JP4328413B2 - Flame retardant metal coated fabric - Google Patents

Flame retardant metal coated fabric Download PDF

Info

Publication number
JP4328413B2
JP4328413B2 JP17944999A JP17944999A JP4328413B2 JP 4328413 B2 JP4328413 B2 JP 4328413B2 JP 17944999 A JP17944999 A JP 17944999A JP 17944999 A JP17944999 A JP 17944999A JP 4328413 B2 JP4328413 B2 JP 4328413B2
Authority
JP
Japan
Prior art keywords
metal
fabric
flame
flame retardant
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17944999A
Other languages
Japanese (ja)
Other versions
JP2001011774A (en
Inventor
進 高木
幸代 坂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP17944999A priority Critical patent/JP4328413B2/en
Publication of JP2001011774A publication Critical patent/JP2001011774A/en
Application granted granted Critical
Publication of JP4328413B2 publication Critical patent/JP4328413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器などのシールド材として用いられる、高度な難燃性を有する金属被覆布帛に関するものである。
【0002】
【従来の技術】
従来から、合成繊維布帛表面にスパッタリング法、金属蒸着法やその他様々なメッキ法により金属被膜を形成させた導電性布帛が知られている。そしてこのような導電性布帛は、電子機器より漏洩する電磁波の遮蔽に用いられてきた。
ところが、近年になり製造物責任法(PL法)の施行などにより、家電製品やOA機器などの電子機器分野でも難燃性が要求されるようになってきており、これら電子機器のシールド材として用いられる上述の導電性布帛にも難燃性が要求されるようになってきた。
【0003】
従来、ポリエステルなど合成繊維の難燃化にはリン或いはブロムを含有した難燃化合物が有効とされている。しかし、一般に合成繊維にメッキされてなる金属被覆布帛をシールド材として用いられているものは、金属が酸化触媒となり可燃性を増すものが多く、金属被覆繊維にリン化合物系難燃剤やブロム化合物系難燃剤などの公知の難燃剤をそれぞれ単独に施しても十分な難燃性が得られない。これは、金属被膜をポリエステルなどの繊維表面に形成すると、被覆金属が繊維の溶融による自己消火作用を妨げるだけでなく、形成された金属被膜により熱伝導性がよくなって延焼を助長させるためである。
【0004】
そこで、難燃性を向上させる手段として、特開平62−21870号公報には金属付着繊維にリン化合物系難燃剤とハロゲン化合物系難燃剤とを施し難燃性を得る方法が開示されている。しかし、この方法では、加工処理中に190℃の熱処理を行うため、金属部分の腐食や変質がおこりやすく、メッキした金属の割れや、導電性の劣化などがおこる虞がある。また、米国の難燃規格であるUL94−VTM0を満足する高度な難燃性が得られない。
【0005】
また、繊維素材に難燃素材を用いることにより、難燃性が向上することは知られている。
ガラス繊維、炭素繊維、石綿等の、所謂、不燃繊維に金属被覆を施し、難燃性金属被覆繊維を得ることは可能であるが、金属被覆加工が難しく、また、炭素繊維等は素材のコストが高いため一般的ではない。また、石綿は環境的にも好ましくない。
また、芳香族ポリアミドなどの防炎繊維は素材のコストが高いためコスト的に不利である。
更に、一般に難燃繊維といわれるものにメッキ加工などにより金属被覆加工を行った場合、メッキによって素材の難燃性が損なわれ、モダクリル繊維や塩化ビニル繊維以外はUL94−VTM0を満足する難燃性は得られにくい。
【0006】
そこで、特開平7−42079号公報には難燃性繊維織物を金属化しその表面をウレタン樹脂で被膜し、その上に有機難燃剤及び無機難燃剤の混合物を被覆させ、更にウレタン樹脂で被覆する方法が開示されている。しかし、この方法では三層の被膜を設けなければならないため、経済的にも好ましくない。また、布帛表面に三層の樹脂被膜を設けるため表面導電性が得られなくなる。
【0007】
また、モダクリル繊維布帛にメッキ加工などにより金属被覆加工を行った場合は、UL94−VTM0を満足する難燃性は得られるが、布帛からの発塵量が極めて多く、電子機器部品としては好ましくない。
市販されている難燃繊維の多くは細デニールのフィラメント糸が製造しにくい為、短繊維であり、発塵、毛羽立ちなどの問題があるため、そのままでは、導電性布帛の主な用途である電子機器のシールド用部品としての使用には不向きである。
【0008】
塩化ビニル繊維は、長繊維も生産されており、発塵、毛羽立ちなどの問題は少なく、難燃性もあるが、熱収縮開始温度が60〜70℃と低く、110℃で軟化するなど、メッキ加工時や使用の際にも問題が起こりやすく、また、メッキ密着性が悪い。
【0009】
【発明が解決しようとする課題】
本発明は、上述の事情を背景として成されたもので、その目的は、難燃性があり発塵の少なく、布帛表面に導通性のある金属被覆布帛を得ることである。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するためのもので次の構成よりなるものである。すなわち、本発明は、第一に、金属被覆されたモダクリル繊維布帛の両面に有機ブロム化合物と三酸化アンチモンから構成される難燃剤を含む樹脂を塗工して成る難燃性金属被覆布帛であって、該モダクリル繊維が短繊維であり、該樹脂の塗布量が布帛重量に対し10〜50%である難燃性金属被覆布帛である。第二に、樹脂固形分の重量に対する難燃剤の比率が、有機ブロム化合物が50〜300%、三酸化アンチモンが30〜200%である上述の難燃性金属被覆布帛である。第三に、UL94−VTM0を満たす上述の難燃性金属被覆布帛である。第四に、上述の難燃性金属被覆布帛を用いた電子機器用シールド材である。
【0011】
布帛は難燃性効果の高いモダクリル繊維からなる布帛を用い、この布帛に公知の方法で銅、ニッケル、銀などの金属をメッキすることにより導電性布帛を得る。得られた導電性布帛の両面に難燃剤を含む樹脂を塗工する。樹脂を塗工することで、短繊維から成る布帛特有の布帛表面の毛羽を固定し、且つ布帛からの発塵を減少させる。また、布帛からの発塵、毛羽立ちを抑制するために、予め布帛表面の毛羽を焼いて除去させておくと効果は更に大きくなる。
【0012】
布帛に用いられる難燃剤は、有機ブロム化合物、三酸化アンチモンより構成される。また、更にリン酸エステル系難燃剤を添加してもよい。
【0013】
布帛に塗工される樹脂は、従来公知のものが用いられるが、製品の柔軟性を考慮すると、アクリル酸エステル、ウレタン樹脂、ポリエステル樹脂等が好ましく、アクリル酸エステルが特に好ましい。
【0014】
樹脂固形分に対する難燃剤の比率は、有機ブロム化合物が50〜300%、好ましくは100〜200%、三酸化アンチモンが30〜200%、好ましくは60〜150%である。リン酸エステルを添加する場合、リン酸エステルは15〜100%、好ましくは30〜70%である。これ以上の比率になると樹脂被膜が脆くなり、また、少ないと充分な難燃性が得られない。
難燃剤は有機ブロム化合物と、三酸化アンチモンを組み合わせることで、単独使用時よりも高度な難燃性が得られる。
【0015】
難燃剤を含む樹脂の塗工量は、布帛重量に対して10〜100%、好ましくは15〜40%である。これより少ないと毛羽立ちや発塵の抑制が困難になり、また、多すぎるとタックが現れ、導電性布帛の表面から裏面への導通性も失われてしまう。
【0016】
樹脂の付与方法は、ディップコーティング、ナイフコーティングなどが用いられるが、難燃性、発塵性、柔軟性などを考慮すると、ナイフコーティングが適している。
【0017】
【実施例】
実施例により本発明を詳細に説明するが、本発明はこれら実施例に限定されるものでない。実施例・比較例における布帛の評価方法は次の通りである。
【0018】
〈発塵性評価〉
直径13cmの漏斗に、15cm×15cmの大きさにカットした測定試料を接着テープにて貼り付ける。該漏斗の導管をパーティクルカウンター(リオン株式会社製 KM−07)に取付け、クリーンベンチ内にてパーティクルカウンターを作動させ、試料中心部をガラス棒にて10回たたき、30秒間の発塵量を測定する。測定塵粒径は0.3〜0.5μmと0.5μm以上である。測定試料1点につき5回繰り返す。次に試料の反対面からの発塵量を5回測定する。それぞれ5回の測定値の平均を算出し比較評価する。
【0019】
〈難燃性評価〉
米国難燃規格UL94のVTM−0に準じて測定する。
【0020】
〈体積抵抗値〉
HIOKI電気株式会社製抵抗値測定器ミリオームハイテスター3220を用い、試料10cm×10cmにおける、表面から裏面への体積抵抗値を測定した。
【0021】
〈シールド性評価〉
関西電子工業振興センターの生駒電波測定所の考案による測定法にて、10MHz〜1GHzの電界波について評価した。
【0022】
【実施例1】
モダクリル繊維100%よりなる目付け115g/mの平織物に無電解メッキ法により銅を15g/mメッキし、次いでニッケルを4g/mメッキし、総目付134g/mの金属被覆布帛を得た。この金属被覆布帛の表面に下記の処方1の樹脂液をナイフコーティング法により塗工し、130℃で2分間乾燥した。次に裏面にも処方1の樹脂液をナイフコーティング法により塗工し、130℃で2分間乾燥し、難燃性金属被覆布帛を得た。樹脂の総塗工量は34g/mであった。評価結果を表1,表2、表3に示す。
【0023】
処方1
パラクロンKF200 100重量部
(根上工業株式会社製、アクリル系樹脂、固形分20%)
ヘキサブロモシクロドデカン(ブロム含有量70%) 30重量部
三酸化アンチモン 20重量部
にトルエンを加え粘度を25000cpsに調製する。
【0024】
【比較例1】
モダクリル繊維100%よりなる目付け115g/mの平織物に無電解メッキ法により銅を15g/mメッキし、次いでニッケルを4g/mメッキし金属被覆布帛を作成し、総目付134g/mの金属被覆布帛を得た。この金属被覆織物の表面に処方2の樹脂液をナイフコーティング法により塗工し、130℃で2分間乾燥した。次に裏面にも処方2の樹脂液をナイフコーティング法により塗工し、130℃で2分間乾燥した。樹脂の総塗工量は34g/mであった。評価結果を表1,表2、表3に示す。
【0025】
処方2
パラクロンKF200 100重量部
(根上工業株式会社製、アクリル系樹脂、固形分20%)
ヘキサブロモシクロドデカン(ブロム含有量70%) 30重量部
にトルエンを加え粘度を25000cpsに調製する。
【0026】
【比較例2】
モダクリル繊維100%よりなる目付け115g/mの平織物に無電解メッキ法により銅を15g/mメッキし、次いでニッケルを4g/mメッキし金属被覆布帛を作成し、総目付134g/mの金属被覆布帛を得た。
評価結果を表1,表2、表3に示す。
【0027】
【比較例3】
ポリエステル100%よりなる目付け50g/mの平織物に無電解メッキ法にて銅を15g/mメッキし、次いでニッケルを4g/mメッキし総目付け69g/mの金属被覆布帛を作成した。この金属被覆布帛の表面に処方1の樹脂液をナイフコーティング法により塗工し、130℃で2分間乾燥した。次に裏面にも処方1の樹脂液をナイフコーティング法により塗工し、130℃で2分間乾燥し、難燃性金属被覆布帛を得た。樹脂の総塗工量は34g/mであった。評価結果を表1,表2、表3に示す。
【0028】
【表1】

Figure 0004328413
【0029】
【表2】
Figure 0004328413
【0030】
【表3】
Figure 0004328413
【0031】
【発明の効果】
本発明は、上述のように金属被覆されたモダクリル繊維布帛の表面を難燃剤を含む樹脂で被覆する事により、優れた難燃性を有する、発塵を抑えた電磁波シールド材として用いることができる難燃性金属被覆布帛が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal-coated fabric having high flame retardancy, which is used as a shielding material for electronic devices and the like.
[0002]
[Prior art]
Conventionally, conductive fabrics are known in which a metal film is formed on the surface of a synthetic fiber fabric by sputtering, metal vapor deposition, or other various plating methods. Such conductive fabrics have been used to shield electromagnetic waves leaking from electronic devices.
However, in recent years, due to the enforcement of the Product Liability Act (PL Law), flame resistance has come to be required in the field of electronic equipment such as home appliances and OA equipment, and as a shielding material for these electronic equipment. The above-mentioned conductive fabric used is required to have flame retardancy.
[0003]
Conventionally, a flame retardant compound containing phosphorus or bromine is effective for making a synthetic fiber such as polyester flame retardant. However, in general, metal-coated fabrics that are plated on synthetic fibers are used as shielding materials, and many metals are used as an oxidation catalyst to increase flammability. Phosphorus compound-based flame retardants and bromine compound-based materials are used for metal-coated fibers. Even if a known flame retardant such as a flame retardant is applied alone, sufficient flame retardancy cannot be obtained. This is because when a metal coating is formed on the surface of a fiber such as polyester, the coated metal not only prevents the self-extinguishing action due to melting of the fiber, but also improves the thermal conductivity and promotes the spread of fire. is there.
[0004]
Therefore, as a means for improving flame retardancy, Japanese Patent Application Laid-Open No. 62-21870 discloses a method of obtaining flame retardancy by applying a phosphorus compound flame retardant and a halogen compound flame retardant to a metal-attached fiber. However, in this method, since a heat treatment at 190 ° C. is performed during the processing, the metal part is easily corroded and deteriorated, and there is a possibility that the plated metal is cracked or the conductivity is deteriorated. Moreover, the high flame retardance which satisfies UL94-VTM0 which is a flame retardance standard of the United States cannot be obtained.
[0005]
It is also known that flame retardancy is improved by using a flame retardant material for the fiber material.
It is possible to obtain a flame-retardant metal-coated fiber by applying a metal coating to a so-called non-combustible fiber such as glass fiber, carbon fiber, asbestos, etc., but metal coating is difficult, and carbon fiber is a material cost. Is not so common. In addition, asbestos is not preferable environmentally.
In addition, flameproof fibers such as aromatic polyamide are disadvantageous in terms of cost because of the high cost of the material.
Furthermore, when metal coating is applied to what is generally referred to as flame retardant fiber by plating or the like, the flame retardancy of the material is impaired by plating, and flame retardant that satisfies UL94-VTM0 other than modacrylic fiber and vinyl chloride fiber Is difficult to obtain.
[0006]
Therefore, in JP-A-7-42079, a flame retardant fiber fabric is metallized and the surface thereof is coated with a urethane resin, and a mixture of an organic flame retardant and an inorganic flame retardant is coated thereon and further coated with a urethane resin. A method is disclosed. However, this method is not economically preferable because a three-layer coating must be provided. Further, since the three-layered resin film is provided on the surface of the fabric, surface conductivity cannot be obtained.
[0007]
Further, when metal coating is applied to the modacrylic fiber fabric by plating or the like, flame retardancy satisfying UL94-VTM0 is obtained, but the amount of dust generated from the fabric is extremely large, which is not preferable as an electronic device component. .
Many of the commercially available flame retardant fibers are short fibers because it is difficult to produce fine denier filament yarns, and there are problems such as dust generation and fluffing. It is not suitable for use as a shielding part for equipment.
[0008]
Polyvinyl chloride fibers are also produced as long fibers, and there are few problems such as dusting and fluffing and flame retardancy, but the heat shrinkage starting temperature is as low as 60 to 70 ° C, and it softens at 110 ° C. Problems easily occur during processing and use, and poor plating adhesion.
[0009]
[Problems to be solved by the invention]
The present invention has been made against the background described above, and an object thereof is to obtain a metal-coated fabric that is flame-retardant, has little dust generation, and is electrically conductive on the fabric surface.
[0010]
[Means for Solving the Problems]
The present invention is for achieving the above object and has the following configuration. That is, the present invention is primarily met flame retardant metal coated fabric formed by coating a resin containing a composed flame retardant metal coated organic bromine compound to both surfaces of the modacrylic fiber fabric and antimony trioxide The modacrylic fiber is a short fiber, and the amount of the resin applied is 10 to 50% of the fabric weight . Second, the flame retardant metal-coated fabric described above has a ratio of the flame retardant to the weight of the resin solid content of 50 to 300% of the organic bromide compound and 30 to 200% of antimony trioxide. Thirdly, the above-mentioned flame-retardant metal-coated fabric satisfying UL94-VTM0 . Fourthly, a shielding material for electronic equipment using the above-mentioned flame-retardant metal-coated fabric.
[0011]
As the cloth, a cloth made of modacrylic fiber having a high flame retardancy effect is used, and a conductive cloth is obtained by plating the cloth with a metal such as copper, nickel, silver or the like by a known method. A resin containing a flame retardant is applied to both sides of the obtained conductive fabric. By coating the resin, the fluff peculiar to the fabric composed of short fibers is fixed, and dust generation from the fabric is reduced. In addition, in order to suppress dust generation and fluff from the fabric, the effect is further increased if the fluff on the surface of the fabric is baked and removed in advance.
[0012]
The flame retardant used for the fabric is composed of an organic bromide compound and antimony trioxide. Further, a phosphate ester flame retardant may be added.
[0013]
As the resin to be applied to the fabric, conventionally known resins are used, but considering the flexibility of the product, acrylic acid esters, urethane resins, polyester resins and the like are preferable, and acrylic acid esters are particularly preferable.
[0014]
The ratio of the flame retardant to the resin solid content is 50 to 300%, preferably 100 to 200% for the organic bromide compound, and 30 to 200%, preferably 60 to 150% for antimony trioxide. When adding the phosphate ester, the phosphate ester is 15 to 100%, preferably 30 to 70%. If the ratio is higher than this, the resin film becomes brittle, and if it is less, sufficient flame retardancy cannot be obtained.
The flame retardant can be combined with an organic bromide compound and antimony trioxide to obtain higher flame retardancy than when used alone.
[0015]
The coating amount of the resin containing the flame retardant is 10 to 100%, preferably 15 to 40% with respect to the fabric weight. If it is less than this, it becomes difficult to suppress fuzz and dust generation, and if it is too much, tack will appear and the conductivity from the front surface to the back surface of the conductive fabric will be lost.
[0016]
As a resin application method, dip coating, knife coating, or the like is used, but knife coating is suitable in consideration of flame retardancy, dust generation, flexibility, and the like.
[0017]
【Example】
EXAMPLES The present invention will be described in detail by examples, but the present invention is not limited to these examples. The evaluation method of the fabric in Examples and Comparative Examples is as follows.
[0018]
<Dust generation evaluation>
A measurement sample cut to a size of 15 cm × 15 cm is attached to a funnel having a diameter of 13 cm with an adhesive tape. Attach the funnel conduit to a particle counter (KM-07, manufactured by Lion Co., Ltd.), operate the particle counter in a clean bench, tap the center of the sample 10 times with a glass rod, and measure the amount of dust generated for 30 seconds. To do. The particle size of the measured dust is 0.3 to 0.5 μm and 0.5 μm or more. Repeat 5 times for each measurement sample. Next, the amount of dust generated from the opposite surface of the sample is measured five times. The average of five measurements is calculated and evaluated for comparison.
[0019]
<Flame retardance evaluation>
Measured according to US flame retardant standard UL94 VTM-0.
[0020]
<Volume resistance value>
The volume resistance value from the front surface to the back surface in a sample of 10 cm × 10 cm was measured using a resistance value measuring device, milliohm high tester 3220 manufactured by HIOKI ELECTRIC CO., LTD.
[0021]
<Shielding evaluation>
An electric field wave of 10 MHz to 1 GHz was evaluated by a measuring method devised by the Ikoma Radio Measurement Center of Kansai Electronics Industry Promotion Center.
[0022]
[Example 1]
Copper 15 g / m 2 was plated by an electroless plating method plain weave fabric having a basis weight of 115 g / m 2 made of modacrylic fiber 100%, then nickel was 4g / m 2 Plating, the total basis weight of 134 g / m 2 metal coated fabric Obtained. A resin solution having the following formulation 1 was applied to the surface of the metal-coated fabric by a knife coating method and dried at 130 ° C. for 2 minutes. Next, the resin solution of Formula 1 was applied also to the back surface by a knife coating method and dried at 130 ° C. for 2 minutes to obtain a flame-retardant metal-coated fabric. The total coating amount of the resin was 34 g / m 2 . The evaluation results are shown in Table 1, Table 2, and Table 3.
[0023]
Formula 1
Paralaclon KF200 100 parts by weight (manufactured by Negami Kogyo Co., Ltd., acrylic resin, solid content 20%)
Hexabromocyclododecane (bromine content 70%) 30 parts by weight Toluene is added to 20 parts by weight of antimony trioxide to adjust the viscosity to 25000 cps.
[0024]
[Comparative Example 1]
A plain fabric with a basis weight of 115 g / m 2 made of 100% modacrylic fiber is plated with 15 g / m 2 of copper by an electroless plating method and then plated with 4 g / m 2 of nickel to produce a metal-coated fabric, with a total basis weight of 134 g / m 2 2 metal coated fabrics were obtained. The resin solution of Formula 2 was applied to the surface of this metal-coated fabric by a knife coating method and dried at 130 ° C. for 2 minutes. Next, the resin solution of Formula 2 was applied to the back surface by a knife coating method and dried at 130 ° C. for 2 minutes. The total coating amount of the resin was 34 g / m 2 . The evaluation results are shown in Table 1, Table 2, and Table 3.
[0025]
Formula 2
Paralaclon KF200 100 parts by weight (manufactured by Negami Kogyo Co., Ltd., acrylic resin, solid content 20%)
Hexabromocyclododecane (bromine content 70%) Toluene is added to 30 parts by weight to adjust the viscosity to 25000 cps.
[0026]
[Comparative Example 2]
A plain fabric with a basis weight of 115 g / m 2 made of 100% modacrylic fiber is plated with 15 g / m 2 of copper by an electroless plating method and then plated with 4 g / m 2 of nickel to produce a metal-coated fabric, with a total basis weight of 134 g / m 2 2 metal coated fabrics were obtained.
The evaluation results are shown in Table 1, Table 2, and Table 3.
[0027]
[Comparative Example 3]
A plain fabric with a basis weight of 50 g / m 2 made of 100% polyester is plated with 15 g / m 2 of copper by electroless plating, and then 4 g / m 2 of nickel to create a metal-coated fabric with a total basis weight of 69 g / m 2 did. The resin solution of Formula 1 was applied to the surface of this metal-coated fabric by a knife coating method and dried at 130 ° C. for 2 minutes. Next, the resin solution of Formula 1 was applied also to the back surface by a knife coating method and dried at 130 ° C. for 2 minutes to obtain a flame-retardant metal-coated fabric. The total coating amount of the resin was 34 g / m 2 . The evaluation results are shown in Table 1, Table 2, and Table 3.
[0028]
[Table 1]
Figure 0004328413
[0029]
[Table 2]
Figure 0004328413
[0030]
[Table 3]
Figure 0004328413
[0031]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention can be used as an electromagnetic wave shielding material having excellent flame retardancy and suppressing dust generation by coating the surface of a metal-coated modacrylic fiber fabric as described above with a resin containing a flame retardant. A flame retardant metal coated fabric is obtained.

Claims (4)

金属被覆されたモダクリル繊維布帛の両面に有機ブロム化合物と三酸化アンチモンから構成される難燃剤を含む樹脂を塗工して成る難燃性金属被覆布帛であって、該モダクリル繊維が短繊維であり、該樹脂の塗布量が布帛重量に対し10〜50%である難燃性金属被覆布帛A flame-retardant metal-coated fabric obtained by applying a resin containing a flame retardant composed of an organic bromide compound and antimony trioxide on both sides of a metal-coated modacrylic fiber fabric , the modacrylic fiber being a short fiber The flame-retardant metal-coated fabric, wherein the amount of the resin applied is 10 to 50% with respect to the fabric weight . 樹脂固形分の重量に対する難燃剤の比率が、有機ブロム化合物が50〜300%、三酸化アンチモンが30〜200%である請求項1記載の難燃性金属被覆布帛。The flame retardant metal-coated fabric according to claim 1, wherein the ratio of the flame retardant to the weight of the resin solid content is 50 to 300% for the organic bromide compound and 30 to 200% for antimony trioxide. UL94−VTM0を満たす請求項1または2記載の難燃性金属被覆布帛。The flame-retardant metal-coated fabric according to claim 1 or 2, satisfying UL94-VTM0. 請求項1、2または3記載の難燃性金属被覆布帛を用いた電子機器用シールド材。A shielding material for electronic equipment using the flame-retardant metal-coated cloth according to claim 1, 2 or 3.
JP17944999A 1999-06-25 1999-06-25 Flame retardant metal coated fabric Expired - Fee Related JP4328413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17944999A JP4328413B2 (en) 1999-06-25 1999-06-25 Flame retardant metal coated fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17944999A JP4328413B2 (en) 1999-06-25 1999-06-25 Flame retardant metal coated fabric

Publications (2)

Publication Number Publication Date
JP2001011774A JP2001011774A (en) 2001-01-16
JP4328413B2 true JP4328413B2 (en) 2009-09-09

Family

ID=16066061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17944999A Expired - Fee Related JP4328413B2 (en) 1999-06-25 1999-06-25 Flame retardant metal coated fabric

Country Status (1)

Country Link
JP (1) JP4328413B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060348B2 (en) 2002-03-08 2006-06-13 Laird Technologies, Inc. Flame retardant, electrically conductive shielding materials and methods of making the same
US8545974B2 (en) 2005-02-09 2013-10-01 Laird Technologies, Inc. Flame retardant EMI shields
US20210221110A1 (en) * 2018-05-30 2021-07-22 Sekisui Chemical Co., Ltd. Layered sheet

Also Published As

Publication number Publication date
JP2001011774A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
US7060348B2 (en) Flame retardant, electrically conductive shielding materials and methods of making the same
JP5243791B2 (en) Flame retardant electromagnetic interference shield
JP4663386B2 (en) Flame-retardant metal-coated fabric and electromagnetic wave shielding gasket using the same
EP2763520B1 (en) Electrically conductive porous material assemblies and methods of making the same
JP2005520331A5 (en)
JP2010514916A5 (en)
US7105234B2 (en) Flame retardant corrosive resistant conductive fabric article and method
JP4237880B2 (en) Metal-coated fabric having flame retardancy
JP4328413B2 (en) Flame retardant metal coated fabric
TW200535289A (en) Flame-retardant metal-coated cloth
JP4638966B2 (en) Flame retardant metal coated fabric
JPH0742079A (en) Method for flameproofing of metal-coated textile fabric
JP4638217B2 (en) Flame retardant metal coated fabric
US20140199904A1 (en) Electrically Conductive Porous Material Assemblies and Methods of Making The Same
JP2003115695A (en) Electromagnetic wave shielding sheet
JP4733287B2 (en) Electromagnetic shielding material
JPH07176889A (en) Flame-resistant electromagnetic wave shielding member
JP2009114412A (en) Conductive flame-retardant adhesive tape
JP2002299877A (en) Electromagnetic wave suppression cloth
JP2002314288A (en) Flame resistant conductive fabric
JPH0841763A (en) Flame-resistant conductive nonwoven fabric
WO2014117362A1 (en) Electrically conductive porous material assemblies and methods of making the same
JP2001295176A (en) Flame retardant electroconductive cloth and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150619

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees