JP2011216509A - Electrode for capacitor and capacitor - Google Patents

Electrode for capacitor and capacitor Download PDF

Info

Publication number
JP2011216509A
JP2011216509A JP2010080218A JP2010080218A JP2011216509A JP 2011216509 A JP2011216509 A JP 2011216509A JP 2010080218 A JP2010080218 A JP 2010080218A JP 2010080218 A JP2010080218 A JP 2010080218A JP 2011216509 A JP2011216509 A JP 2011216509A
Authority
JP
Japan
Prior art keywords
electrode
activated carbon
thickness
paste
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010080218A
Other languages
Japanese (ja)
Inventor
Kazuki Okuno
一樹 奥野
Masahiro Kato
真博 加藤
Tomoyuki Awazu
知之 粟津
Tetsuo Sakai
哲男 境
Nobuhiko Takeichi
信彦 竹市
Kentaro Kuratani
健太郎 倉谷
Yasuko Sumitomo
泰子 住友
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010080218A priority Critical patent/JP2011216509A/en
Publication of JP2011216509A publication Critical patent/JP2011216509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a capacitor, for which the dispersion of the thickness of the electrode is small and the filling density of an active material is high.SOLUTION: The electrode for the capacitor uses a metal porous body as a collector. The thickness of the metal porous body having a communication vent hole and including, as a main component, iron or nickel whose metal weight is ≥100 g/mand ≤450 g/mis adjusted to be ≥0.2 mm and ≤0.5 mm, to attain the collector. Paste, for which the amount of water is ≥75.0 mass% and ≤85.0 mass% and activated carbon is a body, is filled in the collector, and it is compressed in the thickness direction after being dried.

Description

本発明はキャパシタ用電極、及びこれを用いたキャパシタに関する。   The present invention relates to a capacitor electrode and a capacitor using the same.

電気二重層キャパシタは、各種キャパシタの中でも容量が大きいため、最近注目されている。例えば、キャパシタは電気機器のメモリーバックアップ用として幅広く使われており、近年この用途にも電気二重層キャパシタの利用が促進されている。更に、ハイブリッド車、燃料自動車等の自動車用にも利用が期待されている。   Electric double layer capacitors have recently attracted attention because of their large capacitance among various capacitors. For example, capacitors are widely used for memory backup of electrical equipment, and in recent years, the use of electric double layer capacitors has been promoted for this purpose as well. Further, it is expected to be used for vehicles such as hybrid vehicles and fuel vehicles.

電気二重層キャパシタには、ボタン型、円筒型、角型といった種類があり、各種キャパシタが知られている。ボタン型は、例えば、活性炭電極層を集電体上に設けた分極性電極を一対として、その電極間にセパレーターを配置して電気二重層キャパシタ素子を構成し、電解質とともに金属ケース内に収納し、封口板と両者を絶縁するガスケットで密封することにより製造される。円筒型は、この一対の分極性電極とセパレーターを重ね、捲回して電気二重層キャパシタ素子を構成し、この素子に電解液を含覆させてアルミニウムケース中に収納し、封口材を用いて密封することにより製造される。角型も、基本的構造はボタン型や円筒型と同様である。   There are various types of electric double layer capacitors such as a button type, a cylindrical type, and a square type, and various types of capacitors are known. The button type is, for example, a pair of polarizable electrodes with an activated carbon electrode layer provided on a current collector, and a separator is arranged between the electrodes to form an electric double layer capacitor element, which is stored in a metal case together with an electrolyte. It is manufactured by sealing with a sealing plate and a gasket that insulates both. For the cylindrical type, this pair of polarizable electrodes and separator are overlapped and wound to form an electric double layer capacitor element. The element is covered with an electrolytic solution and stored in an aluminum case, and sealed with a sealing material. It is manufactured by doing. The basic structure of the square type is the same as that of the button type or cylindrical type.

上記メモリーバックアップ用、自動車用等の用途に用いられる電気二重層キャパシタは、より一層の高容量化等が求められている。つまり、単位体積当たりの容量の高容量化と内部抵抗の低減が求められている。このため、電極を構成する集電体には種々のものが提案されている。   The electric double layer capacitor used for the above-mentioned applications such as memory backup and automobile is required to have a higher capacity. That is, it is required to increase the capacity per unit volume and reduce the internal resistance. For this reason, various types of current collectors constituting the electrodes have been proposed.

例えば、金属集電体として、アルミニウム、ステンレス等を用いたもの、ステンレス繊維のマットをステンレス箔に電気溶接したもの、タンタル、アルミニウム及びチタニウムの少なくとも1種の金属からなる多孔体を使用したもの等が知られている(特許文献1〜3)。
上記のような活性炭ペーストを集電体の内部に充填できない構造の場合、活性炭ペーストの剥離を生じさせないためにバインダーを相当量加える必要がある。しかしながら、バインダーを少量しか加えない場合には電極から活性炭が剥離する危険性が高いという問題がある一方で、バインダーを多量加えた場合には、イオンの移動を阻害してしまうため、キャパシタの内部抵抗が高くなってしまうという問題がある。
For example, a metal current collector using aluminum, stainless steel, etc., a stainless steel fiber mat electrically welded to a stainless steel foil, or a porous body made of at least one metal selected from tantalum, aluminum and titanium Is known (patent documents 1 to 3).
In the case of a structure in which the activated carbon paste as described above cannot be filled in the current collector, it is necessary to add a considerable amount of binder in order to prevent the activated carbon paste from peeling off. However, when only a small amount of binder is added, there is a problem that the activated carbon peels off from the electrode. On the other hand, when a large amount of binder is added, the movement of ions is hindered. There is a problem that the resistance becomes high.

また、集電体を金属箔に代えて多孔体(三次元構造)にしたりすることも試みられている。例えば、発泡状ニッケルに電極材を塗着して電極を作製するものが知られている(特許文献4)。当該電極には、集電体としてアルミ箔の代わりにセルメット(登録商標)を使用し、その断面は2層構造をしている。また、発泡金属集電体を活性炭ペーストに浸漬し、乾燥後に圧延して電極を得るものが知られている(特許文献5)。当該電極は、活性炭ペースト充填時の厚さは1.0mmであり、その後に圧延調整され、電極厚さを0.5mmとしている。
しかし、上記のように活性炭ペーストを集電体の内部に充填する場合でも、電極の厚さのばらつきが大きかったり、充填密度が小さかったりするという問題がある。
It has also been attempted to make the current collector a porous body (three-dimensional structure) instead of a metal foil. For example, an electrode is prepared by applying an electrode material to foamed nickel (Patent Document 4). For this electrode, Celmet (registered trademark) is used as a current collector instead of aluminum foil, and the cross section has a two-layer structure. In addition, it is known that a foam metal current collector is immersed in an activated carbon paste, dried and rolled to obtain an electrode (Patent Document 5). The electrode has a thickness of 1.0 mm when the activated carbon paste is filled, and is then rolled and adjusted to have an electrode thickness of 0.5 mm.
However, even when the activated carbon paste is filled in the current collector as described above, there is a problem that the variation in the thickness of the electrode is large or the filling density is small.

特開平11−274012号公報Japanese Patent Laid-Open No. 11-274012 特開平09−232190号公報JP 09-232190 A 特開平11−150042号公報Japanese Patent Laid-Open No. 11-150042 特許第3252868号公報Japanese Patent No. 3252868 特公昭62−37807号公報Japanese Examined Patent Publication No. 62-37807

本発明は、上記問題点に鑑みて、電極の厚さのばらつきが小さく、活物質の充填密度の大きなキャパシタ用電極を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a capacitor electrode having a small variation in electrode thickness and a high active material filling density.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、活物質(電極材料)として活性炭を主体とするペーストを集電体の内部に充填する場合において、集電体の金属目付量及び初期の厚さと、活性炭ペーストの水分量を適切な範囲に調整しないと、充填ムラができることを見出した。すなわち、集電体の金属目付量及び厚さと、電極材料ペーストの水分量の両方を規定することで、高密度の電極を作製できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when a paste mainly composed of activated carbon as an active material (electrode material) is filled in the current collector, the metal basis weight of the current collector It was also found that if the initial thickness and the moisture content of the activated carbon paste are not adjusted to an appropriate range, filling unevenness can occur. That is, the inventors have found that a high-density electrode can be produced by defining both the metal weight and thickness of the current collector and the moisture content of the electrode material paste, and the present invention has been completed.

本発明の構成は以下の通りである。
(1)金属多孔体を集電体として用いるキャパシタ用の電極であって、金属目付量が100g/m2以上450g/m2以下である、鉄またはニッケルを主成分とする連通気孔を有する金属多孔体の厚さを0.2mm以上0.5mm以下に調節して集電体とし、水の量が75.0質量%以上85.0質量%以下の、活性炭を主体とするペーストを前記集電体に充填し、乾燥後に厚さ方向に圧縮して得られることを特徴とするキャパシタ用電極。
(2)前記活性炭を主体とするペーストが、増粘剤及びバインダーを含むことを特徴とする上記(1)に記載のキャパシタ用電極。
(3)前記鉄またはニッケルを主成分とする多孔体が、鉄、あるいはニッケル、もしくは鉄またはニッケルとFe,Ni,Cr,Al,Tiのうち1種類以上の金属との合金あるいは固溶体であり、添加されている金属が40質量%以下であることを特徴とする上記(1)又は(2)に記載のキャパシタ用電極。
(4)上記(1)〜(3)のいずれかに記載のキャパシタ用電極を使用したことを特徴とするキャパシタ。
The configuration of the present invention is as follows.
(1) An electrode for a capacitor using a metal porous body as a current collector, having a metal basis weight of 100 g / m 2 or more and 450 g / m 2 or less and having a continuous vent mainly composed of iron or nickel Adjusting the thickness of the porous body to 0.2 mm or more and 0.5 mm or less to obtain a current collector, the paste containing mainly activated carbon having a water amount of 75.0 mass% or more and 85.0 mass% or less is used as the collector. An electrode for a capacitor obtained by filling an electric body and compressing in a thickness direction after drying.
(2) The capacitor electrode as described in (1) above, wherein the paste mainly composed of activated carbon contains a thickener and a binder.
(3) The porous body mainly composed of iron or nickel is iron, nickel, or an alloy or solid solution of iron or nickel and one or more kinds of metals among Fe, Ni, Cr, Al, and Ti. The capacitor electrode according to (1) or (2) above, wherein the added metal is 40% by mass or less.
(4) A capacitor using the capacitor electrode according to any one of (1) to (3) above.

本発明によれば、金属目付量を調整した金属多孔体の厚さと、ペーストの水分量を規定することで、高密度の電極を得ることができる。
金属多孔体の厚さが薄すぎると多孔度(気孔率)が下がり、活性炭を充填できるスペースが減って電極の容量が小さくなる。また、金属多孔体の厚さが厚すぎると、充填したペーストに分布ができ、後の圧縮工程で厚さばらつきや圧縮率のばらつきの原因となる。ペーストの水分量が少なすぎる場合、ペーストにならなかったり、ペースト粘度が高すぎて充填できなかったりするため、一定以上の水分が必要となる。また、充填できる程度の粘度であっても、水分量が少ない場合電極圧延後に活性炭が電極表面に遊離してきて剥離の原因となる。一方、ペーストの水分量が多い場合は、活性炭の充填量が減って電極の容量が小さくなったり、充填したペーストに分布ができ、後の圧縮工程で厚さばらつきや圧縮率のばらつきの原因となったりする。
本発明によれば上記の課題を解決することができる。
According to the present invention, a high-density electrode can be obtained by defining the thickness of the porous metal body with the adjusted metal basis weight and the moisture content of the paste.
If the thickness of the metal porous body is too thin, the porosity (porosity) decreases, the space in which the activated carbon can be filled decreases, and the capacity of the electrode decreases. On the other hand, if the thickness of the metal porous body is too thick, it can be distributed in the filled paste, which causes variations in thickness and compression rate in the subsequent compression step. When the moisture content of the paste is too small, the paste does not become a paste, or the paste viscosity is too high to be filled, so a certain amount of moisture is required. Moreover, even if the viscosity is such that it can be filled, if the amount of water is small, activated carbon is liberated on the electrode surface after electrode rolling, causing peeling. On the other hand, if the moisture content of the paste is large, the filling amount of the activated carbon decreases and the capacity of the electrode is reduced, or the distribution of the filled paste can occur, which may cause variations in thickness and compression rate in the subsequent compression process. It becomes.
According to the present invention, the above-described problems can be solved.

本発明に係るキャパシタ用電極は、金属目付量が100g/m2以上450g/m2以下である鉄またはニッケルを主成分とする連通気孔を有する金属多孔体の厚さを0.2mm以上0.5mm以下に調節して集電体とし、水の量が75.0質量%以上85.0質量%以下の活性炭を主体とするペーストを前記集電体に充填し、乾燥後に厚さ方向に圧縮して得られることを特徴とする。このように、集電体の厚さと活性炭を主体とするペーストの水分量の両方を規定することにより、高密度の電極を作製することが可能となる。
以下に、本発明に係るキャパシタ用電極、及びキャパシタを構成部材ごとに説明する
In the capacitor electrode according to the present invention, the thickness of the metal porous body having a continuous air hole mainly composed of iron or nickel having a metal basis weight of 100 g / m 2 or more and 450 g / m 2 or less is 0.2 mm or more and 0.0. The current collector is adjusted to 5 mm or less, and the current collector is filled with a paste mainly composed of activated carbon whose amount of water is 75.0% by mass or more and 85.0% by mass or less, and is compressed in the thickness direction after drying. It is characterized by being obtained. Thus, by defining both the thickness of the current collector and the moisture content of the paste mainly composed of activated carbon, a high-density electrode can be produced.
Hereinafter, the capacitor electrode and the capacitor according to the present invention will be described for each component.

(集電体)
発泡ウレタンや不織布などの基材に金属を被覆後、樹脂を焼失してから還元性雰囲気で熱処理することにより、金属多孔体を得ることができる。金属被覆は、基材にスパッタや化学めっきを施したり、導電性塗料を塗って乾燥したりすることにより導電性を持たせた後、電気めっきによって所定の金属量まで金属を被覆することが可能である。集電体に耐食性を持たせる場合には、粉末パック法やCVD法にて合金化処理を行うことで、耐食性の高い金属多孔体を得ることができる。
(Current collector)
A porous metal body can be obtained by coating a base material such as urethane foam or nonwoven fabric with a metal, and then heat-treating the resin in a reducing atmosphere after burning out the resin. Metal coating can be coated to a predetermined amount of metal by electroplating after imparting conductivity by applying sputtering or chemical plating to the base material, or applying conductive paint and drying. It is. In the case where the current collector is provided with corrosion resistance, a metal porous body having high corrosion resistance can be obtained by alloying by a powder pack method or a CVD method.

構造の例として、発泡構造や不織布構造が挙げられるが、集電性や活物質保持能力に優れる発泡構造が好ましい。発泡構造の目が細かいと活物質の充填性が悪くなり、逆に目が粗いと活物質保持能力が低下するため、1インチあたりのセル数が40セル以上100セル以下程度の発泡構造が好ましい。   Examples of the structure include a foamed structure and a nonwoven fabric structure, but a foamed structure that is excellent in current collection and active material holding ability is preferable. If the foam structure is fine, the filling capacity of the active material is deteriorated. Conversely, if the foam structure is coarse, the active material holding ability is lowered. Therefore, a foam structure in which the number of cells per inch is about 40 to 100 cells is preferable. .

上記金属多孔体の厚さは、活性炭を主体とするペーストを充填する前に予め0.2mm以上0.5mm以下に調節しておく必要がある。集電体の厚さが0.2mmよりも薄いと、活物質を充填可能な空間が少なくなってしまい好ましくない。逆に0.5mmを超えると、ペーストを充填してプレスした後に、電極の厚さにばらつきが生じてしまい好ましくない。   It is necessary to adjust the thickness of the metal porous body to 0.2 mm or more and 0.5 mm or less in advance before filling with a paste mainly composed of activated carbon. When the thickness of the current collector is thinner than 0.2 mm, the space in which the active material can be filled decreases, which is not preferable. On the other hand, if the thickness exceeds 0.5 mm, the thickness of the electrode varies after the paste is filled and pressed, which is not preferable.

また、金属の目付量は電気抵抗と基材の強度に大きく関係する。前記金属多孔体の金属目付量が少なすぎると集電性能・基材強度ともに著しく低下し、電気抵抗が大きくなったり、形状を保持できなかったりと実用に耐えないため、100g/m2以上は必要である。しかし、金属を多くしすぎると基材の多孔度が下がってキャパシタの容量が低下するため、450g/m2以下が好ましい。金属目付量は、150g/m2以上420g/m2以下がより好ましく、200g/m2以上350g/m2以下が更に好ましい。 Further, the metal basis weight is greatly related to the electrical resistance and the strength of the base material. Wherein the metal the porous metal basis weight is too small to significantly reduced both the current collecting performance and substrate strength, or the electric resistance is increased, since no practical use and may not be holding the shape, 100 g / m 2 or more is necessary. However, if the amount of metal is excessively increased, the porosity of the substrate is lowered and the capacity of the capacitor is reduced. Therefore, 450 g / m 2 or less is preferable. The metal basis weight is more preferably 150 g / m 2 or more and 420 g / m 2 or less, and further preferably 200 g / m 2 or more and 350 g / m 2 or less.

前記鉄又はニッケルを主成分とする金属多孔体は、鉄、あるいはニッケル、もしくは鉄又はニッケルとFe,Ni,Cr,Al,Tiのうち1種類以上の金属との合金あるいは固溶体であり、添加されている金属が40質量%以下であることが好ましい。
前記金属多孔体を負極に使用する場合には、鉄又はニッケルで問題ないが、正極はリチウム電位に対して4.5V程度まで上昇して酸化雰囲気にさらされるため、耐食性を持たせる必要がある。鉄やニッケル単体では、かかる耐食性が弱いため、上記に挙げた金属を添加する必要がある。
The porous metal body mainly composed of iron or nickel is iron, nickel, or an alloy or solid solution of iron or nickel and one or more kinds of metals among Fe, Ni, Cr, Al, and Ti. It is preferable that the metal which is 40 mass% or less.
When the metal porous body is used for the negative electrode, there is no problem with iron or nickel, but the positive electrode rises to about 4.5 V with respect to the lithium potential and is exposed to an oxidizing atmosphere, so it needs to have corrosion resistance. . Since iron or nickel alone is weak in corrosion resistance, it is necessary to add the metals listed above.

(活性炭を主体としたペースト)
活性炭粉末に、導電助剤、増粘剤、バインダー、溶媒として水を添加し、混合機で攪拌することにより、活性炭ペーストを調製することができる。本発明において、活性炭ペーストに含まれる水の量は、75.0質量%以上85.0質量%以下であることを特徴とする。水分量が多い場合には、活性炭を主体としたペーストを前記金属多孔体に充填してプレスした後に、電極の厚さにばらつきが生じてしまい好ましくない。また、水分量が少ないと、プレス後に活性炭の剥離が生じてしまい好ましくない。
(Paste mainly composed of activated carbon)
Activated carbon paste can be prepared by adding water as a conductive additive, a thickener, a binder, and a solvent to the activated carbon powder, and stirring with a mixer. In the present invention, the amount of water contained in the activated carbon paste is 75.0% by mass or more and 85.0% by mass or less. When the amount of water is large, the thickness of the electrode varies after the metal porous body is filled with a paste mainly made of activated carbon and pressed, which is not preferable. Moreover, when there is little moisture content, peeling of activated carbon will arise after a press and it is unpreferable.

活性炭の賦活方法や原料は特に問わないが、表面積は大きい方がよく、窒素吸着のBET法で測定した比表面積が2000m2/g以上あることが好ましい。また、活性炭の粒径は小さい方がキャパシタの内部抵抗が小さくなるため、粒径は小さい方がよい。平均粒径は10μm以下が好ましく、さらに好ましくは5μm以下である。さらに、キャパシタの容量を大きくするために、活性炭ペースト中の活性炭の量は多いほうがよく、乾燥後(溶媒除去後)の組成比で活性炭が75.0wt%以上あることが好ましい。 The activated carbon activation method and the raw material are not particularly limited, but the larger surface area is better, and the specific surface area measured by the nitrogen adsorption BET method is preferably 2000 m 2 / g or more. In addition, the smaller the particle size of the activated carbon, the smaller the internal resistance of the capacitor. Therefore, the smaller the particle size, the better. The average particle size is preferably 10 μm or less, more preferably 5 μm or less. Further, in order to increase the capacity of the capacitor, the amount of activated carbon in the activated carbon paste is preferably large, and the activated carbon is preferably 75.0 wt% or more in terms of the composition ratio after drying (after solvent removal).

導電助剤としてはケッチェンブラックやアセチレンブラック、炭素繊維やこれらの複合材料が使用できる。導電助剤が少ないとキャパシタの内部抵抗が高くなってしまうので必要であるが、添加量が多すぎると活性炭の充填量が下がって容量が小さくなるため、添加量は乾燥後の組成比で2wt%以上15wt%以下が好ましい。   As the conductive aid, ketjen black, acetylene black, carbon fiber, or a composite material thereof can be used. This is necessary because the internal resistance of the capacitor increases if the conductive additive is small. However, if the added amount is too large, the charged amount of activated carbon decreases and the capacity decreases. Therefore, the added amount is 2 wt% in terms of the composition ratio after drying. % To 15 wt% is preferable.

増粘剤としては、カルボキシメチルセルロース、キサンタンガムなどが使用できる。使用量は乾燥後で2wt%以下にすることが好ましい。
バインダーとしてはポリテトラフルオロエチレン、ポリビニルアルコール、スチレンブタジエンゴムなどが使用できる。バインダーは内部抵抗を増大させる要因にもなるため、できる限り少ないほうが良いが、少なすぎると活性炭が集電体から剥離するため、使用量は2wt%以上15wt%以下が好ましい。
As the thickener, carboxymethylcellulose, xanthan gum and the like can be used. The amount used is preferably 2 wt% or less after drying.
As the binder, polytetrafluoroethylene, polyvinyl alcohol, styrene butadiene rubber or the like can be used. Since the binder also causes an increase in internal resistance, the amount is preferably as small as possible. However, if the amount is too small, the activated carbon peels from the current collector, so the amount used is preferably 2 wt% or more and 15 wt% or less.

(電極の作製)
得られた集電体をプレス機により最適な厚さに調厚する。プレス機は平板プレスやローラープレスが用いられる。平板プレスは集電体の伸びを抑制するためには好ましいが量産に不向きなため、連続処理可能なローラープレスを用いることもできる。
(Production of electrodes)
The obtained current collector is adjusted to an optimum thickness by a press machine. The press machine is a flat plate press or a roller press. A flat plate press is preferable for suppressing the elongation of the current collector, but is not suitable for mass production, and a roller press capable of continuous processing can also be used.

活性炭ペーストを上記調厚された集電体に充填する。集電体はあらかじめ電極の大きさに切断しておいてもよいし、あとから電極を打ち抜くために大きめのサイズで充填してもよい。集電体の片側からペーストを吹き付けたり、ペーストに集電体を浸漬したり、あるいは印刷機やロールコーターを用いることでも充填できる。   The activated charcoal paste is filled into the adjusted current collector. The current collector may be cut in advance to the size of the electrode, or may be filled in a larger size in order to punch out the electrode later. It can also be filled by spraying a paste from one side of the current collector, immersing the current collector in the paste, or using a printing machine or roll coater.

次に、乾燥機で溶媒を除去する。乾燥温度は80℃以上が好ましいが、温度が高すぎると集電体の酸化や増粘剤、バインダーの分解が起きる可能性があるため、250℃以下が好ましい。   Next, the solvent is removed with a dryer. The drying temperature is preferably 80 ° C. or higher. However, if the temperature is too high, the current collector may be oxidized or the thickener or binder may be decomposed.

乾燥後に、プレス機により厚さ方向に圧縮して電極を得る。プレス機は平板プレスやローラープレスが用いられる。平板プレスは集電体の伸びを抑制するためには好ましいが量産に不向きなため、連続処理可能なローラープレスを用いることもできる。ローラープレスを用いる場合は表面にエンボス加工をするなど、伸びを抑制する工夫をしてもよい。   After drying, the electrode is obtained by compressing in the thickness direction with a press. The press machine is a flat plate press or a roller press. A flat plate press is preferable for suppressing the elongation of the current collector, but is not suitable for mass production, and a roller press capable of continuous processing can also be used. When using a roller press, you may devise control which suppresses elongation, such as embossing on the surface.

(キャパシタの作製)
得られた電極に集電のためのリードを溶接する。溶接するスペースを確保するために、溶接点の活性炭を除去してもよいし、あらかじめ溶接用のスペースを圧縮したりマスキングしておいたりして充填しないようにしておいてもよい。リードの材質はアルミニウムが好ましい。
(Capacitor production)
A lead for current collection is welded to the obtained electrode. In order to secure a space for welding, the activated carbon at the welding point may be removed, or the space for welding may be compressed or masked in advance so as not to be filled. The lead material is preferably aluminum.

非水系の電解液を使用する場合、ここより以下の作業は、ドライ雰囲気で行うことが必要である。ドライルームやドライボックスを使用する場合、露点は−65℃以下であることが好ましい。アルゴンなどの不活性ガスで満たしたグローブボックスを用いることもできる。   When a non-aqueous electrolyte is used, the following operations from here must be performed in a dry atmosphere. When using a dry room or a dry box, the dew point is preferably −65 ° C. or lower. A glove box filled with an inert gas such as argon can also be used.

活性炭は水分を吸着しやすいため、電極をさらに乾燥する。10kPa以下の減圧環境下で、180℃以上250℃以下、8時間以上乾燥することが好ましい。また、セパレーターや外装に用いる缶やアルミラミネートなども、別途乾燥しておくことが好ましい。   Since the activated carbon easily adsorbs moisture, the electrode is further dried. It is preferable to dry at 180 ° C. or higher and 250 ° C. or lower for 8 hours or longer under a reduced pressure environment of 10 kPa or lower. Moreover, it is preferable to dry separately also the can used for a separator and an exterior, an aluminum laminate, etc.

セパレーターは、セルロース製不織布や樹脂製の微多孔膜が使用できる。厚さが大きいとキャパシタの内部抵抗が大きくなるため、薄い方がよい。薄すぎると短絡の危険性が増すため、30μm以上100μm以下が好ましい。また、多孔度が小さい場合も内部抵抗が大きくなるため、40%以上の多孔度があることが好ましい。
外装はアルミやステンレスの缶や、アルミラミネートが使用できる。外装にアルミラミネートを使用する場合、集電リードとラミネートの接着部分での短絡や漏液を防ぐために、集電リードは絶縁・封止用のシールがついていることが好ましい。
For the separator, a cellulose nonwoven fabric or a resin microporous membrane can be used. If the thickness is large, the internal resistance of the capacitor increases. If it is too thin, the risk of short-circuiting increases, so 30 μm or more and 100 μm or less is preferable. Moreover, since internal resistance becomes large also when porosity is small, it is preferable that there exists a porosity of 40% or more.
Aluminum and stainless steel cans and aluminum laminate can be used for the exterior. When an aluminum laminate is used for the exterior, it is preferable that the current collecting lead has an insulating / sealing seal in order to prevent a short circuit or leakage at the bonding portion between the current collecting lead and the laminate.

電極とセパレーターを重ねて電極群を得る。電極とセパレーターを交互に重ねる方式や、細長い電極とセパレーターを重ねて捲回する方式がある。使用する外装に適した方式を取ればよい。   An electrode group is obtained by stacking an electrode and a separator. There are a method in which electrodes and separators are alternately stacked, and a method in which elongated electrodes and separators are stacked and wound. What is necessary is just to take a method suitable for the exterior to be used.

電極群を外装内に入れ、電解液を注入する。その後10kPa以下の減圧環境下で封止する。
電解液は水系・非水系ともに使用できるが、非水系の方が電圧を高く設定できるため好ましい。水系では電解質として水酸化カリウムなどが使用できる。非水系の電解質はカチオンとアニオンの組み合わせで多数有り、カチオンとしては低級脂肪族4級アンモニウム、低級脂肪族4級ホスホニウム及びイミダゾリニウム等が使用されている。アニオンとしては4フッ化ホウ酸及び6フッ化リン酸等が使用されている。有機電解液の溶媒は極性非プロトン性有機溶媒であり、具体的にはエチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン及びスルホラン等が使用される。この中でも、イオン伝導度の低い組み合わせである、ホウフッ化テトラエチルアンモニウムとプロピレンカーボネートの組み合わせが好ましい。
The electrode group is placed in the exterior and an electrolyte solution is injected. Thereafter, sealing is performed under a reduced pressure environment of 10 kPa or less.
The electrolyte can be used for both aqueous and non-aqueous electrolytes, but the non-aqueous electrolyte is preferred because the voltage can be set higher. In an aqueous system, potassium hydroxide or the like can be used as an electrolyte. Many non-aqueous electrolytes are combinations of cations and anions, and lower aliphatic quaternary ammonium, lower aliphatic quaternary phosphonium, imidazolinium, and the like are used as cations. Tetrafluoroboric acid and hexafluorophosphoric acid are used as anions. The solvent of the organic electrolyte is a polar aprotic organic solvent, and specifically, ethylene carbonate, propylene carbonate, γ-butyrolactone, sulfolane and the like are used. Among these, a combination of tetraethylammonium borofluoride and propylene carbonate, which is a combination having low ionic conductivity, is preferable.

以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these.

[実施例1]
ウレタンシート(市販品、セル数 55セル/inch、厚さ1.4mm、多孔度96%)にスパッタリングでニッケルを10g/m2被覆後、合計の目付け量が200g/m2になるようにスルファミン酸浴でニッケルめっきを行った。その後、大気中800℃でウレタンを焼却除去後に還元性雰囲気(水素)で1000℃に過熱し、ニッケルを還元して発泡状ニッケルを得た。作製した発泡状ニッケルは、セル数 55セル/inch、厚さ1.4mm、多孔度95%となった。得られた集電体をローラープレスにより調厚し、10cm角に切断した。調厚後の厚さを下表に示す。
[Example 1]
Urethane sheet (commercially available, number of cells: 55 cells / inch, thickness 1.4 mm, porosity 96%) after the nickel by sputtering 10 g / m 2 coating, as the basis weight of the total is 200 g / m 2 sulphamic Nickel plating was performed in an acid bath. Thereafter, urethane was incinerated and removed at 800 ° C. in the air, and then heated to 1000 ° C. in a reducing atmosphere (hydrogen) to reduce nickel to obtain foamed nickel. The produced foamed nickel had a cell number of 55 cells / inch, a thickness of 1.4 mm, and a porosity of 95%. The obtained current collector was adjusted with a roller press and cut into 10 cm square. The thickness after thickness adjustment is shown in the table below.

活性炭粉末(比表面積2500m2/g、平均粒径約3μm)2.0gに、導電助剤としてケッチェンブラック0.3g、増粘剤としてカルボキシメチルセルロースの0.5%水溶液を5.0g、バインダーとしてポリテトラフルオロエチレンの60wt%水分散液0.5gを混合し、さらに溶媒として水を添加して混合機で攪拌することにより、活性炭ペーストを調製した。添加した水の条件は下記表1に示す。
乾燥して水を除去した後の組成比は、活性炭粉末77wt%、ケッチェンブラック11.6wt%、カルボキシメチルセルロース1.7wt%、ポリテトラフルオロエチレン9.7wt%となった。
2.0 g of activated carbon powder (specific surface area 2500 m 2 / g, average particle size of about 3 μm), 0.3 g of ketjen black as a conductive aid, 5.0 g of a 0.5% aqueous solution of carboxymethyl cellulose as a thickener, binder As an active carbon paste, 0.5 g of a 60 wt% aqueous dispersion of polytetrafluoroethylene was mixed, water was further added as a solvent, and the mixture was stirred with a mixer to prepare an activated carbon paste. The conditions of the added water are shown in Table 1 below.
The composition ratio after drying and removing water was 77 wt% activated carbon powder, 11.6 wt% ketjen black, 1.7 wt% carboxymethylcellulose, and 9.7 wt% polytetrafluoroethylene.

この活性炭ペーストを上記集電体に充填した。次に、乾燥機で200℃、1時間乾燥させて溶媒を除去した後、直径500ミリのローラープレス機(スリット:100μm)で加圧して電極を得た。得られた電極の厚さや重量から計算した活性炭の充填密度を下記表1に示す。電極の厚さは9点測定した平均値と、最大値と最小値の幅を平均値に対する割合で示す。活性炭の充填密度は、重量から計算した活性炭の充填量(g)を、電極の体積(=面積×平均厚さ)で割って求めた。
また、表1に示すNo.に*がついているものは比較例である。
This activated carbon paste was filled in the current collector. Next, after drying with a dryer at 200 ° C. for 1 hour to remove the solvent, the electrode was obtained by pressing with a roller press machine (slit: 100 μm) having a diameter of 500 mm. The packing density of activated carbon calculated from the thickness and weight of the obtained electrode is shown in Table 1 below. The thickness of the electrode indicates the average value measured at 9 points, and the width between the maximum value and the minimum value as a percentage of the average value. The packing density of activated carbon was obtained by dividing the packing amount (g) of activated carbon calculated from the weight by the volume of the electrode (= area × average thickness).
In addition, No. Those marked with * are comparative examples.

Figure 2011216509
No.の*は比較例を表す
Figure 2011216509
No. * Indicates a comparative example

No.1−4,及び1−7は本発明の条件に沿って作製した電極であり、厚さのばらつきが5%以内になり、充填密度も0.3g/cc以上ある。プレス後の剥離もなく、キャパシタ用電極として良好である。   Nos. 1-4 and 1-7 are electrodes manufactured in accordance with the conditions of the present invention, the thickness variation is within 5%, and the packing density is 0.3 g / cc or more. There is no peeling after pressing, which is favorable as a capacitor electrode.

No.1−4,及び1−7を基準にペーストの水分率を上下させた場合(No.1−3,1−5および1−6,1−8)、水分量を増やした場合は厚さばらつきが大きく増加し、水分量を減らした場合も厚さばらつきの増加とともにプレス後の剥離が発生する傾向にある。ばらつきが増加するのは、活性炭ペーストの充填ムラによるものであると考えられる。水分が多い場合は集電体の活性炭保持性が低下するため、充填後の活性炭ペーストが充填時の集電体の下部に集中する。
また、水分が少ない場合は活性炭ペーストの流動性が不足し、集電体の空間にいきわたらない。これらの現象が起こった電極を圧縮すると、活性炭ペーストのある部分は圧縮されづらく、厚さのばらつきとなる。また、活性炭の剥離は充填量が多い部分で発生する。電極の圧縮により電極内部の空間体積が減少し、活性炭がそこに納まりきらなくなるために起こると考えられる。
When the moisture content of the paste is increased or decreased based on Nos. 1-4 or 1-7 (Nos. 1-3, 1-5 and 1-6, 1-8), the thickness is increased when the moisture content is increased. Even when the thickness variation is greatly increased and the moisture content is reduced, peeling after pressing tends to occur as the thickness variation increases. It is considered that the variation increases due to the filling unevenness of the activated carbon paste. When there is a lot of water, the activated carbon retainability of the current collector is lowered, and the activated carbon paste after filling is concentrated at the lower part of the current collector at the time of filling.
Moreover, when there is little water | moisture content, the fluidity | liquidity of activated carbon paste is insufficient and does not go into the space of an electrical power collector. When the electrode in which these phenomena occur is compressed, a portion of the activated carbon paste is difficult to be compressed, resulting in thickness variations. Further, the activated carbon is peeled off at a portion where the filling amount is large. It is thought that this occurs because the space volume inside the electrode decreases due to the compression of the electrode, and the activated carbon cannot be stored there.

一方、No.1−1,1−2のように集電体の厚さが小さい場合、活性炭の充填密度が低くなってしまう。これは、元の充填可能な空間が少ないためである。また、適正なペースト条件であっても調厚後の厚さが薄い場合(No.1−2)は、圧延後の電極厚さばらつきは比較的小さいものの、活性炭が電極表面に遊離して剥離する現象が起こる。No.1−1のようにペーストの水分量を増やしても剥離は解消せず、充填密度もさらに低下してしまう。   On the other hand, when the thickness of the current collector is small as in No. 1-1 and 1-2, the packing density of the activated carbon is lowered. This is because the original space that can be filled is small. In addition, when the thickness after thickness adjustment is thin even under appropriate paste conditions (No. 1-2), the activated carbon is liberated on the electrode surface and peeled off, although the electrode thickness variation after rolling is relatively small. Occurs. Even if the water content of the paste is increased as in No. 1-1, the peeling is not eliminated and the packing density is further reduced.

また、No.1−9,1−10のように集電体の厚さが大きい場合、適正なペースト条件(No.1−9)では剥離がないものの電極の厚さばらつきが大きい。これは、初期厚さが大きいことにより活物質の充填ムラができているためと考えられる。水分を減らした場合(No.1−10)、さらに厚さばらつきが大きくなり、プレス後に剥離も生じてしまう。   Further, when the current collector has a large thickness such as No. 1-9 and 1-10, although there is no peeling under an appropriate paste condition (No. 1-9), the thickness variation of the electrode is large. This is thought to be due to uneven filling of the active material due to the large initial thickness. When the moisture is reduced (No. 1-10), the thickness variation further increases and peeling occurs after pressing.

[比較例1]
実施例1と同様に発泡状ニッケルを作製するに当たり、電気めっきでのニッケル被覆量を、めっき時間を制御して調整し、目付け90g/m2の発泡状ニッケルを作製した。その他は実施例1と同様の方法で電極を作製しようとしたが厚さ方向の強度が弱く、活性炭ペーストを充填する工程で基材がつぶれてしまい、電極を作製することができなかった。
金属目付け量は100g/m2以上が最低限必要と考えられる。
[Comparative Example 1]
In producing foamed nickel in the same manner as in Example 1, the nickel coating amount in electroplating was adjusted by controlling the plating time, and foamed nickel having a basis weight of 90 g / m 2 was produced. Other than this, an attempt was made to produce an electrode by the same method as in Example 1, but the strength in the thickness direction was weak, and the substrate was crushed in the step of filling the activated carbon paste, making it impossible to produce the electrode.
It is considered that the minimum metal weight is 100 g / m 2 or more.

[比較例2]
実施例1と同様に発泡状ニッケルを作製するに当たり、電気めっきでのニッケル被覆量を、めっき時間を制御して調整し、目付け500g/m2の発泡状ニッケルを作製した。その他は実施例1と同様の方法で電極を作製し、電極の詳細を下記表2に示す。
[Comparative Example 2]
In producing foamed nickel in the same manner as in Example 1, the nickel coating amount in electroplating was adjusted by controlling the plating time, and foamed nickel having a basis weight of 500 g / m 2 was produced. Otherwise, electrodes were prepared in the same manner as in Example 1, and the details of the electrodes are shown in Table 2 below.

Figure 2011216509
No.の*は比較例を表す
Figure 2011216509
No. * Indicates a comparative example

金属目付量が多すぎると、集電体の厚さとペーストの水分量を調節した場合(No.1,3)でも、若干厚さばらつきが大きく、活性炭の充填密度が小さい電極となる。金属目付け量が大きいため、活性炭を充填できるスペースが少ないことと、セルの径が小さくなって充填しづらくなっていることが考えられる。ペーストの水分量を減らして密度を上げることもできるが(No.2,4)、厚さばらつきの増加と剥離が発生する。   If the metal basis weight is too large, even if the thickness of the current collector and the moisture content of the paste are adjusted (No. 1, 3), the thickness variation is slightly large, and the activated carbon has a small packing density. Since the metal areal weight is large, it is conceivable that the space for filling the activated carbon is small and that the cell diameter is small and it is difficult to fill the cell. Although it is possible to increase the density by reducing the amount of water in the paste (No. 2, 4), an increase in thickness variation and peeling occur.

[実施例2]
実施例1と同様の方法で得た発泡状ニッケルに、クロム粉末、アルミナ粉末を混合した浸透材を充填して還元性雰囲気で加熱する粉末パック法にてクロムとアルミニウムを浸透させ、Ni-Cr35wt%-Al3wt%の金属多孔体を得た。最終的な目付け量は323g/m2となった。
実施例1と同様に電極を作製し、得られた電極の条件などを下記表3に示す。
[Example 2]
The foamed nickel obtained by the same method as in Example 1 is infiltrated with chromium and aluminum by a powder pack method in which a penetrant mixed with chromium powder and alumina powder is mixed and heated in a reducing atmosphere, and Ni-Cr35 wt. % -Al 3 wt% metal porous body was obtained. The final basis weight was 323 g / m 2 .
An electrode was prepared in the same manner as in Example 1, and the conditions of the obtained electrode are shown in Table 3 below.

Figure 2011216509
No.の*は比較例を表す
Figure 2011216509
No. * Indicates a comparative example

実施例1の場合と同様に、本発明の条件どおりの集電体厚さ・ペースト水分量で電極を作製した場合、厚さばらつきが小さく、活性炭充填密度の高い電極が得られる。   As in the case of Example 1, when an electrode is produced with the current collector thickness and the paste moisture content according to the conditions of the present invention, an electrode with a small thickness variation and a high activated carbon filling density is obtained.

[実施例3]
ウレタンシート(市販品、セル数 55セル/inch、厚さ1.4mm、多孔度96%)にスパッタでニッケルを10g/m2被覆後、合計の目付け量が200g/m2になるように塩化第一鉄を主成分とする浴で鉄めっきを行った。その後、大気中800℃でウレタンを焼却除去後に還元性雰囲気(水素)で1000℃に過熱し、金属を還元して発泡状鉄ニッケル合金を得た。作製した発泡状鉄ニッケル合金は、セル数 55セル/inch、厚さ1.4mm、多孔度95%となった。得られた集電体をローラープレスにより調厚し、10cm角に切断した。
実施例1と同様に電極を作製し、得られた電極の条件などを下記表4に示す。
[Example 3]
Urethane sheet (commercially available, number of cells: 55 cells / inch, thickness 1.4 mm, porosity 96%) after the nickel by sputtering 10 g / m 2 coating, as the basis weight of the total is 200 g / m 2 chloride Iron plating was performed in a bath mainly composed of ferrous iron. Thereafter, urethane was incinerated and removed at 800 ° C. in the air, and then heated to 1000 ° C. in a reducing atmosphere (hydrogen) to reduce the metal to obtain a foamed iron-nickel alloy. The produced foamed iron-nickel alloy had a cell number of 55 cells / inch, a thickness of 1.4 mm, and a porosity of 95%. The obtained current collector was adjusted with a roller press and cut into 10 cm square.
An electrode was prepared in the same manner as in Example 1, and the conditions of the obtained electrode are shown in Table 4 below.

Figure 2011216509
No.の*は比較例を表す
Figure 2011216509
No. * Indicates a comparative example

実施例1の場合と同様に、本発明の条件どおりの集電体厚さ・ペースト水分量で電極を作製した場合(No.3−4,3−7)、厚さばらつきが小さく、活性炭充填密度の高い電極が得られる。   Similar to the case of Example 1, when the electrode was produced with the current collector thickness / paste moisture amount according to the conditions of the present invention (No. 3-4, 3-7), the thickness variation was small and the activated carbon was filled. A high-density electrode is obtained.

以上により、本発明のキャパシタ用電極は、厚さのばらつきが小さく活性炭充填密度の高い電極の提供が可能となる。   As described above, the capacitor electrode of the present invention can provide an electrode having a small thickness variation and a high activated carbon filling density.

Claims (4)

金属多孔体を集電体として用いるキャパシタ用の電極であって、
金属目付量が100g/m2以上450g/m2以下である、鉄またはニッケルを主成分とする連通気孔を有する金属多孔体の厚さを0.2mm以上0.5mm以下に調節して集電体とし、
水の量が75.0質量%以上85.0質量%以下の、活性炭を主体とするペーストを前記集電体に充填し、
乾燥後に厚さ方向に圧縮して得られることを特徴とするキャパシタ用電極。
An electrode for a capacitor using a porous metal body as a current collector,
Current collection by adjusting the thickness of a porous metal body having a metal basis weight of 100 g / m 2 or more and 450 g / m 2 or less and having continuous air holes mainly composed of iron or nickel to 0.2 mm to 0.5 mm Body and
Filling the current collector with a paste mainly composed of activated carbon having an amount of water of 75.0 mass% or more and 85.0 mass% or less,
A capacitor electrode obtained by compression in the thickness direction after drying.
前記活性炭を主体とするペーストが、増粘剤及びバインダーを含むことを特徴とする請求項1に記載のキャパシタ用電極。   The capacitor electrode according to claim 1, wherein the paste mainly composed of activated carbon contains a thickener and a binder. 前記鉄またはニッケルを主成分とする金属多孔体が、鉄、あるいはニッケル、もしくは鉄またはニッケルとFe,Ni,Cr,Al,Tiのうち1種類以上の金属との合金あるいは固溶体であり、添加されている金属が40質量%以下であることを特徴とする請求項1又は2に記載のキャパシタ用電極。   The metal porous body mainly composed of iron or nickel is iron, nickel, or an alloy or solid solution of iron or nickel and one or more kinds of metals among Fe, Ni, Cr, Al, and Ti, and is added. The capacitor electrode according to claim 1, wherein the amount of the metal is 40% by mass or less. 請求項1〜3のいずれかに記載のキャパシタ用電極を使用したことを特徴とするキャパシタ。   A capacitor using the capacitor electrode according to claim 1.
JP2010080218A 2010-03-31 2010-03-31 Electrode for capacitor and capacitor Pending JP2011216509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080218A JP2011216509A (en) 2010-03-31 2010-03-31 Electrode for capacitor and capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080218A JP2011216509A (en) 2010-03-31 2010-03-31 Electrode for capacitor and capacitor

Publications (1)

Publication Number Publication Date
JP2011216509A true JP2011216509A (en) 2011-10-27

Family

ID=44945986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080218A Pending JP2011216509A (en) 2010-03-31 2010-03-31 Electrode for capacitor and capacitor

Country Status (1)

Country Link
JP (1) JP2011216509A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219197A (en) * 1996-02-09 1997-08-19 Japan Storage Battery Co Ltd Electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the electrode
JP2002069682A (en) * 2000-09-04 2002-03-08 Fuji Electric Corp Res & Dev Ltd Feeder body for electrochemical cell
JP2008147599A (en) * 2006-12-13 2008-06-26 Nisshinbo Ind Inc Electrical double-layer capacitor
JP2009200065A (en) * 2008-01-23 2009-09-03 Sumitomo Electric Ind Ltd Foamed nickel-chromium collector for capacitor, electrode using the same, and capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219197A (en) * 1996-02-09 1997-08-19 Japan Storage Battery Co Ltd Electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the electrode
JP2002069682A (en) * 2000-09-04 2002-03-08 Fuji Electric Corp Res & Dev Ltd Feeder body for electrochemical cell
JP2008147599A (en) * 2006-12-13 2008-06-26 Nisshinbo Ind Inc Electrical double-layer capacitor
JP2009200065A (en) * 2008-01-23 2009-09-03 Sumitomo Electric Ind Ltd Foamed nickel-chromium collector for capacitor, electrode using the same, and capacitor

Similar Documents

Publication Publication Date Title
WO2012111613A1 (en) Electrode for use in electrochemical device and manufacturing method therefor
US8902566B2 (en) Capacitor, and method for producing the same
US20150155107A1 (en) Lithium ion capacitor
JP5961117B2 (en) Three-dimensional network aluminum porous body, electrode using the aluminum porous body, non-aqueous electrolyte battery using the electrode, capacitor using non-aqueous electrolyte, and lithium ion capacitor
WO2013054710A1 (en) Lithium ion capacitor, power storage device, power storage system
WO2012111608A1 (en) Collector using three-dimensional porous aluminum mesh, electrode using said collector, nonaqueous-electrolyte battery using said electrode, capacitor and lithium-ion capacitor using nonaqueous liquid electrolyte, and electrode manufacturing method
WO2012111667A1 (en) Three-dimensional porous aluminum mesh, electrode using same, nonaqueous-electrolyte battery using said electrode, and capacitor and lithium-ion capacitor using nonaqueous liquid electrolyte
WO2012111659A1 (en) Three-dimensional porous aluminum mesh for use in collector, and electrode, nonaqueous-electrolyte battery, capacitor, and lithium-ion capacitor using said porous aluminum
JP2013038170A (en) Sodium ion capacitor
JP2008192758A (en) Electrode for electric double-layer capacitor
WO2013061789A1 (en) Capacitor
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2013143422A (en) Lithium ion capacitor
WO2015114984A1 (en) Conductive resin molding, structure, porous aluminum body, process for manufacturing porous aluminum body, collector, electrode, nonaqueous electric double-layer capacitor and lithium ion capacitor
JP2012253072A (en) Lithium ion capacitor
JP2011009608A (en) Nickel aluminum porous collector and electrode using the same, and capacitor
JP2014187383A (en) Capacitor arranged by use of metal porous body
JP2011216510A (en) Electrode for capacitor and capacitor
JP2012004198A (en) Electrode for capacitor, and capacitor
KR20130085551A (en) Manufacturing method of slurry for super capacitor providing enhanced capacitance characteristic and super capacitor manufactured using the same and manufacturing method of super capacitor thereof
JP2011216509A (en) Electrode for capacitor and capacitor
JP5565112B2 (en) Capacitor using porous metal
JP2013165161A (en) Capacitor
JP5565113B2 (en) Electrode using porous aluminum as current collector, and capacitor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717