JP2002069682A - Feeder body for electrochemical cell - Google Patents

Feeder body for electrochemical cell

Info

Publication number
JP2002069682A
JP2002069682A JP2000266486A JP2000266486A JP2002069682A JP 2002069682 A JP2002069682 A JP 2002069682A JP 2000266486 A JP2000266486 A JP 2000266486A JP 2000266486 A JP2000266486 A JP 2000266486A JP 2002069682 A JP2002069682 A JP 2002069682A
Authority
JP
Japan
Prior art keywords
plate
membrane electrode
electrochemical cell
sintered
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000266486A
Other languages
Japanese (ja)
Inventor
Mikimasa Yamaguchi
幹昌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP2000266486A priority Critical patent/JP2002069682A/en
Publication of JP2002069682A publication Critical patent/JP2002069682A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a feeder body without fear of damaging a joint of a membrane electrode and with a superior electroconductivity with the joint of the membrane electrode. SOLUTION: This feeder body is obtained by forming titanium fibers 1 to a sheet of laminated layers, putting it between ceramic plates, vacuum sintering it, and compressing it with a compressing roller to form a sintered plate of titanium fibers, and then putting the plate between flat type pressing plates, and smashing by compressing to manufacture a sintered plate of compressed metal fibers, which is used as the objective feeder body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜や電解質を含む多孔板を用いる電解装置、燃料電池等
の電気化学セルにおいて、電極に電流を供給する、ある
いは電極から電流を導出するために使用される電気化学
セル用給電体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying a current to an electrode or for deriving a current from an electrode in an electrochemical cell such as a fuel cell or an electrolyzer using a solid polymer electrolyte membrane or a porous plate containing an electrolyte. Power supply for an electrochemical cell used for the present invention.

【0002】[0002]

【従来の技術】固体高分子電解質膜や電解質を含む多孔
板を用いる電解装置、燃料電池等の電気化学セルは、通
常、例えば特開平7−252682号公報に開示されて
いるごとく、固体高分子電解質膜、あるいは電解質を含
む多孔板の両面に触媒層の電極を接合して膜電極接合体
を形成し、その電極面に給電体を配してユニットを形成
し、このユニットをセパレータを間に挟んで多数積層
し、その両端に主電極を配して構成される。
2. Description of the Related Art An electrochemical cell such as an electrolytic device using a solid polymer electrolyte membrane or a perforated plate containing an electrolyte, a fuel cell, or the like is usually provided with a solid polymer electrolyte as disclosed in, for example, JP-A-7-252682. Electrodes of the catalyst layer are bonded to both sides of the electrolyte membrane or the porous plate containing the electrolyte to form a membrane electrode assembly, and a power supply is arranged on the electrode surface to form a unit. A large number of layers are sandwiched therebetween, and a main electrode is arranged at both ends.

【0003】これらの構成要素のうち、膜電極接合体に
密接して配される給電体には、良導電性であることのほ
か、ガスや液体を速やかに透過する機能を有することが
要求される。従来、この給電体の材料には、金属粉末燒
結板、金属繊維燒結板、発泡金属多孔板等の金属多孔板
が用いられてきた。このうち金属粉末燒結板は、導電性
に優れ、表面が緻密で平滑度が高く、膜電極接合体に接
してもこれを損傷する恐れがないという優れた特性を備
えているが、粉末を金型に入れて平板にプレスしたのち
真空燒結して作製する方法が採られるので、表面が湾曲
し、膜電極接合体との密着性が悪いとの難点がある。
[0003] Among these components, a power feeder arranged in close contact with the membrane electrode assembly is required to have not only good conductivity but also a function of rapidly transmitting gas and liquid. You. Conventionally, a porous metal plate such as a metal powder sintered plate, a metal fiber sintered plate, a foamed metal porous plate, or the like has been used as a material of the power supply body. Among them, the metal powder sintered plate has excellent properties such as excellent conductivity, dense surface and high smoothness, and there is no danger of damaging the membrane electrode assembly even when it comes into contact with the membrane electrode assembly. Since a method of manufacturing by pressing in a mold and pressing a flat plate and then vacuum sintering is adopted, there is a problem that the surface is curved and adhesion to the membrane electrode assembly is poor.

【0004】金属繊維燒結板は、図3に例示したごと
く、金属繊維、例えばチタン繊維1Aを積層、圧縮、成
形し、燒結して作製されたものである。この金属繊維燒
結板は、直径 20 〜140 μmの太くて堅いチタン繊維を
用いて作製されているので、作製された金属繊維燒結板
の表面には鋭角の起伏が間隔を置いて存在する。このた
め、厚さが数十μmの薄くて柔らかい膜電極接合体にこ
の金属繊維燒結板を圧接させて用いると、切断に至る程
度の過大な圧力を受けたり、チタン繊維の角部による損
傷を受けて、膜電極接合体の寿命が低下することとな
る。
As shown in FIG. 3, a metal fiber sintered plate is formed by laminating, compressing, molding and sintering metal fibers, for example, titanium fibers 1A. Since the sintered metal fiber plate is manufactured using thick and hard titanium fibers having a diameter of 20 to 140 μm, sharp undulations are present at intervals on the surface of the manufactured sintered metal fiber plate. For this reason, if this metal fiber sintered plate is pressed against a thin and soft membrane electrode assembly having a thickness of several tens of μm and used, it may receive excessive pressure enough to cut or damage due to the corner of titanium fiber. As a result, the life of the membrane electrode assembly is reduced.

【0005】また発泡金属多孔板は、例えば、ウレタン
スポンジのシートの表面に無電解メッキによりニッケル
層を形成してシートを作り、これを焼却炉に入れてウレ
タンスポンジを焼却して作製されており、図4に例示し
たごとく多孔質のニッケル層2Aの形態をとる。この発
泡金属多孔板においても、孔の形成に伴い表面に、例え
ば 300μm程度の大きな表面粗さが存在するので、この
凹凸によって膜電極接合体が損傷を受け、寿命が低下す
ることとなる。
The porous metal foam plate is manufactured by, for example, forming a nickel layer on the surface of a urethane sponge sheet by electroless plating to form a sheet, placing the sheet in an incinerator and burning the urethane sponge. In the form of a porous nickel layer 2A as exemplified in FIG. Also in this porous metal foam plate, a large surface roughness of, for example, about 300 μm is present on the surface due to the formation of the holes, so that the membrane electrode assembly is damaged by the unevenness and the life is shortened.

【0006】これに対して、金属粉末積層金属繊維燒結
板よりなる給電体は、上記の金属繊維燒結板の難点を克
服して表面を平滑化しようとするもので、図5に図示し
たように、チタン繊維1Aを圧縮、成形して基体を製作
し、チタン粉末3を燒結して形成された金属粉末燒結板
を基体の表面に燒結、一体化して構成されている。
On the other hand, a power feeder made of a metal powder laminated metal fiber sintering plate is intended to smooth the surface by overcoming the above-mentioned difficulties of the metal fiber sintering plate, as shown in FIG. A titanium powder 1A is compressed and molded to produce a substrate, and a sintered metal powder plate formed by sintering titanium powder 3 is sintered and integrated with the surface of the substrate.

【0007】[0007]

【発明が解決しようとする課題】上記のように金属繊維
燒結板の上に金属粉末燒結板を燒結、一体化して金属粉
末積層金属繊維燒結板を構成すれば、表面が平滑化され
るので、膜電極接合体に圧接してもこれを損傷すること
はない。しかしながら、この構成においては、金属粉末
燒結板を燒結、一体化する際に、金属粉末層が収縮し、
湾曲するので、平面度の高い形状が得られない。したが
って、この金属粉末積層金属繊維燒結板よりなる給電体
を膜電極接合体に圧接する際に電極触媒層の全面にわた
って良好な密着度を得ることは困難で、給電体としての
良好な電気特性が得られないという問題点がある。
If the metal powder sintering plate is sintered and integrated on the metal fiber sintering plate as described above to form a metal powder laminated metal fiber sintering plate, the surface is smoothed. Pressing against the membrane electrode assembly does not damage it. However, in this configuration, when the metal powder sintered plate is sintered and integrated, the metal powder layer shrinks,
Since it is curved, a shape with high flatness cannot be obtained. Therefore, it is difficult to obtain a good degree of adhesion over the entire surface of the electrode catalyst layer when the power supply made of the metal powder laminated metal fiber sintered plate is pressed against the membrane electrode assembly. There is a problem that it cannot be obtained.

【0008】本発明の目的は、このような従来技術の難
点を解消し、膜電極接合体が長期にわたって安定して使
用できるよう平滑度が高く、かつ膜電極接合体との導電
性が良好な電気化学セル用給電体を提供することにあ
る。
[0008] An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to provide a membrane electrode assembly having a high smoothness so that it can be used stably for a long period of time, and to have good conductivity with the membrane electrode assembly. An object of the present invention is to provide a power supply for an electrochemical cell.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、膜電極接合体の両側の電極面
に圧接して用いられる電気化学セル用給電体を、金属多
孔板、例えば金属繊維燒結板、あるいは発泡金属多孔
板、あるいは金属粉末燒結板のごとき金属多孔板をプレ
ス装置により加圧して押しつぶして構成することとす
る。
In order to achieve the above object, according to the present invention, a feeder for an electrochemical cell which is used by being pressed against electrode surfaces on both sides of a membrane electrode assembly is provided by a metal porous plate, For example, a metal perforated plate such as a metal fiber sintered plate, a foamed metal perforated plate, or a metal powder sintered plate is pressed and crushed by a pressing device.

【0010】このように金属多孔板をプレス装置により
加圧して押しつぶせば、表面の凹凸がならされて平滑化
され、穴あるいは隙間が小さくなるとともに湾曲がなく
なる。したがって、膜電極接合体の損傷が抑制され、長
期にわたり安定して使用できるとともに、膜電極接合体
との導電性が良好に維持される。特に、金属多孔板とし
て金属繊維燒結板を用いれば、表面の凹凸が小さくなる
とともに繊維と繊維との間隔が縮まるので膜電極接合体
の損傷が効果的に抑えられる。また、金属多孔板として
発泡金属多孔板を用いれば、表面が平滑化されるととも
に表面の開口孔の大きさが小さくなるので膜電極接合体
の損傷が抑えられ、膜電極接合体との密着性、したがっ
て導電性が良好に維持される。
[0010] When the metal porous plate is pressed and crushed by the press device in this manner, the surface irregularities are smoothed and smoothed, the holes or gaps are reduced, and the curvature is eliminated. Therefore, damage to the membrane electrode assembly is suppressed, and the membrane electrode assembly can be used stably for a long period of time, and the conductivity with the membrane electrode assembly is favorably maintained. In particular, when a metal fiber sintered plate is used as the metal perforated plate, the unevenness on the surface is reduced and the distance between the fibers is reduced, so that damage to the membrane electrode assembly can be effectively suppressed. When a porous metal foam plate is used as the metal porous plate, the surface is smoothed and the size of the opening on the surface is reduced, so that damage to the membrane electrode assembly is suppressed, and adhesion to the membrane electrode assembly is reduced. Therefore, good conductivity is maintained.

【0011】[0011]

【発明の実施の形態】<実施例1>図1は、本発明の電
気化学セル用給電体の第1の実施例の構成を模式的に示
す層方向断面図である。本実施例の給電体の製作手順は
以下のとおりである。厚さが 50 〜100 μmのチタン繊
維を層状に積層してシート状とし、これを4枚重ね合わ
せてセラミックス板の間に挟み、真空燒結し、加圧ロー
ラにより厚さ1mmとなるように圧縮して、従来の給電
板に用いられているものと同様のチタン繊維燒結板を製
作した。次いで、このチタン繊維燒結板を平板型のプレ
ス板の間に挟み、 4×102 MPa の荷重を加えて圧縮し、
厚さ 0.7 mm の圧縮チタン繊維燒結板を得た。プレス装
置による上記の加圧圧縮によって、チタン繊維燒結板の
表面粗さRmax は 120μmから20μmへと小さくなり、
表面は大幅に平坦化された。また、繊維と繊維との間隔
も数十μmから数μmへと大幅に短くなった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <Embodiment 1> FIG. 1 is a sectional view in the layer direction schematically showing a configuration of a first embodiment of a power supply for an electrochemical cell according to the present invention. The procedure for manufacturing the power supply according to the present embodiment is as follows. Titanium fibers having a thickness of 50 to 100 μm are laminated in layers to form a sheet. Four sheets are stacked, sandwiched between ceramic plates, vacuum sintered, and compressed to a thickness of 1 mm by a pressure roller. A titanium fiber sintered plate similar to that used for a conventional power supply plate was manufactured. Next, this titanium fiber sintered plate was sandwiched between flat press plates and compressed by applying a load of 4 × 10 2 MPa,
A 0.7 mm thick sintered titanium fiber sinter was obtained. The surface roughness Rmax of the sintered titanium fiber plate is reduced from 120 μm to 20 μm by the above-mentioned compression by the pressing device,
The surface was greatly planarized. Also, the distance between the fibers was significantly reduced from several tens of μm to several μm.

【0012】したがって、このようにして作製された圧
縮チタン繊維燒結板を電気化学セル用給電体に用いれ
ば、膜電極接合体を損傷することがなく、かつ膜電極接
合体との良好な密着が確保される。 <実施例2>図2は、本発明の電気化学セル用給電体の
第2の実施例の構成を模式的に示す層方向断面図であ
る。本実施例の給電体の製作手順は以下のとおりであ
る。
Therefore, if the sintered sintered titanium fiber plate thus manufactured is used as a power supply for an electrochemical cell, the membrane electrode assembly is not damaged, and good adhesion to the membrane electrode assembly is achieved. Secured. <Embodiment 2> FIG. 2 is a sectional view in the layer direction schematically showing the configuration of a second embodiment of the power supply for an electrochemical cell according to the present invention. The procedure for manufacturing the power supply according to the present embodiment is as follows.

【0013】まず、ウレタンスポンジのシートの表面に
無電解メッキによりニッケル層を形成してシートを作
り、これを焼却炉に入れてウレタンスポンジを焼却する
ことによって、従来の給電板に用いられているものと同
様の発泡ニッケル多孔板を作製した。作製した発泡ニッ
ケル多孔板の開口孔の大きさは約 0.3 mm 、厚さは 1.6
mm 、表面粗さRmax は 300μmであった。なお、この
発泡ニッケル多孔板の開口孔の大きさと厚さは、ウレタ
ンスポンジの目の大きさと厚さにより調製可能である。
次いで、上記の発泡ニッケル多孔板を平板型のプレス板
の間に挟み、2.7×102 MPa の荷重を加えて圧縮し、厚
さ 0.4 mm の圧縮発泡ニッケル多孔板を得た。得られた
圧縮発泡ニッケル多孔板の表面粗さRmax は 30 μmで
あった。また、目の大きさを調べたが、正面からの観察
では開口は認められなかった。
First, a nickel layer is formed on the surface of a urethane sponge sheet by electroless plating to form a sheet, which is put into an incinerator to incinerate the urethane sponge, which is used for a conventional power supply plate. A foamed nickel porous plate similar to the above was prepared. The size of the opening hole of the prepared nickel foam plate was about 0.3 mm and the thickness was 1.6
mm and surface roughness Rmax were 300 μm. In addition, the size and thickness of the opening hole of this porous nickel foam plate can be adjusted by the size and thickness of the mesh of the urethane sponge.
Next, the above-mentioned porous nickel foam plate was sandwiched between flat press plates and compressed by applying a load of 2.7 × 10 2 MPa to obtain a compressed nickel foam porous plate having a thickness of 0.4 mm. The surface roughness Rmax of the obtained compressed foamed nickel porous plate was 30 μm. In addition, the size of the eyes was examined, but no opening was observed from the front.

【0014】したがって、このように作製された圧縮発
泡ニッケル多孔板を電気化学セル用給電体に用いても、
実施例1と同様に、膜電極接合体を損傷することがな
く、かつ膜電極接合体との良好な密着が確保される。な
お、上記の実施例1では金属繊維燒結板としてチタン繊
維燒結板を、また実施例2では発泡金属多孔板として発
泡ニッケル多孔板を用いているが、本発明はこれらの金
属に限定されるものではなく、各種の展延性のある金属
よりなる多孔板に適用できることは特に例示するまでも
なく明らかである。
Therefore, even if the thus-prepared compressed nickel foam porous plate is used as a power supply for an electrochemical cell,
As in the first embodiment, the membrane electrode assembly is not damaged and good adhesion to the membrane electrode assembly is ensured. In the first embodiment, a titanium fiber sintered plate is used as a metal fiber sintered plate, and in the second embodiment, a foamed nickel porous plate is used as a foamed metal porous plate. However, the present invention is limited to these metals. However, it is apparent that the present invention can be applied to a porous plate made of various kinds of extensible metals without particular examples.

【0015】[0015]

【発明の効果】上述のように、本発明によれば、電気化
学セル用給電体を、金属多孔板、例えば金属繊維燒結
板、あるいは発泡金属多孔板、あるいは金属粉末燒結板
のごとき金属多孔板をプレス装置により加圧して押しつ
ぶして構成することとしたので、平滑度が高く、かつ湾
曲のない平坦な表面を有し、膜電極接合体を損なう恐れ
が無く、かつ膜電極接合体との導電性が良好な電気化学
セル用給電体が得られることとなった。
As described above, according to the present invention, a power feeder for an electrochemical cell is provided with a metal porous plate, for example, a metal fiber sintered plate, a foamed metal porous plate, or a metal powder sintered plate. Is pressed and crushed by a pressing device, so that it has a high smoothness, has a flat surface without curvature, has no risk of damaging the membrane electrode assembly, and has a conductive property with the membrane electrode assembly. Thus, a power feeder for an electrochemical cell having good performance was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学セル用給電体の第1の実施例
の構成を模式的に示す層方向断面図
FIG. 1 is a sectional view in a layer direction schematically showing a configuration of a first embodiment of a power supply for an electrochemical cell of the present invention.

【図2】本発明の電気化学セル用給電体の第2の実施例
の構成を模式的に示す層方向断面図
FIG. 2 is a sectional view in a layer direction schematically showing a configuration of a second embodiment of a power supply for an electrochemical cell according to the present invention.

【図3】従来の金属繊維燒結板よりなる給電体の構成を
模式的に示す層方向断面図
FIG. 3 is a sectional view in a layer direction schematically showing a configuration of a power feeder made of a conventional sintered metal fiber plate.

【図4】従来の発泡金属多孔板よりなる給電体の構成を
模式的に示す層方向断面図
FIG. 4 is a cross-sectional view in a layer direction schematically showing a configuration of a power feeder made of a conventional porous metal foam plate.

【図5】従来の金属粉末積層金属繊維燒結板よりなる給
電体の構成を模式的に示す層方向断面図
FIG. 5 is a sectional view in a layer direction schematically showing a configuration of a power feeder made of a conventional metal powder laminated metal fiber sintered plate.

【符号の説明】[Explanation of symbols]

1,1A チタン繊維 2,2A ニッケル層 3 チタン粉末 1,1A titanium fiber 2,2A nickel layer 3 titanium powder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】膜電極接合体の両側の電極面に圧接して用
いられる電気化学セル用給電体で、プレス装置により加
圧して押しつぶした金属多孔板よりなる電気化学セル用
給電体。
1. A power supply for an electrochemical cell, which is used by being pressed against electrode surfaces on both sides of a membrane electrode assembly, comprising a porous metal plate pressed and crushed by a press device.
【請求項2】前記の金属多孔板が、金属繊維燒結板であ
ることを特徴とする請求項1に記載の電気化学セル用給
電体。
2. The power feeder for an electrochemical cell according to claim 1, wherein said perforated metal plate is a sintered metal fiber plate.
【請求項3】前記の金属多孔板が、発泡金属多孔板であ
ることを特徴とする請求項1に記載の電気化学セル用給
電体。
3. The power feeder for an electrochemical cell according to claim 1, wherein said porous metal plate is a foamed porous metal plate.
【請求項4】前記の金属多孔板が、金属粉末燒結板であ
ることを特徴とする請求項1に記載の電気化学セル用給
電体。
4. The power feeder for an electrochemical cell according to claim 1, wherein said perforated metal plate is a sintered metal powder plate.
JP2000266486A 2000-09-04 2000-09-04 Feeder body for electrochemical cell Withdrawn JP2002069682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000266486A JP2002069682A (en) 2000-09-04 2000-09-04 Feeder body for electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266486A JP2002069682A (en) 2000-09-04 2000-09-04 Feeder body for electrochemical cell

Publications (1)

Publication Number Publication Date
JP2002069682A true JP2002069682A (en) 2002-03-08

Family

ID=18753562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266486A Withdrawn JP2002069682A (en) 2000-09-04 2000-09-04 Feeder body for electrochemical cell

Country Status (1)

Country Link
JP (1) JP2002069682A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186116A (en) * 2002-12-06 2004-07-02 Mitsubishi Materials Corp Separator of solid polymer fuel cell and method for manufacturing the separator
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2008177047A (en) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp Fuel cell
JP2009110973A (en) * 2009-01-13 2009-05-21 Mitsubishi Materials Corp Separator of solid polymer fuel cell
JP2011216509A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor
US20140336779A1 (en) * 2011-09-20 2014-11-13 Shinshu University Compressed fiber structural material and method for producing the same
DE102016226233A1 (en) * 2016-12-27 2018-06-28 Robert Bosch Gmbh flow plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186116A (en) * 2002-12-06 2004-07-02 Mitsubishi Materials Corp Separator of solid polymer fuel cell and method for manufacturing the separator
JP4501342B2 (en) * 2002-12-06 2010-07-14 三菱マテリアル株式会社 Method for producing separator of polymer electrolyte fuel cell
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2008177047A (en) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp Fuel cell
JP2009110973A (en) * 2009-01-13 2009-05-21 Mitsubishi Materials Corp Separator of solid polymer fuel cell
JP2011216509A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor
US20140336779A1 (en) * 2011-09-20 2014-11-13 Shinshu University Compressed fiber structural material and method for producing the same
US9320602B2 (en) * 2011-09-20 2016-04-26 Shinshu University Compressed fiber structural material and method for producing the same
DE102016226233A1 (en) * 2016-12-27 2018-06-28 Robert Bosch Gmbh flow plate

Similar Documents

Publication Publication Date Title
JP6608277B2 (en) Flow structure for use with electrochemical cells
JP4811622B2 (en) Solid oxide fuel cell
KR100849994B1 (en) Pressure Device for manufacturing Solid Oxide Fuel Cell and Manufacturing Method Using the Same
JP2002329509A (en) Single cell for solid electrolyte fuel cell
WO2007086404A1 (en) Fuel cell separator, process for producing the same, and fuel cell including the separator
CA2482488A1 (en) Composite films for electrochemical devices
JP2002069682A (en) Feeder body for electrochemical cell
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
JPS62227097A (en) Titanium electrode
JP3553853B2 (en) Feeder and electrolytic cell
JP2000299117A (en) Separator for fuel cell and solid polymer fuel cell
JP2007107091A (en) Porous titanium having small contact resistance and method for producing the same
JP2004349198A (en) Gas diffusion layer member for fuel cell of solid polymer type, and its manufacturing method
JP2004068112A (en) Electroconductive porous plate
JP2000082475A (en) Separator for expansive graphite fuel cell and its manufacture
JP2000260441A (en) Polymer electrolyte fuel cell
JPH056763A (en) Manufacture of spongy metal porous body for electrode plate
US7811717B2 (en) Electrically conductive member for solid oxide fuel-stack
JPH11302891A (en) Power feeding body for water electrolytic cell
JP2005011624A (en) Cell member for solid polymer fuel battery and manufacturing method of the same
JP2002069681A (en) Feeder body for electrochemical cell
JPH0418964U (en)
TW548870B (en) Method of manufacturing separator for solid polymer electrolyte fuel cell
JP4389532B2 (en) Cell member of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP3967118B2 (en) Method for producing metal separator for fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050112