JP2008192758A - Electrode for electric double-layer capacitor - Google Patents

Electrode for electric double-layer capacitor Download PDF

Info

Publication number
JP2008192758A
JP2008192758A JP2007024530A JP2007024530A JP2008192758A JP 2008192758 A JP2008192758 A JP 2008192758A JP 2007024530 A JP2007024530 A JP 2007024530A JP 2007024530 A JP2007024530 A JP 2007024530A JP 2008192758 A JP2008192758 A JP 2008192758A
Authority
JP
Japan
Prior art keywords
polarizable electrode
electric double
treatment
activated carbon
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007024530A
Other languages
Japanese (ja)
Other versions
JP4919225B2 (en
Inventor
Masaru Yao
勝 八尾
Tsutomu Iwaki
勉 岩城
Tetsuo Sakai
哲男 境
Kazuki Okuno
一樹 奥野
Masahiro Kato
真博 加藤
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007024530A priority Critical patent/JP4919225B2/en
Publication of JP2008192758A publication Critical patent/JP2008192758A/en
Application granted granted Critical
Publication of JP4919225B2 publication Critical patent/JP4919225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizable electrode for an electric double-layer capacitor which can be increased in capacitance and can be reduced in internal resistance, and to provide an electric double-layer capacitor using the same. <P>SOLUTION: The polarizable electrode for an electric double-layer capacitor is made by conducting a conductive treatment, electrolytic nickel plating treatment, and chrome plating treatment on a foaming resin in this order, removing the foaming resin, and then conducting annealing in a reduced atmosphere to obtain a current collector, and finally filling the current collector with activated carbon. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規な電気二重層キャパシタ用電極及びそれを用いた電気二重層キャパシタに関する。   The present invention relates to a novel electrode for an electric double layer capacitor and an electric double layer capacitor using the same.

電気二重層キャパシタは、各種キャパシタ中でも容量が大きいため、最近注目されてきている。例えば、キャパシタは電気機器のメモリーバックアップ用として幅広く使われているが、この用途にも電気二重層キャパシタの利用が促進している。さらに最近では、ハイブリッド車、燃料自動車等の自動車用にも期待されている。   The electric double layer capacitor has recently attracted attention because of its large capacitance among various capacitors. For example, capacitors are widely used for memory backup of electrical equipment, but the use of electric double layer capacitors is also promoted for this purpose. More recently, it is also expected to be used for vehicles such as hybrid vehicles and fuel vehicles.

電気二重層キャパシタには、ボタン型、円筒型、角型等といった種類がある。例えば、ボタン型は、活性炭電極層を集電体上に設けた分極性電極を一対として、その電極間にセパレータを配置して電気二重層キャパシタ素子を構成し、電解質とともに金属ケース内に収納し、封口板と両者を絶縁するガスケットで密封することにより製造される。円筒型は、この一対の分極性電極とセパレータを重ね、捲回して電気二重層キャパシタ素子を構成し、この素子に電解液を含浸させてアルミニウムケース中に収納し、封口材を用いて密封することにより製造される。角型の基本構造もボタン型や円筒型とほぼ同じである。   There are various types of electric double layer capacitors such as a button type, a cylindrical type, and a square type. For example, the button type has a pair of polarizable electrodes with an activated carbon electrode layer on a current collector, and a separator is placed between the electrodes to form an electric double layer capacitor element that is housed in a metal case together with the electrolyte. It is manufactured by sealing with a sealing plate and a gasket that insulates both. In the cylindrical type, a pair of polarizable electrodes and a separator are overlapped and wound to form an electric double layer capacitor element. The element is impregnated with an electrolytic solution and stored in an aluminum case, and sealed with a sealing material. It is manufactured by. The basic structure of the square type is almost the same as the button type or cylindrical type.

この電気二重層キャパシタに用いる分極性電極は、通常、アルミニウム箔である集電体に、活性炭を塗布することにより製造される。その分極性電極を構成する集電体は、例えば、特許文献1〜3に非水電解質電気二重層キャパシタ用として種々のものが開示されている。特許文献1には、金属集電体としてアルミニウム、ステンレス等が開示されている。特許文献2には、ステンレス繊維のマットをステンレス箔に電気溶接したものが開示されている。特許文献3には、タンタル、アルミニウム及びチタニウムの少なくとも1種の金属からなる多孔体が開示されている。
特開平11-274012号公報 特開平09-232190号公報 特開平11-150042号公報
The polarizable electrode used for this electric double layer capacitor is usually manufactured by applying activated carbon to a current collector that is an aluminum foil. For example, Patent Documents 1 to 3 disclose various current collectors constituting the polarizable electrode for non-aqueous electrolyte electric double layer capacitors. Patent Document 1 discloses aluminum, stainless steel and the like as a metal current collector. Patent Document 2 discloses a material in which a stainless steel fiber mat is electrically welded to a stainless steel foil. Patent Document 3 discloses a porous body made of at least one metal selected from tantalum, aluminum, and titanium.
Japanese Patent Laid-Open No. 11-274012 Japanese Unexamined Patent Publication No. 09-232190 Japanese Patent Laid-Open No. 11-150042

ところで、メモリーバックアップ用、自動車用等の用途に用いられる電気二重層キャパシタは、より一層の高容量化等が求められている。つまり、単位体積当たりの容量と内部抵抗の低減が求められている。これを達成する手段として分極性電極中の活性炭にカーボンブラック、炭素繊維等の導電助剤を添加したり、集電体を金属箔に代えて多孔体(三次元構造)にすることが試みられている。   By the way, electric double layer capacitors used for applications such as memory backup and automobiles are required to have a higher capacity. That is, reduction of the capacity per unit volume and internal resistance is required. In order to achieve this, attempts have been made to add a conductive agent such as carbon black or carbon fiber to the activated carbon in the polarizable electrode, or to replace the current collector with a metal foil to make a porous body (three-dimensional structure). ing.

しかし、導電助剤による試みでは、電気抵抗を下げるために多量の導電助剤を添加すると分極性電極中の活性炭の含有量が減少してしまい、逆にキャパシタの静電容量が小さくなる問題が生じる。   However, in the trial using the conductive auxiliary agent, if a large amount of conductive auxiliary agent is added to lower the electric resistance, the content of the activated carbon in the polarizable electrode is reduced, and conversely, the capacitance of the capacitor is reduced. Arise.

一方、集電体に関しては、多孔体としてスクリーン、パンチングメタル、ラスなどを用いることが試みられているが、その構造は実質的には二次元構造であり、大幅な静電容量の向上は期待できない。   On the other hand, regarding current collectors, attempts have been made to use screens, punching metals, laths, etc. as porous bodies, but the structure is essentially a two-dimensional structure, and a significant improvement in capacitance is expected. Can not.

現在、量産可能な三次元構造集電体としては、発泡状ニッケルがあり、アルカリ電解質二次電池用の集電体として普及している。しかし、非水電解質を用いる電気二重層キャパシタでは、ニッケルは非水電解質による酸化や腐食を受けるため使用に耐えない。また、ニッケル以外のステンレススチール等の金属は、多孔度が大きい三次元構造の集電体を量産することは困難である。   Currently, foamed nickel is a three-dimensional structure current collector that can be mass-produced, and is widely used as a current collector for an alkaline electrolyte secondary battery. However, in an electric double layer capacitor using a non-aqueous electrolyte, nickel cannot be used because it is oxidized or corroded by the non-aqueous electrolyte. In addition, it is difficult to mass-produce current collectors having a three-dimensional structure with a high porosity using metals such as stainless steel other than nickel.

本発明者らは、上記問題点に鑑み、鋭意研究を重ねた結果、特定の構造を有する集電体を採用することにより、上記問題点を解決するに至った。すなわち、本発明は、下記の電気二重層型キャパシタ用分極性電極及びそれを用いたキャパシタにかかる。   In view of the above problems, the present inventors have intensively researched and, as a result, have adopted the current collector having a specific structure and have solved the above problems. That is, the present invention relates to the following polarizable electrode for an electric double layer type capacitor and a capacitor using the same.

項1.発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られる集電体に、活性炭を充填してなる、ことを特徴とする電気二重層キャパシタ用分極性電極。   Item 1. Conductive treatment, electrolytic nickel plating treatment and chromium plating treatment are sequentially performed on the foamed resin, the foamed resin is removed, and the current collector obtained by annealing in a reducing atmosphere is filled with activated carbon. A polarizable electrode for an electric double layer capacitor.

項2.前記発泡状樹脂の平均孔径が30μm〜80μmである、項1に記載の分極性電極。   Item 2. Item 2. The polarizable electrode according to Item 1, wherein the foamed resin has an average pore diameter of 30 μm to 80 μm.

項3.導電性処理が無電解ニッケルめっき処理又はニッケルスパッタリング処理である、項1又は2に記載の分極性電極。   Item 3. Item 3. The polarizable electrode according to Item 1 or 2, wherein the conductive treatment is an electroless nickel plating treatment or a nickel sputtering treatment.

項4.電解ニッケルめっき処理によって形成されるニッケルめっき層の目付量が10g/m2〜250g/m2である、項1〜3のいずれかに記載の分極性電極。 Item 4. Basis weight of the nickel plating layer formed by electroless nickel plating treatment is 10g / m 2 ~250g / m 2 , polarizable electrode according to any one of Items 1 to 3.

項5.クロムめっき処理によって形成されるクロムめっき層の目付量が50g/m2〜300g/m2である、項1〜4のいずれかに記載の分極性電極。 Item 5. Basis weight of the chromium plating layer formed by the chromium plating treatment is 50g / m 2 ~300g / m 2 , polarizable electrode according to any one of Items 1 to 4.

項6.導電助剤が活性炭100重量部に対して0.2〜5重量部の割合で含まれている、項1〜5のいずれかに記載の分極性電極。   Item 6. Item 6. The polarizable electrode according to any one of Items 1 to 5, wherein the conductive additive is contained at a ratio of 0.2 to 5 parts by weight with respect to 100 parts by weight of the activated carbon.

項7.項1〜6のいずれかの分極性電極を具備してなる、電気二重層キャパシタ。   Item 7. Item 7. An electric double layer capacitor comprising the polarizable electrode according to any one of Items 1 to 6.

項8.電解液として非水系電解液が含まれてなる、項7に記載の電気二重層キャパシタ。   Item 8. Item 8. The electric double layer capacitor according to Item 7, comprising a non-aqueous electrolyte as the electrolyte.

本発明の電気二重層キャパシタ用分極性電極は、発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られる集電体に、活性炭を充填してなる、ことを特徴とする。   The polarizable electrode for an electric double layer capacitor of the present invention is obtained by sequentially conducting conductive treatment, electrolytic nickel plating treatment and chromium plating treatment on a foamed resin, removing the foamed resin, and annealing in a reducing atmosphere. The obtained current collector is filled with activated carbon.

集電体
本発明で用いる集電体は、発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られる。本発明の集電体は多孔体であるため、より多くの活性炭を充填することができ、静電容量を向上させることができる。また、多孔体中の空隙に活性炭が包まれる構造であるため、活性炭と集電体とを結合させるためのバインダ等(絶縁体)の含量を少なくすることができ、内部抵抗を低くすることができる。また、集電体の耐酸化性に優れるため、キャパシタを長寿命化させることもできる。
Current collector The current collector used in the present invention is obtained by sequentially conducting a conductive treatment, electrolytic nickel plating treatment and chromium plating treatment on a foamed resin, removing the foamed resin, and annealing in a reducing atmosphere. It is done. Since the current collector of the present invention is a porous body, it can be filled with more activated carbon and the capacitance can be improved. In addition, since the activated carbon is enclosed in the voids in the porous body, the content of a binder or the like (insulator) for binding the activated carbon and the current collector can be reduced, and the internal resistance can be lowered. it can. Further, since the current collector is excellent in oxidation resistance, the life of the capacitor can be extended.

発泡状樹脂は、多孔性のものであればよく公知又は市販のものを使用でき、例えば、発泡ウレタン、発泡スチレン等が挙げられる。これらの中でも、特に多孔度が大きい観点から、発泡ウレタンが好ましい。   As the foamed resin, any known or commercially available one can be used as long as it is porous, and examples thereof include foamed urethane and foamed styrene. Among these, urethane foam is preferable from the viewpoint of particularly high porosity.

発泡状樹脂の多孔度は限定的でなく、通常85〜97vol%程度、好ましくは90〜96vol%程度である。平均孔径は、通常20μm〜200μm程度、好ましくは30μm〜80μm程度である。   The porosity of the foamed resin is not limited, and is usually about 85 to 97 vol%, preferably about 90 to 96 vol%. The average pore diameter is usually about 20 μm to 200 μm, preferably about 30 μm to 80 μm.

発泡状樹脂の厚みは限定的でなく、電気二重層キャパシタの用途等に応じて適宜決定されるが、通常300μm〜1500μm程度、好ましくは400μm〜1200μm程度とすればよい。   The thickness of the foamed resin is not limited, and is appropriately determined according to the use of the electric double layer capacitor, but is usually about 300 μm to 1500 μm, preferably about 400 μm to 1200 μm.

上記発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次施す。   The foamed resin is sequentially subjected to conductive treatment, electrolytic nickel plating treatment and chromium plating treatment.

導電性処理とは、導電性を有する層を設けることができる限り限定的でない。導電性を有する層(導電めっき層)を構成する材料としては、例えば、ニッケル、チタン、ステンレススチール等の金属の他、黒鉛等が挙げられる。これらの中でも特にニッケルが好ましい。   The conductive treatment is not limited as long as a conductive layer can be provided. Examples of a material constituting the conductive layer (conductive plating layer) include graphite, in addition to metals such as nickel, titanium, and stainless steel. Among these, nickel is particularly preferable.

導電性処理の具体例としては、例えば、ニッケルを用いる場合は、無電解めっき処理、スパッタリング処理等が好ましく挙げられる。例えば、チタン、ステンレススチール等の金属、黒鉛などの材料を用いる場合は、これら材料の微粉末にバインダを加えて得られる混合物を、発泡状樹脂に塗着する処理が好ましく挙げられる。この場合のバインダとしては、後述する活物質ペーストと同じものが採用でき、バインダの添加量も限定的でなく、活物質ペーストと同様にすればよい。   As specific examples of the conductive treatment, for example, when nickel is used, electroless plating treatment, sputtering treatment, and the like are preferably exemplified. For example, in the case of using a material such as titanium, stainless steel, or a material such as graphite, a treatment obtained by applying a mixture obtained by adding a binder to fine powder of these materials to a foamed resin is preferable. The binder in this case can be the same as the active material paste described later, and the amount of the binder added is not limited and may be the same as that of the active material paste.

ニッケルを用いた無電解めっき処理としては、例えば、還元剤として次亜リン酸ナトリウムを含有した硫酸ニッケル水溶液等の公知の無電解ニッケルめっき浴に発泡状樹脂を浸漬すればよい。必要に応じて、めっき浴浸漬前に、発泡状樹脂を微量のパラジウムイオンを含む活性化液(カニゼン社製の洗浄液)等に浸漬してもよい。   As the electroless plating treatment using nickel, for example, the foamed resin may be immersed in a known electroless nickel plating bath such as a nickel sulfate aqueous solution containing sodium hypophosphite as a reducing agent. If necessary, the foamed resin may be immersed in an activation liquid containing a trace amount of palladium ions (cleaning liquid manufactured by Kanigen Co., Ltd.) or the like before immersion in the plating bath.

ニッケルを用いたスパッタリング処理としては、例えば、基板ホルダーに発泡状樹脂を取り付けた後、不活性ガスを導入しながら、ホルダーとターゲット(ニッケル)との間に直流電圧を印加することにより、イオン化した不活性ガスをニッケルに衝突させて、吹き飛ばしたニッケル粒子を発泡状樹脂表面に堆積すればよい。   As a sputtering process using nickel, for example, after attaching a foamed resin to a substrate holder, ionization is performed by applying a DC voltage between the holder and a target (nickel) while introducing an inert gas. The nickel particles blown off may be deposited on the foamed resin surface by colliding the inert gas with nickel.

次いで、導電めっき層形成発泡状樹脂に電解ニッケルめっき処理を施す。電解ニッケルめっき処理は、常法に従って行えばよい。電解ニッケルめっき処理に用いるめっき浴としては、公知又は市販のものを使用することができ、例えば、ワット浴、塩化浴、スルファミン酸浴等が挙げられる。   Next, electrolytic nickel plating is applied to the foamed resin for forming a conductive plating layer. What is necessary is just to perform an electrolytic nickel plating process in accordance with a conventional method. As the plating bath used for the electrolytic nickel plating treatment, a known or commercially available bath can be used, and examples thereof include a watt bath, a chloride bath, a sulfamic acid bath, and the like.

次いで、導電めっき層/ニッケルめっき層形成発泡状樹脂に、クロムめっき処理を施す。クロムめっき処理は、常法に従って行えばよく、クロムめっき処理としては限定的でなく、例えば、電解めっき法、無電解めっき法、スパッタリング法等が挙げられる。本発明においては、電解めっき法で形成されたクロムめっき層が好ましい。   Next, a chromium plating treatment is applied to the conductive plating layer / nickel plating layer forming foamed resin. The chromium plating process may be performed according to a conventional method, and the chromium plating process is not limited, and examples thereof include an electrolytic plating method, an electroless plating method, and a sputtering method. In the present invention, a chromium plating layer formed by an electrolytic plating method is preferable.

電解めっき法に用いる電解めっき浴としては公知又は市販のものを使用でき、例えば、サージェント浴(代表的な組成として、クロム酸CrO3:250g/l及び硫酸H2SO4:2.5g/l)、フッ化浴(代表的な組成として、クロム酸CrO3:250g/l、及びフッ素成分F:0.6g/l(又はSiF6:2.5g/l))等が挙げられる。 As the electroplating bath used in the electroplating method, a known or commercially available bath can be used. For example, a sergeant bath (typical composition is CrO 3 : 250 g / l and sulfuric acid H 2 SO 4 : 2.5 g / l). And a fluorination bath (typical composition is CrO 3 : 250 g / l and fluorine component F: 0.6 g / l (or SiF 6 : 2.5 g / l)).

これらの各めっき層の目付量(付着量)は特に制限されない。導電めっき層は発泡状樹脂表面に連続的に形成されていればよく、電解ニッケルめっき層は導電めっき層が露出しない程度に当該導電めっき層上に形成されていればよく、クロムめっき層は電解ニッケルめっき層が露出しない程度に当該電解ニッケルめっき層上に形成されていればよい。なお、導電めっき層がニッケル層である場合は、当該導電めっき層(ニッケル層)及び電解ニッケルめっき層が露出しないように、クロムめっき層が形成されていればよい。   The basis weight (adhesion amount) of each of these plating layers is not particularly limited. The conductive plating layer only needs to be continuously formed on the foamed resin surface, the electrolytic nickel plating layer only needs to be formed on the conductive plating layer to the extent that the conductive plating layer is not exposed, and the chromium plating layer is electrolytic. What is necessary is just to be formed on the said electrolytic nickel plating layer to such an extent that a nickel plating layer is not exposed. In addition, when a conductive plating layer is a nickel layer, the chromium plating layer should just be formed so that the said conductive plating layer (nickel layer) and an electrolytic nickel plating layer may not be exposed.

導電めっき層の目付量は限定的でなく、通常5〜15g/m2程度、好ましくは7〜10g/m2程度とすればよい。 The basis weight of the conductive plating layer is not limited, and is usually about 5 to 15 g / m 2 , preferably about 7 to 10 g / m 2 .

電解ニッケルめっき層の目付量は限定的でなく、通常10〜250g/m2程度、好ましくは50〜200g/m2程度とすればよい。 The basis weight of the electrolytic nickel plating layer is not limited, and is usually about 10 to 250 g / m 2 , preferably about 50 to 200 g / m 2 .

クロムめっき層の目付量は限定的でなく、通常50〜300g/m2程度、好ましくは80〜200g/m2程度とすればよい。 The basis weight of the chromium plating layer is not limited, and is usually about 50 to 300 g / m 2 , preferably about 80 to 200 g / m 2 .

これら導電めっき層、電解ニッケルめっき層及びクロムめっき層の目付量の合計量としては、好ましくは150〜500g/m2程度、より好ましくは300〜450g/m2程度である。合計量がこの範囲を下回ると、集電体の強度が衰えるおそれがある。また、合計量がこの範囲を上回ると、分極性材料の充填量が減少したり、コスト的に不利となる。 The total weight of the conductive plating layer, the electrolytic nickel plating layer, and the chromium plating layer is preferably about 150 to 500 g / m 2 , more preferably about 300 to 450 g / m 2 . When the total amount is below this range, the strength of the current collector may be reduced. On the other hand, if the total amount exceeds this range, the filling amount of the polarizable material is reduced or the cost is disadvantageous.

次いで、上記により得られた導電めっき層/ニッケルめっき層/クロムめっき層形成発泡状樹脂中の発泡状樹脂成分を除去する。除去方法は限定的でないが、好ましくは焼却により除去すればよい。具体的には、例えば600℃程度以上の大気等の酸化性雰囲気下で加熱すればよい。また、水素等の還元性雰囲気中750℃程度以上で加熱してもよい。これにより、導電めっき層、ニッケルめっき層及びクロムめっき層からなる多孔体が得られる。   Next, the foamed resin component in the conductive plating layer / nickel plating layer / chromium plating layer forming foamed resin obtained as described above is removed. Although the removal method is not limited, it may be removed by incineration. Specifically, the heating may be performed in an oxidizing atmosphere such as air of about 600 ° C. or higher. Moreover, you may heat at about 750 degreeC or more in reducing atmosphere, such as hydrogen. Thereby, the porous body which consists of a conductive plating layer, a nickel plating layer, and a chromium plating layer is obtained.

次いで、この多孔体を還元性雰囲気下で焼鈍を行うことにより、本発明の集電体を製造できる。得られる集電体は、多孔度の大きい三次元構造体である。この焼鈍処理により、上記導電層、ニッケルめっき及びクロムめっきからなる多孔体を還元することができ、この還元作用により、ニッケル及びクロムが合金化し、耐電解液性及び耐酸化性をより一層向上させることができる。   Next, the current collector of the present invention can be produced by annealing the porous body in a reducing atmosphere. The obtained current collector is a three-dimensional structure having a large porosity. By this annealing treatment, the porous body made of the conductive layer, nickel plating and chromium plating can be reduced, and by this reduction action, nickel and chromium are alloyed to further improve the electrolytic solution resistance and oxidation resistance. be able to.

還元性雰囲気としては特に限定されないが、好ましくは分解アンモニア等が挙げられる。分解アンモニアは、公知のアンモニアを分解させて得られる、窒素と水素との混合比が3:1(体積比)程度の混合ガスである。   Although it does not specifically limit as reducing atmosphere, Preferably decomposition | disassembly ammonia etc. are mentioned. Decomposed ammonia is a mixed gas obtained by decomposing known ammonia and having a mixing ratio of nitrogen and hydrogen of about 3: 1 (volume ratio).

加熱温度は、上記クロム及びニッケルが還元される温度であれば限定されないが、通常600〜1100℃程度、好ましくは700〜950℃程度である。また、常圧で行ってもよく、減圧下で行ってもよい。   The heating temperature is not limited as long as it is a temperature at which the chromium and nickel are reduced, but is usually about 600 to 1100 ° C, preferably about 700 to 950 ° C. Moreover, you may carry out by a normal pressure and you may carry out under reduced pressure.

分極性電極
分極性電極は、本発明の集電体に活性炭を充填することにより製造される。
A polarizable electrode polarizable electrode is produced by filling the current collector of the present invention with activated carbon.

活性炭は、電気二重層キャパシタ用に一般的に市販されているものを使用することができる。   The activated carbon can use what is generally marketed for electric double layer capacitors.

活性炭の原料としては、例えば、木材、ヤシ殻、パルプ廃液、石炭、石油重質油、又はそれらを熱分解した石炭・石油系ピッチのほか、フェノール樹脂などの樹脂などが挙げられる。炭化後に賦活するのが一般的であり、賦活法は、ガス賦活法及び薬品賦活法が挙げられる。ガス賦活法は、高温下で水蒸気、炭酸ガス、酸素等と接触反応させることにより活性炭を得る方法である。薬品賦活法は、上記原料に公知の賦活薬品を含浸させ、不活性ガス雰囲気中で加熱することにより、賦活薬品の脱水及び酸化反応を生じさせて活性炭を得る方法である。賦活薬品としては、例えば、塩化亜鉛、水酸化ナトリウム等が挙げられる。   Examples of the raw material for the activated carbon include wood, coconut shell, pulp waste liquid, coal, heavy petroleum oil, coal / petroleum pitch obtained by pyrolyzing them, and resins such as phenol resins. The activation is generally performed after carbonization, and examples of the activation method include a gas activation method and a chemical activation method. The gas activation method is a method in which activated carbon is obtained by contact reaction with water vapor, carbon dioxide gas, oxygen or the like at a high temperature. The chemical activation method is a method in which activated carbon is obtained by impregnating the above-mentioned raw material with a known activation chemical and heating it in an inert gas atmosphere to cause dehydration and oxidation reaction of the activation chemical. Examples of the activation chemical include zinc chloride and sodium hydroxide.

活性炭の粒径は限定的でないが、20μm以下が好ましい。比表面積も限定的でなく、800〜3000m2/g程度が好ましい。この範囲とすることにより、キャパシタの静電容量を大きくできたり、内部抵抗を小さくできる。 The particle size of the activated carbon is not limited, but is preferably 20 μm or less. The specific surface area is not limited and is preferably about 800 to 3000 m 2 / g. By setting this range, the capacitance of the capacitor can be increased, and the internal resistance can be decreased.

また、必要に応じて、導電助剤、バインダ等の添加剤を含有させていてもよい。   Moreover, you may contain additives, such as a conductive support agent and a binder, as needed.

導電助剤としては限定的でなく、公知又は市販のものが使用できる。例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、天然黒鉛(鱗片状黒鉛、土状黒鉛等)、人造黒鉛、酸化ルテニウム等が挙げられる。これらの中でも、アセチレンブラック、ケッチェンブラック、炭素繊維等が好ましい。これにより、キャパシタの導電性を向上させることができる。導電助剤の含量は限定的でないが、活性炭100重量部に対して0.1〜10重量部程度が好ましい。10重量部を超えると静電容量が低下するおそれがある。   The conductive auxiliary agent is not limited, and known or commercially available ones can be used. Examples thereof include acetylene black, ketjen black, carbon fiber, natural graphite (scaly graphite, earthy graphite, etc.), artificial graphite, ruthenium oxide and the like. Among these, acetylene black, ketjen black, carbon fiber and the like are preferable. Thereby, the electrical conductivity of the capacitor can be improved. The content of the conductive assistant is not limited, but is preferably about 0.1 to 10 parts by weight with respect to 100 parts by weight of the activated carbon. If it exceeds 10 parts by weight, the capacitance may decrease.

バインダとしては限定的でなく、公知又は市販のものが使用できる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルピロリドン、ポリビニルクロリド、ポリオレフィン、スチレンブタジエンゴム、ポリビニルアルコール、カルボキシメチルセルロース等が挙げられる。   The binder is not limited, and known or commercially available binders can be used. Examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl pyrrolidone, polyvinyl chloride, polyolefin, styrene butadiene rubber, polyvinyl alcohol, carboxymethyl cellulose and the like.

バインダの含量は限定的でないが、活性炭100重量部に対して好ましくは0.5〜5重量部である。この範囲とすることにより、電気抵抗の増加及び静電容量の低下を抑制しながら、結着強度を向上させることができる。   The content of the binder is not limited, but is preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the activated carbon. By setting this range, the binding strength can be improved while suppressing an increase in electrical resistance and a decrease in capacitance.

集電体に活性炭を充填する場合の充填量(含有量)は特に制限されず、集電体の厚み、キャパシタの形状等に応じて適宜決定すればよいが、例えば、充填量は、13〜40mg/cm2程度、好ましく16〜32mg/cm2程度とすればよい。 The filling amount (content) when the current collector is filled with activated carbon is not particularly limited, and may be determined as appropriate according to the thickness of the current collector, the shape of the capacitor, and the like. 40 mg / cm 2 or so, it may be the preferred 16~32mg / cm 2 approximately.

活性炭等を本発明の集電体に充填する方法としては、例えば、活性炭ペーストを圧入法などの公知の方法などを使用すればよい。   As a method for filling the current collector of the present invention with activated carbon or the like, for example, a known method such as press-fitting activated carbon paste may be used.

活性炭ペーストは、活性炭及び溶媒を含有していればよく、その配合割合は限定的でない。溶媒としては限定的でなく、例えば、N−メチル−2−ピロリドン、水等が挙げられる。特に、バインダとしてポリフッ化ビニリデンを用いる場合は溶媒としてN−メチル−2−ピロリドンを用いればよく、バインダとしてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース等を用いる場合は溶媒として水を用いればよい。また、必要に応じて、上記電導助剤、バインダ等の添加剤を含有していてもよい。   The activated carbon paste should just contain activated carbon and a solvent, and the mixture ratio is not limited. The solvent is not limited, and examples thereof include N-methyl-2-pyrrolidone and water. In particular, when polyvinylidene fluoride is used as a binder, N-methyl-2-pyrrolidone may be used as a solvent. When polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, or the like is used as a binder, water may be used as a solvent. Moreover, you may contain additives, such as the said conductive support agent and a binder, as needed.

圧入法としては、例えば、活性炭ペースト中に集電体を浸漬し、必要に応じて減圧する方法、活性炭ペーストを集電体の一方面からポンプ等で加圧しながら充填する方法等が挙げられる。   Examples of the press-fitting method include a method of immersing the current collector in activated carbon paste and reducing the pressure as necessary, and a method of filling the activated carbon paste while applying pressure from one side of the current collector with a pump or the like.

本発明の分極性電極は、活性炭ペーストを充填した後、必要に応じて乾燥処理を施すことにより、ペースト中の溶媒が除去されてもよい。さらに必要に応じて、活性炭ペーストを充填した後、ローラプレス機等により加圧することにより、圧縮成形されていてもよい。圧縮前後の厚さは限定的でないが、圧縮前の厚さは通常300μm〜1500μm、好ましくは400μm〜1200μmとすればよく、圧縮成形後の厚みは通常150μm〜700μm程度、好ましくは200μm〜600μm程度とすればよい。   After the polarizable electrode of the present invention is filled with the activated carbon paste, the solvent in the paste may be removed by performing a drying treatment as necessary. Further, if necessary, after the activated carbon paste is filled, it may be compression-molded by pressurizing with a roller press or the like. The thickness before and after compression is not limited, but the thickness before compression is usually 300 μm to 1500 μm, preferably 400 μm to 1200 μm, and the thickness after compression molding is usually about 150 μm to 700 μm, preferably about 200 μm to 600 μm. And it is sufficient.

また、分極性電極には、リード端子が具備されていてもよい。リード端子は、溶接を行ったり、接着剤を塗布することにより、取り付ければよい。   The polarizable electrode may be provided with a lead terminal. The lead terminal may be attached by welding or applying an adhesive.

電気二重層キャパシタ
本発明のキャパシタは、本発明の分極性電極2枚を一対とし、これらの電極の間にセパレータを配置し、さらにセパレータに電解質液を含浸させたものである。
Electric Double Layer Capacitor The capacitor of the present invention comprises a pair of two polarizable electrodes of the present invention, a separator disposed between these electrodes, and a separator impregnated with an electrolyte solution.

セパレータは、公知又は市販のものを使用できる。例えば、ポリオレフィン、ポリエチレンレテフタラート、ポリアミド、ポリイミド、セルロース、ガラス繊維等からなる絶縁性膜が好ましい。セパレータの平均孔径は特に限定されず、通常0.01μm〜5μm程度であり、厚さは、通常10μm〜100μm程度である。   A known or commercially available separator can be used. For example, an insulating film made of polyolefin, polyethylene terephthalate, polyamide, polyimide, cellulose, glass fiber or the like is preferable. The average pore diameter of the separator is not particularly limited, and is usually about 0.01 μm to 5 μm, and the thickness is usually about 10 μm to 100 μm.

電解液は、公知又は市販のものを使用でき、アルカリ性水溶液及び非水系電解液のいずれも使用することができる。アルカリ性電解液としては、例えば、水酸化カリウム水溶液、水酸化ナトリウム水溶液等のアルカリ性水溶液が挙げられる。非水系電解液としては、例えば、テトラアルキルホスホニウムテトラフルオロボレートを溶解したプロピレンカーボネート溶液、テトラアルキルアンモニウムテトラフルオロボレートを溶解したプロピレンカーボネート溶液又はスルホラン溶液、トリエチルメチルアンモニウム・テトラフルオロボーレイト溶解したプロピレンカーボネート溶液などが挙げられる。   As the electrolytic solution, a known or commercially available one can be used, and either an alkaline aqueous solution or a non-aqueous electrolytic solution can be used. Examples of the alkaline electrolyte include alkaline aqueous solutions such as an aqueous potassium hydroxide solution and an aqueous sodium hydroxide solution. Examples of the non-aqueous electrolyte include a propylene carbonate solution in which tetraalkylphosphonium tetrafluoroborate is dissolved, a propylene carbonate solution or sulfolane solution in which tetraalkylammonium tetrafluoroborate is dissolved, and a propylene carbonate solution in which triethylmethylammonium tetrafluoroborate is dissolved. Etc.

これらの中でも、本発明では、非水系電解液が好ましい。このような非水系電解液を用いることにより、静電容量を向上させることができる。   Among these, a nonaqueous electrolytic solution is preferable in the present invention. By using such a non-aqueous electrolyte, the capacitance can be improved.

本発明の分極性電極によれば、静電容量が大きく、内部抵抗が小さく、さらに耐久性の優れた電気二重層型キャパシタを提供することができる。   According to the polarizable electrode of the present invention, it is possible to provide an electric double layer type capacitor having a large capacitance, a small internal resistance, and an excellent durability.

以下に実施例及び比較例を挙げて本発明をより一層詳述する。なお、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

実施例1
(集電体の作製)
発泡状樹脂として、発泡ウレタン樹脂(市販品、平均孔径80μm、厚さ800μm、多孔度95%)を用いた。
Example 1
(Preparation of current collector)
As the foamed resin, a urethane foam resin (commercially available product, average pore diameter 80 μm, thickness 800 μm, porosity 95%) was used.

この発泡ウレタン樹脂にターゲットとしてニッケルを用いてスパッタリング処理を行うことにより、発泡ウレタン樹脂表面に導電めっき層(ニッケル層)を形成させた。導電めっき層の目付量は8g/m2であった。 By performing sputtering treatment using nickel as a target for the foamed urethane resin, a conductive plating layer (nickel layer) was formed on the surface of the foamed urethane resin. The basis weight of the conductive plating layer was 8 g / m 2 .

次いで、得られた導電めっき層形成発泡ウレタン樹脂に電解めっき処理を施した。電解ニッケルめっき浴としては、ワット浴(硫酸ニッケル330g/l、塩化ニッケル50g/l、硼酸40g/l)を用いた。対極には、ニッケル片を入れたチタンバスケットを使用した。電着条件は浴温60℃、電流密度30A/dm2とした。電解ニッケルめっき層の目付量は192g/m2とした。 Subsequently, the electroplating process was performed to the obtained electroconductive plating layer formation foaming urethane resin. As an electrolytic nickel plating bath, a Watt bath (nickel sulfate 330 g / l, nickel chloride 50 g / l, boric acid 40 g / l) was used. A titanium basket containing nickel pieces was used as the counter electrode. The electrodeposition conditions were a bath temperature of 60 ° C. and a current density of 30 A / dm 2 . The basis weight of the electrolytic nickel plating layer was 192 g / m 2 .

次いで、電解クロムめっき処理を行った。めっき浴は、サーフェント浴(クロム酸250g/l及び硫酸2.5g/l)を使用した。対極には、銅を芯として鉛合金を被覆した電極を使用した。電着条件は浴温50℃、電流密度40A/dm2とした。クロムめっき層の目付量は100g/m2とした。このときの集電体の平均厚さは520μmであった。 Next, electrolytic chrome plating was performed. As the plating bath, a surf bath (chromic acid 250 g / l and sulfuric acid 2.5 g / l) was used. As the counter electrode, an electrode coated with a lead alloy with copper as a core was used. The electrodeposition conditions were a bath temperature of 50 ° C. and a current density of 40 A / dm 2 . The basis weight of the chromium plating layer was 100 g / m 2 . The average thickness of the current collector at this time was 520 μm.

次いで、この集電体を水洗及び乾燥した後、空気中600℃程度に加熱して、ウレタン樹脂を焼却除去した。さらに、分解アンモニア雰囲気中750℃程度で還元及び焼鈍を行うことにより、三次元構造の集電体を作製した。   Next, the current collector was washed with water and dried, and then heated to about 600 ° C. in air to incinerate and remove the urethane resin. Furthermore, a current collector having a three-dimensional structure was produced by performing reduction and annealing at about 750 ° C. in a decomposed ammonia atmosphere.

(分極性電極の作製)
活性炭粉末(比表面積2500m2/g、平均粒径約5μm)100重量部に、導電助剤としてケッチェンブラック2重量部、バインダとしてポリフッ化ビニリデン粉末4重量部、溶媒としてN−メチルピロリドン15重量部を添加し、混合機で攪拌することにより、活性炭ペーストを調製した。
(Preparation of polarizable electrode)
100 parts by weight of activated carbon powder (specific surface area 2500 m 2 / g, average particle size of about 5 μm), 2 parts by weight of ketjen black as a conductive aid, 4 parts by weight of polyvinylidene fluoride powder as a binder, and 15 weights of N-methylpyrrolidone as a solvent The activated carbon paste was prepared by adding a part and stirring with a mixer.

この活性炭ペーストを上記集電体にポンプを使って、活性炭の含量が30mg/cm2となるように充填した。次いで、表面を平滑にした後に、80℃で20分間乾燥し、ローラプレスで加圧成型することにより、分極性電極とした。この分極性電極の厚さは480μmであった。 The activated carbon paste was filled into the current collector using a pump so that the activated carbon content was 30 mg / cm 2 . Next, the surface was smoothed, dried at 80 ° C. for 20 minutes, and pressure-molded with a roller press to obtain a polarizable electrode. The thickness of this polarizable electrode was 480 μm.

(試験用コイン型電気二重層キャパシタの作製)
得られた分極性電極2枚を直径14mmに打ち抜き、セルロース繊維製セパレータ(厚さ45μm、密度450mg/cm3、多孔度70%)を挟み、これら分極性電極を対向させた。この状態で180℃、5時間減圧下で乾燥した。その後、ステンレススチール製スペーサを用いてセルケースに収納し、非水系電解液(テトラエチルホスホニウムテトラフルオロボレートを1mol/Lとなるように溶解したプロピレンカーボネート溶液)を分極性電極及びセパレータに含浸した。さらに、プロピレン製の絶縁ガスケットを介してケース蓋を締めて封口して、コイン形の試験用電気二重層キャパシタを作製した。このキャパシタは、直径を20mm、厚さを3.2mmであった。定格電圧は2.8Vとした。
(Production of test coin-type electric double layer capacitor)
Two polarizable electrodes thus obtained were punched out to a diameter of 14 mm, and a cellulose fiber separator (thickness 45 μm, density 450 mg / cm 3 , porosity 70%) was sandwiched between these polarizable electrodes. In this state, it was dried under reduced pressure at 180 ° C. for 5 hours. After that, the cell case was housed using a stainless steel spacer, and the polarizable electrode and the separator were impregnated with a non-aqueous electrolyte (a propylene carbonate solution in which tetraethylphosphonium tetrafluoroborate was dissolved to 1 mol / L). Further, the case lid was tightened and sealed through an insulating gasket made of propylene to produce a coin-shaped test electric double layer capacitor. This capacitor had a diameter of 20 mm and a thickness of 3.2 mm. The rated voltage was 2.8V.

比較例1
集電体を、発泡状ニッケル(ニッケル量:400g/m2)にした以外は、実施例1と同様にキャパシタを作製した。しかし、ニッケルの酸化及び腐食が激しく生じたため、キャパシタとしての特性が得られなかった。
Comparative Example 1
A capacitor was produced in the same manner as in Example 1 except that the current collector was foamed nickel (nickel amount: 400 g / m 2 ). However, since oxidation and corrosion of nickel occurred violently, characteristics as a capacitor could not be obtained.

比較例2
集電体として、アルミニウム箔(厚さ20μm)を用いた。これに実施例1と同様の活性炭ペーストを調製して対極に面する側に塗布したが、活性炭がアルミニウム箔に付着しなかった。したがって、バインダ含量を8重量部にし、さらに、導電助剤を3重量部にした活性炭ペーストを調製し、このペーストをアルミニウム箔表面に活性炭の含量が8mg/cm2となるように塗着させた。次いで、80℃で20分間乾燥し、ローラプレスで加圧成型することにより、分極性電極とした。この分極性電極の厚さはアルミニウム箔も含めて180μmであった。
Comparative Example 2
An aluminum foil (thickness 20 μm) was used as a current collector. The same activated carbon paste as in Example 1 was prepared and applied to the side facing the counter electrode, but the activated carbon did not adhere to the aluminum foil. Therefore, an activated carbon paste having a binder content of 8 parts by weight and a conductive additive of 3 parts by weight was prepared, and this paste was applied to the surface of the aluminum foil so that the activated carbon content was 8 mg / cm 2 . . Next, the electrode was dried at 80 ° C. for 20 minutes and pressure-molded with a roller press to obtain a polarizable electrode. The thickness of the polarizable electrode was 180 μm including the aluminum foil.

この比較例の分極性電極を用いた以外は実施例と同様にして、比較例のコイン型の試験用電気二重層キャパシタを作製した。定格電圧は2.8Vとした。   A coin-type test electric double layer capacitor of a comparative example was produced in the same manner as in the example except that the polarizable electrode of this comparative example was used. The rated voltage was 2.8V.

静電容量の評価
実施例1及び比較例2と同様のキャパシタをそれぞれ10個作製し、これら10個の単位面積及び単位体積当たりの静電容量、それに内部抵抗の平均値を表1に示す。
Evaluation of Capacitance Ten capacitors similar to those in Example 1 and Comparative Example 2 were produced, respectively, and the capacitance per unit area, unit volume, and average value of internal resistance are shown in Table 1.

Figure 2008192758
Figure 2008192758

表1から明らかなように、実施例のキャパシタは、比較例のキャパシタよりも、単位体積当たりの容量が大きく、内部抵抗を減少している。特に、静電容量を見ると、実施例のキャパシタは、比較例のキャパシタの3倍以上の静電容量を発揮している。よって、比較例の従来のキャパシタと同等の静電容量を得るには、本発明のキャパシタ(特に分極性電極部分)は1/3以下の長さで達成できることが分かる。   As is apparent from Table 1, the capacitor of the example has a larger capacity per unit volume and a lower internal resistance than the capacitor of the comparative example. In particular, in terms of capacitance, the capacitor of the example exhibits a capacitance three times or more that of the capacitor of the comparative example. Therefore, it can be seen that the capacitor (particularly the polarizable electrode portion) of the present invention can be achieved with a length of 1/3 or less in order to obtain the same capacitance as the conventional capacitor of the comparative example.

また、本発明は、静電容量に寄与しない材料(バインダ)の添加量を少なくできるため、エネルギー密度を向上させることができることが分かる。   In addition, it can be seen that the present invention can improve the energy density because the amount of the material (binder) that does not contribute to the capacitance can be reduced.

耐久性試験1
次に、キャパシタ特性として耐久性を調べた。まず、65℃で2.8Vの電圧を6時間印加してエージングを行った後、25℃にして3.0Vを開始電圧として1mAの電流で放電にて行い、初期静電容量及び内部抵抗を基準のために調べた。次いで、65℃で2.7Vの電圧を印加しながら2000時間保持した。その後25℃にして静電容量と内部抵抗を測定し、初期からの静電容量と内部抵抗の変化率を調べた。結果を表2に示す。
Durability test 1
Next, durability was examined as capacitor characteristics. First, aging was performed by applying a voltage of 2.8V at 65 ° C for 6 hours, and then discharging was performed at a current of 1mA with 3.0V as the starting voltage at 25 ° C. Investigated for. Subsequently, it was maintained for 2000 hours while applying a voltage of 2.7 V at 65 ° C. Thereafter, the capacitance and internal resistance were measured at 25 ° C., and the rate of change in capacitance and internal resistance from the beginning was examined. The results are shown in Table 2.

Figure 2008192758
Figure 2008192758

表2から明らかなように、実施例は比較例に比べて2000時間経過後も静電容量及び内部抵抗の変化は小さかった。したがって、本発明の電気二重層キャパシタは、高い静電容量が得られるとともに、耐久性に優れていることが分かった。   As is clear from Table 2, the change in capacitance and internal resistance of the example was small after 2000 hours as compared with the comparative example. Therefore, it was found that the electric double layer capacitor of the present invention has a high capacitance and is excellent in durability.

耐久性試験2
別の耐久性評価法として充放電サイクル特性を調べた。条件として、雰囲気温度45℃で0.5〜3.0Vの間で1mAの定電流による充放電サイクルを1万回繰り返し、1万サイクル後の放電容量及び内部抵抗を測定し、初期特性と比較して評価を行った。その結果、実施例での静電容量の低下率は10%であったのに対して比較例では12%低下した。内部抵抗は、本実施例では10%の増加であったのに対して比較例では15%増加した。
Durability test 2
The charge / discharge cycle characteristics were examined as another durability evaluation method. As conditions, charge and discharge cycles with a constant current of 1 mA at an ambient temperature of 45 ° C between 0.5 and 3.0 V were repeated 10,000 times, and the discharge capacity and internal resistance after 10,000 cycles were measured and evaluated in comparison with the initial characteristics. Went. As a result, the decrease rate of the capacitance in the example was 10%, whereas in the comparative example, the decrease rate was 12%. The internal resistance increased by 10% in this example, but increased by 15% in the comparative example.

Claims (8)

発泡状樹脂に導電性処理、電解ニッケルめっき処理及びクロムめっき処理を順次行い、当該発泡状樹脂を除去し、還元性雰囲気中で焼鈍することにより得られる集電体に、活性炭を充填してなる、ことを特徴とする電気二重層キャパシタ用分極性電極。   Conductive treatment, electrolytic nickel plating treatment and chromium plating treatment are sequentially performed on the foamed resin, the foamed resin is removed, and the current collector obtained by annealing in a reducing atmosphere is filled with activated carbon. A polarizable electrode for an electric double layer capacitor. 前記発泡状樹脂の平均孔径が30μm〜80μmである、請求項1に記載の分極性電極。   The polarizable electrode according to claim 1, wherein the foamed resin has an average pore diameter of 30 μm to 80 μm. 導電性処理が無電解ニッケルめっき処理又はニッケルスパッタリング処理である、請求項1又は2に記載の分極性電極。   The polarizable electrode according to claim 1 or 2, wherein the conductive treatment is an electroless nickel plating treatment or a nickel sputtering treatment. 電解ニッケルめっき処理によって形成されるニッケルめっき層の目付量が10g/m2〜250g/m2である、請求項1〜3のいずれかに記載の分極性電極。 Basis weight of the nickel plating layer formed by electroless nickel plating treatment is 10g / m 2 ~250g / m 2 , polarizable electrode according to any of claims 1 to 3. クロムめっき処理によって形成されるクロムめっき層の目付量が50g/m2〜300g/m2である、請求項1〜4のいずれかに記載の分極性電極。 Basis weight of the chromium plating layer formed by the chromium plating treatment is 50g / m 2 ~300g / m 2 , polarizable electrode according to claim 1. 導電助剤が活性炭100重量部に対して0.2〜5重量部の割合で含まれている、請求項1〜5のいずれかに記載の分極性電極。   The polarizable electrode according to any one of claims 1 to 5, wherein the conductive additive is contained at a ratio of 0.2 to 5 parts by weight with respect to 100 parts by weight of the activated carbon. 請求項1〜6のいずれかの分極性電極を具備してなる、電気二重層キャパシタ。   An electric double layer capacitor comprising the polarizable electrode according to claim 1. 電解液として非水系電解液が含まれてなる、請求項7に記載の電気二重層キャパシタ。   The electric double layer capacitor according to claim 7, comprising a non-aqueous electrolyte as the electrolyte.
JP2007024530A 2007-02-02 2007-02-02 Electrode for electric double layer capacitor Expired - Fee Related JP4919225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024530A JP4919225B2 (en) 2007-02-02 2007-02-02 Electrode for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024530A JP4919225B2 (en) 2007-02-02 2007-02-02 Electrode for electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2008192758A true JP2008192758A (en) 2008-08-21
JP4919225B2 JP4919225B2 (en) 2012-04-18

Family

ID=39752592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024530A Expired - Fee Related JP4919225B2 (en) 2007-02-02 2007-02-02 Electrode for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4919225B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140941A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor
JP2011129560A (en) * 2009-12-15 2011-06-30 Rohm Co Ltd Electric double-layer capacitor and electrode structure thereof, fuel cell and lithium ion capacitor
JP2011181972A (en) * 2011-06-22 2011-09-15 Sumitomo Electric Ind Ltd Capacitor
JP2011216510A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor
JP2012243924A (en) * 2011-05-19 2012-12-10 Sumitomo Electric Ind Ltd Capacitor
WO2018216319A1 (en) * 2017-05-22 2018-11-29 住友電気工業株式会社 Method for producing titanium-plated member
JPWO2018216320A1 (en) * 2017-05-22 2020-03-19 住友電気工業株式会社 Molten salt titanium plating solution composition and method for producing titanium plated member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPH06236829A (en) * 1993-02-10 1994-08-23 Elna Co Ltd Electric double layer capacitor
JPH10204763A (en) * 1997-01-17 1998-08-04 Osaka Gas Co Ltd Production of nickel fiber felt mat and nickel fiber felt mat
JP2000030713A (en) * 1998-07-09 2000-01-28 Matsushita Electric Ind Co Ltd Electrode for alkaline storage battery and its manufacture, and alkaline storage battery
JP2000106177A (en) * 1998-09-28 2000-04-11 Haruichiro Eguchi Manufacture of negative electrode material for alkaline secondary battery
JP2004071377A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Manufacturing method of three- dimensional foamed substrate for alkaline storage battery, and manufacturing method of electrode
JP2004319606A (en) * 2003-04-14 2004-11-11 Taitsu Corp Electric double layer capacitor
JP2004335875A (en) * 2003-05-09 2004-11-25 Mitsubishi Gas Chem Co Inc Nonaqueous electrolyte for electric double layer capacitor
JP2004536427A (en) * 2001-06-15 2004-12-02 フォルツ・バート・バッテリーエン・ゲー・エム・ベー・ハー Rechargeable battery cell that can be operated at room temperature

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPH06236829A (en) * 1993-02-10 1994-08-23 Elna Co Ltd Electric double layer capacitor
JPH10204763A (en) * 1997-01-17 1998-08-04 Osaka Gas Co Ltd Production of nickel fiber felt mat and nickel fiber felt mat
JP2000030713A (en) * 1998-07-09 2000-01-28 Matsushita Electric Ind Co Ltd Electrode for alkaline storage battery and its manufacture, and alkaline storage battery
JP2000106177A (en) * 1998-09-28 2000-04-11 Haruichiro Eguchi Manufacture of negative electrode material for alkaline secondary battery
JP2004536427A (en) * 2001-06-15 2004-12-02 フォルツ・バート・バッテリーエン・ゲー・エム・ベー・ハー Rechargeable battery cell that can be operated at room temperature
JP2004071377A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Manufacturing method of three- dimensional foamed substrate for alkaline storage battery, and manufacturing method of electrode
JP2004319606A (en) * 2003-04-14 2004-11-11 Taitsu Corp Electric double layer capacitor
JP2004335875A (en) * 2003-05-09 2004-11-25 Mitsubishi Gas Chem Co Inc Nonaqueous electrolyte for electric double layer capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140941A (en) * 2008-12-09 2010-06-24 Sumitomo Electric Ind Ltd Capacitor
JP2010171154A (en) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd Capacitor
JP2011129560A (en) * 2009-12-15 2011-06-30 Rohm Co Ltd Electric double-layer capacitor and electrode structure thereof, fuel cell and lithium ion capacitor
JP2011216510A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor
JP2012243924A (en) * 2011-05-19 2012-12-10 Sumitomo Electric Ind Ltd Capacitor
JP2011181972A (en) * 2011-06-22 2011-09-15 Sumitomo Electric Ind Ltd Capacitor
WO2018216319A1 (en) * 2017-05-22 2018-11-29 住友電気工業株式会社 Method for producing titanium-plated member
CN110475910A (en) * 2017-05-22 2019-11-19 住友电气工业株式会社 Plate the manufacturing method of titanium part
JPWO2018216319A1 (en) * 2017-05-22 2020-03-19 住友電気工業株式会社 Manufacturing method of titanium plated member
JPWO2018216320A1 (en) * 2017-05-22 2020-03-19 住友電気工業株式会社 Molten salt titanium plating solution composition and method for producing titanium plated member

Also Published As

Publication number Publication date
JP4919225B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4919225B2 (en) Electrode for electric double layer capacitor
KR100331186B1 (en) Electrode Structural Body, Rechargeable Battery Provided with Said Electrode Structural Body, and Process for The Production of Said Electrode Structrual Body and Said Rechargeable Battery
KR101413774B1 (en) Coated electrode and organic electrolyte capacitor
WO2001086674A1 (en) Activated carbon for electric double layer capacitor
JP2014530502A (en) High voltage electrochemical double layer capacitor
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
JP2013038170A (en) Sodium ion capacitor
JP2013008811A (en) Collector for capacitor, electrode using the same, and capacitor
JP4973892B2 (en) Capacitors
JP4973882B2 (en) Capacitors
WO2013061789A1 (en) Capacitor
JPH0888022A (en) Secondary battery and manufacture of secondary battery
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP5565114B2 (en) Capacitor using porous metal
JP2013143422A (en) Lithium ion capacitor
Shiraishi Development of Novel Carbon Electrode for Electrochemical Energy Storage. Nano-sized Carbon and Classic Carbon Electrodes for Capacitors
JP4919226B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
JP2010010364A (en) Polarizable electrode for electric double-layer capacitor and its production process
JP3837866B2 (en) Electric double layer capacitor
JP2011009608A (en) Nickel aluminum porous collector and electrode using the same, and capacitor
US20150056505A1 (en) Manganese and iron electrode cell
JP4822555B2 (en) Non-woven nickel chrome current collector for capacitor, electrode and capacitor using the same
Subbiramaniyan et al. Constructing metal organic framework derived manganese cobalt layered double hydroxide nanosheets on Ni foam as cost-effective binder-free electrodes of high-performance supercapacitors
WO2021006327A1 (en) Metal sheet having carbon material, electrode for electricity storage device, and electricity storage device
JP2011243707A (en) Electrode for capacitor and capacitor using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees