JP2006063419A - Hydrogen production apparatus - Google Patents

Hydrogen production apparatus Download PDF

Info

Publication number
JP2006063419A
JP2006063419A JP2004249913A JP2004249913A JP2006063419A JP 2006063419 A JP2006063419 A JP 2006063419A JP 2004249913 A JP2004249913 A JP 2004249913A JP 2004249913 A JP2004249913 A JP 2004249913A JP 2006063419 A JP2006063419 A JP 2006063419A
Authority
JP
Japan
Prior art keywords
anode
fluid passage
porous member
power supply
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004249913A
Other languages
Japanese (ja)
Other versions
JP4611688B2 (en
Inventor
Masanori Okabe
昌規 岡部
Koji Nakazawa
孝治 中沢
Kenji Taruie
憲司 樽家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004249913A priority Critical patent/JP4611688B2/en
Publication of JP2006063419A publication Critical patent/JP2006063419A/en
Application granted granted Critical
Publication of JP4611688B2 publication Critical patent/JP4611688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen production apparatus where, even if the pressure on a cathode is made high, the deformation of an anode feed body can be prevented. <P>SOLUTION: This hydrogen production apparatus is equipped with feed bodies 3, 4 provided on both the sides of a solid high molecular membrane 2 and separators 5, 6. The separator 6 on the anode side is composed of a material capable of retaining its shape against the pressure of gaseous hydrogen, and includes fluid passage regions 19b and frame regions 20b. The anode feed body 4 is composed of a porous member 16 confronted with the fluid passage region 19b and nonporous members 17 confronted with the frame regions 20b. The anode feed body 4 comprises the porous member 16 obtained by sintering titanium powder and the nonporous members 17 composed of titanium, and the boundary between the porous member 16 and each nonporous member 17 is smoothly joined. The porous member 16 and each nonporous member 17 are joined by press-fitting, electron beam welding or diffusion joining. The cathode feed body 3 is composed of only a porous member confronted with fluid passage regions 19a in the separator 5 on the cathode side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素製造装置に関するものである。   The present invention relates to a hydrogen production apparatus.

従来、図4に示すように、固体高分子膜2と、その両側に相対向して設けられたカソード給電体22、アノード給電体23と、各給電体22,23に積層されたセパレータ5,6とを備える高圧水素製造装置21が知られている(例えば特許文献1参照)。   Conventionally, as shown in FIG. 4, a solid polymer film 2, a cathode power supply 22, an anode power supply 23 provided opposite to each other on both sides thereof, and separators 5 stacked on the respective power supplies 22 and 23. 6 is known (see, for example, Patent Document 1).

高圧水素製造装置21では、例えば各セパレータ5,6に各給電体22,23が露出する流体通路7,8を設け、アノード側セパレータ6の流体通路8に水を供給すると共に、カソード側セパレータ5の流体通路7から水素ガスを取り出すように構成される。前記各給電体22,23は、それぞれセパレータ5,6を介して通電されるようになっている。また、各給電体22,23は多孔質部材からなり、流体が流通自在とされている。このような多孔質部材として、例えばチタン粉末等の導電性粒子が焼結されてなる部材が知られている(例えば特許文献2参照)。   In the high-pressure hydrogen production apparatus 21, for example, the separators 5 and 6 are provided with fluid passages 7 and 8 in which the power feeders 22 and 23 are exposed, and water is supplied to the fluid passage 8 of the anode-side separator 6 and the cathode-side separator 5. Hydrogen gas is extracted from the fluid passage 7. The power feeding bodies 22 and 23 are energized through separators 5 and 6, respectively. Moreover, each electric power feeding body 22 and 23 consists of a porous member, and fluid can be distribute | circulated freely. As such a porous member, for example, a member obtained by sintering conductive particles such as titanium powder is known (see, for example, Patent Document 2).

高圧水素製造装置21によれば、アノード側セパレータ6の流体通路8に水を供給すると共に、カソード給電体22とアノード給電体23とに通電すると、流体通路8に供給された水がアノード給電体23で電気分解され、水素イオンと酸素ガスとが生成する。前記水素イオンは、固体高分子膜2を透過してカソード給電体22側に移動し、カソード給電体22から電子を受け取って水素ガスとなる。   According to the high-pressure hydrogen production device 21, when water is supplied to the fluid passage 8 of the anode separator 6 and the cathode power supply 22 and the anode power supply 23 are energized, the water supplied to the fluid passage 8 becomes the anode power supply. Electrolysis is performed at 23 to generate hydrogen ions and oxygen gas. The hydrogen ions permeate the solid polymer film 2 and move to the cathode power supply 22 side, receive electrons from the cathode power supply 22 and become hydrogen gas.

この結果、高圧水素製造装置21では、カソード側セパレータ5の流体通路7に高圧の水素を得ることができる。一方、アノード側セパレータ6の流体通路8で生成した酸素は、前記水と共に流体通路8に設けられた排水口15から排出される。   As a result, in the high-pressure hydrogen production device 21, high-pressure hydrogen can be obtained in the fluid passage 7 of the cathode-side separator 5. On the other hand, oxygen generated in the fluid passage 8 of the anode-side separator 6 is discharged from a drain port 15 provided in the fluid passage 8 together with the water.

しかしながら、高圧水素製造装置21では、前記のように酸素を排出すると、カソード側とアノード側とで圧力のバランスが崩れ、カソード側セパレータ5の流体通路7で生成した水素の圧力により、固体高分子膜2とアノード給電体23とがセパレータ6方向に押圧されるという不都合がある。   However, in the high-pressure hydrogen production apparatus 21, when oxygen is discharged as described above, the pressure balance between the cathode side and the anode side is lost, and the solid polymer is generated by the pressure of hydrogen generated in the fluid passage 7 of the cathode side separator 5. There is a disadvantage that the membrane 2 and the anode power supply 23 are pressed in the direction of the separator 6.

ここで、アノード給電体23は前記多孔質部材からなるが、前記のように押圧されると厚さ方向に圧縮されて厚さが低減する一方、厚さと直交する方向に展延される。この結果、前記多孔質部材からなるアノード給電体23の端縁が、固体高分子膜2に対して相対的に移動し、固体高分子膜2を損傷することがある。   Here, the anode power supply body 23 is made of the porous member, and when pressed as described above, the anode power supply body 23 is compressed in the thickness direction to reduce the thickness, while being spread in a direction orthogonal to the thickness. As a result, the edge of the anode power supply body 23 made of the porous member may move relative to the solid polymer film 2 to damage the solid polymer film 2.

また、アノード給電体23の厚さが低減すると、固体高分子膜2がアノード給電体23側に圧縮されて変形し、固体高分子膜2とカソード給電体22との間に間隙を生じる。前記間隙が生じると、固体高分子膜2とカソード給電体22との接触抵抗が増大し、高圧水素製造装置21の性能が低下する。
特表2003−523599号公報 特開2004−71456号公報
Further, when the thickness of the anode power supply 23 is reduced, the solid polymer film 2 is compressed and deformed toward the anode power supply 23, and a gap is generated between the solid polymer film 2 and the cathode power supply 22. When the gap is generated, the contact resistance between the solid polymer film 2 and the cathode power supply 22 is increased, and the performance of the high-pressure hydrogen production apparatus 21 is deteriorated.
Special table 2003-523599 gazette JP 2004-71456 A

本発明は、かかる不都合を解消して、カソード側が高圧になったときに、アノード給電体の変形を防止することができる水素製造装置を提供することを目的とする。   An object of the present invention is to provide a hydrogen production apparatus that can eliminate such inconveniences and prevent deformation of the anode power feeder when the cathode side becomes high pressure.

かかる目的を達成するために、本発明は、固体高分子膜と、該固体高分子膜のカソード側、アノード側両側に相対向して設けられた1対の給電体と、各給電体に積層されたセパレータと、各セパレータに設けられ各給電体が露出する流体通路とを備え、アノード側セパレータの流体通路に水を供給すると共に各給電体に通電することにより、アノード側セパレータの流体通路に供給された水を電気分解し、カソード側セパレータの流体通路に高圧の水素ガスを得る水素製造装置において、該アノード側セパレータは、カソード側セパレータの流体通路に得られる水素ガスの圧力に抗して形状を維持できる材料からなり、該流体通路が設けられている流体通路領域と、該流体通路領域の外周側に設けられたフレーム領域とを備え、アノード給電体は該固体高分子膜と該アノード側セパレータとに密着して配設されており、導電性粒子が焼結されてなり該流体通路領域に対向する領域を占める多孔質部材と、該フレーム領域に対向する領域を占めて該多孔質部材を取り囲み該多孔質部材の厚さと直交する方向への変形を規制する非多孔質部材とからなることを特徴とする。   In order to achieve such an object, the present invention provides a solid polymer film, a pair of power feeding bodies provided opposite to both the cathode side and the anode side of the solid polymer film, and a laminate on each power feeding body. Each of the separators and a fluid passage provided in each separator and exposing each power supply body. Water is supplied to the fluid passage of the anode separator and energized to each power supply body, whereby the fluid passage of the anode separator is provided. In a hydrogen production apparatus that electrolyzes the supplied water and obtains high-pressure hydrogen gas in the fluid passage of the cathode-side separator, the anode-side separator resists the pressure of the hydrogen gas obtained in the fluid passage of the cathode-side separator. An anode power supply comprising a fluid passage region in which the fluid passage is provided and a frame region provided on the outer peripheral side of the fluid passage region. Is disposed in close contact with the solid polymer membrane and the anode-side separator, and a porous member that sinters conductive particles and occupies a region facing the fluid passage region; and It is characterized by comprising a non-porous member that occupies opposing regions, surrounds the porous member, and regulates deformation in a direction orthogonal to the thickness of the porous member.

本発明の水素製造装置では、前記アノード給電体は、前記多孔質部材と、前記非多孔質部材とにより構成されており、該多孔質部材が前記流体通路領域に対向している。そこで、前記カソード側セパレータの流体通路に得られる水素ガスの圧力は、前記多孔質部材に作用し、該多孔質部材を前記アノード側セパレータ方向に押圧することになる。   In the hydrogen production apparatus according to the present invention, the anode power feeder is constituted by the porous member and the non-porous member, and the porous member faces the fluid passage region. Therefore, the pressure of the hydrogen gas obtained in the fluid passage of the cathode separator acts on the porous member and presses the porous member toward the anode separator.

ところが、本発明の水素製造装置では、前記アノード給電体は、前記固体高分子膜と前記アノード側セパレータとに密着して配設されており、該アノード側セパレータは前記水素ガスの圧力に抗して形状を維持できる材料により構成されている。また、前記アノード給電体の前記多孔質部材は、前記非多孔質部材に取り囲まれている。そこで、前記多孔質部材は、前記水素ガスの圧力により前記アノード側セパレータ方向に押圧されたときに、厚さ方向では該アノード側セパレータに当接して該アノード側セパレータ自体により変形が規制され、厚さ方向に直交する方向では前記非多孔質部材により変形が規制される。   However, in the hydrogen production apparatus of the present invention, the anode feeder is disposed in close contact with the solid polymer membrane and the anode separator, and the anode separator resists the pressure of the hydrogen gas. It is made of a material that can maintain its shape. Further, the porous member of the anode power feeding body is surrounded by the non-porous member. Therefore, when the porous member is pressed in the direction of the anode side separator by the pressure of the hydrogen gas, the deformation is regulated by the anode side separator itself in contact with the anode side separator in the thickness direction. In a direction orthogonal to the vertical direction, deformation is restricted by the non-porous member.

この結果、本発明の水素製造装置によれば、前記アノード給電体の端縁が移動することがなく、前記固体高分子膜が該端縁により損傷を受けることを防止することができる。また、本発明の水素製造装置によれば、前記アノード給電体の厚さが低減されることがないので、前記固体高分子膜と前記カソード給電体との間に間隙を生じることがなく、両者の接触抵抗が増大することを防止することができる。   As a result, according to the hydrogen production apparatus of the present invention, the edge of the anode power feeder does not move, and the solid polymer membrane can be prevented from being damaged by the edge. Further, according to the hydrogen production apparatus of the present invention, since the thickness of the anode feeder is not reduced, there is no gap between the solid polymer film and the cathode feeder, Can be prevented from increasing.

前記アノード給電体としては、例えばチタン粉末が焼結されてなる前記多孔質部材と、チタンからなる前記非多孔質部材とからなるものを挙げることができ、前記非多孔質部材としては、チタン製板材等を挙げることができる。また、前記水素ガスの圧力により前記固体高分子膜が前記アノード給電体に押圧されたときに、該固体高分子膜の損傷をさけるために、該アノード給電体は前記多孔質部材と前記非多孔質部材との境界が平滑になるように接合されていることが好ましい。   Examples of the anode feeder include those made of the porous member obtained by sintering titanium powder and the non-porous member made of titanium. The non-porous member is made of titanium. A board material etc. can be mentioned. In order to prevent damage to the solid polymer film when the solid polymer film is pressed against the anode power supply by the pressure of the hydrogen gas, the anode power supply includes the porous member and the non-porous material. It is preferable to join so that the boundary with the material member becomes smooth.

前記アノード給電体は、チタン粒子が焼結されてなる前記多孔質部材とチタンからなる前記非多孔質部材とが、圧入、電子ビーム溶接、拡散接合からなる群から選ばれる1種の方法により接合されていることが好ましい。前記多孔質部材と前記非多孔質部材とは前記いずれかの方法により容易に接合することができ、しかも両者の境界を段差なく平滑にすることができる。   In the anode power feeder, the porous member formed by sintering titanium particles and the non-porous member formed of titanium are joined by one method selected from the group consisting of press-fitting, electron beam welding, and diffusion joining. It is preferable that The porous member and the non-porous member can be easily joined by any of the above methods, and the boundary between the two can be smoothed without any step.

前記カソード給電体は、前記水素ガスの圧力が作用しないので、変形防止のために前記非多孔質部材を備える必要がなく、前記カソード側セパレータの流体通路が設けられている流体通路領域に対向する領域を占める多孔質部材のみから構成することができる。前記カソード給電体は、前記多孔質部材のみからなることにより安価に製造することができる。前記多孔質部材としては、前記アノード側給電体と同様に、例えばチタン粉末が焼結されてなるもの等を挙げることができる。   Since the pressure of the hydrogen gas does not act on the cathode power supply body, it is not necessary to provide the non-porous member to prevent deformation, and faces the fluid passage region where the fluid passage of the cathode separator is provided. It can comprise only the porous member which occupies an area | region. The cathode power supply body can be manufactured at low cost by being composed of only the porous member. Examples of the porous member include those obtained by sintering titanium powder, as in the case of the anode-side power feeder.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の高圧水素製造装置の構成を示す説明的断面図であり、図2は図1の高圧水素製造装置に用いるアノード給電体の構成を示す平面図であり、図3は図1に示す高圧水素製造装置の要部組み立て図である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing the configuration of the high-pressure hydrogen production apparatus of the present embodiment, FIG. 2 is a plan view showing the configuration of the anode power supply used in the high-pressure hydrogen production apparatus of FIG. 1, and FIG. 1 is a main part assembly diagram of the high-pressure hydrogen production apparatus shown in FIG.

図1に示すように、本実施形態の高圧水素製造装置1は、固体高分子膜2と、その両側に相対向して設けられたカソード給電体3、アノード給電体4と、各給電体3,4に積層されたセパレータ5,6と、各セパレータ5,6に設けられ各給電体3,4が露出する流体通路7,8とを備えている。   As shown in FIG. 1, the high-pressure hydrogen production apparatus 1 of the present embodiment includes a solid polymer film 2, a cathode power supply 3, an anode power supply 4 provided opposite to each other, and each power supply 3. , 4 and fluid passages 7 and 8 provided in the separators 5 and 6 and exposing the power feeding members 3 and 4, respectively.

固体高分子膜2、各給電体3,4、各セパレータ5,6は、セパレータ5,6に積層された絶縁部材9,9を介してエンドプレート10,10に挟持されており、エンドプレート10,10に取着されたボルト11とナット12とにより押圧されて相互に密着せしめられている。また、カソード側セパレータ5は流体通路7に連通する水素取出口13を備え、アノード側セパレータ6は流体通路8に連通する給水口14と排水口15とを備えている。そして、各給電体3,4は、それぞれセパレータ5,6を介して通電されるようになっている。   The solid polymer film 2, the power feeders 3 and 4, and the separators 5 and 6 are sandwiched between end plates 10 and 10 via insulating members 9 and 9 stacked on the separators 5 and 6. , 10 are pressed by the bolts 11 and the nuts 12 attached to each other and are brought into close contact with each other. The cathode side separator 5 includes a hydrogen outlet 13 that communicates with the fluid passage 7, and the anode side separator 6 includes a water supply port 14 and a drain port 15 that communicate with the fluid passage 8. The power feeders 3 and 4 are energized through the separators 5 and 6, respectively.

高圧水素製造装置1において、固体高分子膜2は陽イオン透過膜であり、例えばNafion(デュポン社製)やAsplex(旭化成社製)等を用いることができる。固体高分子膜2は、アノード側には例えば白金触媒を含む触媒層(図示せず)を備え、カソード側には例えばRuIrFeO触媒を含む触媒層(図示せず)を備えている。 In the high-pressure hydrogen production apparatus 1, the solid polymer membrane 2 is a cation permeable membrane, and for example, Nafion (manufactured by DuPont), Asplex (manufactured by Asahi Kasei Co., Ltd.) or the like can be used. The solid polymer membrane 2 includes a catalyst layer (not shown) containing, for example, a platinum catalyst on the anode side, and a catalyst layer (not shown) containing, for example, a RuIrFeO X catalyst on the cathode side.

アノード給電体4は、図2に示すように、多孔質チタン焼結体16と、多孔質チタン焼結体16の周囲を取り囲むチタンプレート17とからなる。多孔質チタン焼結体16は、例えば、チタンの溶融飛沫を飛散中に凝固させるガスアトマイズ法により製造された球状ガスアトマイズチタン粉末を所定形状の焼結容器に充填して真空焼結することにより得られたものを用いることができる。チタンプレート17は、実質的に非多孔質体である。   As shown in FIG. 2, the anode power feeder 4 includes a porous titanium sintered body 16 and a titanium plate 17 surrounding the porous titanium sintered body 16. The porous titanium sintered body 16 can be obtained, for example, by filling a sintered container having a predetermined shape with a spherical gas atomized titanium powder produced by a gas atomizing method for solidifying molten splashes of titanium during scattering and vacuum sintering. Can be used. The titanium plate 17 is substantially non-porous.

アノード給電体4は、図2(a)に示すように、円盤状に形成された多孔質チタン焼結体16aを、ドーナッツ状に形成されたチタンプレート17aの内周部に圧入することにより形成することができる。また、アノード給電体4は、図2(b)に示すように、矩形状に形成された多孔質チタン焼結体16bの周囲に、チタンプレート17b,b,b,bを電子ビーム溶接することにより形成するようにしてもよい。この場合、チタンプレート17b,b、チタンプレートb,b、チタンプレートb,b、チタンプレートb4,b1はそれぞれ溶接部18aにより裏面側から溶接接合される。また、多孔質チタン焼結体16bは、その四周でチタンプレート17b,b,b,bとそれぞれ溶接部18bにより裏面側から溶接接合される。尚、図2(b)の構成では、電子ビーム溶接に代えて拡散接合により接合するようにしてもよい。 As shown in FIG. 2A, the anode power supply 4 is formed by press-fitting a porous titanium sintered body 16a formed in a disk shape into an inner peripheral portion of a titanium plate 17a formed in a donut shape. can do. Further, as shown in FIG. 2 (b), the anode power feeding body 4 has titanium plates 17b 1 , b 2 , b 3 , and b 4 arranged around the porous titanium sintered body 16b formed in a rectangular shape. It may be formed by beam welding. In this case, the titanium plates 17b 1 and b 2 , the titanium plates b 2 and b 3 , the titanium plates b 3 and b 4 , and the titanium plates b 4 and b 1 are welded and joined from the back side by the welded portions 18a. Further, the porous titanium sintered body 16b is welded and joined from the back surface side to the titanium plates 17b 1 , b 2 , b 3 , and b 4 by the welded portions 18b around the four circumferences. In the configuration shown in FIG. 2B, diffusion bonding may be used instead of electron beam welding.

アノード給電体4は、前述のようにして多孔質チタン焼結体16とチタンプレート17とを一体化した後、固体高分子膜2に当接する面にスライス加工、表面研削等を施すことにより、多孔質チタン焼結体16とチタンプレート17との境界を、容易に段差のない平滑なものとすることができる。この結果、固体高分子膜2が多孔質チタン焼結体16とチタンプレート17との境界に押圧されて損傷を受けることを防止することができる。   The anode feeder 4 is obtained by integrating the porous titanium sintered body 16 and the titanium plate 17 as described above, and then performing slicing processing, surface grinding, etc. on the surface in contact with the solid polymer film 2. The boundary between the porous titanium sintered body 16 and the titanium plate 17 can be easily made smooth without a step. As a result, it is possible to prevent the solid polymer film 2 from being damaged by being pressed by the boundary between the porous titanium sintered body 16 and the titanium plate 17.

カソード給電体3は、多孔質チタン焼結体16と全く同一にして得られたものであり、多孔質チタン焼結体16と同一の形状を備えている。カソード給電体3は、カソード側セパレータ5の流体通路7に生成する水素ガスの圧力を受けることがないので、周囲にチタンプレート17を備えていなくてもよく、チタンプレート17を備えない分だけ安価に製造することができる。   The cathode power supply 3 is obtained in exactly the same manner as the porous titanium sintered body 16 and has the same shape as the porous titanium sintered body 16. Since the cathode power supply 3 does not receive the pressure of the hydrogen gas generated in the fluid passage 7 of the cathode-side separator 5, the cathode power supply 3 does not need to be provided with the titanium plate 17 around it, and is less expensive because the titanium plate 17 is not provided. Can be manufactured.

セパレータ5,6は、例えば非多孔質のチタン材料等に流体通路7,8を形成したものを用いることができる。ここで、カソード側セパレータ5は、図3に示すように、流体通路7が設けられている流体通路領域19aと、流体通路領域19aの外周側に設けられたフレーム領域20aとからなる。そして、カソード給電体3は、流体通路領域19aに対向する領域を占めるように配設される。   As the separators 5 and 6, for example, non-porous titanium material or the like formed with fluid passages 7 and 8 can be used. Here, as shown in FIG. 3, the cathode separator 5 includes a fluid passage region 19a in which the fluid passage 7 is provided and a frame region 20a provided on the outer peripheral side of the fluid passage region 19a. And the cathode electric power feeder 3 is arrange | positioned so that the area | region which opposes the fluid channel | path area | region 19a may be occupied.

また、アノード側セパレータ6は、図3に示すように、流体通路8が設けられている流体通路領域19bと、流体通路領域19bの外周側に設けられたフレーム領域20bとからなる。そして、アノード給電体4は、多孔質チタン焼結体16が流体通路領域19bに対向する領域を占め、チタンプレート17がフレーム領域20bに対向する領域を占めるように配設される。   As shown in FIG. 3, the anode-side separator 6 includes a fluid passage region 19b in which the fluid passage 8 is provided, and a frame region 20b provided on the outer peripheral side of the fluid passage region 19b. The anode power supply 4 is disposed so that the porous titanium sintered body 16 occupies a region facing the fluid passage region 19b and the titanium plate 17 occupies a region facing the frame region 20b.

前記構成を備える高圧水素製造装置1では、給水口14から流体通路8に水を供給すると共に、セパレータ5,6を介してカソード給電体3とアノード給電体4とに通電すると、水の電気分解により、流体通路8内に水素イオン、電子、酸素ガスが生成する。次に、前記水素イオンは、カソード給電体3とアノード給電体4との電位差により、一部の水分子を伴って陽イオン透過膜である固体高分子膜2を透過し、カソード給電体3側に移動する。そして、前記水素イオンがカソード給電体3から電子を受け取って分子化することにより、流体通路7に高圧の水素ガスが得られる。   In the high-pressure hydrogen production apparatus 1 having the above-described configuration, when water is supplied from the water supply port 14 to the fluid passage 8 and the cathode power supply 3 and the anode power supply 4 are energized through the separators 5 and 6, the water is electrolyzed. As a result, hydrogen ions, electrons, and oxygen gas are generated in the fluid passage 8. Next, the hydrogen ions permeate the solid polymer membrane 2 which is a cation permeable membrane with some water molecules due to the potential difference between the cathode power supply 3 and the anode power supply 4, and the cathode power supply 3 side. Move to. Then, the hydrogen ions receive electrons from the cathode power supply 3 and are molecularized, whereby high-pressure hydrogen gas is obtained in the fluid passage 7.

一方、流体通路8内に生成した酸素ガスは、大部分の水と共に排水口15から排出されるが、このようにすると、カソード側とアノード側とで圧力のバランスが崩れる。この結果、カソード側セパレータ5の流体通路7に得られた高圧の水素ガスにより、固体高分子膜2とアノード給電体4の多孔質チタン焼結体16とがアノード側セパレータ6方向に押圧されることになる。   On the other hand, the oxygen gas generated in the fluid passage 8 is discharged from the drain port 15 together with most of the water. However, in this way, the balance of pressure is lost between the cathode side and the anode side. As a result, the solid polymer membrane 2 and the porous titanium sintered body 16 of the anode power feeder 4 are pressed in the direction of the anode separator 6 by the high-pressure hydrogen gas obtained in the fluid passage 7 of the cathode separator 5. It will be.

このとき、高圧水素製造装置1では、アノード側セパレータ6は前述のように非多孔質のチタン材料等からなり、さらに流体通路8が形成されているために十分な厚さがあり、前記水素ガスの圧力に抗して変形することなく、形状を維持することが可能な剛性を備えている。そして、アノード給電体4はアノード側セパレータ6に密着して配設されている。また、アノード給電体4は、多孔質チタン焼結体16の周囲がチタンプレート17により取り囲まれた構成を備えている。この結果、アノード給電体4の多孔質チタン焼結体16は、厚さ方向ではアノード側セパレータ6により変形が規制され、厚さと直交する方向ではチタンプレート17により変形が規制されることとなり、変形することがない。   At this time, in the high-pressure hydrogen production apparatus 1, the anode separator 6 is made of a non-porous titanium material or the like as described above, and has a sufficient thickness because the fluid passage 8 is formed. Rigidity capable of maintaining the shape without being deformed against the pressure. The anode power supply 4 is disposed in close contact with the anode separator 6. In addition, the anode power supply 4 has a configuration in which the porous titanium sintered body 16 is surrounded by a titanium plate 17. As a result, the deformation of the porous titanium sintered body 16 of the anode power supply body 4 is restricted by the anode separator 6 in the thickness direction, and the deformation is restricted by the titanium plate 17 in the direction orthogonal to the thickness. There is nothing to do.

上述のように、多孔質チタン焼結体16が厚さと直交する方向に変形することがないので、多孔質チタン焼結体16の端部は固体高分子膜2に対して移動することがなく、固体高分子膜2は該端部により損傷を受けることがない。また、多孔質チタン焼結体16が厚さ方向に変形することがないので、固体高分子膜2はアノード側セパレータ6方向に押圧されても、カソード給電体3との間に間隙が生じることもない。従って、固体高分子膜2とカソード給電体3との間の接触抵抗の増大を防止することができる。   As described above, since the porous titanium sintered body 16 does not deform in the direction orthogonal to the thickness, the end of the porous titanium sintered body 16 does not move relative to the solid polymer film 2. The solid polymer film 2 is not damaged by the end portion. In addition, since the porous titanium sintered body 16 is not deformed in the thickness direction, a gap is generated between the solid polymer film 2 and the cathode power supply 3 even when the solid polymer film 2 is pressed in the direction of the anode separator 6. Nor. Therefore, an increase in contact resistance between the solid polymer film 2 and the cathode power supply 3 can be prevented.

次に、本発明の実施例と比較例とを示す。   Next, examples of the present invention and comparative examples will be described.

本実施例では、まず、チタンの溶融飛沫を飛散中に凝固させるガスアトマイズ法により製造された球状ガスアトマイズチタン粉末を所定形状の焼結容器に充填して真空焼結した後、表面を研削することにより、外径28mm、はめあい公差h6、厚さ1mmに加工して、図2(a)に示す多孔質チタン焼結体16aを製造した。次に、純チタン2種相当のプレートを外径56mm、内径28mm、はめあい公差H6、厚さ1mmに加工して、図2(a)に示すドーナッツ状のチタンプレート17aを製造し、チタンプレート17aの内周部に多孔質チタン焼結体16aを圧入して一体化し、アノード給電体4を製造した。   In this example, first, a spherical gas atomized titanium powder produced by a gas atomizing method that solidifies molten droplets of titanium during scattering is filled into a predetermined shaped sintering vessel and vacuum sintered, and then the surface is ground. The porous titanium sintered body 16a shown in FIG. 2 (a) was manufactured by processing into an outer diameter of 28 mm, a fitting tolerance h6, and a thickness of 1 mm. Next, a plate corresponding to two types of pure titanium is processed into an outer diameter of 56 mm, an inner diameter of 28 mm, a fitting tolerance H6, and a thickness of 1 mm to produce a donut-shaped titanium plate 17a shown in FIG. The porous titanium sintered body 16a was press-fitted into the inner peripheral portion of the inner peripheral portion and integrated to produce the anode power feeding body 4.

次に、多孔質チタン焼結体16aと全く同一のカソード給電体3を製造した。   Next, the cathode power supply body 3 exactly the same as the porous titanium sintered body 16a was manufactured.

次に、図3に示すように、膜の両極に触媒を担持した(図示せず)厚さ100μmの固体高分子膜2の両側に、前記カソード給電体3、アノード給電体4を配設し、さらにカソード給電体3、アノード給電体4に、チタン材料からなるセパレータ5,6を積層して、高圧水素製造装置1を形成した。次に、セパレータ5,6に絶縁部材9,9を積層した高圧水素製造装置1を、さらにエンドプレート10,10により挟持して、エンドプレート10,10に取着されたボルト11とナット12とにより締め付け、図1に示す構成とした。   Next, as shown in FIG. 3, the cathode power supply 3 and the anode power supply 4 are disposed on both sides of a 100 μm thick solid polymer film 2 carrying a catalyst on both electrodes of the film (not shown). Furthermore, separators 5 and 6 made of a titanium material were stacked on the cathode power supply 3 and the anode power supply 4 to form the high-pressure hydrogen production apparatus 1. Next, the high pressure hydrogen production apparatus 1 in which the insulating members 9 and 9 are stacked on the separators 5 and 6 is further sandwiched between the end plates 10 and 10, and the bolts 11 and nuts 12 attached to the end plates 10 and 10 The structure shown in FIG. 1 was obtained.

次に、前記構成の高圧水素製造装置1により水素ガスを製造し、該水素ガスによりカソード側から固体高分子膜2と多孔質チタン焼結体16aとを40MPaで加圧したところ、固体高分子膜2には損傷がなく、カソード側を40MPaの圧力に安定して維持することができた。このとき、固体高分子膜2の水素透過量はほぼ1ml/分以下であった。   Next, hydrogen gas is produced by the high-pressure hydrogen production apparatus 1 having the above-described configuration, and the solid polymer film 2 and the porous titanium sintered body 16a are pressurized from the cathode side with the hydrogen gas at 40 MPa. The membrane 2 was not damaged, and the cathode side could be stably maintained at a pressure of 40 MPa. At this time, the hydrogen permeation amount of the solid polymer membrane 2 was approximately 1 ml / min or less.

次に、本実施例に用いたものと同一のアノード給電体4を機械的に40MPaの圧力で3分間加圧した。前記加圧を解放したのち、アノード給電体4の厚さの減少量を測定したところ1μmであり、実質的に減少は認められなかった。
〔比較例1〕
本比較例1では、多孔質チタン焼結体16aのみによりアノード給電体4を構成した以外は、実施例1と全く同一にして高圧水素製造装置を製造した。
Next, the same anode power supply 4 as that used in this example was mechanically pressurized at a pressure of 40 MPa for 3 minutes. After releasing the pressure, the amount of decrease in the thickness of the anode power supply 4 was measured and found to be 1 μm, and no substantial decrease was observed.
[Comparative Example 1]
In this comparative example 1, a high-pressure hydrogen production apparatus was produced in exactly the same manner as in example 1 except that the anode feeder 4 was constituted only by the porous titanium sintered body 16a.

次に、本比較例の高圧水素製造装置により水素ガスを製造したところ、カソード側からの固体高分子膜2と多孔質チタン焼結体16aとに対する圧力が約22MPaに達した時点で固体高分子膜2が破損し、カソード側を高圧に維持することができなかった。   Next, when hydrogen gas was produced by the high-pressure hydrogen production apparatus of this comparative example, when the pressure on the solid polymer membrane 2 and the porous titanium sintered body 16a from the cathode side reached about 22 MPa, the solid polymer was produced. The membrane 2 was damaged and the cathode side could not be maintained at a high pressure.

次に、本比較例に用いたものと同一のアノード給電体4(多孔質チタン焼結体16a)を機械的に40MPaの圧力で3分間加圧したところ、約20MPaから塑性変形の発生が認められた。前記加圧を解放したのち、アノード給電体4の厚さの減少量を測定したところ50μmであり、約5%の減少が認められた。   Next, when the same anode feeder 4 (porous titanium sintered body 16a) as that used in this comparative example was mechanically pressed at a pressure of 40 MPa for 3 minutes, the occurrence of plastic deformation was observed from about 20 MPa. It was. After releasing the pressure, the amount of decrease in the thickness of the anode power supply 4 was measured and found to be 50 μm, and a decrease of about 5% was observed.

本実施例では、まず、チタンの溶融飛沫を飛散中に凝固させるガスアトマイズ法により製造された球状ガスアトマイズチタン粉末を所定形状の焼結容器に充填して真空焼結した後、表面を研削することにより、外径28mm、はめあい公差h6、厚さ300mmに加工して、図2(a)に示す多孔質チタン焼結体16aを製造した。次に、純チタン2種相当のバルク材を外径56mm、内径28mm、はめあい公差H6、厚さ300mmに加工して、図2(a)に示すドーナッツ状のチタン部材17aを製造し、チタン部材17aの内周部に多孔質チタン焼結体16aを圧入して一体化した。次に、チタン部材17aの内周部に多孔質チタン焼結体16aを圧入して一体化した部材を厚さ1mmにスライス加工した後、表面研削することにより、アノード給電体4を製造した。   In this example, first, a spherical gas atomized titanium powder produced by a gas atomizing method that solidifies molten droplets of titanium during scattering is filled into a predetermined shaped sintering vessel and vacuum sintered, and then the surface is ground. The porous titanium sintered body 16a shown in FIG. 2 (a) was manufactured by processing into an outer diameter of 28 mm, a fitting tolerance h6, and a thickness of 300 mm. Next, a bulk material corresponding to two types of pure titanium is processed into an outer diameter of 56 mm, an inner diameter of 28 mm, a fit tolerance of H6, and a thickness of 300 mm to produce a donut-shaped titanium member 17a shown in FIG. The porous titanium sintered body 16a was press-fitted into the inner peripheral portion of 17a and integrated. Next, the anode power supply 4 was manufactured by slicing a member obtained by press-fitting the porous titanium sintered body 16a into the inner peripheral portion of the titanium member 17a into a thickness of 1 mm and then grinding the surface.

次に、本実施例で得られたアノード給電体4を用いた以外は、実施例1と全く同一にして、高圧水素製造装置1を製造した。   Next, a high-pressure hydrogen production apparatus 1 was produced in exactly the same manner as in Example 1 except that the anode feeder 4 obtained in this example was used.

次に、本実施例の高圧水素製造装置1を用いた以外は、実施例1と全く同一にして水素ガスを製造し、該水素ガスによりカソード側から固体高分子膜2と多孔質チタン焼結体16aとを40MPaで加圧した。このとき、固体高分子膜2の水素透過量はほぼ1ml/分以下であった。   Next, hydrogen gas was produced in exactly the same manner as in Example 1 except that the high-pressure hydrogen production apparatus 1 of this example was used, and the solid polymer membrane 2 and porous titanium sintered from the cathode side with the hydrogen gas. The body 16a was pressurized at 40 MPa. At this time, the hydrogen permeation amount of the solid polymer membrane 2 was approximately 1 ml / min or less.

本実施例の方法によれば、チタンプレート17aの内周部に多孔質チタン焼結体16aが圧入されて一体化された構成のアノード給電体4を、容易に多量に製造することができる。   According to the method of the present embodiment, the anode power supply 4 having a structure in which the porous titanium sintered body 16a is press-fitted into the inner peripheral portion of the titanium plate 17a and integrated can be easily manufactured in large quantities.

本実施例では、まず、チタンの溶融飛沫を飛散中に凝固させるガスアトマイズ法により製造された球状ガスアトマイズチタン粉末を所定形状の焼結容器に充填して真空焼結した後、表面を研削することにより、30mm角、厚さ1mmに加工して、図2(b)に示す多孔質チタン焼結体16bを製造した。次に、純チタン2種相当のプレートを長さ40mm、幅10mm、厚さ1mmに加工して、図2(b)に示すチタンプレート17b,b,b,bを製造し、多孔質チタン焼結体16bの周囲にチタンプレート17b,b,b,bを電子ビーム溶接することにより、アノード給電体4を製造した。このとき、溶接ビード幅は1.5mm、溶接深さは0.6〜0.8mmであった。 In this example, first, a spherical gas atomized titanium powder produced by a gas atomizing method that solidifies molten droplets of titanium during scattering is filled into a predetermined shaped sintering vessel and vacuum sintered, and then the surface is ground. The porous titanium sintered body 16b shown in FIG. 2 (b) was manufactured by processing into a 30 mm square and a thickness of 1 mm. Next, a plate corresponding to two types of pure titanium is processed into a length of 40 mm, a width of 10 mm, and a thickness of 1 mm to produce titanium plates 17b 1 , b 2 , b 3 , and b 4 shown in FIG. Anode feeder 4 was manufactured by electron beam welding of titanium plates 17b 1 , b 2 , b 3 , and b 4 around porous titanium sintered body 16b. At this time, the weld bead width was 1.5 mm, and the weld depth was 0.6 to 0.8 mm.

次に、本実施例で得られたアノード給電体4を用いた以外は、実施例1と全く同一にして、高圧水素製造装置1を製造した。   Next, a high-pressure hydrogen production apparatus 1 was produced in exactly the same manner as in Example 1 except that the anode feeder 4 obtained in this example was used.

次に、本実施例の高圧水素製造装置1を用いた以外は、実施例1と全く同一にして水素ガスを製造し、該水素ガスによりカソード側から固体高分子膜2と多孔質チタン焼結体16aとを40MPaで加圧した。このとき、固体高分子膜2の水素透過量はほぼ1ml/分以下であった。   Next, hydrogen gas was produced in exactly the same manner as in Example 1 except that the high-pressure hydrogen production apparatus 1 of this example was used, and the solid polymer membrane 2 and porous titanium sintered from the cathode side with the hydrogen gas. The body 16a was pressurized at 40 MPa. At this time, the hydrogen permeation amount of the solid polymer membrane 2 was approximately 1 ml / min or less.

本実施例の方法によれば、多孔質チタン焼結体16bの周囲にチタンプレート17b,b,b,bが接合されて一体化された構成の異型のアノード給電体4を、容易に製造することができる。 According to the method of the present embodiment, the odd-shaped anode power feeder 4 having a configuration in which the titanium plates 17b 1 , b 2 , b 3 , and b 4 are joined and integrated around the porous titanium sintered body 16b, It can be manufactured easily.

本発明の水素製造装置の構成を示す説明的断面図。Explanatory sectional drawing which shows the structure of the hydrogen production apparatus of this invention. 図1の水素製造装置に用いるアノード給電体の構成を示す平面図。The top view which shows the structure of the anode electric power feeding body used for the hydrogen production apparatus of FIG. 図1に示す水素製造装置の要部組み立て図。The principal part assembly drawing of the hydrogen production apparatus shown in FIG. 従来の水素製造装置の構成を示す説明的断面図。Explanatory sectional drawing which shows the structure of the conventional hydrogen production apparatus.

符号の説明Explanation of symbols

1…水素製造装置、 2…固体高分子膜、 3…カソード給電体、 4…アノード給電体、 5…カソード側セパレータ、 6…アノード側セパレータ、 7,8…流体通路、 16…多孔質部材、 17…非多孔質部材、 19a,19b…流体通路領域、 20a,20b…フレーム領域。   DESCRIPTION OF SYMBOLS 1 ... Hydrogen production apparatus, 2 ... Solid polymer membrane, 3 ... Cathode electric power supply, 4 ... Anode electric power supply, 5 ... Cathode side separator, 6 ... Anode side separator, 7, 8 ... Fluid passage, 16 ... Porous member, 17 ... Non-porous member, 19a, 19b ... Fluid passage region, 20a, 20b ... Frame region.

Claims (4)

固体高分子膜と、該固体高分子膜のカソード側、アノード側両側に相対向して設けられた1対の給電体と、各給電体に積層されたセパレータと、各セパレータに設けられ各給電体が露出する流体通路とを備え、アノード側セパレータの流体通路に水を供給すると共に各給電体に通電することにより、アノード側セパレータの流体通路に供給された水を電気分解し、カソード側セパレータの流体通路に高圧の水素ガスを得る水素製造装置において、
該アノード側セパレータは、カソード側セパレータの流体通路に得られる水素ガスの圧力に抗して形状を維持できる材料からなり、該流体通路が設けられている流体通路領域と、該流体通路領域の外周側に設けられたフレーム領域とを備え、
アノード給電体は該固体高分子膜と該アノード側セパレータとに密着して配設されており、導電性粒子が焼結されてなり該流体通路領域に対向する領域を占める多孔質部材と、該フレーム領域に対向する領域を占めて該多孔質部材を取り囲み該多孔質部材の厚さと直交する方向への変形を規制する非多孔質部材とからなることを特徴とする水素製造装置。
A solid polymer film, a pair of power supply bodies provided opposite to each other on both the cathode side and the anode side of the solid polymer film, a separator stacked on each power supply body, and each power supply provided on each separator A fluid passage exposing the body, and supplying water to the fluid passage of the anode-side separator and energizing each power feeding body to electrolyze the water supplied to the fluid passage of the anode-side separator, In a hydrogen production apparatus for obtaining high-pressure hydrogen gas in the fluid passage of
The anode separator is made of a material capable of maintaining a shape against the pressure of hydrogen gas obtained in the fluid passage of the cathode separator, and includes a fluid passage region in which the fluid passage is provided, and an outer periphery of the fluid passage region. Frame area provided on the side,
The anode power supply is disposed in close contact with the solid polymer membrane and the anode-side separator, and a porous member occupying a region facing the fluid passage region formed by sintering conductive particles; A hydrogen production apparatus comprising: a non-porous member that occupies a region facing a frame region, surrounds the porous member, and restricts deformation in a direction orthogonal to the thickness of the porous member.
前記アノード給電体は、チタン粉末が焼結されてなる前記多孔質部材と、チタンからなる前記非多孔質部材とからなり、該多孔質部材と該非多孔質部材との境界が平滑になるように接合されていることを特徴とする請求項1記載の水素製造装置。   The anode feeder is composed of the porous member obtained by sintering titanium powder and the non-porous member made of titanium, so that the boundary between the porous member and the non-porous member becomes smooth. The hydrogen production apparatus according to claim 1, wherein the hydrogen production apparatus is joined. 前記アノード給電体は、チタン粉末が焼結されてなる前記多孔質部材とチタンからなる前記非多孔質部材とが、圧入、電子ビーム溶接、拡散接合からなる群から選ばれる1種の方法により接合されていることを特徴とする請求項2記載の水素製造装置。   In the anode power supply body, the porous member formed by sintering titanium powder and the non-porous member formed of titanium are bonded by one method selected from the group consisting of press-fitting, electron beam welding, and diffusion bonding. The hydrogen production apparatus according to claim 2, wherein 前記カソード給電体は、カソード側セパレータの流体通路が設けられている流体通路領域に対向する領域を占める多孔質部材のみからなることを特徴とする請求項1乃至請求項3のいずれか1項記載の水素製造装置。   The said cathode electric power feeding body consists only of the porous member which occupies the area | region which opposes the fluid passage area | region where the fluid passage of the cathode side separator is provided, The Claim 1 thru | or 3 characterized by the above-mentioned. Hydrogen production equipment.
JP2004249913A 2004-08-30 2004-08-30 Hydrogen production equipment Active JP4611688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249913A JP4611688B2 (en) 2004-08-30 2004-08-30 Hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249913A JP4611688B2 (en) 2004-08-30 2004-08-30 Hydrogen production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010179825A Division JP5090505B2 (en) 2010-08-10 2010-08-10 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2006063419A true JP2006063419A (en) 2006-03-09
JP4611688B2 JP4611688B2 (en) 2011-01-12

Family

ID=36110160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249913A Active JP4611688B2 (en) 2004-08-30 2004-08-30 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP4611688B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252399A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Metallic porous separator for fuel, cell and manufacturing method therefor
WO2011118482A1 (en) * 2010-03-23 2011-09-29 本田技研工業株式会社 Electrochemical device
US20120073962A1 (en) * 2010-09-24 2012-03-29 Honda Motor Co., Ltd. High-pressure water electrolysis apparatus
JP2012117140A (en) * 2010-12-03 2012-06-21 Takasago Thermal Eng Co Ltd Hydrogen production cell and apparatus for producing hydrogen
JP2013197079A (en) * 2012-03-23 2013-09-30 Takasago Thermal Eng Co Ltd Charge/discharge system and operation method thereof
JP2015086424A (en) * 2013-10-30 2015-05-07 本田技研工業株式会社 High-pressure water electrolysis apparatus
JP2016023345A (en) * 2014-07-23 2016-02-08 エクセルギー・パワー・システムズ株式会社 Apparatus for producing hydrogen, and method for producing hydrogen
US9777382B2 (en) 2015-06-03 2017-10-03 Kabushiki Kaisha Toshiba Electrochemical cell, oxygen reduction device using the cell and refrigerator using the oxygen reduction device
CN110607533A (en) * 2018-06-14 2019-12-24 松下知识产权经营株式会社 Electrochemical hydrogen pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328279A (en) * 1999-05-25 2000-11-28 Fuji Electric Co Ltd Production of power feeding body for electrochemical cell
JP2001140089A (en) * 1999-06-30 2001-05-22 Shinko Pantec Co Ltd Solid electrolyte membrane unit and electrolytic cell
JP2002231267A (en) * 2001-02-06 2002-08-16 Permelec Electrode Ltd Bonding laminate of electrode and membrane and its manufacturing method
JP2003226992A (en) * 2002-02-06 2003-08-15 Shinko Pantec Co Ltd Power feeding body for electrolytic cell, and electrolytic cell
JP2004002914A (en) * 2002-05-31 2004-01-08 Hitachi Zosen Corp Hydrogen feeding apparatus using solid high polymer type water electrolyzer
JP2004071456A (en) * 2002-08-08 2004-03-04 Sumitomo Titanium Corp Porous conductive plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328279A (en) * 1999-05-25 2000-11-28 Fuji Electric Co Ltd Production of power feeding body for electrochemical cell
JP2001140089A (en) * 1999-06-30 2001-05-22 Shinko Pantec Co Ltd Solid electrolyte membrane unit and electrolytic cell
JP2002231267A (en) * 2001-02-06 2002-08-16 Permelec Electrode Ltd Bonding laminate of electrode and membrane and its manufacturing method
JP2003226992A (en) * 2002-02-06 2003-08-15 Shinko Pantec Co Ltd Power feeding body for electrolytic cell, and electrolytic cell
JP2004002914A (en) * 2002-05-31 2004-01-08 Hitachi Zosen Corp Hydrogen feeding apparatus using solid high polymer type water electrolyzer
JP2004071456A (en) * 2002-08-08 2004-03-04 Sumitomo Titanium Corp Porous conductive plate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252399A (en) * 2008-04-02 2009-10-29 Sanyo Special Steel Co Ltd Metallic porous separator for fuel, cell and manufacturing method therefor
WO2011118482A1 (en) * 2010-03-23 2011-09-29 本田技研工業株式会社 Electrochemical device
US9194048B2 (en) 2010-03-23 2015-11-24 Honda Motor Co., Ltd. Electrochemical device
JP5603928B2 (en) * 2010-03-23 2014-10-08 本田技研工業株式会社 Electrochemical device
CN102803569A (en) * 2010-03-23 2012-11-28 本田技研工业株式会社 Electrochemical device
US8815063B2 (en) * 2010-09-24 2014-08-26 Honda Motor Co., Ltd. High-pressure water electrolysis apparatus
US20120073962A1 (en) * 2010-09-24 2012-03-29 Honda Motor Co., Ltd. High-pressure water electrolysis apparatus
JP2012117140A (en) * 2010-12-03 2012-06-21 Takasago Thermal Eng Co Ltd Hydrogen production cell and apparatus for producing hydrogen
JP2013197079A (en) * 2012-03-23 2013-09-30 Takasago Thermal Eng Co Ltd Charge/discharge system and operation method thereof
JP2015086424A (en) * 2013-10-30 2015-05-07 本田技研工業株式会社 High-pressure water electrolysis apparatus
JP2016023345A (en) * 2014-07-23 2016-02-08 エクセルギー・パワー・システムズ株式会社 Apparatus for producing hydrogen, and method for producing hydrogen
US9777382B2 (en) 2015-06-03 2017-10-03 Kabushiki Kaisha Toshiba Electrochemical cell, oxygen reduction device using the cell and refrigerator using the oxygen reduction device
CN110607533A (en) * 2018-06-14 2019-12-24 松下知识产权经营株式会社 Electrochemical hydrogen pump

Also Published As

Publication number Publication date
JP4611688B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4796639B2 (en) Electrochemical equipment
US9194048B2 (en) Electrochemical device
JP5341931B2 (en) High pressure hydrogen production equipment
US10053786B2 (en) Differential pressure water electrolysis system
JP4611688B2 (en) Hydrogen production equipment
US20160060771A1 (en) Differential pressure water electrolysis system
CN111996544B (en) High-pressure or differential pressure electrolyzer
JP2011149074A (en) Method of operating water-electrolyzing system
CN105518918A (en) Fuel cell
JP5090505B2 (en) Hydrogen production equipment
JP2010189710A (en) Electrolysis equipment
JP5400413B2 (en) Electrolyzer
JP2006328527A (en) Apparatus for producing hydrogen
CN110241436B (en) Water electrolysis device
JP5400414B2 (en) Electrolyzer
JP4852157B2 (en) Water electrolysis equipment
JP2012180553A (en) High-pressure hydrogen production apparatus and method for manufacturing porous feed conductor therefor
JP4554325B2 (en) High pressure hydrogen production equipment
JP2017210660A (en) Differential pressure-type high pressure apparatus for electrolyzing water
JP6649414B2 (en) Water electrolysis device
JP2014065927A (en) High-pressure water electrolysis apparatus
JP3235649B2 (en) Electrolysis cell for hydrogen oxygen generator
JP5415100B2 (en) Electrolyzer
JP5451575B2 (en) Water electrolysis equipment
JP4554328B2 (en) High pressure hydrogen production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4611688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250