JP2011127215A - Feed conductor for electrolytic cell and electrolytic cell - Google Patents

Feed conductor for electrolytic cell and electrolytic cell Download PDF

Info

Publication number
JP2011127215A
JP2011127215A JP2009289809A JP2009289809A JP2011127215A JP 2011127215 A JP2011127215 A JP 2011127215A JP 2009289809 A JP2009289809 A JP 2009289809A JP 2009289809 A JP2009289809 A JP 2009289809A JP 2011127215 A JP2011127215 A JP 2011127215A
Authority
JP
Japan
Prior art keywords
metal plate
current
nuggets
electrolytic cell
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289809A
Other languages
Japanese (ja)
Other versions
JP5427588B2 (en
Inventor
Yasutaka Uraka
靖崇 浦下
Norihiro Fukuda
憲弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009289809A priority Critical patent/JP5427588B2/en
Publication of JP2011127215A publication Critical patent/JP2011127215A/en
Application granted granted Critical
Publication of JP5427588B2 publication Critical patent/JP5427588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the damage of an electrolyte membrane by diffusing current enough to prevent the heating due to the increase of current density. <P>SOLUTION: The feed conductor 1 for an electrolytic cell is provided with a plurality of metal made plate materials 2a-2g formed net-like and mutually laminated and the adjacent metal made plate materials 2a-2g are individually spot-welded and the minimum space distance between nuggets due to the spot welding is defined by numerical expression 1. In numerical expression 1, (r) expresses the minimum space distance between the nuggets, R<SB>12</SB>expresses contact resistance value between the metal made plate materials and R<SB>p</SB>expresses in-plane resistance value of the metal made plate material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水を電気分解して酸素及び水素を発生させる水電解装置に適用される電解セル用給電体及び電解セルに関するものである。   The present invention relates to an electrolytic cell power supply and an electrolytic cell applied to a water electrolysis apparatus that electrolyzes water to generate oxygen and hydrogen.

水を電気分解して酸素及び水素を発生させる水電解装置に適用される電解スタックを構成する電解セルとして、一対のセパレータと、この一対のセパレータの間に設けられ両面に電極が形成された電解質膜と、セパレータと電解質膜との間に介在する給電体とを備えたものが知られている。そして、このような電解セル用の給電体として、特許文献1(特許第3553853号公報)には、チタン粉末がプレス成形された後に焼結された粉末焼結部と、チタン製のエキスパンドメタルが積層された弾性部とを備え、粉末焼結部と弾性部とをスポット溶接にて接合したものが記載されている。   As an electrolytic cell constituting an electrolytic stack applied to a water electrolysis apparatus that electrolyzes water to generate oxygen and hydrogen, a pair of separators and an electrolyte having electrodes formed on both surfaces provided between the pair of separators A device including a membrane and a power feeding body interposed between the separator and the electrolyte membrane is known. As a power supply body for such an electrolytic cell, Patent Document 1 (Japanese Patent No. 3555353) discloses a powder sintered portion sintered after press-molding titanium powder and an expanded metal made of titanium. It is provided with a laminated elastic part, in which a powder sintered part and an elastic part are joined by spot welding.

特許第3553853号公報Japanese Patent No. 3555353

しかしながら、上記したように粉末焼結部と弾性部とがスポット溶接により接合されてなる電解セル用給電体を備えた電解セルが水電解装置に適用された場合に、直流電力が一方のセパレータから他方のセパレータに印加されると、スポット溶接によるナゲットに電流が集中する。集中した電流が、粉末焼結部または弾性部において充分拡散せずに給電体を通過すると、その部分の電流密度が局所的に高くなり、発熱が生じる虞れがある。特に、スポット溶接によるナゲット間の距離が近接する場合には、1つのナゲットに集中した電流が拡散することなく隣接するナゲットに到達するために、当該ナゲットの電流密度が高くなり発熱が生じる虞れがより問題となる。そして、発熱が生じたことにより、局所的な高温が電解質膜へ及ぶと、電解質膜の破損を招く虞がある。   However, as described above, when an electrolysis cell having a power supply body for an electrolysis cell in which a powder sintered portion and an elastic portion are joined by spot welding is applied to a water electrolysis apparatus, DC power is supplied from one separator. When applied to the other separator, the current concentrates on the nugget by spot welding. If the concentrated current passes through the power supply body without sufficiently diffusing in the powder sintered portion or the elastic portion, the current density in the portion becomes locally high, and heat may be generated. In particular, when the distance between nuggets by spot welding is close, the current concentrated on one nugget reaches an adjacent nugget without diffusing, so that the current density of the nugget increases and heat may be generated. Becomes more problematic. And if heat is generated and the local high temperature reaches the electrolyte membrane, the electrolyte membrane may be damaged.

本発明は、上記問題を解決するためになされたもので、電流を充分に拡散させ、電流密度が高くなることによる発熱を防止することで、これに起因する電解質膜破損を防止することのできる電解セル用給電体及び電解セルを提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problem, and it is possible to prevent damage to the electrolyte membrane due to sufficient diffusion of current and prevention of heat generation due to increase in current density. It aims at providing the electric power feeder for electrolysis cells, and an electrolysis cell.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、網状に形成され相互に積層された複数の金属製板材を備え、隣接する各前記金属製板材が個別にスポット溶接され、該スポット溶接によるナゲット間の最小離間距離が下記の数1式により定義される電解セル用給電体を提供する。
In order to solve the above problems, the present invention employs the following means.
The present invention includes a plurality of metal plate members that are formed in a net shape and are stacked on each other, and each of the adjacent metal plate members is spot-welded individually, and the minimum separation distance between the nuggets by the spot welding is expressed by the following formula 1. A power supply for an electrolytic cell defined by the formula is provided.

Figure 2011127215
Figure 2011127215

ここで、rはナゲット間の最小離間距離、R12は前記金属製板材間の接触抵抗値、Rは前記金属製板の面内抵抗値である。 Here, r is the minimum distance between the nugget, R 12 is the contact resistance between the metal plate, the R P is a plane resistance value of the metal plate.

本発明によれば、隣接する金属製板材がスポット溶接される際に、ナゲット間の離間距離をこの金属製板材間の接触抵抗値及び金属製板材の面内抵抗値とにより定められる上記数1式以上とするため、金属製板材に電流に電流が流れたときに任意のナゲットに電流が集中した場合であっても、他のナゲットにこの電流が及ぶことがなくその金属製板材の面内で電流が分散するので、局所的に電流が集中して電流密度が高くなることによる発熱を防止することができる。従って、本発明の電解セル用給電体を電解セルに適用した場合に、金属製板材、すなわち、電解セル用給電体から電解質膜に局所的な高温が及ぶことがなく、高温に起因する電解質膜の破損を防止することができる。   According to the present invention, when adjacent metal plate materials are spot-welded, the separation distance between the nuggets is determined by the contact resistance value between the metal plate materials and the in-plane resistance value of the metal plate material. Therefore, even if the current concentrates on any nugget when the current flows in the metal plate material, the current does not reach other nuggets and the in-plane of the metal plate material Since the current is dispersed, the heat generation due to the local concentration of current and the increase in current density can be prevented. Therefore, when the electrolytic cell power supply of the present invention is applied to an electrolytic cell, the metal plate material, that is, the electrolyte film caused by the high temperature does not reach the electrolyte membrane from the electrolytic cell power supply. Can be prevented from being damaged.

また、上記した電解セル用給電体において、異なる前記金属製板同士のナゲット間の最小離間距離が、数1式で定義されることが好ましい。
本発明によれば、異なる金属製板材同士のナゲット間の最小離間距離が上記した数1式とされているため、金属製板材に電流に電流が流れたときに、いずれかの金属製板材の任意のナゲットに電流が集中した場合であっても、異なる金属製板材のナゲットに電流が及ぶことがない。すなわち、このような場合であっても、異なる金属製板材に電流が至らずに、電流が集中したナゲットを有する金属製板材の面内で電流が分散するので、局所的に電流が集中して電流密度が高くなることによる発熱を防止することができる。
Moreover, in the above-described electrolytic cell power supply body, it is preferable that the minimum separation distance between the nuggets of the different metal plates is defined by the equation (1).
According to the present invention, since the minimum separation distance between the nuggets between different metal plate materials is the above-described formula 1, when a current flows through the metal plate material, any of the metal plate materials Even when the current is concentrated on an arbitrary nugget, the current does not reach the nuggets of different metal plate materials. That is, even in such a case, current does not reach different metal plate materials, and the current is dispersed in the plane of the metal plate material having the nugget where the current is concentrated. Heat generation due to an increase in current density can be prevented.

さらに、上記した電解セル用給電体において、同一の前記金属製板のナゲット間の最小離間距離が、数1式で定義されることが好ましい。
本発明によれば、同一の金属製板材同士のナゲット間の最小離間距離が上記した数1式とされているため、金属製板材に電流に電流が流れたときに、金属製板材の任意のナゲットに電流が集中した場合であっても、同一の金属製板材の他のナゲットに電流が及ぶことがない。すなわち、このような場合であっても、異なる金属製板材に電流が至らずに、同一の金属製板材の面内で電流が分散するので、局所的に電流が集中して電流密度が高くなることによる発熱を防止することができる。
Furthermore, in the above-described electrolytic cell power supply body, it is preferable that the minimum separation distance between the nuggets of the same metal plate is defined by Equation (1).
According to the present invention, since the minimum separation distance between the nuggets of the same metal plate material is the above formula 1, when the current flows through the metal plate material, any of the metal plate materials Even when the current is concentrated on the nugget, the current does not reach other nuggets of the same metal plate. That is, even in such a case, since current does not reach different metal plate materials and current is dispersed within the same metal plate material, current is locally concentrated and current density is increased. It is possible to prevent heat generation.

また、本発明は、一対のセパレータと、前記一対のセパレータの間に設けられ両面に電極が形成された電解質膜と、前記セパレータと前記電解質膜との間に設けられ、網状に形成され相互に積層された複数の金属製板材を備え、隣接する各前記金属製板材が個別にスポット溶接され、該スポット溶接によるナゲット間の最小離間距離が下記の数2式により定義される電解セルを提供する。   Further, the present invention provides a pair of separators, an electrolyte membrane provided between the pair of separators and having electrodes formed on both surfaces, and provided between the separator and the electrolyte membrane, and formed in a net-like shape. Provided is an electrolysis cell comprising a plurality of laminated metal plates, each of the adjacent metal plates is spot welded individually, and the minimum separation distance between nuggets by the spot welding is defined by the following equation (2) .

Figure 2011127215
Figure 2011127215

ここで、rはナゲット間の最小離間距離、R12は前記金属製板材間の接触抵抗値、Rは前記金属製板の面内抵抗値である。 Here, r is the minimum distance between the nugget, R 12 is the contact resistance between the metal plate, the R P is a plane resistance value of the metal plate.

本発明によれば、隣接する金属製板材がスポット溶接される際に、ナゲット間の最小離間距離をこの金属製板材間の接触抵抗値及び金属製板材の面内抵抗値とにより定められる上記数2式とするため、金属製板材に電流に電流が流れたときに任意のナゲットに電流が集中した場合であっても、他のナゲットにこの電流が及ぶことがなくその金属製板材の面内で電流が分散するので、局所的に電流が集中して電流密度が高くなることによる発熱を防止することができる。従って、金属製板材から電解質膜に局所的な高温が及ぶことがなく、高温に起因する電解質膜の破損を防止することができる。   According to the present invention, when adjacent metal plate materials are spot-welded, the above-mentioned number determined by the contact resistance value between the metal plate materials and the in-plane resistance value of the metal plate material as the minimum separation distance between the nuggets. Because it is set to 2 types, even if the current is concentrated on an arbitrary nugget when the current flows in the metal plate, the current does not reach other nuggets and the plane of the metal plate Since the current is dispersed, the heat generation due to the local concentration of current and the increase in current density can be prevented. Therefore, local high temperature does not reach from the metal plate material to the electrolyte membrane, and damage to the electrolyte membrane due to the high temperature can be prevented.

上記した電解セルにおいて、前記電解質膜と前記金属製板材との間に、該金属製板材の面内抵抗値よりも小さい面内抵抗値を有する電流拡散手段を配置することが好ましい。
本発明によれば、電流拡散手段として、金属製板材の面内抵抗値よりも面内抵抗値が更に小さいものを適用することで、電流拡散手段の面内において電流が充分に拡散するので、電流拡散手段が緩衝材として機能し、金属製板材から電解質膜に電流が集中して流れるのを防止する。即ち、電解質膜と金属製板材との間に電流拡散手段を配置することで、電解質膜に局所的な高温が及ぶことを防止するので、高温に起因する電解質膜の破損を防止することができる。なお、電流拡散手段は、その面内抵抗値が給電体との接触抵抗に比して充分に小さいことがより好ましい。
In the above-described electrolytic cell, it is preferable that a current diffusing means having an in-plane resistance value smaller than the in-plane resistance value of the metal plate material is disposed between the electrolyte membrane and the metal plate material.
According to the present invention, by applying a current diffusion means having a smaller in-plane resistance value than the in-plane resistance value of the metal plate material, the current is sufficiently diffused in the plane of the current diffusion means, The current spreading means functions as a buffer material, and prevents current from concentrating and flowing from the metal plate material to the electrolyte membrane. That is, by disposing the current diffusion means between the electrolyte membrane and the metal plate material, it is possible to prevent the local high temperature from being applied to the electrolyte membrane, thereby preventing the electrolyte membrane from being damaged due to the high temperature. . In addition, as for a current spreading | diffusion means, it is more preferable that the in-plane resistance value is sufficiently small compared with the contact resistance with a feeder.

上記した電解セルにおいて、前記電流拡散手段の水電解反応が行われる中央部にスポット溶接がなされていないことが好ましい。
本発明によれば、電流拡散手段の、電解セルにおいて重要となる水電解反応が行われる部分にスポット溶接をなさないことで、電流拡散手段の面内、特に中央部以外において充分に電流が拡散する。
In the above-described electrolysis cell, it is preferable that spot welding is not performed at the central portion where the water electrolysis reaction of the current diffusion means is performed.
According to the present invention, current is sufficiently diffused in the plane of the current spreading means, particularly in the region other than the center part, by not performing spot welding on the portion of the current spreading means where the water electrolysis reaction important in the electrolysis cell is performed. To do.

このように、本発明によれば、電流を充分に拡散させ、電流密度が高くなることによる発熱を防止することで、これに起因する電解質膜破損を防止することができる。   As described above, according to the present invention, the current is sufficiently diffused and the heat generation due to the increase in the current density is prevented, thereby preventing the electrolyte membrane from being damaged.

本発明の給電体の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the electric power feeding body of this invention. 本発明の給電体のスポット溶接によるナゲット間の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship between the nuggets by the spot welding of the electric power feeding body of this invention. 本発明の電解セルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the electrolytic cell of this invention. 本発明の電解セルの他の例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the other example of the electrolytic cell of this invention.

以下に、本発明に係る電解セル用給電体の一実施形態について、図面を参照して説明する。   Below, one Embodiment of the electric power feeder for electrolytic cells which concerns on this invention is described with reference to drawings.

図1は、本実施形態に係る電解セル用給電体(以下、単に「給電体」という)の概略構成を示した断面図である。図1に示すように、給電体1は、給電体1が電解セルに適用されたときに固体高分子電解質膜に対して水を供給できるように、網状に形成された金属製板材として、チタン製のエキスパンドメッシュ2a〜2gを相互に複数積層したものとなっている。なお、本実施形態においては、メッシュ厚さ0.4mm、ひし形に開いたメッシュ開口部の長目方向距離(LW)5.0mm、短目方向距離(SW)2.5mmのエキスパンドメッシュ2a〜2gを7枚積層した例を示しているが、これに限られるものではなく、例えば、網状に形成された金属製板材として、細い線材を編み合わせたワイヤーメッシュや、板に穴を開けたパンチングメタルなどを適用することもできる。また、網状に形成された金属製板材の積層枚数も適宜決定することができる。   FIG. 1 is a cross-sectional view showing a schematic configuration of an electrolytic cell power supply body (hereinafter simply referred to as “power supply body”) according to the present embodiment. As shown in FIG. 1, the feeder 1 is made of titanium as a metal plate formed in a net shape so that water can be supplied to the solid polymer electrolyte membrane when the feeder 1 is applied to an electrolytic cell. A plurality of expanded meshes 2a to 2g made from each other are laminated. In this embodiment, expanded meshes 2a to 2g having a mesh thickness of 0.4 mm, a mesh opening opened in a rhombus, a long direction distance (LW) of 5.0 mm, and a short direction distance (SW) of 2.5 mm. However, the present invention is not limited to this. For example, as a metal plate formed in a net shape, a wire mesh in which thin wires are knitted, or a punching metal in which holes are formed in a plate Etc. can also be applied. In addition, the number of laminated metal plate materials formed in a net shape can be determined as appropriate.

エキスパンドメッシュ2a〜2gは、相互に積層された状態で、隣接する各エキスパンドメッシュ2a〜2gが個別にスポット溶接されることで接合され給電体1をなしている。即ち、各エキスパンドメッシュは、隣接するエキスパンドメッシュ同士が夫々相互にスポット溶接されて接合されることで、全てのエキスパンドメッシュ2a〜2gが接合されている。例えば、給電体1を電解セルに適用する場合には、電解セルのセパレータに1枚目のエキスパンドメッシュを配置し、所定箇所をスポット溶接する。このとき、スポット溶接に用いる一方の電極はセパレータに接続すると共に他方の電極をエキスパンドメッシュに押し当てて電流を通電する。これによりセパレータと1枚目のエキスパンドメッシュが溶接され接合される。続いて、2枚目のエキスパンドメッシュを1枚目のエキスパンドメッシュ上に配置、同様に所定箇所をスポット溶接する。スポット溶接の一方の電極は1枚目のエキスパンドメッシュと同様にセパレータに接続するとともに、他方の電極を2枚目のエキスパンドメッシュに押し当てて電流を通電する。このとき、セパレータと1枚目のエキスパンドメッシュが溶接接合されることがないように電流を通電することで、1枚目と2枚目のエキスパンドメッシュのみが溶接接合される。以下、順次同様の手順を繰り返して所望枚数のエキスパンドメッシュを溶接接合する。このように、隣接するエキスパンドメッシュ同士のみをスポット溶接できる電流を通電することで、隣接するエキスパンドメッシュ同士が夫々相互にスポット溶接されて接合されることで、全てのエキスパンドメッシュ2a〜2gが接合された給電体1を得ることができる。   The expanded meshes 2a to 2g are joined together by spot welding the adjacent expanded meshes 2a to 2g individually in a state where they are stacked on each other. That is, in each expanded mesh, all the expanded meshes 2a to 2g are joined by joining adjacent expanded meshes by spot welding with each other. For example, when the power feeding body 1 is applied to an electrolysis cell, a first expanded mesh is disposed on the separator of the electrolysis cell, and a predetermined location is spot-welded. At this time, one electrode used for spot welding is connected to the separator and the other electrode is pressed against the expanded mesh to pass current. As a result, the separator and the first expanded mesh are welded and joined. Subsequently, the second expanded mesh is disposed on the first expanded mesh, and a predetermined portion is similarly spot welded. One electrode of spot welding is connected to the separator in the same manner as the first expanded mesh, and the other electrode is pressed against the second expanded mesh to pass current. At this time, only the first and second expanded meshes are welded and joined by applying current so that the separator and the first expanded mesh are not welded and joined. Thereafter, the same procedure is sequentially repeated to weld-join a desired number of expanded meshes. In this way, by supplying a current that can spot weld only adjacent expanded meshes, adjacent expanded meshes are spot welded to each other, and all the expanded meshes 2a to 2g are joined. The power feeder 1 can be obtained.

この給電体1に直流電流が印加される場合、各エキスパンドメッシュ2a〜2gの面内電流ベクトル、面内電圧分布、電極電圧、面内抵抗、接触抵抗について以下の表1のように定義することができる。ここで、給電体1に直流電流が印加された場合に、各エキスパンドメッシュ2a〜2gを夫々抵抗と看做すと、抵抗が直列接続された状態と等価となる。従って、電極電圧とは、いずれかのエキスパンドメッシュ2a〜2gに対して陽極側となる電圧及び陰極側となる電圧を意図している。   When a direct current is applied to the feeder 1, the in-plane current vector, in-plane voltage distribution, electrode voltage, in-plane resistance, and contact resistance of each of the expanded meshes 2a to 2g should be defined as shown in Table 1 below. Can do. Here, when a direct current is applied to the power supply body 1, if each of the expanded meshes 2 a to 2 g is regarded as a resistor, this is equivalent to a state in which the resistors are connected in series. Accordingly, the electrode voltage is intended to mean a voltage on the anode side and a voltage on the cathode side with respect to any of the expanded meshes 2a to 2g.

Figure 2011127215
また、各エキスパンドメッシュ2a〜2gの面内電流ベクトルは以下の数3式で定義できる。
Figure 2011127215
The in-plane current vectors of the expanded meshes 2a to 2g can be defined by the following equation (3).

Figure 2011127215
Figure 2011127215

さらに、各エキスパンドメッシュ2a〜2gの面内電流ベクトルの湧き出しは、電極電圧からの電流の流入及び流出の収支から以下の数4式で定義することができる。   Furthermore, the outflow of the in-plane current vector of each of the expanded meshes 2a to 2g can be defined by the following equation (4) from the balance of current inflow and outflow from the electrode voltage.

Figure 2011127215
Figure 2011127215

上記した数3式及び数4式から、以下の数5式に示すように、電圧の支配方程式を得ることができる。   From the above formulas 3 and 4, the voltage governing equation can be obtained as shown in the following formula 5.

Figure 2011127215
Figure 2011127215

さらに、上記数5式は、以下の数6式で表される円筒座標系を用いて、数7式のように表すことができる。   Furthermore, the above equation (5) can be expressed as equation (7) using a cylindrical coordinate system represented by the following equation (6).

Figure 2011127215
Figure 2011127215

Figure 2011127215
Figure 2011127215

なお、R12はRとRの合成抵抗であり、以下の数8式により定義される。 R 12 is a combined resistance of R 1 and R 2 and is defined by the following equation (8).

Figure 2011127215
Figure 2011127215

ここで、以下の数9式のように、無次元距離Xを定義すると、数7式は、以下の数10式に示すように、距離に対して無次元化することができる。   Here, when the dimensionless distance X is defined as in the following Expression 9, the Expression 7 can be made dimensionless with respect to the distance as shown in the following Expression 10.

Figure 2011127215
Figure 2011127215

Figure 2011127215
Figure 2011127215

さらに、数10式の右辺第二項を以下の数11式のように定義することにより、数10式を数12式のように簡略化することができる。   Furthermore, by defining the second term on the right side of Equation (10) as Equation (11) below, Equation (10) can be simplified as Equation (12).

Figure 2011127215
Figure 2011127215

Figure 2011127215
Figure 2011127215

この数12式の微分方程式の特殊解は、0次ベッセル関数(I,K)であることが知られており、これらを用いて数12式の一般解を書くと、C,Cを任意定数として次式のようになる。 It is known that the special solution of the differential equation of Formula 12 is a 0th-order Bessel function (I 0 , K 0 ), and writing the general solution of Formula 12 using these, C 1 , C Assuming 2 is an arbitrary constant, the following formula is obtained.

Figure 2011127215
Figure 2011127215

また、面内電流の同径分布は、変形ベッセル関数の微分に関する漸化式である数14式を用いて、数15式のように表すことができる。   In addition, the same-diameter distribution of the in-plane current can be expressed as Equation 15 using Equation 14 which is a recurrence equation regarding the differentiation of the modified Bessel function.

Figure 2011127215
Figure 2011127215

Figure 2011127215
Figure 2011127215

以上の数式に、X=1となるときに、エキスパンドメッシュ2a〜2gのナゲットに印加された電流の値がおおよそ半減することが判明した。
即ち、数9式から、ナゲット間の最小離間距離rとして、数16式を定義することができる。
From the above formulas, it has been found that when X = 1, the value of the current applied to the nuggets of the expanded meshes 2a to 2g is approximately halved.
That is, from Equation 9, Equation 16 can be defined as the minimum separation distance r between the nuggets.

Figure 2011127215
Figure 2011127215

従って、給電体1は、異なるエキスパンドメッシュ同士のナゲット間、即ち、積層されたエキスパンドメッシュにおける隣接するエキスパンドメッシュのナゲット間についても、また、エキスパンドメッシュ面内におけるナゲット間においても数16式で定義される最小離間距離rを保持したものとなっている。   Therefore, the power feeder 1 is defined by the following equation (16) between nuggets between different expanded meshes, that is, between nuggets of adjacent expanded meshes in the stacked expanded mesh and between nuggets in the expanded mesh plane. The minimum separation distance r is maintained.

図2に、一例として、エキスパンドメッシュ2a〜2gをスポット溶接することで形成される各ナゲットの位置関係を示した。図2の例では、まず、給電体1、即ち、相互に積層された状態におけるエキスパンドメッシュ2a〜2gの電解範囲(直流電流を印加する範囲)を、夫々一辺が最小離間距離rの約3倍の正方形におおよそ9等分している。一枚目のエキスパンドメッシュ2aは、各正方形の中の(1)の位置でスポット溶接されていることを示している。また、2枚目のエキスパンドメッシュ2bは、各正方形の中の(2)の位置でスポット溶接されていることを示している。同様に、3枚目以降のエキスパンドメッシュ2c〜2gは夫々(3)〜(7)の位置でスポット溶接されていることを示している。(1)〜(7)のナゲット間は、各正方形の中でそれぞれ最小離間距離rよりも離間している。また、隣り合う正方形内のナゲット間についても最小離間距離rを保持しており、全体として、全てのナゲット間の距離は最小離間距離rを保っている。   FIG. 2 shows, as an example, the positional relationship of each nugget formed by spot welding the expanded meshes 2a to 2g. In the example of FIG. 2, first, the electrolysis range (a range in which a direct current is applied) of the power supply body 1, that is, the expanded meshes 2 a to 2 g in a stacked state, is approximately three times the minimum separation distance r on each side. It is roughly divided into 9 squares. The first expanded mesh 2a indicates that spot welding is performed at the position (1) in each square. Further, the second expanded mesh 2b indicates that spot welding is performed at the position (2) in each square. Similarly, the third and subsequent expanded meshes 2c to 2g are spot welded at the positions (3) to (7), respectively. The nuggets (1) to (7) are separated from each other by the minimum separation distance r in each square. In addition, the minimum separation distance r is maintained between the nuggets in the adjacent squares, and the distance between all the nuggets as a whole maintains the minimum separation distance r.

続いて、図3を参照しつつ、給電体1を適用した電解セルについて説明する。図3は、電解セル10の概略構成を示す断面図である。
図3に示すように、本実施形態にかかる電解セル10は、一対のセパレータ11a,11b、この一対のセパレータ11a,11bの間に設けられ両面に陽極及び陰極が形成された固体高分子電解質膜12、固体高分子電解質膜12とセパレータ11a,11bとの間に設けられた給電体1a,1b、給電体1a,1bと固体高分子電解質膜12との間に設けられた電流拡散部材13a,13b及びフォトエッチングメッシュ14を備えている。
Next, an electrolysis cell to which the power feeder 1 is applied will be described with reference to FIG. FIG. 3 is a cross-sectional view illustrating a schematic configuration of the electrolytic cell 10.
As shown in FIG. 3, an electrolytic cell 10 according to this embodiment includes a pair of separators 11a and 11b and a solid polymer electrolyte membrane provided between the pair of separators 11a and 11b and having an anode and a cathode formed on both sides. 12, current supply members 1a and 1b provided between the solid polymer electrolyte membrane 12 and the separators 11a and 11b, and current diffusion members 13a provided between the power supply members 1a and 1b and the solid polymer electrolyte membrane 12. 13b and a photoetching mesh 14 are provided.

電流拡散部材13a,13bは、給電体1a,1bのエキスパンドメッシュ2a〜2gの面内抵抗値よりも小さい面内抵抗値を有しており、電流拡散部材13a,13bと給電体1a,1bとは、その中央部にはスポット溶接をなさずに、周縁近傍のみをスポット溶接することにより接合されている。電流拡散部材13a,13bとしては、例えば、厚さ0.1mmのチタン製のエキスパンドメッシュの他ワイヤーメッシュやパンチングメタル等、給電体1a,1bのエキスパンドメッシュ2a〜2gよりも目が細かく厚さの薄いものを適用することができる。なお、より好ましくは、電流拡散部材13a,13bの面内抵抗値が給電体1a,1bのエキスパンドメッシュ2a〜2gとの接触抵抗に比して充分に小さいことが好ましい。また、電流拡散部材13a,13bを複数設けることもできる。   The current spreading members 13a and 13b have in-plane resistance values smaller than the in-plane resistance values of the expanded meshes 2a to 2g of the power feeding bodies 1a and 1b, and the current spreading members 13a and 13b and the power feeding bodies 1a and 1b Are joined by spot welding only in the vicinity of the periphery without spot welding. As the current spreading members 13a and 13b, for example, the mesh is finer than the expanded meshes 2a to 2g of the power feeders 1a and 1b, such as a titanium expanded mesh having a thickness of 0.1 mm, a wire mesh, a punching metal, and the like. Thin ones can be applied. More preferably, the in-plane resistance values of the current diffusion members 13a and 13b are preferably sufficiently smaller than the contact resistances of the power feeders 1a and 1b with the expanded meshes 2a to 2g. Also, a plurality of current spreading members 13a and 13b can be provided.

フォトエッチングメッシュ14は、給電体1a,1bのエキスパンドメッシュ2a〜2gが電解質膜に直接接触すると電解質膜を傷める虞があることから、電解質膜を保護するために設けられるものであり、例えば、フォトエッチング法により加工された厚さ0.1mm、直径0.1mm〜0.2mm程度の孔を有するものが適用される。   The photoetching mesh 14 is provided to protect the electrolyte membrane because the expanded meshes 2a to 2g of the power feeding bodies 1a and 1b may damage the electrolyte membrane when directly in contact with the electrolyte membrane. A material having a thickness of 0.1 mm and a diameter of about 0.1 mm to 0.2 mm processed by an etching method is applied.

以下、このように構成された給電体1又は電解セル10を用いて水電解装置において水電解を行う場合について説明する。
一方のセパレータから他方のセパレータに直流電流が印加されると、電解セル10には水が通過すると共に、セパレータを介して給電体1及び固体高分子電解質膜12に電流が流れ、固体高分子電解質膜12の電極部分において水が電気分解され、水素及び酸素が発生する。このとき、給電体1のいずれかのエキスパンドメッシュにおいて、任意のナゲットに電流が集中することも想定されるが、その場合であっても、各ナゲット間は最小離間距離rを保って設けられているので、そのエキスパンドメッシュはもちろん、異なるエキスパンドメッシュの他のナゲットにこの電流が及ぶことがなく、そのエキスパンドメッシュの面内で電流が分散する。また、固体高分子電解質膜12と給電体1との間に設けられた電流拡散部材13a,13bにより電流拡散部材13a,13bの面内において電流が充分に拡散する。従って、局所的に電流が集中して電流密度が高くなることによる発熱を防止することができ給電体1から固体高分子電解質膜12に局所的な高温が及ぶことがなく、高温に起因する電解質膜の破損を防止することができる。
Hereinafter, a case where water electrolysis is performed in a water electrolysis apparatus using the power feeder 1 or the electrolysis cell 10 configured as described above will be described.
When a direct current is applied from one separator to the other separator, water passes through the electrolytic cell 10, and a current flows through the separator to the power feeder 1 and the solid polymer electrolyte membrane 12. Water is electrolyzed at the electrode portion of the membrane 12 to generate hydrogen and oxygen. At this time, in one of the expanded meshes of the power feeder 1, it is assumed that the current concentrates on an arbitrary nugget. Even in this case, the nuggets are provided with a minimum separation distance r. Therefore, this current does not reach other nuggets of different expanded meshes as well as the expanded mesh, and the currents are distributed in the plane of the expanded mesh. Further, the current is sufficiently diffused in the plane of the current diffusion members 13 a and 13 b by the current diffusion members 13 a and 13 b provided between the solid polymer electrolyte membrane 12 and the power feeder 1. Therefore, it is possible to prevent heat generation due to local concentration of current and increase in current density, and local high temperature does not reach from the power supply 1 to the solid polymer electrolyte membrane 12, and the electrolyte caused by the high temperature. Breakage of the membrane can be prevented.

このように、上記した給電体及び電解セルによれば、ナゲット間の離間距離をこのエキスパンドメッシュ2a〜2g間の接触抵抗値及び各エキスパンドメッシュ2a〜2gの面内抵抗値により定められる最小離間距離以上とするため、エキスパンドメッシュ2a〜2gに電流に電流が流れて任意のナゲットに電流が集中した場合であっても、他のナゲットにこの電流が及ぶことがなくその各エキスパンドメッシュ2a〜2gの面内で電流が分散する。また、固体高分子電解質膜12と給電体1、即ち、エキスパンドメッシュ2a〜2gとの間にエキスパンドメッシュ2a〜2gの面内抵抗値よりも面内抵抗値が更に小さい電流拡散部材13a,13bを配置することで、電流拡散部材13a,13bが緩衝材として機能し、電流拡散部材13a,13bの面内において電流が充分に拡散する。従って、給電体1から固体高分子電解質膜12に電流が集中して流れ、局所的に電流が集中して電流密度が高くなることによる発熱を防止することができる。即ち、固体高分子電解質膜12に局所的な高温が及ぶことを防止するので、高温に起因する固体高分子電解質膜12の破損を防止することができる。   As described above, according to the power supply body and the electrolysis cell described above, the separation distance between the nuggets is determined by the contact resistance value between the expanded meshes 2a to 2g and the in-plane resistance value of each of the expanded meshes 2a to 2g. Therefore, even if the current flows in the expanded meshes 2a to 2g and the current concentrates on any nugget, the current does not reach the other nuggets, and the expanded meshes 2a to 2g The current is distributed in the plane. Further, between the solid polymer electrolyte membrane 12 and the power feeder 1, that is, the expanded meshes 2a to 2g, current diffusion members 13a and 13b having in-plane resistance values smaller than the in-plane resistance values of the expanded meshes 2a to 2g are provided. By disposing, the current spreading members 13a and 13b function as a buffer material, and the current is sufficiently diffused in the plane of the current spreading members 13a and 13b. Therefore, heat can be prevented from flowing due to the current flowing from the power supply 1 to the solid polymer electrolyte membrane 12 and the current being locally concentrated to increase the current density. That is, since the local high temperature is prevented from reaching the solid polymer electrolyte membrane 12, it is possible to prevent the solid polymer electrolyte membrane 12 from being damaged due to the high temperature.

上記した実施形態においては、電解セルの陽極側及び陰極側双方に給電体を設ける構成について説明したが、これに限られることはなく、本実施形態にかかる電解セル用給電体を陽極側又は陰極側のいずれか一方に設ける構成としてもよい。この場合、例えば図4に示す例のように、陰極側の給電体に代えてカーボン繊維焼結体15を設けることができる。図4の例では、カーボン繊維焼結体15とセパレータ11bとの間に高さ調節用の0.1mmのフォトエッチングメッシュ16を設けると共に、カーボン繊維焼結体15と電解質膜との間にカーボンペーパー17を設けた構成としている。   In the above-described embodiment, the configuration in which the power feeding body is provided on both the anode side and the cathode side of the electrolytic cell has been described. However, the present invention is not limited to this, and the power feeding body for electrolysis cell according to the present embodiment is used as the anode side or the cathode. It is good also as a structure provided in either one of the sides. In this case, for example, a carbon fiber sintered body 15 can be provided in place of the cathode-side power feeder as in the example shown in FIG. In the example of FIG. 4, a 0.1 mm photoetching mesh 16 for height adjustment is provided between the carbon fiber sintered body 15 and the separator 11b, and carbon is interposed between the carbon fiber sintered body 15 and the electrolyte membrane. The paper 17 is provided.

1 電解セル用給電体
2a〜2g エキスパンドメッシュ
10 電解セル
11a,11b セパレータ
12 固体高分子電解質膜
13a,13b 電流拡散部材
14 フォトエッチングメッシュ
15 カーボン繊維焼結体
16 フォトエッチングメッシュ
17 カーボンペーパー
DESCRIPTION OF SYMBOLS 1 Electric power feeder 2a-2g for electrolytic cells Expanded mesh 10 Electrolytic cells 11a, 11b Separator 12 Solid polymer electrolyte membrane 13a, 13b Current diffusion member 14 Photoetching mesh 15 Carbon fiber sintered body 16 Photoetching mesh 17 Carbon paper

Claims (6)

網状に形成され相互に積層された複数の金属製板材を備え、
隣接する各前記金属製板材が個別にスポット溶接され、該スポット溶接によるナゲット間の最小離間距離が下記の数1式により定義される電解セル用給電体。
Figure 2011127215
ここで、rはナゲット間の最小離間距離、R12は前記金属製板材間の接触抵抗値、Rは前記金属製板の面内抵抗値である。
Provided with a plurality of metal plates formed in a net shape and stacked on each other,
The power feeding body for an electrolytic cell, wherein each of the adjacent metal plate materials is spot-welded individually, and the minimum separation distance between the nuggets by the spot welding is defined by the following equation (1).
Figure 2011127215
Here, r is the minimum distance between the nugget, R 12 is the contact resistance between the metal plate, the R P is a plane resistance value of the metal plate.
異なる前記金属製板同士のナゲット間の最小離間距離が、数1式で定義される請求項1記載の電解セル用給電体。   The power feeding body for electrolytic cells according to claim 1, wherein a minimum separation distance between nuggets of the different metal plates is defined by Formula 1. 同一の前記金属製板のナゲット間の最小離間距離が、数1式で定義される請求項1又は請求項2記載の電解セル用給電体。   The power supply body for electrolytic cells according to claim 1 or 2, wherein a minimum separation distance between nuggets of the same metal plate is defined by Formula 1. 一対のセパレータと、
前記一対のセパレータの間に設けられ両面に電極が形成された電解質膜と、
前記セパレータと前記電解質膜との間に設けられ、網状に形成され相互に積層された複数の金属製板材を備え、
隣接する各前記金属製板材が個別にスポット溶接され、該スポット溶接によるナゲット間の最小離間距離が下記の数2式により定義される電解セル。
Figure 2011127215
ここで、rはナゲット間の最小離間距離、R12は前記金属製板材間の接触抵抗値、Rは前記金属製板の面内抵抗値である。
A pair of separators;
An electrolyte membrane provided between the pair of separators and having electrodes formed on both sides;
Provided between the separator and the electrolyte membrane, comprising a plurality of metal plate members that are formed in a net shape and stacked on each other,
An electrolytic cell in which each of the adjacent metal plate materials is spot-welded individually, and the minimum separation distance between the nuggets by the spot welding is defined by the following equation (2).
Figure 2011127215
Here, r is the minimum distance between the nugget, R 12 is the contact resistance between the metal plate, the R P is a plane resistance value of the metal plate.
前記電解質膜と前記金属製板材との間に、該金属製板材の面内抵抗値よりも小さい面内抵抗値を有する電流拡散手段を配置した請求項4記載の電解セル。   The electrolytic cell according to claim 4, wherein current spreading means having an in-plane resistance value smaller than an in-plane resistance value of the metal plate material is disposed between the electrolyte membrane and the metal plate material. 前記電流拡散手段の水電解反応が行われる中央部にスポット溶接がなされていない請求項5記載の電解セル。
6. The electrolytic cell according to claim 5, wherein spot welding is not performed at a central portion where water electrolysis reaction of the current spreading means is performed.
JP2009289809A 2009-12-21 2009-12-21 Electrolytic cell feeder and electrolytic cell Expired - Fee Related JP5427588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289809A JP5427588B2 (en) 2009-12-21 2009-12-21 Electrolytic cell feeder and electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289809A JP5427588B2 (en) 2009-12-21 2009-12-21 Electrolytic cell feeder and electrolytic cell

Publications (2)

Publication Number Publication Date
JP2011127215A true JP2011127215A (en) 2011-06-30
JP5427588B2 JP5427588B2 (en) 2014-02-26

Family

ID=44290111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289809A Expired - Fee Related JP5427588B2 (en) 2009-12-21 2009-12-21 Electrolytic cell feeder and electrolytic cell

Country Status (1)

Country Link
JP (1) JP5427588B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252822B1 (en) * 2012-05-14 2013-04-11 김재갑 Electrolysis for mesh type electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071070U (en) * 1993-02-16 1995-01-10 株式会社フジプレシャス Laminated mesh electrode
JPH07207838A (en) * 1994-01-25 1995-08-08 Toshio Takemoto Anchorage joint node reinforcing bar, reinforced concrete structure with anchorage joint node, and manufacture thereof
JP2001279479A (en) * 2000-03-30 2001-10-10 Shinko Pantec Co Ltd Power feeder and electrolytic cell
JP2003226992A (en) * 2002-02-06 2003-08-15 Shinko Pantec Co Ltd Power feeding body for electrolytic cell, and electrolytic cell
JP2009149932A (en) * 2007-12-19 2009-07-09 Kurita Water Ind Ltd Electrode for water electrolytic device and water electrolytic device using the same
JP2009279597A (en) * 2008-05-20 2009-12-03 Sumitomo Metal Ind Ltd Resistance welding method and resistance welding joined body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071070U (en) * 1993-02-16 1995-01-10 株式会社フジプレシャス Laminated mesh electrode
JPH07207838A (en) * 1994-01-25 1995-08-08 Toshio Takemoto Anchorage joint node reinforcing bar, reinforced concrete structure with anchorage joint node, and manufacture thereof
JP2001279479A (en) * 2000-03-30 2001-10-10 Shinko Pantec Co Ltd Power feeder and electrolytic cell
JP2003226992A (en) * 2002-02-06 2003-08-15 Shinko Pantec Co Ltd Power feeding body for electrolytic cell, and electrolytic cell
JP2009149932A (en) * 2007-12-19 2009-07-09 Kurita Water Ind Ltd Electrode for water electrolytic device and water electrolytic device using the same
JP2009279597A (en) * 2008-05-20 2009-12-03 Sumitomo Metal Ind Ltd Resistance welding method and resistance welding joined body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252822B1 (en) * 2012-05-14 2013-04-11 김재갑 Electrolysis for mesh type electrode

Also Published As

Publication number Publication date
JP5427588B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
Kerzenmacher et al. A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability
US9782853B2 (en) Gas diffusion electrode
JP6129809B2 (en) Differential pressure type high pressure water electrolyzer
US8815063B2 (en) High-pressure water electrolysis apparatus
JP6081420B2 (en) Differential pressure type high pressure water electrolyzer
JP2014194877A (en) Fuel cell-related parts and manufacturing method therefor
JP2016507876A5 (en)
JP6887100B2 (en) Membrane electrode assembly and electrochemical hydrogen pump
US9755252B2 (en) Fuel cell
JP2006222074A (en) Solid oxide fuel cell
JP5907441B2 (en) Fuel cell
JP2016515667A (en) Electrolysis cell for electrowinning of metals
JP5427588B2 (en) Electrolytic cell feeder and electrolytic cell
JP2018090838A5 (en)
JP2016096033A (en) Fuel cell stack
JP2010189710A (en) Electrolysis equipment
JP2014089893A (en) Fuel cell
JP2006196325A (en) Solid oxide fuel cell
US20190341627A1 (en) Gas distributor plate for a fuel cell and/or electrolyzer
JP6834737B2 (en) Fuel cell
JP2017018915A (en) Electric cell and electrolysis water generation device
US10232462B2 (en) Spot welding
JP6306879B2 (en) Manifold unit and electrolytic cell
JP6025689B2 (en) Differential pressure type high pressure water electrolyzer
JP6426655B2 (en) Water electrolyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R151 Written notification of patent or utility model registration

Ref document number: 5427588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees