JP2003226992A - Power feeding body for electrolytic cell, and electrolytic cell - Google Patents

Power feeding body for electrolytic cell, and electrolytic cell

Info

Publication number
JP2003226992A
JP2003226992A JP2002029539A JP2002029539A JP2003226992A JP 2003226992 A JP2003226992 A JP 2003226992A JP 2002029539 A JP2002029539 A JP 2002029539A JP 2002029539 A JP2002029539 A JP 2002029539A JP 2003226992 A JP2003226992 A JP 2003226992A
Authority
JP
Japan
Prior art keywords
conductive porous
porous body
electrolyte membrane
electrolytic cell
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002029539A
Other languages
Japanese (ja)
Other versions
JP3631467B2 (en
Inventor
Akiko Miyake
明子 三宅
Yorihisa Yasunaga
順久 泰永
Atsushi Tada
篤志 多田
Koichi Wada
耕一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP2002029539A priority Critical patent/JP3631467B2/en
Publication of JP2003226992A publication Critical patent/JP2003226992A/en
Application granted granted Critical
Publication of JP3631467B2 publication Critical patent/JP3631467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power feeding body by which electrolytic efficiency can be improved by lowering electrolytic voltage by the improvement of contactability with a solid polymer electrolyte film and also the durability of the film can be improved by effectively suppressing the damage of the film. <P>SOLUTION: The power feeding body has a first conductive porous body being in contact with the solid polymer electrolyte film; and a second conductive porous body provided onto the first conductive porous body on the opposite side to the film. The first conductive porous body has a central part facing the above second conductive porous body; and a peripheral extension part extending outward from the central part in a radial direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜を利用して水素及び/又は酸素等の所望気体を製造す
る電解セル用の給電体,及び該給電体を備えた電解セル
に関する。
TECHNICAL FIELD The present invention relates to a feeder for an electrolytic cell for producing a desired gas such as hydrogen and / or oxygen using a solid polymer electrolyte membrane, and an electrolytic cell provided with the feeder.

【0002】[0002]

【従来の技術】高純度の所望気体を得ることができると
共に、ボンベ等の運搬や貯蔵を行う必要が無い等の点か
ら、固体高分子電解質膜を利用した気体発生装置が提案
され、広く利用されている。以下、該気体発生装置とし
て、水素及び/又は酸素を生成する水素・酸素発生装置
を例に説明する。
2. Description of the Related Art A gas generator using a solid polymer electrolyte membrane has been proposed and widely used because a desired gas of high purity can be obtained and there is no need to carry or store a cylinder or the like. Has been done. Hereinafter, a hydrogen / oxygen generating device that generates hydrogen and / or oxygen will be described as an example of the gas generating device.

【0003】該水素・酸素発生装置は、両面に触媒層が
接合されてなる固体高分子電解質膜と、該固体高分子電
解質膜を挟んで両側に配設された一対の陽極側給電体及
び陰極側給電体と、該一対の給電体を挟むように配設さ
れた一対の電極板とを有し、これらの部材が狭圧されて
なる電解セルを備えている。一般的に、前記水素・酸素
発生装置は、該電解セルを複数直列に連結して、その両
端に端部電極板を備えた態様で使用される。
The hydrogen / oxygen generator comprises a solid polymer electrolyte membrane having catalyst layers bonded on both sides, and a pair of an anode-side power supply member and a cathode disposed on both sides of the solid polymer electrolyte membrane. An electrolytic cell is provided which has a side power supply body and a pair of electrode plates arranged so as to sandwich the pair of power supply bodies, and these members are narrowed. Generally, the hydrogen / oxygen generator is used in a mode in which a plurality of the electrolytic cells are connected in series and end electrode plates are provided at both ends thereof.

【0004】ところで、前記電解セルにおける給電体に
は、前記固体高分子電解質膜表面まで純水又は電解液を
通過させる為の通液性と、前記固体高分子電解質膜表面
での電解を行う為の導電性と、発生した水素及び酸素を
セル外へ逃す為の通気性と、固体高分子電解質膜と接す
る面の平滑性とが要求される。
By the way, the power supply in the electrolysis cell has liquid permeability for passing pure water or an electrolytic solution to the surface of the solid polymer electrolyte membrane, and electrolysis on the surface of the solid polymer electrolyte membrane. Are required to have conductivity, air permeability for releasing generated hydrogen and oxygen to the outside of the cell, and smoothness of the surface in contact with the solid polymer electrolyte membrane.

【0005】斯かる観点から、金属製メッシュや金属粉
末又は金属繊維焼結体等の導電性多孔質体からなる給電
体であって、固体高分子電解質膜に接する側に配設され
る低空孔率の第1導電性多孔質体と、該第1導電性多孔
質体の前記固体高分子電解質膜とは反対側に配設される
高空孔率の第2導電性多孔質体とを備えた複数層構造の
給電体が提案されている。
From this point of view, a power supply body made of a conductive porous body such as a metal mesh, a metal powder, or a metal fiber sintered body, which has low pores disposed on the side in contact with the solid polymer electrolyte membrane. Ratio of the first conductive porous body and a high porosity second conductive porous body disposed on the opposite side of the first conductive porous body from the solid polymer electrolyte membrane. A feeder having a multi-layer structure has been proposed.

【0006】図5に、従来の複数構造型給電体の一例の
縦断面図を示す。図5に示す給電体は、固体高分子電解
質膜に接する低空孔率導電性多孔質体と、該低空効率導
電性多孔質体の前記膜とは反対側に配設された中空孔率
導電性多孔質体と、該中空孔率導電性多孔質体の前記膜
とは反対側に配設された高空孔率導電性多孔質体とを備
えた3層タイプとされている。該従来の給電体は、導電
性及び通液性を維持しつつ、膜当接面の平滑性を向上さ
せ得る点で有効ではあるが、以下に示す不都合がある。
FIG. 5 shows a vertical sectional view of an example of a conventional multi-structure type power feeding body. The power feeding body shown in FIG. 5 has a low porosity conductive porous body in contact with a solid polymer electrolyte membrane, and a hollow porosity conductive body disposed on the opposite side of the low void efficiency conductive porous body from the membrane. It is a three-layer type including a porous body and a high-porosity conductive porous body disposed on the side of the hollow porous conductive porous body opposite to the membrane. The conventional power supply body is effective in improving the smoothness of the membrane contact surface while maintaining conductivity and liquid permeability, but has the following disadvantages.

【0007】即ち、前述の通り、固体高分子電解質膜は
一対の給電体(陽極側給電体及び陰極側給電体)によっ
て狭圧下に置かれる。該固体高分子電解質膜は非常に軟
質であるから、一対の給電体によって狭圧されると該一
対の給電体の周縁部が膜に食い込み、これにより、前記
膜の損傷を招く恐れがある。
That is, as described above, the solid polymer electrolyte membrane is placed under a narrow pressure by a pair of power feeding members (anode-side power feeding member and cathode-side power feeding member). Since the solid polymer electrolyte membrane is very soft, if it is squeezed by the pair of power feeding bodies, the peripheral portions of the pair of power feeding bodies bite into the membrane, which may cause damage to the membrane.

【0008】特に、金属製メッシュを用いてなる給電体
の場合には、周縁部においてメッシュを構成する芯材の
端部が剥き出し状態となる為、固体高分子電解質膜の損
傷を招き易いという問題がある。
In particular, in the case of a power supply body using a metal mesh, the end portion of the core material constituting the mesh is exposed at the peripheral edge, so that the solid polymer electrolyte membrane is likely to be damaged. There is.

【0009】又、金属製メッシュからなる給電体におい
ては、図6に示すように、前記芯材の端部による前記膜
の損傷を防止する為に、該膜との当接面周縁部に保護リ
ングを備えることも提案されているが、該態様において
も保護リングの周縁部が固体高分子電解質膜に食い込
み、該膜の損傷を招くという問題は依然として残る。
Further, in the power feeding member made of a metal mesh, as shown in FIG. 6, in order to prevent the film from being damaged by the end portion of the core material, the periphery of the contact surface with the film is protected. Although it has been proposed to provide a ring, the problem that the peripheral portion of the protection ring bites into the solid polymer electrolyte membrane and damages the membrane still remains in this embodiment.

【0010】なお、前記保護リング110は、一般的
に、金属製メッシュ給電体と一体化される為、該保護リ
ング110は金属製メッシュと同一材料で形成される。
即ち、金属製メッシュ給電体がチタン製である場合に
は、保護リング110もチタン製で形成され、溶接等に
より一体化される。
Since the protection ring 110 is generally integrated with a metal mesh power supply body, the protection ring 110 is made of the same material as the metal mesh.
That is, when the metal mesh power feeder is made of titanium, the protection ring 110 is also made of titanium and is integrated by welding or the like.

【0011】[0011]

【発明が解決しようとする課題】本発明は、前記問題点
を解決するためになされたものであり、固体高分子電解
質膜との接触性を向上させることで電解電圧を低下させ
て電解効率を向上させることができると共に、該膜の損
傷を有効に抑えて膜の耐久性を向上させ得る給電体を提
供することを、一の目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and improves the contactability with a solid polymer electrolyte membrane to lower the electrolysis voltage and improve the electrolysis efficiency. It is an object of the present invention to provide a power supply body that can be improved and effectively suppress damage to the film to improve the durability of the film.

【0012】[0012]

【課題を解決するための手段】本発明は、前記目的を達
成するために、電解セルに使用される給電体であって、
固体高分子電解質膜に接する第1導電性多孔質体と、前
記第1導電性多孔質体の前記膜とは反対側に配設される
第2導電性多孔質体とを備え、前記第1導電性多孔質体
は、前記第2導電性多孔質体と向き合う中央部と、該中
央部から径方向外方へ延在する周縁延在部とを有してい
る電解セル用給電体を提供する。
The present invention provides a power supply body used in an electrolysis cell for achieving the above object,
A first conductive porous body that is in contact with the solid polymer electrolyte membrane; and a second conductive porous body that is disposed on the opposite side of the first conductive porous body from the membrane. The conductive porous body provides a power supply body for an electrolytic cell, which has a central portion facing the second conductive porous body and a peripheral edge extending radially outward from the central portion. To do.

【0013】好ましくは、前記第1導電性多孔質体は、
前記第2導電性多孔質体に比して空孔率が低いものとし
得る。さらに、好ましくは、前記第1及び第2導電性多
孔質体を一体化させることができる。一態様において
は、前記第1及び第2導電性多孔質体をチタン多孔質体
とすることができる。該チタン多孔質体には、チタンメ
ッシュやチタンエッチング製とすることができる。第1
及び第2導電性多孔質体をチタン多孔質体とする場合に
は、好ましくは、前記第1導電性多孔質体に白金,金等
の白金族金属メッキを施すことができる。
Preferably, the first conductive porous body is
The porosity may be lower than that of the second conductive porous body. Furthermore, preferably, the first and second conductive porous bodies can be integrated. In one aspect, the first and second conductive porous bodies may be titanium porous bodies. The titanium porous body may be made of titanium mesh or titanium etching. First
When the second conductive porous body is a titanium porous body, the first conductive porous body can be preferably plated with a platinum group metal such as platinum or gold.

【0014】又、本発明は、前記目的を達成するため
に、固体高分子電解質膜と、前記何れかの態様に係る電
解セル用給電体であって、前記固体高分子電解質膜を挟
んで配設される一対の陽極側給電体及び陰極側給電体
と、該一対の給電体を挟むように配設される一対の電極
板と、前記固体高分子電解質膜及び前記一対の電極板の
それぞれと共働して、該電解質膜の一方側及び他方側
に、それぞれ、陽極室及び陰極室を画する一対のガスケ
ットとを備え、前記一対のガスケットのそれぞれは、第
1導電性多孔質体の周縁延在部を囲繞する開口径を有
し、前記電解質膜側に開く大開口部と、該大開口部から
前記電解質膜とは反対側に延び、前記第2導電性多孔質
体を囲繞する開口径を有するように該大開口部から段部
を伴って縮径された小開口部とを有する段付形状とされ
ている電解セルを提供する。好ましくは、前記ガスケッ
トの大開口部は、前記給電体の第1導電性多孔質体の厚
み以上の深さを有するものとし得る。
In order to achieve the above object, the present invention provides a solid polymer electrolyte membrane and a power supply for an electrolytic cell according to any one of the above aspects, wherein the solid polymer electrolyte membrane is sandwiched between the solid polymer electrolyte membrane and the power supply body. A pair of anode-side power supply body and cathode-side power supply body provided, a pair of electrode plates arranged so as to sandwich the pair of power supply bodies, each of the solid polymer electrolyte membrane and the pair of electrode plates A pair of gaskets that cooperate to define an anode chamber and a cathode chamber, respectively, are provided on one side and the other side of the electrolyte membrane, and each of the pair of gaskets is a peripheral edge of the first conductive porous body. A large opening that has an opening diameter that surrounds the extending portion and that opens to the electrolyte membrane side, and an opening that extends from the large opening to the opposite side of the electrolyte membrane and that surrounds the second conductive porous body. A small opening whose diameter is reduced from the large opening along with a step to have a caliber Providing an electrolytic cell being a stepped shape having and. Preferably, the large opening of the gasket may have a depth equal to or greater than the thickness of the first conductive porous body of the power feeder.

【0015】[0015]

【発明の実施の形態】以下に、本発明に係る電解セル用
給電体の好ましい実施の形態について、添付図面を参照
しつつ説明する。図1(a)及び(b)は、それぞれ、本実施
の形態に係る電解セル用給電体1の縦断側面図及び平面
図であり、図2は該給電体1を組み込んだ電解セルの一
例における部分縦断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a power supply for an electrolytic cell according to the present invention will be described below with reference to the accompanying drawings. 1 (a) and 1 (b) are a longitudinal side view and a plan view, respectively, of an electrolytic cell power feeder 1 according to the present embodiment, and FIG. 2 shows an example of an electrolytic cell in which the power feeder 1 is incorporated. It is a partial longitudinal cross-sectional view.

【0016】前記給電体1は、固体高分子電解質膜10
0を利用して水素及び/又は酸素等の所望気体を生成す
る電解セルの一構成部材として使用される。以下、水素
及び/又は酸素を生成する場合を例に説明する。即ち、
該電解セルにおいては、固体高分子電解質膜100の一
方面側及び他方面側に、それぞれ、陽極側給電体1及び
陰極側給電体1が配設されている。該一対の給電体1,
1は、それぞれの膜当接面が固体高分子電解質膜100
の一方面及び他方面に当接するように該膜100に向け
て押圧された状態で固定される。斯かる電解セルにおい
ては、前記一対の給電体1,1間に電流を流すと共に、
該給電体1の前記膜100との当接部分に純水又は電解
液を供給することによって、陽極室及び陰極室にそれぞ
れ酸素及び水素が発生するようになっている。
The power feeder 1 is a solid polymer electrolyte membrane 10
It is used as a component of an electrolysis cell that produces a desired gas such as hydrogen and / or oxygen using 0. Hereinafter, a case of generating hydrogen and / or oxygen will be described as an example. That is,
In the electrolytic cell, the anode-side power feeding body 1 and the cathode-side power feeding body 1 are disposed on one surface side and the other surface side of the solid polymer electrolyte membrane 100, respectively. The pair of feeders 1,
1 is a solid polymer electrolyte membrane 100 with each membrane contacting surface
It is fixed in a state of being pressed toward the film 100 so as to come into contact with one surface and the other surface. In such an electrolytic cell, a current is caused to flow between the pair of power feeders 1 and 1, and
By supplying pure water or an electrolytic solution to the contact portion of the power supply body 1 with the membrane 100, oxygen and hydrogen are generated in the anode chamber and the cathode chamber, respectively.

【0017】このように、前記給電体1は導電性,通液
性及び通気性が必要とされ、従って、導電性の多孔質体
によって形成されている。より詳しくは、図1及び図2
に示すように、前記給電体1は、固体高分子電解質膜1
00に接する側に配される第1導電性多孔質体10と、
該第1導電性多孔質体10における前記膜100とは反
対側に配設される第2導電性多孔質体20とを備えた複
数層の積層構造とされている。なお、本実施の形態にお
いては、前記第2導電性多孔質体20における前記膜1
00とは反対側に第3導電性多孔質体30を備えた3層
タイプとしている。
As described above, the power feeding body 1 is required to have conductivity, liquid permeability and air permeability, and is therefore formed of a conductive porous body. More specifically, FIG. 1 and FIG.
As shown in FIG.
A first conductive porous body 10 arranged on the side in contact with 00,
The first conductive porous body 10 has a laminated structure of a plurality of layers including the second conductive porous body 20 disposed on the opposite side of the membrane 100. In addition, in the present embodiment, the film 1 in the second conductive porous body 20.
The third conductive type porous body 30 is provided on the side opposite to 00 to form a three-layer type.

【0018】固体高分子電解質膜100と接する前記第
1導電性多孔質体10は、前記第2導電性多孔質体20
と当接する中央部11と、該中央部11から径方向外方
へ延在した周縁延在部12とを備えている。即ち、該第
1導電性多孔質体10は、前記第2導電性多孔質体20
に対応した中央部11に加えて、該中央部11を囲繞す
る周縁延在部12を備えている。
The first conductive porous body 10 in contact with the solid polymer electrolyte membrane 100 is the second conductive porous body 20.
It has a central portion 11 that comes into contact with the central portion 11, and a peripheral edge extending portion 12 that extends radially outward from the central portion 11. That is, the first conductive porous body 10 is the same as the second conductive porous body 20.
In addition to the central portion 11 corresponding to, a peripheral edge extending portion 12 surrounding the central portion 11 is provided.

【0019】このように、給電体1を複数の導電性多孔
質体からなる積層構造とし、且つ、複数の導電性多孔質
体10,20,・・・のうち,固体高分子電解質膜10
0と接する第1導電性多孔質体10を、該第1導電性多
孔質体10の前記膜とは反対側に配設される第2導電性
多孔質体20より大径とすることにより、以下の効果を
得ることができる。
As described above, the power feeding body 1 has a laminated structure composed of a plurality of conductive porous bodies, and the solid polymer electrolyte membrane 10 among the plurality of conductive porous bodies 10, 20 ,.
By setting the diameter of the first conductive porous body 10 in contact with 0 to be larger than that of the second conductive porous body 20 arranged on the opposite side of the first conductive porous body 10 from the film, The following effects can be obtained.

【0020】前述の通り、固体高分子電解質膜100を
挟んで配設される一対の給電体1,1は、互いに該膜1
00に向けて押圧された状態で固定される。即ち、該給
電体1は、膜100とは離間された面(本実施の形態に
おいては第3多孔質給電体30)の全域に押圧力を受け
た状態で固定支持される。
As described above, the pair of power feeding members 1 and 1 disposed with the solid polymer electrolyte membrane 100 sandwiched therebetween are the membrane 1
It is fixed while being pressed toward 00. That is, the power feeding body 1 is fixedly supported while being pressed by the entire area of the surface (the third porous power feeding body 30 in the present embodiment) separated from the membrane 100.

【0021】ここで、前記押圧力を受けた際の前記第1
導電性多孔質10の動きについて考えると、該第1導電
性多孔質体10は、前述の通り、前記第2及び第3導電
性多孔質体20,30に対応した前記中央部11に加え
て、該中央部11から径方向外方へ延在した前記周縁延
在部12を有している。前記押圧力は前記中央部11に
は作用するが、周縁延在部12には作用しない。従っ
て、該周縁延在部12は、図2に示すように、固体高分
子電解質膜100からの反力を受けて、周縁が該膜10
0から離間する方向へ撓む。
Here, when the pressing force is applied, the first
Considering the movement of the conductive porous body 10, the first conductive porous body 10 is, in addition to the central portion 11 corresponding to the second and third conductive porous bodies 20 and 30, as described above. The peripheral edge extending portion 12 extends radially outward from the central portion 11. The pressing force acts on the central portion 11, but does not act on the peripheral edge extending portion 12. Therefore, as shown in FIG. 2, the peripheral edge extending portion 12 receives a reaction force from the solid polymer electrolyte membrane 100, and the peripheral edge extends.
Bends away from 0.

【0022】このように、本実施の形態に係る給電体1
においては、固体高分子電解質膜100と接する第1導
電性多孔質体10の周縁部12が該膜100とは離間す
る方向へ湾曲する。従って、従来技術の項において説明
したような給電体周縁が固体高分子電解質膜へ食い込む
ことを有効に抑えることができ、これにより、該膜の損
傷を防止することができる。
As described above, the power feeding body 1 according to the present embodiment
In, the peripheral edge portion 12 of the first conductive porous body 10 in contact with the solid polymer electrolyte membrane 100 is curved in a direction away from the membrane 100. Therefore, it is possible to effectively prevent the periphery of the power feeding body from being bitten into the solid polymer electrolyte membrane as described in the section of the prior art, and thereby to prevent the membrane from being damaged.

【0023】さらに、該給電体1においては、第2及び
第3導電性多孔質体20,30を介して付加される押圧
力によって前記第1導電性多孔質体10の中央部11全
体を前記膜100に確実に当接させることができ、これ
により、膜100に対する給電体1の有効接触面積を増
加させて、電解効率の向上を図ることができる。
Further, in the power feeding body 1, the central portion 11 of the first conductive porous body 10 is entirely covered by the pressing force applied through the second and third conductive porous bodies 20, 30. The membrane 100 can be surely brought into contact with the membrane 100, whereby the effective contact area of the power feeding body 1 with the membrane 100 can be increased and the electrolysis efficiency can be improved.

【0024】即ち、保護リング110を備えた従来の給
電体1''(図6参照)においては、該保護リング110
に起因する段差の為に、膜100との有効接触面積は第
2及び第3導電性給電体20,30の面積よりも小さく
なる。これに対し、本実施の形態においては、前記第2
及び第3導電性多孔質体20,30と同一面積を有する
前記中央部11全域を固体高分子電解質膜100に確実
に当接させることができる。従って、保護リング110
を備えた従来の給電体1''に比して、膜100との有効
接触面積を増加させて、電解効率の向上を図ることがで
きる。
That is, in the conventional power feeding body 1 ″ (see FIG. 6) having the protection ring 110, the protection ring 110 is
The effective contact area with the film 100 is smaller than the areas of the second and third conductive power feeders 20 and 30 due to the step difference caused by. On the other hand, in the present embodiment, the second
Also, the entire area of the central portion 11 having the same area as the third conductive porous body 20, 30 can be reliably brought into contact with the solid polymer electrolyte membrane 100. Therefore, the protection ring 110
The effective contact area with the membrane 100 can be increased, and the electrolysis efficiency can be improved, as compared with the conventional power supply body 1 ″ provided with.

【0025】好ましくは、前記第1導電性多孔質体10
を他の導電体多孔質体20,30に比して低空効率とす
ることができ、これにより、通液性,通気性及び導電性
を維持しつつ、固体高分子電解質膜100との当接面の
平滑性を向上させることができる。
Preferably, the first conductive porous body 10
Can be made to have a low air efficiency as compared with the other conductor porous bodies 20 and 30, and thereby contact with the solid polymer electrolyte membrane 100 while maintaining liquid permeability, air permeability and conductivity. The smoothness of the surface can be improved.

【0026】前記給電体1を構成する第1〜第3導電性
多孔質体10,20,30は、導電性物質からなるメッ
シュ体や、導電性物質の粒子又は繊維からなる焼結体等
の種々の形態を採用し得る。前記導電性物質としては、
前記給電体1が陽極側に用いられる場合には、耐酸性で
あり且つ金属の溶出が少ない等の観点から、チタン、ニ
オブ、チタン−パラジウム合金等が例示されるが、安価
で商用に適しているという点から、チタンが好適に使用
される。なお、好ましくは、固体高分子電解質膜100
と当接する第1導電性多孔質体10に白金,金等の白金
族金属のメッキを施すことができ、これにより、耐酸化
性及び耐水素ぜい化性を向上させることができると共
に、接触抵抗の改善を図ることができる。又、前記給電
体1が陰極側に用いられる場合には、前記導電性物質と
して、ステンレス鋼の他、グラファイト、カーボン等が
例示される。
The first to third conductive porous bodies 10, 20, 30 constituting the power feeding body 1 are mesh bodies made of a conductive material, sintered bodies made of particles or fibers of a conductive material, and the like. Various forms can be adopted. As the conductive substance,
When the power feeding body 1 is used on the anode side, titanium, niobium, titanium-palladium alloy and the like are exemplified from the viewpoint of being acid resistant and less elution of metal, but they are inexpensive and suitable for commercial use. Titanium is preferably used from the viewpoint that it is present. The solid polymer electrolyte membrane 100 is preferably used.
The first conductive porous body 10 that comes into contact with can be plated with a platinum group metal such as platinum or gold, whereby the oxidation resistance and hydrogen embrittlement resistance can be improved, and the contact can be improved. The resistance can be improved. When the power supply body 1 is used on the cathode side, examples of the conductive substance include stainless steel, graphite, and carbon.

【0027】好ましくは、前記第1導電性多孔質体10
は、給電体1が固体高分子電解質膜100へ向けて押圧
された際に、前記周縁延在部が本体部に対して撓み得る
ように構成される。具体的には、第1導電性多孔質体1
0を構成する材料の物性(周縁延在部12の径方向長
さ,第1導電性多孔質体10の厚み,及び該第1導電性
多孔質体10の弾性係数等)や固体高分子電解質膜10
0から受ける反力の大きさに応じて、設定される。
Preferably, the first conductive porous body 10
Is configured such that when the power feeding body 1 is pressed toward the solid polymer electrolyte membrane 100, the peripheral edge extending portion can bend with respect to the main body portion. Specifically, the first conductive porous body 1
Physical properties of the material forming 0 (the radial length of the peripheral extension 12, the thickness of the first conductive porous body 10, the elastic coefficient of the first conductive porous body 10, etc.) and the solid polymer electrolyte Membrane 10
It is set according to the magnitude of the reaction force received from 0.

【0028】さらに好ましくは、給電体1を構成する各
導電性多孔質体10,20,30を一体化させることが
でき、これにより、各導電性多孔質体間の電気抵抗の削
減及び電解セル組立時の組立効率を向上させることがで
きる。特に、前記給電体1を金属製メッシュで形成する
場合には、各導電性多孔質体をスポット溶接によって一
体化させることができ、これにより、前記第1導電性多
孔質体10の可撓性をさらに向上させることができる。
More preferably, the respective conductive porous bodies 10, 20, 30 constituting the power feeding body 1 can be integrated with each other, thereby reducing the electric resistance between the respective conductive porous bodies and the electrolytic cell. The assembling efficiency at the time of assembling can be improved. In particular, when the power feeding body 1 is formed of a metal mesh, the respective conductive porous bodies can be integrated by spot welding, which allows the flexibility of the first conductive porous body 10. Can be further improved.

【0029】なお、本実施の形態においては、第1〜第
3導電性多孔質体10,20,30からなる3層構造の
給電体1を例に説明したが、本発明は斯かる形態に限定
されるものではない。即ち、少なくとも2層の導電性多
孔質体を備え、固体高分子電解質膜100に接する側の
導電性多孔質体が他の導電性多孔質体に比して大径であ
る限り、種々の形態に適用可能である。
In the present embodiment, the power feeding body 1 having a three-layer structure composed of the first to third conductive porous bodies 10, 20, 30 has been described as an example, but the present invention is in such a form. It is not limited. That is, as long as the conductive porous body has at least two layers of conductive porous bodies and the conductive porous body on the side in contact with the solid polymer electrolyte membrane 100 has a larger diameter than other conductive porous bodies, various forms are possible. Is applicable to.

【0030】本実施の形態に係る給電体が組み込まれた
電解セルにおいては、好ましくは、段付ガスケットが使
用される。図3に、本実施の形態に係る給電体を備えた
電解セルの他の例の要部縦断面図を示す。
A step gasket is preferably used in the electrolytic cell in which the power feeder according to the present embodiment is incorporated. FIG. 3 shows a vertical cross-sectional view of a main part of another example of the electrolytic cell including the power feeder according to the present embodiment.

【0031】図3に示す電解セルは、前記固体高分子電
解質膜100と、該電解質膜100を挟んで配設される
一対の給電体1と、該一対の給電体1を挟むように配設
される一対の電極板50と、前記電解質膜100を挟ん
で配設され、前記一対の電極板50のそれぞれとの共働
下に、該電解質膜の一方面及び他方面にそれぞれ陽極室
及び陰極室を画する一対のガスケット40とを備えてい
る。
The electrolytic cell shown in FIG. 3 is arranged so that the solid polymer electrolyte membrane 100, a pair of power feeding members 1 arranged with the electrolyte membrane 100 interposed therebetween, and the pair of power feeding members 1 sandwiched therebetween. The pair of electrode plates 50 and the electrolyte membrane 100 are sandwiched between them, and the anode chamber and the cathode are provided on one surface and the other surface of the electrolyte membrane in cooperation with each of the pair of electrode plates 50. And a pair of gaskets 40 defining a chamber.

【0032】前記一対のガスケット40は、それぞれ、
前記給電体1における第1導電性多孔質体10の周縁延
在部12を囲繞する開口径を有し、前記電解質膜100
の方向に開く大開口部41と、該大開口部41から前記
電解質膜100とは反対側に延び、前記第2及び第3導
電性多孔質体20,30を囲繞する開口径を有するよう
に該大開口部41から段部42を伴って縮径された小開
口部43とを有する段付形状とされている。
The pair of gaskets 40 are respectively
The electrolyte membrane 100 has an opening diameter that surrounds the peripheral extension 12 of the first conductive porous body 10 in the power feeding body 1.
A large opening portion 41 that opens in the direction of, and an opening diameter that extends from the large opening portion 41 to the side opposite to the electrolyte membrane 100 and that surrounds the second and third conductive porous bodies 20 and 30. It has a stepped shape having a large opening 41 and a small opening 43 reduced in diameter along with a step 42.

【0033】より詳しくは、前記ガスケット40におけ
る大開口部41の深さは、前記第1導電性多孔質体10
の厚みと同一、若しくは、該第1導電性多孔質体10の
厚みよりも大きくされる。斯かる構成の段付ガスケット
を備えることによって、給電体1を確実に保持しつつ、
第1導電性多孔質体10の中央部11を前記固体高分子
電解質膜100に適切に押圧させ、且つ、前記周縁延在
部12が該固体高分子電解質膜100を損傷させること
を有効に防止できる。さらに、斯かる構成においては、
前記固体高分子電解質膜100に対する前記一対の段付
ガスケット40の姿勢を安定させることができる。即
ち、前記一対の段付ガスケット40と固体高分子電解質
膜100との接触性を向上させることができる。従っ
て、陽極室側のガスケット/固体高分子電解質膜/陰極
室側のガスケット間の接触性を向上させることができ、
これにより、陽極室及び陰極室の密閉性を向上させるこ
とができる。従って、電解セル組立時に過度に締め付け
ることなく所望のシール性を得ることができる。
More specifically, the depth of the large opening 41 in the gasket 40 is determined by the depth of the first conductive porous body 10.
Of the first conductive porous body 10 or larger than the thickness of the first conductive porous body 10. By providing the stepped gasket having such a configuration, while securely holding the power feeding body 1,
The central portion 11 of the first conductive porous body 10 is appropriately pressed against the solid polymer electrolyte membrane 100, and the peripheral edge extending portion 12 is effectively prevented from damaging the solid polymer electrolyte membrane 100. it can. Furthermore, in such a configuration,
The posture of the pair of step gaskets 40 with respect to the solid polymer electrolyte membrane 100 can be stabilized. That is, the contact between the pair of stepped gaskets 40 and the solid polymer electrolyte membrane 100 can be improved. Therefore, the contact property between the gasket on the anode chamber side / the solid polymer electrolyte membrane / the gasket on the cathode chamber side can be improved,
Thereby, the hermeticity of the anode chamber and the cathode chamber can be improved. Therefore, a desired sealing property can be obtained without excessive tightening when assembling the electrolytic cell.

【0034】[0034]

【実施例】以下、本発明に係る給電体の一実施例につい
て説明する。本実施例においては、図1〜図3に示すよ
うな、チタンメッシュからなる3層構造の給電体であっ
て、各層をスポット溶接してなる給電体を採用した。な
お、本実施例においては、第1導電性多孔質体として、
板厚0.1mm,直径86mmで、メッシュ開口の長目
開口幅及び短目開口幅がそれぞれ1.5mm及び0.8
mmのチタンメッシュを用いた。又、第2及び第3導電
性多孔質体として、板厚0.2mm,直径80mmで、
メッシュ開口の長目開口幅及び短目開口幅がそれぞれ5
mm及び2.4mmのチタンメッシュを用いた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the power supply body according to the present invention will be described below. In the present embodiment, as shown in FIGS. 1 to 3, a feeder having a three-layer structure made of titanium mesh, and a feeder obtained by spot welding each layer was adopted. In the present example, as the first conductive porous body,
The plate thickness is 0.1 mm, the diameter is 86 mm, and the mesh opening has a long opening width and a short opening width of 1.5 mm and 0.8, respectively.
A titanium mesh of mm was used. Further, as the second and third conductive porous bodies, a plate thickness of 0.2 mm, a diameter of 80 mm,
The long and short openings of the mesh opening are 5 each
mm and 2.4 mm titanium mesh was used.

【0035】比較例として、同一のチタンメッシュを用
い、且つ、第1導電性多孔質体の周縁にチタン製保護リ
ングを備えた従来の給電体(図6参照)を用いた。即
ち、比較例においては、第1導電性多孔質体の直径が8
0mmである点、及び、保護リングを備えている点を除
き、前記実施例と同一構造とした。
As a comparative example, the same titanium mesh was used, and a conventional power supply body (see FIG. 6) having a titanium protective ring on the periphery of the first conductive porous body was used. That is, in the comparative example, the diameter of the first conductive porous body was 8
The structure is the same as that of the above-mentioned embodiment except that the thickness is 0 mm and the protective ring is provided.

【0036】本実施例及び比較例を用いた電解セルにお
ける「セル電圧/電流密度」の関係を測定した。なお、
給電体を固体高分子電解質膜へ押圧する際の圧力や供給
純水の水量及び温度等の他の条件は同一とした。
The relationship of "cell voltage / current density" in the electrolytic cells using this example and the comparative example was measured. In addition,
The other conditions such as the pressure when pressing the power feeder against the solid polymer electrolyte membrane, the amount of pure water supplied, and the temperature were the same.

【0037】該測定結果を図4に示す。図4から明らか
なように、同一電流密度を流すにあって、本実施例にお
いては比較例に比して小さなセル電圧を印加すれば十分
であった。これは下記理由によるものと考えられる。即
ち、本実施例は比較例に比して、第1導電性多孔質体と
固体高分子電解質膜との接触面積が大きい為にセル電圧
が小さくなったと考えられる。逆に言えば、本実施例に
おいては、小さいセル電圧で同等の電流密度を流すこと
ができ、従って、電解効率が向上していると言える。
The measurement results are shown in FIG. As is apparent from FIG. 4, when the same current density was applied, it was sufficient in this example to apply a cell voltage smaller than that in the comparative example. This is considered to be due to the following reasons. That is, it is considered that the cell voltage of this example was smaller than that of the comparative example because the contact area between the first conductive porous body and the solid polymer electrolyte membrane was large. Conversely, in this example, it can be said that the same current density can be flowed with a small cell voltage, and therefore the electrolysis efficiency is improved.

【0038】[0038]

【発明の効果】以上のように、本発明に係る給電体によ
れば、少なくとも第1及び第2導電性多孔質体を備え、
且つ、固体高分子電解質膜と接する側に配設される第1
導電性多孔質体を第2導電性多孔質体よりも大径とした
ので、給電体周縁による固体高分子電解質膜の損傷を有
効に抑えつつ、該膜との有効接触面積を広げることがで
きる。従って、電解セルの電解効率を向上させつつ、固
体高分子電解質膜の耐久性を向上させることができる。
又、本発明に係る給電体を備えた電解セルにおいて、段
付ガスケットを用いれば、給電体を確実の保持しつつ、
前記効果を有効に得ることができる。
As described above, according to the power feeding body of the present invention, at least the first and second conductive porous bodies are provided,
Also, the first is disposed on the side in contact with the solid polymer electrolyte membrane
Since the conductive porous body has a larger diameter than the second conductive porous body, the effective contact area with the membrane can be expanded while effectively suppressing damage to the solid polymer electrolyte membrane by the periphery of the power feeding body. . Therefore, the durability of the solid polymer electrolyte membrane can be improved while improving the electrolysis efficiency of the electrolysis cell.
Further, in the electrolytic cell provided with the power supply according to the present invention, if the step gasket is used, the power supply is held securely,
The above effect can be effectively obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)及び(b)は、それぞれ、本発明に係る給
電体の一実施の形態の縦断面図及び平面図である。
1A and 1B are a vertical sectional view and a plan view, respectively, of an embodiment of a power feeding body according to the present invention.

【図2】図2は、図1に示す給電体を組み込んだ電解セ
ルの一例の要部縦断面図である。
2 is a longitudinal sectional view of an essential part of an example of an electrolytic cell in which the power feeder shown in FIG. 1 is incorporated.

【図3】図3は、図1に示す給電体を組み込んだ電解セ
ルの他の例の要部縦断面図である。
FIG. 3 is a longitudinal sectional view of a main part of another example of the electrolytic cell in which the power feeding body shown in FIG. 1 is incorporated.

【図4】図4は、本発明に係る一実施例と比較例との
「セル電圧/電流密度」の関係を示すグラフである。
FIG. 4 is a graph showing a relationship of “cell voltage / current density” between an example according to the present invention and a comparative example.

【図5】図5は、従来の給電体の一例の縦断面図であ
る。
FIG. 5 is a vertical cross-sectional view of an example of a conventional power supply body.

【図6】図6は、従来の給電体の他の例の縦断面図であ
る。
FIG. 6 is a vertical cross-sectional view of another example of the conventional power feeding body.

【符号の説明】[Explanation of symbols]

1 給電体 10 第1導電性多孔質体 11 中央部 12 周縁延在部 20 第2導電性多孔質体 40 ガスケット 50 電極板 100 固体高分子電解質膜 1 power supply 10 First conductive porous body 11 Central part 12 Peripheral extension 20 Second conductive porous body 40 gasket 50 electrode plate 100 solid polymer electrolyte membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 耕一 兵庫県三木市自由が丘本町2−112 Fターム(参考) 4K011 AA06 AA10 AA11 AA21 AA30 CA04 DA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koichi Wada             2-112 Jiyugaoka Honcho, Miki City, Hyogo Prefecture F-term (reference) 4K011 AA06 AA10 AA11 AA21 AA30                       CA04 DA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電解セルに使用される給電体であって、 固体高分子電解質膜に接する第1導電性多孔質体と、 前記第1導電性多孔質体の前記膜とは反対側に配設され
る第2導電性多孔質体とを備え、 前記第1導電性多孔質体は、前記第2導電性多孔質体と
向き合う中央部と、該中央部から径方向外方へ延在する
周縁延在部とを有していることを特徴とする電解セル用
給電体。
1. A power feeder used in an electrolysis cell, comprising a first conductive porous body in contact with a solid polymer electrolyte membrane, and a first conductive porous body disposed on the opposite side of the membrane. A second conductive porous body provided, wherein the first conductive porous body has a central portion facing the second conductive porous body, and extends radially outward from the central portion. An electrolytic cell power supply having a periphery extending portion.
【請求項2】 前記第1導電性多孔質体は、前記第2導
電性多孔質体に比して空孔率が低いことを特徴とする請
求項1に記載の電解セル用給電体。
2. The power supply body for an electrolytic cell according to claim 1, wherein the first conductive porous body has a porosity lower than that of the second conductive porous body.
【請求項3】 前記第1及び第2導電性多孔質体は一体
化されていることを特徴とする請求項1又は2に記載の
電解セル用給電体。
3. The power feeder for an electrolytic cell according to claim 1, wherein the first and second conductive porous bodies are integrated.
【請求項4】 前記第1及び第2導電性多孔質体はチタ
ン多孔質体であることを特徴とする請求項1から3の何
れかに記載の電解セル用給電体。
4. The power feeder for an electrolytic cell according to claim 1, wherein the first and second conductive porous bodies are titanium porous bodies.
【請求項5】 前記第1導電性多孔質体は、白金族金属
メッキされていることを特徴とする請求項4に記載の電
解セル用給電体。
5. The power feeder for an electrolytic cell according to claim 4, wherein the first conductive porous body is plated with a platinum group metal.
【請求項6】 固体高分子電解質膜と、 請求項1〜5の何れかに記載の電解セル用給電体であっ
て、前記固体高分子電解質膜を挟んで配設される一対の
陽極側給電体及び陰極側給電体と、 該一対の給電体を挟むように配設される一対の電極板
と、 前記固体高分子電解質膜及び前記一対の電極板のそれぞ
れと共働して、該電解質膜の一方側及び他方側に、それ
ぞれ、陽極室及び陰極室を画する一対のガスケットとを
備え、 前記一対のガスケットのそれぞれは、第1導電性多孔質
体の周縁延在部を囲繞する開口径を有し、前記電解質膜
側に開く大開口部と、該大開口部から前記電解質膜とは
反対側に延び、前記第2導電性多孔質体を囲繞する開口
径を有するように該大開口部から段部を伴って縮径され
た小開口部とを有する段付形状とされていることを特徴
とする電解セル。
6. A solid polymer electrolyte membrane, and the power feeder for an electrolytic cell according to claim 1, wherein the pair of anode-side power feeds are arranged so as to sandwich the solid polymer electrolyte membrane. Body and cathode-side power feeding body, a pair of electrode plates arranged so as to sandwich the pair of power feeding bodies, the solid polymer electrolyte membrane and the pair of electrode plates, respectively, and the electrolyte membrane On one side and on the other side, a pair of gaskets that respectively define an anode chamber and a cathode chamber are provided, and each of the pair of gaskets has an opening diameter that surrounds the peripheral extension of the first conductive porous body. A large opening opening to the electrolyte membrane side, and the large opening extending from the large opening to the side opposite to the electrolyte membrane and having an opening diameter surrounding the second conductive porous body. Has a stepped shape that has a small opening that is reduced in diameter along with the stepped portion. Electrolysis cell, characterized in that.
【請求項7】 前記ガスケットの大開口部は、前記給電
体の第1導電性多孔質体の厚み以上の深さを有している
ことを特徴とする請求項6に記載の電解セル。
7. The electrolytic cell according to claim 6, wherein the large opening portion of the gasket has a depth equal to or greater than the thickness of the first conductive porous body of the power feeding body.
JP2002029539A 2002-02-06 2002-02-06 Electrolytic cell feeder and electrolytic cell Expired - Fee Related JP3631467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029539A JP3631467B2 (en) 2002-02-06 2002-02-06 Electrolytic cell feeder and electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029539A JP3631467B2 (en) 2002-02-06 2002-02-06 Electrolytic cell feeder and electrolytic cell

Publications (2)

Publication Number Publication Date
JP2003226992A true JP2003226992A (en) 2003-08-15
JP3631467B2 JP3631467B2 (en) 2005-03-23

Family

ID=27750174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029539A Expired - Fee Related JP3631467B2 (en) 2002-02-06 2002-02-06 Electrolytic cell feeder and electrolytic cell

Country Status (1)

Country Link
JP (1) JP3631467B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063419A (en) * 2004-08-30 2006-03-09 Honda Motor Co Ltd Hydrogen production apparatus
JP2011127215A (en) * 2009-12-21 2011-06-30 Mitsubishi Heavy Ind Ltd Feed conductor for electrolytic cell and electrolytic cell
JP2012087403A (en) * 2010-09-24 2012-05-10 Honda Motor Co Ltd High-pressure water electrolysis apparatus
JP2015506414A (en) * 2012-01-06 2015-03-02 コミサリア ア レネルジ アトミクエ オウ エネルジ アルタナティヴ Porous electrodes for proton exchange membranes
JP2015089949A (en) * 2013-11-05 2015-05-11 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
JP2015526840A (en) * 2012-06-13 2015-09-10 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Flow structure for use with electrochemical cells
JP2016160462A (en) * 2015-02-27 2016-09-05 株式会社Ihi Water electrolysis apparatus
WO2019176956A1 (en) 2018-03-12 2019-09-19 三菱マテリアル株式会社 Titanium base material, method for producing titanium base material, electrode for water electrolysis, and water electrolysis device
WO2021193857A1 (en) 2020-03-26 2021-09-30 三菱マテリアル株式会社 Titanium substrate, method for producing titanium substrate, electrode for water electrolysis, and water electrolysis device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063419A (en) * 2004-08-30 2006-03-09 Honda Motor Co Ltd Hydrogen production apparatus
JP4611688B2 (en) * 2004-08-30 2011-01-12 本田技研工業株式会社 Hydrogen production equipment
JP2011127215A (en) * 2009-12-21 2011-06-30 Mitsubishi Heavy Ind Ltd Feed conductor for electrolytic cell and electrolytic cell
JP2012087403A (en) * 2010-09-24 2012-05-10 Honda Motor Co Ltd High-pressure water electrolysis apparatus
JP2015506414A (en) * 2012-01-06 2015-03-02 コミサリア ア レネルジ アトミクエ オウ エネルジ アルタナティヴ Porous electrodes for proton exchange membranes
JP2015526840A (en) * 2012-06-13 2015-09-10 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Flow structure for use with electrochemical cells
US10287695B2 (en) 2012-06-13 2019-05-14 Nuvera Fuel Cells, LLC Flow structures for use with an electrochemical cell
US11105010B2 (en) 2012-06-13 2021-08-31 Nuvera Fuel Cells, LLC Flow structures for use with an electrochemical cell
JP2015089949A (en) * 2013-11-05 2015-05-11 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
JP2016160462A (en) * 2015-02-27 2016-09-05 株式会社Ihi Water electrolysis apparatus
WO2019176956A1 (en) 2018-03-12 2019-09-19 三菱マテリアル株式会社 Titanium base material, method for producing titanium base material, electrode for water electrolysis, and water electrolysis device
WO2021193857A1 (en) 2020-03-26 2021-09-30 三菱マテリアル株式会社 Titanium substrate, method for producing titanium substrate, electrode for water electrolysis, and water electrolysis device

Also Published As

Publication number Publication date
JP3631467B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
EP1692739B1 (en) Structures for gas diffusion materials and method for their fabrication
JP4588322B2 (en) Elastic current collector
US20040200187A1 (en) Compliant, strain tolerant interconnects for solid oxide fuel cell stack
JP4802710B2 (en) METAL MEMBER FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
JP2005512278A5 (en)
JP2003226992A (en) Power feeding body for electrolytic cell, and electrolytic cell
US20090253020A1 (en) Interconnector for a fuel cell stack and method for production
US20100206722A1 (en) Electrolysis apparatus
JP4047265B2 (en) Fuel cell and cooling separator used therefor
JPH065289A (en) Polymer electrolyte-type fuel cell
KR20110033192A (en) Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells
JP2004103296A (en) Solid polymer type fuel cell
US7691242B2 (en) Electrochemical half-cell
JP5493787B2 (en) Ion exchange membrane electrolytic cell
JP4461949B2 (en) Solid oxide fuel cell
JP2003272638A (en) Porous member and its manufacturing method as well as electrochemical device using the same
JP2955675B2 (en) Water electrolyzer using solid polymer electrolyte membrane
JPH11149934A (en) Electrolytic cell
JP2011222130A (en) Laminated fuel cell and method of manufacturing the same
JP5271067B2 (en) Stacked fuel cell
JPH0633284A (en) Water electrolytic cell
JP2005533173A (en) Porous metal laminate for fuel cell or electrolyzer
JPH07211325A (en) Gas diffusion electrode
JP3122736B2 (en) Bipolar plate for water electrolysis tank and method for producing the same
JP2972925B2 (en) Water electrolyzer using solid polymer electrolyte membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041216

R150 Certificate of patent or registration of utility model

Ref document number: 3631467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees