethane resin, solid content 30%) Hexabromocyclododecane 30 parts (solid content 100%) Ammonium polyphosphate 20 parts (solid content 100%) PATOX-M Methyl ethyl ketone is added to 20 parts (manufactured by Nippon Seiko Co., Ltd., antimony trioxide, solid content 100%) to adjust the viscosity to 8000 cps.

【比較例3】実施例1で用いた金属被覆織物の一方の面
に、処方1の樹脂をフローティングナイフ法により、塗
工し130℃で乾燥した。塗工量は固形分で3g/m2
あった。次に、同一面に下記の処方2の樹脂をフローテ
ィングナイフ法により塗工し、130℃で乾燥した。塗
工量は固形分で140g/mであった。用いられたリン
系化合物難燃剤と熱膨張性黒鉛の金属被覆織物の重量に
対する割合は、それぞれ100重量%と53重量%であ
った。更に、同一面に金属被覆織物と発泡体を接着する
ために、処方3の樹脂をフローティングナイフ法にて固
形分で5g/m塗工し、難燃剤を付与しないウレタン
発泡体(株式会社ブリヂストン社製、エバーライトFD)
の外表面に、上述した金属被覆織物の処方3の樹脂積層
面と貼りあわせるように回捲し、電磁波シールド用ガス
ケットが得られた。性能評価結果を表1に示す。
Comparative Example 3 The resin of Formulation 1 was applied to one surface of the metal-coated woven fabric used in Example 1 by the floating knife method and dried at 130 ° C. The coating amount was 3 g / m 2 in terms of solid content. Next, the resin of the following formulation 2 was applied to the same surface by a floating knife method and dried at 130 ° C. The coating amount was 140 g / m 2 in terms of solid content. The proportions of the phosphorus compound flame retardant and the thermally expandable graphite used were 100% by weight and 53% by weight, respectively, with respect to the weight of the metal-coated woven fabric. Furthermore, in order to bond the metal-coated woven fabric and the foam on the same surface, a resin of Formulation 3 was coated at a solid content of 5 g / m 2 by a floating knife method, and a urethane foam (Bridgestone Co., Ltd.) to which no flame retardant was added was applied. (Made by Everlight FD)
The outer surface was wound so as to be bonded to the resin-laminated surface of the above-mentioned metal-coated woven fabric formulation 3 to obtain an electromagnetic wave shielding gasket. The performance evaluation results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の電磁波シールド用ガスケット
は、優れた難燃性を有し、更に、人体に影響なアンチモ
ンを含まず、燃焼時に有毒なハロゲン系ガスなどが発生
しないという効果がある。
The electromagnetic wave shielding gasket of the present invention has excellent flame retardancy, does not contain antimony which affects the human body, and does not generate toxic halogen-based gas during combustion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る電磁波シールド用ガスケ
ットを一部切断し示す概略図の例である。
FIG. 1 is an example of a schematic view showing a partially cutaway electromagnetic wave shielding gasket according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・難燃剤を含む樹脂層 2・・・金属被覆布帛 3・・・裏漏れ防止用樹脂層 4・・・リン系難燃剤と未膨張の熱膨張性黒鉛を有する
樹脂層 5・・・接着用樹脂層または、両面粘着テープ 6・・・難燃性を有する発泡体
DESCRIPTION OF SYMBOLS 1 ... Resin layer containing flame retardant 2 ... Metal-coated cloth 3 ... Back leak preventing resin layer 4 ... Resin layer 5 containing phosphorus flame retardant and unexpanded thermally expansive graphite -Adhesive resin layer or double-sided adhesive tape 6 ... Flame-retardant foam

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】難燃性を有する合成樹脂発泡体から成る芯
材の外側を、少なくともリン系化合物難燃剤と未膨張の
熱膨張性黒鉛を含む樹脂層が積層された金属被覆布帛で
回捲して成る電磁波シールド用ガスケット。
1. A metal-coated cloth in which a resin layer containing at least a phosphorus compound flame retardant and unexpanded thermally expansive graphite is laminated on the outside of a core material made of a flame-retardant synthetic resin foam. A gasket for electromagnetic wave shielding.
【請求項2】リン系化合物難燃剤と未膨張の熱膨張性黒
鉛を含む樹脂層が、金属被覆布帛の少なくとも一方の面
に形成されていることを特徴とする請求項1記載の電磁
波シールド用ガスケット。
2. The electromagnetic wave shield according to claim 1, wherein a resin layer containing a phosphorus compound flame retardant and unexpanded thermally expansive graphite is formed on at least one surface of the metal-coated cloth. gasket.
【請求項3】金属被覆布帛に、該金属被覆布帛の重量に
対して、リン系化合物難燃剤が40〜300%、未膨張
の熱膨張性黒鉛が20〜160%含まれていることを特
徴とする請求項1乃至2記載の電磁波シールド用ガスケ
ット。
3. The metal-coated cloth contains 40 to 300% of phosphorus compound flame retardant and 20 to 160% of unexpanded thermally expandable graphite, based on the weight of the metal-coated cloth. The electromagnetic wave shielding gasket according to claim 1 or 2.
【請求項4】リン系化合物難燃剤がポリリン酸アンモニ
ウムであることを特徴とする請求項1乃至3記載の電磁
波シールド用ガスケット。
4. The gasket for electromagnetic wave shielding according to claim 1, wherein the phosphorus compound flame retardant is ammonium polyphosphate.
JP2002040516A 2002-02-18 2002-02-18 Flame retardant gasket for shielding electromagnetic wave Pending JP2003243873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040516A JP2003243873A (en) 2002-02-18 2002-02-18 Flame retardant gasket for shielding electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040516A JP2003243873A (en) 2002-02-18 2002-02-18 Flame retardant gasket for shielding electromagnetic wave

Publications (1)

Publication Number Publication Date
JP2003243873A true JP2003243873A (en) 2003-08-29

Family

ID=27781241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040516A Pending JP2003243873A (en) 2002-02-18 2002-02-18 Flame retardant gasket for shielding electromagnetic wave

Country Status (1)

Country Link
JP (1) JP2003243873A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088565A2 (en) * 2005-02-16 2006-08-24 Parker-Hannifin Corporation Flame retardant emi shielding gasket
WO2006112539A1 (en) * 2005-04-19 2006-10-26 Seiren Co., Ltd. Flame-retardant metal-coated fabric and gasket comprising the same for electromagnetic-wave shielding
WO2006115528A2 (en) 2005-02-09 2006-11-02 Laird Technologies, Inc. Flame retardant emi shields
JP2007224665A (en) * 2006-02-24 2007-09-06 Inoac Corp Fireproofing implement for through-part, and fireproofing structure of through-part in building
WO2008125968A2 (en) 2007-04-17 2008-10-23 Seiren Co. Ltd. Metal-coated fabric
JP2009206194A (en) * 2008-02-26 2009-09-10 Inoac Corp Flexible polyurethane foam for electromagnetic wave shield gasket, and electromagnetic wave shield gasket using the same
JP2010247532A (en) * 2009-03-24 2010-11-04 Inoac Corp Polyurethane foam laminate and method for manufacturing the same, and gasket
KR101076547B1 (en) 2005-08-09 2011-10-24 라이르드 테크놀로지스, 아이엔씨 Flame retardant emi shielding gasket
JP2013010957A (en) * 2011-06-27 2013-01-17 Nitto Denko Corp Gasket
KR101243647B1 (en) 2012-10-05 2013-03-19 (주)메인일렉콤 Cushion sheet using graphite paper and method for manufacturing the same
KR101256397B1 (en) * 2012-09-28 2013-04-25 주식회사 이송이엠씨 Graphite encapsulated elasticitygasket with electric and thermal conductivity
WO2016117699A1 (en) * 2015-01-22 2016-07-28 積水化学工業株式会社 Fire-resistant resin composition

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950818B1 (en) * 2005-02-09 2010-04-02 라이르드 테크놀로지스, 아이엔씨 Flame retardant emi shields
US8545974B2 (en) 2005-02-09 2013-10-01 Laird Technologies, Inc. Flame retardant EMI shields
WO2006115528A2 (en) 2005-02-09 2006-11-02 Laird Technologies, Inc. Flame retardant emi shields
WO2006115528A3 (en) * 2005-02-09 2007-07-05 Laird Technologies Inc Flame retardant emi shields
CN102582192A (en) * 2005-02-09 2012-07-18 莱尔德技术股份有限公司 Flame retardant emi shields
JP2007535180A (en) * 2005-02-09 2007-11-29 レアード テクノロジーズ インコーポレイテッド Flame retardant electromagnetic interference shield
WO2006088565A2 (en) * 2005-02-16 2006-08-24 Parker-Hannifin Corporation Flame retardant emi shielding gasket
WO2006088565A3 (en) * 2005-02-16 2007-03-29 Parker Hannifin Corp Flame retardant emi shielding gasket
JP2008530818A (en) * 2005-02-16 2008-08-07 パーカー−ハニフイン・コーポレーシヨン Flame retardant EMI shielding gasket
JP4695655B2 (en) * 2005-02-16 2011-06-08 パーカー−ハニフイン・コーポレーシヨン Flame retardant EMI shielding gasket
KR101179908B1 (en) 2005-04-19 2012-09-10 세이렌가부시끼가이샤 Flame-retardant metal-coated fabric and gasket comprising the same for electromagnetic-wave shielding
WO2006112539A1 (en) * 2005-04-19 2006-10-26 Seiren Co., Ltd. Flame-retardant metal-coated fabric and gasket comprising the same for electromagnetic-wave shielding
JP2006299447A (en) * 2005-04-19 2006-11-02 Seiren Co Ltd Flame retardant and metal-coated cloth, and gasket for shielding electromagnetic wave by using the same
JP4663386B2 (en) * 2005-04-19 2011-04-06 セーレン株式会社 Flame-retardant metal-coated fabric and electromagnetic wave shielding gasket using the same
KR101076547B1 (en) 2005-08-09 2011-10-24 라이르드 테크놀로지스, 아이엔씨 Flame retardant emi shielding gasket
JP2007224665A (en) * 2006-02-24 2007-09-06 Inoac Corp Fireproofing implement for through-part, and fireproofing structure of through-part in building
WO2008125968A2 (en) 2007-04-17 2008-10-23 Seiren Co. Ltd. Metal-coated fabric
JP2008285804A (en) * 2007-04-17 2008-11-27 Seiren Co Ltd Flame-retardant metal-coated fabric and gasket for shielding electromagnetic wave by using the same
JP2009206194A (en) * 2008-02-26 2009-09-10 Inoac Corp Flexible polyurethane foam for electromagnetic wave shield gasket, and electromagnetic wave shield gasket using the same
JP2010247532A (en) * 2009-03-24 2010-11-04 Inoac Corp Polyurethane foam laminate and method for manufacturing the same, and gasket
JP2013010957A (en) * 2011-06-27 2013-01-17 Nitto Denko Corp Gasket
KR101256397B1 (en) * 2012-09-28 2013-04-25 주식회사 이송이엠씨 Graphite encapsulated elasticitygasket with electric and thermal conductivity
KR101243647B1 (en) 2012-10-05 2013-03-19 (주)메인일렉콤 Cushion sheet using graphite paper and method for manufacturing the same
WO2016117699A1 (en) * 2015-01-22 2016-07-28 積水化学工業株式会社 Fire-resistant resin composition
JPWO2016117699A1 (en) * 2015-01-22 2017-11-02 積水化学工業株式会社 Fireproof resin composition
JP7127960B2 (en) 2015-01-22 2022-08-30 積水化学工業株式会社 Fire resistant resin composition

Similar Documents

Publication Publication Date Title
US6387523B2 (en) Flame retardant EMI shielding gasket
JP4663386B2 (en) Flame-retardant metal-coated fabric and electromagnetic wave shielding gasket using the same
JP3306665B2 (en) Conductive material and method of manufacturing the same
EP1846493B1 (en) Flame retardant emi shields
KR101318816B1 (en) Flame retardant EMI shielding gasket
US8043983B2 (en) Flame-retardant metal-coated cloth
JP2003243873A (en) Flame retardant gasket for shielding electromagnetic wave
US7060348B2 (en) Flame retardant, electrically conductive shielding materials and methods of making the same
JP2008285804A (en) Flame-retardant metal-coated fabric and gasket for shielding electromagnetic wave by using the same
JP2003247164A (en) Flame-retardant metal-coated fabric
JP5786011B2 (en) Conductive porous material assembly and manufacturing method thereof
US20030036326A1 (en) Flame retardant conductive material and producing method thereof
EP2823697B1 (en) Halogen-free flame retardant emi shielding gasket for electronic apparatus
JP2000133980A (en) Electromagnetic shielding gasket and manufacture thereof
JP4638217B2 (en) Flame retardant metal coated fabric
JP2004211247A (en) Flame-retardant conductive fabric
JP2003175565A (en) Flame-retardant electrically-conductive material and method for manufacturing it
JP4809992B2 (en) Cable covering material
JP4328413B2 (en) Flame retardant metal coated fabric
JP2006156561A (en) Electromagnetic wave shielding member and its manufacturing method
JP2010100949A (en) Flame-retardant and metal-coated cloth, method for producing the same and gasket containing the same for shielding electromagnetic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A131 Notification of reasons for refusal

Effective date: 20070723

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070919

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20071107

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080227