JP2000328279A - Production of power feeding body for electrochemical cell - Google Patents

Production of power feeding body for electrochemical cell

Info

Publication number
JP2000328279A
JP2000328279A JP11144437A JP14443799A JP2000328279A JP 2000328279 A JP2000328279 A JP 2000328279A JP 11144437 A JP11144437 A JP 11144437A JP 14443799 A JP14443799 A JP 14443799A JP 2000328279 A JP2000328279 A JP 2000328279A
Authority
JP
Japan
Prior art keywords
titanium powder
electrochemical cell
power supply
power feeding
slicing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11144437A
Other languages
Japanese (ja)
Inventor
Mikimasa Yamaguchi
幹昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11144437A priority Critical patent/JP2000328279A/en
Publication of JP2000328279A publication Critical patent/JP2000328279A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a power feeding body for an electrochemical cell which is prolonged in the life without damaging electrolyte electrode joint and capable of keeping a desirable state of electricity, gas and water flow over a long period therein. SOLUTION: The manufacturing procedure of the power feeding body for electrochemical cell comprises, at first, manufacturing a sintered body of titanium powder having outside dimension equal to or larger than the predetermined outer dimension of the power feeding body and having a thickness larger than the predetermined thickness of the power feeding body by compressing, molding and sintering the titanium powder 1, and manufacturing the plural power feeding bodies having the predetermined thicknesses and outside dimensions by slicing the thick sintered body of the titanium powder. Further, the slicing is made to be the flattening slicing, for instance, wire discharging processing, processing with a diamond band saw so that a abutting face between the power feeding body and the electrolyte electrode joint becomes to be the smoothing surface required for the performance and the life of the electrochemical cell simultaneously with the slicing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子電解
質膜を用いて水素および酸素を製造する水電解セルや、
逆に水素と酸素の電気化学的反応により電気をとりだす
燃料電池などの電気化学セルに使用される電気化学セル
用給電体の製造方法に関する。
The present invention relates to a water electrolysis cell for producing hydrogen and oxygen using a solid polymer electrolyte membrane,
Conversely, the present invention relates to a method of manufacturing a power supply for an electrochemical cell used for an electrochemical cell such as a fuel cell that takes out electricity by an electrochemical reaction between hydrogen and oxygen.

【0002】[0002]

【従来の技術】近年、固体高分子電解質膜を用いて水素
および酸素を製造する水電解セル(特開平7−2526
82号公報参照)の開発や、逆に水素と酸素の電気化学
的反応により電気をとりだす固体高分子電解質型燃料電
池の開発および実用化が進められている。上記水電解セ
ルや燃料電池などの電気化学セルは、固体高分子電解質
膜の両面に電極触媒層を接合してなる電解質電極接合体
の両主面に給電体を当接してユニットを形成し、このユ
ニットを多数積層しその両端に主電極を備えた構成が一
般的に用いられている。中には電極触媒層が、給電体の
表面に接合された構成が用いられることもある。説明の
便宜上、以降の説明は、水電解セル用給電体を対象とし
て説明するが、この発明は、燃料電池用給電体にも適用
できる。
2. Description of the Related Art In recent years, a water electrolysis cell for producing hydrogen and oxygen using a solid polymer electrolyte membrane (Japanese Patent Laid-Open No. 7-2526).
No. 82), and conversely, the development and commercialization of a solid polymer electrolyte fuel cell that extracts electricity by an electrochemical reaction between hydrogen and oxygen. Electrochemical cells such as the above-mentioned water electrolysis cell and fuel cell form a unit by contacting a power feeder to both main surfaces of an electrolyte electrode assembly formed by bonding an electrode catalyst layer to both surfaces of a solid polymer electrolyte membrane, A configuration in which a number of these units are stacked and main electrodes are provided at both ends thereof is generally used. In some cases, a configuration in which an electrode catalyst layer is joined to the surface of a power supply body may be used. For convenience of explanation, the following description will be made with reference to a power supply for a water electrolysis cell, but the present invention is also applicable to a power supply for a fuel cell.

【0003】上記水電解セルにおいて、電解質電極接合
体に当接して配される給電体は、電気を流し、水を供給
し、水電解反応により生じたガスを速やかに排出する機
能が要求される。
[0003] In the above-mentioned water electrolysis cell, a power feeder disposed in contact with the electrolyte electrode assembly is required to have a function of supplying electricity, supplying water, and quickly discharging gas generated by the water electrolysis reaction. .

【0004】そのため当初、給電体としては、チタンの
エキスパンドメタル、パンチングメタル板、あるいはメ
ッシュ板などを用いたものが採用されたが、これらはい
ずれも開口部が非常に大きく、給電体と電解質電極接合
体とを圧接した際に、比較的薄肉(50μm程度)の電
解質電極接合体が開口部にめり込み、電解質電極接合体
が破損し易いという難点があった。このため、例えば特
公平2−32357号公報に記載されるように、粒径の
大きいチタン繊維を圧縮、成形、焼結して基体を製作し
たのち、その表面上に粒径の小さいチタン粉末を圧縮、
成形、焼結して一体とし、電解質電極接合体に当接する
面を微細構造にしてチタン繊維の層表面に比較して平滑
な構造とした給電体が開発された。
[0004] For this reason, initially, a feeder using an expanded metal of titanium, a perforated metal plate, a mesh plate, or the like was used, but all of them had a very large opening, and the feeder and the electrolyte electrode were used. When the joined body was pressed into contact with the joined body, there was a problem that the electrolyte electrode joined body having a relatively small thickness (approximately 50 μm) sunk into the opening, and the electrolyte electrode joined body was easily damaged. For this reason, for example, as described in Japanese Patent Publication No. 2-32357, a titanium fiber having a large particle diameter is compressed, molded, and sintered to produce a substrate, and then a titanium powder having a small particle diameter is formed on the surface thereof. compression,
A power feeder has been developed in which the surface in contact with the electrolyte electrode assembly is formed into a fine structure by forming and sintering into a unitary structure, and has a smooth structure as compared with the surface of the titanium fiber layer.

【0005】図3は、前記従来の電気化学セル用給電体
の層方向断面を模式的に示す図である。この給電体は、
下層側の粒径の大きいチタン繊維12と、上層側の粒径
の小さいチタン粉末11とからなる所定寸法のチタン粉
末焼結板として構成され、チタン粉末11の表面が、電
解質電極接合体に当接する面として用いられる。
FIG. 3 is a diagram schematically showing a cross section in the layer direction of the conventional power supply for an electrochemical cell. This feeder is
It is constituted as a titanium powder sintered plate of a predetermined size composed of a titanium fiber 12 having a large particle diameter on the lower layer side and a titanium powder 11 having a small particle diameter on the upper layer side, and the surface of the titanium powder 11 is applied to the electrolyte electrode assembly. Used as a contact surface.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記従来の
電気化学セル用給電体の製造方法においては、下記のよ
うな問題があった。
However, the above-described conventional method for manufacturing a power supply for an electrochemical cell has the following problems.

【0007】前記チタン粉末焼結板は、チタン粉末を金
型内に入れ圧縮して、給電体の所定寸法と略同一寸法を
有する板状成形体とし、これを金型から取り出し、真空
焼結して製作されている。この場合、金型から取り出し
真空焼結炉に移す際に生じる変形と、焼結時に生じる収
縮(表面側が収縮)により、焼結板にそり(湾曲)が生
じ、電解質電極接合体に当接する面として好適な表面形
状および表面状態が得難い問題がある。
[0007] The titanium powder sintered plate is prepared by placing titanium powder in a mold and compressing the plate to form a plate-shaped compact having substantially the same dimensions as a predetermined size of the power supply body. It has been produced. In this case, due to the deformation that occurs when the material is taken out of the mold and transferred to a vacuum sintering furnace and the shrinkage that occurs during sintering (the surface side shrinks), the sintered plate warps (curves), and the surface that contacts the electrolyte electrode assembly It is difficult to obtain a suitable surface shape and surface state.

【0008】このようなチタン粉末焼結板に電解質電極
接合体の両面の電極触媒層を圧接した場合には、均一な
密着状態を得ることができず、均一に電気を流すことが
できない上に、局部的に過大な力が加わり、電解質電極
接合体が破損し寿命が低下するなどの問題が生じてい
た。
[0008] When the electrode catalyst layers on both sides of the electrolyte electrode assembly are pressed against such a titanium powder sintered plate, a uniform contact state cannot be obtained, and electricity cannot be supplied uniformly. However, there has been a problem that an excessively large force is locally applied, and the electrolyte electrode assembly is damaged and the life is shortened.

【0009】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、電解質電極
接合体の損傷が生じることなく寿命が向上し、電気,ガ
スおよび水の流れが良好な状態を長期間持続できる電気
化学セル用給電体の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to improve the life of the electrolyte electrode assembly without causing damage to the assembly, and to reduce the electricity, gas and water. An object of the present invention is to provide a method for manufacturing a power supply for an electrochemical cell, which can maintain a good flow for a long time.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するた
め、この発明は、固体高分子電解質膜の両面に電極触媒
層を接合してなる電解質電極接合体の両主面に給電体を
当接してユニットを形成し、このユニットを多数積層し
その両端に主電極を備えた電気化学セル用の前記給電体
の製造方法において、チタン粉末を圧縮,成形,焼結し
て、前記給電体の所定の外寸法と同一以上の(同一か少
し大きい)外寸法を有し,かつ給電体の所定の厚さ寸法
よりも大きい厚さ寸法を有するチタン粉末焼結体を作製
し、この肉厚のチタン粉末焼結体をスライス加工して、
複数枚の所定の厚さ寸法と外寸法とを有する給電体を作
製してなり、かつ前記スライス加工は、スライスと同時
に前記給電体の電解質電極接合体との当接面が前記電気
化学セルの性能および寿命上所期の平滑面となるような
平坦化スライス加工であることとする(請求項1)。
In order to solve the above-mentioned problems, the present invention relates to a method in which a power feeder is applied to both main surfaces of an electrolyte electrode assembly in which an electrode catalyst layer is bonded to both surfaces of a solid polymer electrolyte membrane. In the method of manufacturing a power supply for an electrochemical cell having a large number of units stacked and main electrodes provided at both ends thereof, a titanium powder is compressed, molded, and sintered to form a unit. A titanium powder sintered body having an outer dimension equal to or larger than the predetermined outer dimension (same or slightly larger) and having a thickness dimension larger than the predetermined thickness dimension of the power supply body is produced. Slicing titanium powder sintered body,
A plurality of feeders having a predetermined thickness dimension and an outer dimension are manufactured, and the slicing process is such that, at the same time as the slicing, the contact surface of the feeder with the electrolyte electrode assembly is formed of the electrochemical cell. The flattening slicing is performed so as to obtain a desired smooth surface with high performance and life (claim 1).

【0011】前記平坦化スライス加工としては、ワイヤ
放電加工またはダイヤモンドバンドソー加工が好適であ
る(請求項2)。上記により、電解質電極接合体がチタ
ン粉末粒子とチタン粉末粒子の間に食い込むことがな
い。また、そりのない平坦な当接面が得られるので、電
解質電極接合体への給電体の密着が均一となり局部的に
過大な力が加わることがなくなり、電解質電極接合体の
損傷が生じない。さらに電気の流れが良好となるので、
電解質電極接合体の寿命が向上するとともに、電気化学
セルとしての高い効率が維持できる。さらにまた、平坦
化スライス加工により、肉厚のチタン粉末焼結体から複
数枚の所定寸法の給電体をスライス加工により略同時に
作製できるので、製造効率が向上しコストが低減でき
る。
The flattening slicing is preferably performed by wire electric discharge machining or diamond band saw machining. As a result, the electrolyte electrode assembly does not bite between the titanium powder particles. In addition, since a flat contact surface without warpage is obtained, the contact of the power feeder with the electrolyte electrode assembly is uniform, so that an excessive force is not locally applied, and the electrolyte electrode assembly is not damaged. Since the flow of electricity is better,
The service life of the electrolyte electrode assembly is improved, and high efficiency as an electrochemical cell can be maintained. Furthermore, by flattening slicing, a plurality of feeders of a predetermined size can be produced from the thick titanium powder sintered body almost simultaneously by slicing, so that manufacturing efficiency can be improved and costs can be reduced.

【0012】さらに、請求項3の発明のように、当接面
に平坦化加工を施した後、この当接面にさらに研磨加工
を施すことが望ましい。電解質電極接合体への給電体の
密着が一層均一となり、電気化学セルとしての効率がさ
らに向上する。
Further, as in the third aspect of the present invention, it is preferable that after the contact surface is flattened, the contact surface is further polished. Adhesion of the power supply to the electrolyte electrode assembly becomes more uniform, and the efficiency as an electrochemical cell is further improved.

【0013】[0013]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下に述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例)図1は本発明の製造方法により
作製した電気化学セル用給電体の層方向断面を模式的に
示す図、図2は、本発明の実施例のチタン粉末の圧縮、
成形によるチタン粉末成形体の製作に用いた冷間静水圧
プレスの概略構成図を示す。まず、図2に示すように、
チタン粉末1を充填したラバーケース3を圧力容器4の
中に置き加圧用ポンプ5により圧力水6を加圧容器4の
中に供給し、チタン粉末1の圧縮成形体を製作した。
(Example) FIG. 1 is a diagram schematically showing a cross section in a layer direction of a power supply for an electrochemical cell manufactured by a manufacturing method of the present invention, and FIG. 2 is a diagram showing compression of titanium powder according to an example of the present invention.
The schematic block diagram of the cold isostatic press used for manufacture of the titanium powder compact by shaping | molding is shown. First, as shown in FIG.
The rubber case 3 filled with the titanium powder 1 was placed in the pressure vessel 4, and pressurized water 6 was supplied into the pressure vessel 4 by the pressurizing pump 5 to produce a compression molded body of the titanium powder 1.

【0015】充填したチタン粉末1は、粒径が100〜
150μmのものを用い、水圧は2000kg/cm2とし2
0分間保持した。
The filled titanium powder 1 has a particle size of 100 to
Water pressure was set to 2000 kg / cm 2 using 150 μm.
Hold for 0 minutes.

【0016】次に、製作した圧縮成形体7を真空焼結炉
内に入れ、真空中で1000℃で1時間保って焼結し、
直径100mmφ,長さ100mmのチタン粉末焼結体
を得た。次に、このチタン粉末焼結体をワイヤ放電加工
機により所定の厚さ(約1mm)にスライスして、直径
100mmφの円盤状の所定寸法の給電体を得た。な
お、長さ100mmの焼結体端面部分は、所期の面状態
にはないので、適宜切断除去される。
Next, the produced compact 7 is placed in a vacuum sintering furnace and sintered at 1000 ° C. for 1 hour in a vacuum.
A titanium powder sintered body having a diameter of 100 mm and a length of 100 mm was obtained. Next, this titanium powder sintered body was sliced into a predetermined thickness (about 1 mm) by a wire electric discharge machine to obtain a disk-shaped power supply having a diameter of 100 mm and predetermined dimensions. Note that the end surface of the sintered body having a length of 100 mm is not in an expected surface state, and is appropriately cut and removed.

【0017】ワイヤ放電加圧の条件は、ワイヤとしては
黄銅0.2mmφのものを用い、電圧を40V、送り速
度4mm/分として加工した。この給電体の層方向断面
は、図1に示すように、チタン粉末が、略均一に分散し
た状態になっており、また表面形状を調べたところ、中
央面と端部との差は3μmの凹状となっていて表面の粗
さは1μmであり、所望の平滑面が得られた。本実施例
の給電体を電極面積50cm2の固体高分子電解質膜を
用いた水電解セルに適用した場合、長時間運転による膜
電極接合体の損傷はなく、効率低下は認められなかっ
た。
The conditions of wire discharge pressurization were as follows: a brass wire having a diameter of 0.2 mm was used at a voltage of 40 V and a feed rate of 4 mm / min. As shown in FIG. 1, the cross section in the layer direction of the power feeder was in a state where titanium powder was dispersed substantially uniformly, and when the surface shape was examined, the difference between the center plane and the end was 3 μm. It was concave and the surface roughness was 1 μm, and a desired smooth surface was obtained. When the feeder of this example was applied to a water electrolysis cell using a solid polymer electrolyte membrane having an electrode area of 50 cm 2 , there was no damage to the membrane electrode assembly due to long-term operation, and no reduction in efficiency was observed.

【0018】(比較例)従来の製造方法により製作した
チタン粉末焼結板は、前記給電体と同じ寸法(直径10
0mmφ,厚さ1mm)のもので、表面の中央面と端部
との高低差は30μm、表面の粗さは15μmであっ
た。この従来のチタン粉末を用いた給電体を、電極面積
50cm2の固体高分子電解質膜を用いた水電解セルに
適用した場合、徐々に膜電極接合体の損傷が進行し、1
000時間の運転で、漏れ電流による約3%の電流効率
の低下が認められた。
(Comparative Example) A sintered titanium powder plate manufactured by a conventional manufacturing method has the same dimensions (diameter 10
0 mmφ, thickness 1 mm), the height difference between the central surface and the end of the surface was 30 μm, and the surface roughness was 15 μm. When this conventional feeder using titanium powder is applied to a water electrolysis cell using a solid polymer electrolyte membrane having an electrode area of 50 cm 2 , damage to the membrane electrode assembly gradually progresses, and
After running for 000 hours, a decrease in current efficiency of about 3% due to leakage current was observed.

【0019】以上のように、本発明の実施例の給電体を
適用した場合に電流効率の低下がなくなった理由は、ワ
イア放電加工機により真直ぐに切断されるので、給電体
の電解質電極接合体への当接面のそりがなく、その上チ
タン粉末の突起部が平滑に切断され、電解質電極接合体
への給電体の密着が一層均一となったためであると考え
られる。さらに、ラップ研磨など各種研磨方法を用い
て、ワイヤ放電加工切断面を更に平滑とすることによ
り、さらに効率の向上を図ることができる。
As described above, the reason why the current efficiency does not decrease when the power supply according to the embodiment of the present invention is applied is that the power supply is cut straight by the wire electric discharge machine, so that the electrolyte electrode assembly of the power supply is used. It is considered that there was no warpage of the contact surface, and the protrusion of the titanium powder was cut smoothly, and the adhesion of the power supply body to the electrolyte electrode assembly became more uniform. Further, by using various polishing methods such as lap polishing to further smooth the cut surface of the wire electric discharge machining, the efficiency can be further improved.

【0020】なお、実施例ではチタン粉末焼結板のスラ
イス加工を、ワイヤ放電加工機により行ったが、この他
のスライス加工機としてダイヤモンドバンドソーなどを
使用することもできる。ダイヤモンド以外のバンドソー
の場合は、加工面に微細な筋目ができるので、ワイヤ放
電加工やダイヤモンドバンドソー加工に比較すると、性
能がやや劣る。また、ディスク加工の場合には、チタン
のねばりに起因して、ディスクに微小なぶれが発生し、
当接面に若干のそりや粗面が生じ、性能はさらに劣る。
In the embodiment, the slicing of the titanium powder sintered plate is performed by a wire electric discharge machine, but a diamond band saw or the like can be used as another slicing machine. In the case of a band saw other than diamond, fine streaks are formed on the machined surface, so that the performance is slightly inferior to wire electric discharge machining or diamond band saw machining. Also, in the case of disk processing, a slight blur occurs on the disk due to the stickiness of titanium,
Slight warpage or rough surface occurs on the contact surface, and the performance is further inferior.

【0021】[0021]

【発明の効果】この発明によれば前述のように、電気化
学セル用給電体の製造方法において、チタン粉末を圧
縮,成形,焼結して、前記給電体の所定の外寸法と同一
外寸法を有し,かつ給電体の所定の厚さ寸法よりも大き
い厚さ寸法を有するチタン粉末焼結体を作製し、この肉
厚のチタン粉末焼結体をスライス加工して、複数枚の所
定の厚さ寸法と外寸法とを有する給電体を作製してな
り、かつ前記スライス加工は、スライスと同時に前記給
電体の電解質電極接合体との当接面が前記電気化学セル
の性能および寿命上所期の平滑面となるような,例えば
ワイヤ放電加工やダイヤモンドバンドソー加工による平
坦化スライス加工であることとした(請求項1,2)の
で、電解質電極接合体への給電体の密着が均一となり局
部的に過大な力が加わることがなくなる。そのため、電
解質電極接合体の損傷が生ずることがなく、電解質電極
接合体の寿命が向上する。また、電気の流れが良好とな
るので、電気化学セルとしての高い効率が維持できる。
According to the present invention, as described above, in the method of manufacturing a power supply for an electrochemical cell, titanium powder is compressed, molded, and sintered to have the same external dimensions as the predetermined external dimensions of the power supply. And a titanium powder sintered body having a thickness dimension larger than a predetermined thickness dimension of the power supply body is produced, and the thick titanium powder sintered body is sliced to form a plurality of predetermined titanium powder sintered bodies. A feeder having a thickness dimension and an outer dimension is manufactured, and in the slicing, the contact surface of the feeder with the electrolyte electrode assembly is placed at the same time as the slicing on the performance and life of the electrochemical cell. The flattening slicing is performed by, for example, wire electric discharge machining or diamond band sawing so as to provide a smooth surface in the initial stage (Claims 1 and 2). Excessive force is added It is eliminated. Therefore, the electrolyte electrode assembly is not damaged, and the life of the electrolyte electrode assembly is improved. Further, since the flow of electricity becomes good, high efficiency as an electrochemical cell can be maintained.

【0022】さらにまた、平坦化スライス加工により、
ほぼ同時に複数枚の給電体が製造できるので、製造効率
の向上と製造コストの低減を図ることができる。原理的
には一枚どりでもよいが、多い枚数どりとする程効率的
である。
Further, by flattening slice processing,
Since a plurality of feeders can be manufactured almost simultaneously, it is possible to improve the manufacturing efficiency and reduce the manufacturing cost. In principle, one sheet may be used, but the more sheets, the more efficient.

【0023】さらに、請求項3の発明のように、平坦化
スライス加工した当接面にさらに研磨加工を施すことに
より、電解質電極接合体への給電体の密着が一層均一と
なり、電気化学セルとしての効率がさらに向上する。
Further, as in the third aspect of the present invention, by further polishing the flattened sliced contact surface, the adhesion of the power supply to the electrolyte electrode assembly becomes more uniform, and as an electrochemical cell, Efficiency is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に関わる給電体の層方向断面を
模式的に示す図である。
FIG. 1 is a diagram schematically showing a cross section in a layer direction of a power supply body according to an embodiment of the present invention.

【図2】本発明の給電体の製造方法に関わるチタン粉末
圧縮,成形用プレスの概略構成図である。
FIG. 2 is a schematic configuration diagram of a titanium powder compression and molding press related to the method for manufacturing a power supply body of the present invention.

【図3】従来の製造方法に関わる給電体の層方向断面を
模式的に示す図である。
FIG. 3 is a diagram schematically showing a cross section in a layer direction of a power feeding body according to a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1:チタン粉末、3:ラバーケース、4:圧力容器、
5:加圧用ポンプ、6:圧力水。
1: titanium powder, 3: rubber case, 4: pressure vessel,
5: Pump for pressurization, 6: Pressure water.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 Fターム(参考) 4K011 AA02 AA12 AA15 CA05 DA01 4K021 AA01 BA02 CA05 DB04 DB12 DB21 DB31 DB43 EA03 5H018 AA06 AS01 BB01 BB03 BB11 CC06 DD01 DD08 EE02 5H026 AA06 BB01 BB02 BB06 CX01 CX04 EE02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01M 8/10 H01M 8/10 F term (Reference) 4K011 AA02 AA12 AA15 CA05 DA01 4K021 AA01 BA02 CA05 DB04 DB12 DB21 DB31 DB43 EA03 5H018 AA06 AS01 BB01 BB03 BB11 CC06 DD01 DD08 EE02 5H026 AA06 BB01 BB02 BB06 CX01 CX04 EE02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜の両面に電極触媒層
を接合してなる電解質電極接合体の両主面に給電体を当
接してユニットを形成し、このユニットを多数積層しそ
の両端に主電極を備えた電気化学セル用の前記給電体の
製造方法において、チタン粉末を圧縮,成形,焼結し
て、前記給電体の所定の外寸法と同一以上の外寸法を有
し,かつ給電体の所定の厚さ寸法よりも大きい厚さ寸法
を有するチタン粉末焼結体を作製し、この肉厚のチタン
粉末焼結体をスライス加工して、複数枚の所定の厚さ寸
法と外寸法とを有する給電体を作製してなり、かつ前記
スライス加工は、スライスと同時に前記給電体の電解質
電極接合体との当接面が前記電気化学セルの性能および
寿命上所期の平滑面となるような平坦化スライス加工で
あることを特徴とする電気化学セル用給電体の製造方
法。
A unit is formed by contacting a power feeder to both main surfaces of an electrolyte electrode assembly in which an electrode catalyst layer is bonded to both surfaces of a solid polymer electrolyte membrane. In the method of manufacturing a power supply for an electrochemical cell having a main electrode, the titanium powder is compressed, molded, and sintered to have an external dimension equal to or greater than a predetermined external dimension of the power supply, and A titanium powder sintered body having a thickness dimension larger than a predetermined thickness dimension of the body is produced, and the titanium powder sintered body having this thickness is sliced to form a plurality of pieces having a predetermined thickness dimension and an outer dimension. And the slicing process is such that, at the same time as the slicing, the contact surface of the feeder with the electrolyte electrode assembly becomes a smooth surface with the expected performance and life of the electrochemical cell. It is characterized by flattening slice processing like this A method for manufacturing a power supply for an electrochemical cell.
【請求項2】 請求項1に記載の製造方法において、前
記平坦化スライス加工は、ワイヤ放電加工またはダイヤ
モンドバンドソー加工であることを特徴とする電気化学
セル用給電体の製造方法。
2. The method according to claim 1, wherein the flattening slice processing is wire electric discharge machining or diamond band saw processing.
【請求項3】 請求項1または2のいずれかに記載の製
造方法において、平坦化スライス加工された給電体の電
解質電極接合体との当接面にさらに研磨加工を施すこと
を特徴とする電気化学セル用給電体の製造方法。
3. The method according to claim 1, wherein the flattened and sliced power supply body is further polished on a contact surface with the electrolyte electrode assembly. Manufacturing method of power supply for chemical cell.
JP11144437A 1999-05-25 1999-05-25 Production of power feeding body for electrochemical cell Pending JP2000328279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11144437A JP2000328279A (en) 1999-05-25 1999-05-25 Production of power feeding body for electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11144437A JP2000328279A (en) 1999-05-25 1999-05-25 Production of power feeding body for electrochemical cell

Publications (1)

Publication Number Publication Date
JP2000328279A true JP2000328279A (en) 2000-11-28

Family

ID=15362197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11144437A Pending JP2000328279A (en) 1999-05-25 1999-05-25 Production of power feeding body for electrochemical cell

Country Status (1)

Country Link
JP (1) JP2000328279A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2005216620A (en) * 2004-01-28 2005-08-11 Kyocera Corp Fuel cell
JP2006063419A (en) * 2004-08-30 2006-03-09 Honda Motor Co Ltd Hydrogen production apparatus
US7811715B2 (en) 2005-11-24 2010-10-12 Toyota Jidosha Kabushiki Kaisha Electrically conductive porous body for a fuel cell, fuel cell having same, and method of manufacturing same
JP2010248635A (en) * 2010-08-10 2010-11-04 Honda Motor Co Ltd Apparatus for producing hydrogen
US8026011B2 (en) 2004-01-28 2011-09-27 Kyocera Corporation Fuel cell assembly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2005216620A (en) * 2004-01-28 2005-08-11 Kyocera Corp Fuel cell
JP4578114B2 (en) * 2004-01-28 2010-11-10 京セラ株式会社 Fuel cell
US8026011B2 (en) 2004-01-28 2011-09-27 Kyocera Corporation Fuel cell assembly
JP2006063419A (en) * 2004-08-30 2006-03-09 Honda Motor Co Ltd Hydrogen production apparatus
JP4611688B2 (en) * 2004-08-30 2011-01-12 本田技研工業株式会社 Hydrogen production equipment
US7811715B2 (en) 2005-11-24 2010-10-12 Toyota Jidosha Kabushiki Kaisha Electrically conductive porous body for a fuel cell, fuel cell having same, and method of manufacturing same
JP2010248635A (en) * 2010-08-10 2010-11-04 Honda Motor Co Ltd Apparatus for producing hydrogen

Similar Documents

Publication Publication Date Title
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
JP6863129B2 (en) Manufacturing method of separator for fuel cell
KR100419457B1 (en) A set of molding dies, molding structure, and molding process for fuel-cell separator
JPH11154517A (en) Metallic porous body for secondary battery and its manufacture
JP2004071456A (en) Porous conductive plate
JP2000328279A (en) Production of power feeding body for electrochemical cell
JP2002533577A (en) Integrated screen / frame assembly for electrochemical cells
WO2008032862A2 (en) Electrolyte electrode assembly and method for producing the same
JPH0232357B2 (en)
JP3553853B2 (en) Feeder and electrolytic cell
JP2009252399A (en) Metallic porous separator for fuel, cell and manufacturing method therefor
JP4881511B2 (en) Feeder
JP3008349B1 (en) Expanded graphite fuel cell separator and method of manufacturing the same
JP2000260441A (en) Polymer electrolyte fuel cell
JP2621901B2 (en) Method for manufacturing phosphoric acid type fuel cell
JP4269551B2 (en) Manufacturing method of fuel cell separator
JP2002069682A (en) Feeder body for electrochemical cell
JP4460881B2 (en) Fuel cell manufacturing method
JP4131664B2 (en) Fuel cell separator
JPWO2006046287A1 (en) Conductive member for solid oxide fuel cell stack
JP4468678B2 (en) Method for producing solid oxide fuel cell
JP2001279481A (en) Method for manufacturing power feeder and the feeder
JP2007070727A (en) Method for producing sheet-shaped porous sintered compact
JPH056762A (en) Manufacture of spongy metal porous body for electrode plate
JP2001355088A (en) Method for manufacturing feeder for water electrolytic cell and feeder for water electrolytic cell