JP2003226681A - Metal hydroxide and water layer - Google Patents

Metal hydroxide and water layer

Info

Publication number
JP2003226681A
JP2003226681A JP2002022771A JP2002022771A JP2003226681A JP 2003226681 A JP2003226681 A JP 2003226681A JP 2002022771 A JP2002022771 A JP 2002022771A JP 2002022771 A JP2002022771 A JP 2002022771A JP 2003226681 A JP2003226681 A JP 2003226681A
Authority
JP
Japan
Prior art keywords
layered double
double hydroxide
glutamine
asparagine
arginine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002022771A
Other languages
Japanese (ja)
Other versions
JP4129521B2 (en
Inventor
Toshiyuki Hibino
俊行 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002022771A priority Critical patent/JP4129521B2/en
Publication of JP2003226681A publication Critical patent/JP2003226681A/en
Application granted granted Critical
Publication of JP4129521B2 publication Critical patent/JP4129521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal hydroxide and water layer having a good compatibility with a resin, capable of being peeled and dispersed until its basic single layer and thereby mixing with the resin in a state of a molecular level or close to the molecular level. <P>SOLUTION: This layered double hydroxide is incorporated with ≥1 kind amino acids selected from a group consisting of asparagine, glutamine and alginine as inter layer ions of the layered double hydroxide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂用配合剤とし
て分散性が好適な層状複水酸化物に関するものである。
TECHNICAL FIELD The present invention relates to a layered double hydroxide having a suitable dispersibility as a compounding agent for resins.

【0002】[0002]

【従来の技術】層状複水酸化物またはハイドロタルサイ
トと呼ばれる化合物は、以下の一般式で表される層状化
合物である。 [M2+ 1-xM3+ x(OH)2][An- x/n・mH2O] ここで M2+ は2価金属、 M3+ は3価金属、 An- は層間
陰イオンで、mは適当な有理数、nは整数、xは1を超えな
い有理数である。一般式において前半部の[M2+ 1 -xM
3+ x(OH)2]は、層状複水酸化物の基本層またはホスト層
と呼ばれる金属水酸化物層であり、この基本層が一般式
後半部の陰イオンと水分子から成る中間層またはゲスト
層と呼ばれる層と交互に積み重なっている。
2. Description of the Related Art A compound called layered double hydroxide or hydrotalcite is a layered compound represented by the following general formula. [M 2+ 1-x M 3+ x (OH) 2 ] [A n- x / n・ mH 2 O] where M 2+ is a divalent metal, M 3+ is a trivalent metal, and A n- is Interlayer anion, where m is an appropriate rational number, n is an integer, and x is a rational number that does not exceed 1. In the general formula, the first half [M 2 + 1 -x M
3+ x (OH) 2 ] is a metal hydroxide layer called a basic layer or host layer of layered double hydroxide, and this basic layer is an intermediate layer composed of anions and water molecules in the latter half of the general formula or It is stacked alternately with layers called guest layers.

【0003】層状複水酸化物は、難燃化剤、安定剤、成
型改質剤および保温性改良剤などとして樹脂に添加され
利用されてきた。特に、環境への配慮から毒性のない金
属より構成されているMg-Al系層状複水酸化物は、層状
複水酸化物のなかでも最もよく利用されている。しか
し、樹脂練り込み時の分散性は悪く、例えば特開2000-2
90451、特開2000-290452および特開2001-164042など様
々な検討がなされてきた。過去のこうした検討は、ある
程度の分散性向上を達成してはいるが、技術の進歩に伴
い、分散性への要求はさらに厳しくなることは必至であ
る。
Layered double hydroxides have been used by being added to resins as flame retardants, stabilizers, molding modifiers and heat retention modifiers. In particular, the Mg-Al layered double hydroxide, which is composed of a metal that is not toxic in consideration of the environment, is most widely used among the layered double hydroxides. However, the dispersibility at the time of kneading the resin is poor, and, for example, JP-A 2000-2
Various studies such as 90451, JP 2000-290452 A, and JP 2001-164042 have been made. Although such studies in the past have achieved some degree of improvement in dispersibility, it is inevitable that the demand for dispersibility will become more stringent with the progress of technology.

【0004】最近になりT. Hibino and W. Jones (2000
年、Journal of Materials Chemistry、第11巻、1321-1
323頁)やF. Leroux and J.-P. Besse (2001年、Chemist
ry of Materials、第13巻、3507-3515頁)の論文におい
て、ナノスケールで樹脂と層状複水酸化物が混合できる
可能性が示唆された。両者とも層状複水酸化物を有機溶
媒中で、基本層単層にまで剥離させて分散させる技術を
報告している。
Recently, T. Hibino and W. Jones (2000
Year, Journal of Materials Chemistry, Volume 11, 1321-1
323) and F. Leroux and J.-P. Besse (2001, Chemist
ry of Materials, vol. 13, p. 3507-3515) suggested the possibility of mixing resin and layered double hydroxide at nanoscale. Both of them have reported a technique in which a layered double hydroxide is exfoliated and dispersed in an organic solvent to a basic layer single layer.

【0005】この技術を利用すれば、溶媒中で層状複水
酸化物を基本層単層まで剥離・分散し、溶媒に溶かした
樹脂と溶液中で分子レベルまたは分子レベルに近い状態
で混合可能である。剥離・分散に要する条件は、前者は
溶媒としてホルムアミドを用いて室温で即時反応、後者
では、ブタノールを用いて120℃−16時間還流を必要と
する。前者はMg-Al-系層状複水酸化物において、層間陰
イオンとしてグリシンを用い、後者は、Zn-Al系層状複
水酸化物においてドデシル硫酸を用いている。
By using this technique, the layered double hydroxide can be exfoliated and dispersed up to the basic layer single layer in a solvent, and can be mixed with the resin dissolved in the solvent at a molecular level or in a state close to a molecular level in the solution. is there. The conditions required for peeling / dispersion are that the former requires immediate reaction at room temperature with formamide as a solvent, and the latter requires reflux with butanol at 120 ° C. for 16 hours. The former uses glycine as an interlayer anion in Mg-Al-based layered double hydroxide, and the latter uses dodecylsulfate in Zn-Al based layered double hydroxide.

【0006】しかし、前者においては、グリシン以外の
アミノ酸、すなわち、セリン及びアスパラギン酸を使用
した場合には、層剥離が起こらないことが明らかにされ
ている。また、後者においては、Mg-Al-ドデシル硫酸系
およびNi-Al-ドデシル硫酸系層状複水酸化物は合成でき
なかったとF. Lerouxら(2001年、Journal of Materials
Chemistry、第11巻、105-112頁)の論文で述べられてい
る。グリシンは、ドデシル硫酸や他のアミノ酸と比較し
てかなり安価であるが、樹脂との親和性はドデシル硫酸
及び他のアミノ酸と比較して弱い。また前述のようにド
デシル硫酸系層状複水酸化物は、単層剥離の操作に還流
を必要として煩雑である上、Zn-Al系以外は合成に成功
していない。このような経緯から分子レベルで樹脂に分
散可能な樹脂配合剤として満足できる性能を有する層状
複水酸化物は未だ得られてはいない。
However, it has been clarified in the former that delamination does not occur when amino acids other than glycine, that is, serine and aspartic acid are used. In the latter case, Mg-Al-dodecyl sulfate-based and Ni-Al-dodecyl sulfate-based layered double hydroxides could not be synthesized, F. Leroux et al. (2001, Journal of Materials).
Chemistry, Vol. 11, pp. 105-112). Glycine is considerably less expensive than dodecylsulfate and other amino acids, but has a weaker affinity for resins than dodecylsulfate and other amino acids. Further, as described above, the dodecyl sulfate-based layered double hydroxide is complicated because it requires reflux for the operation of peeling the single layer, and besides the Zn-Al system, it has not been successfully synthesized. From such a background, a layered double hydroxide having satisfactory performance as a resin compounding agent dispersible in a resin at a molecular level has not yet been obtained.

【0007】[0007]

【発明の解決しようとする課題】本発明の課題は、上記
従来の層状複水酸化物の問題点を解消することにあり、
具体的には、樹脂との親和性が良好であるとともに、そ
の基本層単層まで剥離・分散可能で、これにより分子レ
ベルまたは分子レベルに近い状態で樹脂と混合しうる層
状複水酸化物を提供することにある。
An object of the present invention is to solve the problems of the conventional layered double hydroxides described above,
Specifically, it has a good affinity with the resin, and can peel and disperse even up to its basic layer single layer, thereby forming a layered double hydroxide that can be mixed with the resin at the molecular level or near the molecular level. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者等は、鋭意研究
の結果、層状複水酸化物の層間イオンとして、アスパラ
ギン、グルタミンおよびアルギニンからなる群から選ば
れた1種または2種以上のアミノ酸を含有せしめること
により、得られた層状複水酸化物が、樹脂配合剤として
極めて優れた性能を有し、上記従来技術の問題点を解消
しうることを見いだし、本発明を完成させるに至ったも
のである。
Means for Solving the Problems As a result of earnest research, the present inventors have found that one or more amino acids selected from the group consisting of asparagine, glutamine and arginine are used as the interlayer ions of the layered double hydroxide. By containing the above, the obtained layered double hydroxide has an extremely excellent performance as a resin compounding agent, and has found that the problems of the above-mentioned prior art can be solved, and has completed the present invention. It is a thing.

【0009】すなわち、本発明は次の(1)〜(11)
に関するものである。 (1)金属水酸化物からなる基本層と、陰イオン及び水
分子とからなる中間層が交互に積層した層状複水酸化物
において、中間層を構成する層間イオンとしてアスパラ
ギン、グルタミンおよびアルギニンからなる群から選ば
れる1種または2種以上のアミノ酸を含有することを特
徴とする層状複水酸化物。 (2)1種または2種以上の2価金属塩、及び/または
1種または2種以上の3価金属塩と、アスパラギン、グ
ルタミンおよびアルギニンからなる群から選ばれる1種
または2種以上のアミノ酸とをアルカリ条件下、溶液状
態で混合することにより共沈殿させて得られたものであ
る上記(1)載の層状複水酸化物。 (3)アスパラギン、グルタミンおよびアルギニンから
なる群から選ばれた1種または2種以上のアミノ酸の使
用量が、使用する金属塩中の陰イオン成分の合計モル数
の2倍未満である上記(2)に記載の層状複水酸化物。 (4)上記(1)〜(3)のいずれか一に記載の層状複
水酸化物が、基本層である金属水酸化物層に剥離、分散
された形態で含有する液状物。 (5)上記(1)〜(3)のいずれか一に記載の層状複
水酸化物にホルムアミドを添加したものである上記
(4)に記載の液状物。 (6)上記(1)〜(3)のいずれか一項記載の層状複
水酸化物、若しくは上記(4)または(5)に記載の液
状物を含有する樹脂用配合剤。 (7)1種または2種以上の2価金属塩、及び/または
1種または2種以上の3価金属塩と、アスパラギン、グ
ルタミンおよびアルギニンからなる群から選ばれる1種
または2種以上のアミノ酸とをアルカリ条件下、溶液状
態で混合することにより共沈殿させることを特徴とする
層状複水酸化物の製造法。 (8)種以上のアミノ酸の使用量が、使用する金属塩中
の陰イオン成分の合計モル数の2倍未満である上記
(7)に記載の層状複水酸化物の製造方法。 (9)共沈殿の後、共沈殿物を洗浄、乾燥することを特
徴とする上記(7)または(8)に記載の層状複水酸化
物製造方法。 (10)層状複水酸化物の製造工程を、二酸化炭素及び
/または炭酸イオンの非存在下で行うことを特徴とする
上記(7)〜(9)いずれか一に記載の層状複水酸化物
の製造方法。 (11)層状複水酸化物の製造工程を、窒素気流中で行
うことを特徴とする(7)〜(10)いずれか一に記載
の層状複水酸化物の製造方法。
That is, the present invention provides the following (1) to (11).
It is about. (1) In a layered double hydroxide in which a basic layer made of metal hydroxide and an intermediate layer made of anions and water molecules are alternately laminated, asparagine, glutamine and arginine are made as interlayer ions constituting the intermediate layer. A layered double hydroxide containing one or more amino acids selected from the group. (2) One or more divalent metal salts, and / or one or more trivalent metal salts, and one or more amino acids selected from the group consisting of asparagine, glutamine, and arginine. The layered double hydroxide according to (1) above, which is obtained by coprecipitation by mixing and in a solution state under alkaline conditions. (3) The use amount of one or more amino acids selected from the group consisting of asparagine, glutamine and arginine is less than twice the total number of moles of the anionic component in the metal salt used (2) ). (4) A liquid material containing the layered double hydroxide according to any one of (1) to (3) above in a form in which the layered double hydroxide is peeled off and dispersed in the metal hydroxide layer which is the basic layer. (5) The liquid material according to (4) above, which is obtained by adding formamide to the layered double hydroxide according to any one of (1) to (3) above. (6) A compounding agent for resins containing the layered double hydroxide according to any one of (1) to (3) above, or the liquid material according to (4) or (5) above. (7) One or more divalent metal salts, and / or one or more trivalent metal salts, and one or more amino acids selected from the group consisting of asparagine, glutamine, and arginine. A method for producing a layered double hydroxide, which comprises co-precipitating by mixing and in a solution under alkaline conditions. (8) The method for producing a layered double hydroxide as described in (7) above, wherein the amount of the at least two kinds of amino acids used is less than twice the total number of moles of the anionic components in the metal salt used. (9) The method for producing a layered double hydroxide according to the above (7) or (8), which comprises washing and drying the coprecipitate after the coprecipitation. (10) The layered double hydroxide as described in any one of (7) to (9) above, wherein the step of producing the layered double hydroxide is performed in the absence of carbon dioxide and / or carbonate ions. Manufacturing method. (11) The method for producing a layered double hydroxide according to any one of (7) to (10), wherein the step of producing the layered double hydroxide is performed in a nitrogen stream.

【0010】本発明の層状複水酸化物は、1種または2
種以上の2価金属塩、及び/または1種または2種以上
の3価金属塩と、アスパラギン、グルタミンおよびアル
ギニンからなる群から選ばれる1種または2種以上のア
ミノ酸とをアルカリ条件下、溶液状態で混合することに
より共沈殿させることにより得られ、金属水酸化物から
なる基本層と、陰イオン及び水分子とからなる中間層が
交互に積層した層状複水酸化物において、中間層を構成
する層間イオンとして、アスパラギン、グルタミンおよ
びアルギニンからなる群から選ばれる1種または2種以
上のアミノ酸を含有するものである。
The layered double hydroxide of the present invention is one kind or two kinds.
A solution of one or more divalent metal salts, and / or one or more trivalent metal salts, and one or more amino acids selected from the group consisting of asparagine, glutamine and arginine under alkaline conditions. In a layered double hydroxide obtained by coprecipitation by mixing in a state, a basic layer made of a metal hydroxide and an intermediate layer made of anions and water molecules are alternately laminated to form an intermediate layer. The interlayer ion contains one or more amino acids selected from the group consisting of asparagine, glutamine and arginine.

【0011】本発明の層状複水酸化物を一般式で表す
と、以下のとおりである。 [M2+ 1-xM3+ x(OH)2][ΣAn− ・mH2O] 式中、M2+ は、使用した金属塩由来の2価金属イオン、
M3+ は、使用した金属塩由来の3価金属イオンであり、
一般式において前半部の[M2+ 1-xM3+ x(OH)2]は、層状複
水酸化物の基本層またはホスト層と呼ばれる金属水酸化
物層である。同後半部の[ΣAn− ・mH2O]は、は陰イ
オン群と水分子からなる中間層であり、A n−は、アス
パラギン、グルタミンおよびアルギニンから選ばれるい
ずれか1種または2種以上のアミノ酸、金属塩由来の陰
イオン、及びその他上記共沈殿溶液中に含まれる水酸化
物イオン等の各陰イオンを表し、yは各陰イオンの上記
一般式における組成比、nはイオン価数を示す。したが
って、ΣAn− 、は各陰イオンを合わせたイオン群の
総体を示し、各陰イオンにおけるyに価数nを掛けたも
のは全陰イオンに対する各陰イオンの電荷量としての割
合(電荷占有率)を意味し、合計した数(Σy×n)はx
に一致する。また、xは1を越えない有理数であり、m
は、不定な有理数を示す。
The layered double hydroxide of the present invention is represented by a general formula.
And as follows. [M2+ 1-xM3+ x(OH)2] [ΣAn- y・ MH2O] Where M2+ Is a divalent metal ion derived from the metal salt used,
M3+ Is a trivalent metal ion derived from the metal salt used,
[M in the first half of the general formula2+ 1-xM3+ x(OH)2] Is a layered compound
Metal hydroxide called base layer or host layer of hydroxide
It is a physical layer. [ΣA in the latter half of the samen- y・ MH2O]
An intermediate layer consisting of the ON group and water molecules, A n-Is ass
Choose from Paragin, Glutamine and Arginine
One or two or more kinds of amino acids, anions derived from metal salts
Hydroxylation contained in ions and other co-precipitation solutions
Represents each anion such as a product ion, and y is the above of each anion.
The composition ratio in the general formula, n represents the ionic valence. But
ΣAn- y, Of the ion group that combines each anion
The total is shown and y in each anion is multiplied by the valence number n.
Is the ratio of the charge of each anion to all the anions.
(Charge occupancy), and the total number (Σy × n) is x
Matches Also, x is a rational number that does not exceed 1, and m
Indicates an indefinite rational number.

【0012】本発明の層状複酸化物をさらに具体的に説
明すると、上記2価金属イオンは、具体的には、M
g2+、Zn2+、Co2+、Ni2+及びCu2+等であり、
同3価金属イオンは、Al3+、Fe3+、Cr3+及びCo
3+等である。また、上記金属塩由来の陰イオンには、C
l、NO3 及びSO4 2−等が挙げられる。 本発明の層状
酸化物としては、Mg-Al系層状複酸化物、Ni-Al系層状複
酸化物、Co-Al系層状複酸化物あるいはZn-Al系層状複酸
化物が挙げられるが、特にこれらに限定されるものでは
ない。また、上記構造式中xは0.167〜0.250が好まし
い。また上記アミノ酸の電荷占有率y×nは、高々20%
でも単層剥離を起こすのに十分である。
The layered complex oxide of the present invention will be described more specifically. The divalent metal ion is specifically M.
g 2+ , Zn 2+ , Co 2+ , Ni 2+, Cu 2+, etc.,
The same trivalent metal ions are Al 3+ , Fe 3+ , Cr 3+ and Co.
3+ etc. Further, the anion derived from the metal salt, C
l , NO 3 −, SO 4 2− and the like. Examples of the layered oxide of the present invention include Mg-Al-based layered double oxides, Ni-Al-based layered double oxides, Co-Al-based layered double oxides and Zn-Al-based layered double oxides. It is not limited to these. Further, in the above structural formula, x is preferably 0.167 to 0.250. In addition, the charge occupancy y × n of the above amino acids is at most 20%
However, it is sufficient to cause single-layer peeling.

【0013】本発明に用いる層状複水酸化物の製造手段
は、すでに公知となっている他の層状複水酸化物の共沈
殿による合成法、例えばS. Miyata (1980年、Clays and
Clay Minerals、第28巻、50-56頁)などに報告されてい
る方法と類似するが、空気中に存在する二酸化炭素由来
の炭酸イオンが生産物に混入すると、基本層単相への剥
離現象が起きにくくなるので、合成およびその後の洗浄
・乾燥は工程は、二酸化炭素及び/または炭酸イオンの
非存在下、例えば窒素気流中で行うことがよく、また、
使用する水は、予め炭酸イオンを除去しておくことが好
ましい。
The method for producing the layered double hydroxide used in the present invention is a known synthesis method by coprecipitation of other layered double hydroxides, for example, S. Miyata (1980, Clays and
Clay Minerals, Vol. 28, pp. 50-56), but similar to the method reported in Clay Minerals, Vol. 28, pages 50-56, etc. Is less likely to occur, the step of synthesis and subsequent washing / drying may be performed in the absence of carbon dioxide and / or carbonate ions, for example, in a nitrogen stream, and
It is preferable to remove carbonate ions from the water used in advance.

【0014】本発明における共沈殿による合成法は、例
えば、マグネシウム、亜鉛、コバルト、ニッケル等の2
価金属、及び/またはアルミニウム、鉄、クロム等の3
価金属の硝酸塩、塩化物あるいは硫酸塩を溶かした水溶
液と、アスパラギン、グルタミンおよびアルギニンから
選ばれるいずれか1種または2種以上のアミノ酸を溶か
した水溶液を調整し、この2つの水溶液をゆっくりと混
合する方法が好適である。
The synthesis method by co-precipitation in the present invention can be carried out by using, for example, magnesium, zinc, cobalt, nickel, etc.
Valent metal and / or 3 such as aluminum, iron, chromium
Prepare an aqueous solution in which a nitrate, chloride or sulfate of a valent metal is dissolved and an aqueous solution in which any one or more amino acids selected from asparagine, glutamine and arginine are dissolved, and slowly mix these two aqueous solutions. The method of doing is suitable.

【0015】この場合、混合するときは、NaOH水溶液等
を適宜加えて常にpHがアルカリ性側にあるようにする、
これにより、上記アミノ酸は、水溶液中では一価の陰イ
オンとして存在し、合成される層状複水酸化物の層間陰
イオン成分の一部として中間層を形成する。
In this case, when mixing, an aqueous solution of NaOH or the like is appropriately added so that the pH is always on the alkaline side.
As a result, the amino acid exists as a monovalent anion in the aqueous solution and forms an intermediate layer as a part of the interlayer anion component of the synthesized layered double hydroxide.

【0016】一方、層間陰イオン成分として、本発明の
アスパラギン、グルタミンおよびアルギニンから選ばれ
るいずれか1種または2種以上のアミノ酸を使用する場
合、Mg-Al系層状複水酸化物の剥離・分散は非常に効果
的であるが、Mg系では塩基性が強すぎるため、樹脂の種
類によっては、樹脂の安定化剤として使用する場合、十
分な特性が得られないことがある。
On the other hand, when any one kind or two or more kinds of amino acids selected from asparagine, glutamine and arginine of the present invention is used as an interlayer anion component, peeling / dispersion of Mg-Al type layered double hydroxide is used. Is extremely effective, but since Mg is too basic, depending on the type of resin, sufficient properties may not be obtained when used as a stabilizer for the resin.

【0017】すなわち、理由は明らかではないが、例え
ば、特開平11−255973号公報においては、ポリ
オレフィン樹脂の耐熱劣化性と成形加工機の発錆防止性
を向上させるには層状複水酸化物を添加物とした場合、
Mg系層状複酸化物からZn系層状複水酸化物に切り替
えると良好な結果が得られる旨の記載がある。しかし、
Mg以外の2価金属で同様な層状複水酸化物を作製しよ
うとした場合アミノ酸類はキレート効果があり、Mg以
外の2価金属はMgよりもキレート化され易いため、水酸
化物合成時のアミノ酸と金属イオンとの一部キレート化
により可溶化してしまい、Mg以外の金属系層状複水酸化
物を効率的に得るのが難しくなることがある。
That is, although the reason is not clear, for example, in JP-A No. 11-255973, in order to improve the heat deterioration resistance of the polyolefin resin and the rust preventive property of the molding machine, a layered double hydroxide is used. When used as an additive,
It is described that good results can be obtained by switching from the Mg-based layered double oxide to the Zn-based layered double hydroxide. But,
When trying to make a similar layered double hydroxide with a divalent metal other than Mg, amino acids have a chelating effect, and divalent metals other than Mg are more easily chelated than Mg. It may be solubilized by partial chelation of an amino acid and a metal ion, and it may be difficult to efficiently obtain a metal-based layered double hydroxide other than Mg.

【0018】これに対しては、アミノ酸と水酸化物イオ
ン以外の陰イオン、すなわち使用する金属塩における陰
イオン成分の総モル数に対し、総モル数でその2倍未満
の量で、アスパラギン、グルタミンおよびアルギニンを
使用することにより、水酸化物合成時のアミノ酸と金属
イオンのキレート化を防ぐことができる。さらにアミノ
酸の使用量について具体的にいうと、 アスパラギン、
グルタミンおよびアルギニンの使用量は、好ましくは使
用する金属塩における陰イオン成分の総モル数に対し、
総モル数で2倍未満、さらに好ましくは0.1倍前後であ
る。
In contrast, asparagine, which is less than twice the total number of moles of anions other than amino acids and hydroxide ions, that is, the total number of moles of anion components in the metal salt used, By using glutamine and arginine, chelation of amino acid and metal ion can be prevented during the hydroxide synthesis. More specifically, regarding the amount of amino acids used, asparagine,
The amount of glutamine and arginine used is preferably relative to the total number of moles of the anionic component in the metal salt used,
The total number of moles is less than 2 times, more preferably around 0.1 times.

【0019】得られた本発明の層状複水酸化物は、適当
な溶媒、例えばホルムアミドを用いることにより、極め
て容易に各基本層が剥離し、溶媒中に分散する。本発明
による層状複水酸化物は、ホルムアミドに投入すれば、
室温において単に攪拌するだけで剥離現象が発現する。
In the obtained layered double hydroxide of the present invention, each basic layer is very easily peeled off and dispersed in the solvent by using a suitable solvent such as formamide. The layered double hydroxide according to the present invention, when added to formamide,
The peeling phenomenon appears by simply stirring at room temperature.

【0020】したがって、本発明の層状複水酸化物を上
記ホルムアミド等の適当な溶媒に分散した液状物は、樹
脂配合剤として、分子レベルまたは分子レベルに近い状
態で樹脂と混合することができる。また、このような予
め溶媒に分散させて用いずとも、本発明の層状複水酸化
物を樹脂に直接添加したのち上記適当な溶媒を添加し、
混練してもよい。
Therefore, the liquid material obtained by dispersing the layered double hydroxide of the present invention in a suitable solvent such as the above formamide can be mixed with the resin as a resin compounding agent at a molecular level or in a state close to the molecular level. Also, without using such a pre-dispersed solvent, after adding the layered double hydroxide of the present invention directly to the resin, the appropriate solvent is added,
You may knead.

【0021】本発明の層状複水酸化物が配合される樹脂
としては、極性基を適当に導入して変性したポリエチレ
ン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル及
びそれらのポリマーアロイなどが挙げられる。
Examples of the resin to which the layered double hydroxide of the present invention is added include polyethylene, polypropylene, polystyrene, polyvinyl chloride and polymer alloys thereof, which are modified by appropriately introducing polar groups.

【0022】また、本発明の層状複水酸化物は、樹脂と
の親和性に極めて優れている。例えば、従来のMg-Al−
グリシン系層状複水酸化物は、層間陰イオンとして、グ
リシンを使用するものであり、グリシンはアミノ酸類の
なかで、最も簡単な構造を有し、炭素原子は2つしかな
く、またアルキル基がないため、樹脂との親和性は劣
る。これに対して、本発明において使用するアスパラギ
ン、グルタミンおよびアルギニンは、側鎖にアルキル基
を有するため、グリシンと比較して樹脂に対しはるかに
高い親和性を有する。
Further, the layered double hydroxide of the present invention has extremely excellent affinity with resins. For example, conventional Mg-Al-
Glycine-based layered double hydroxide uses glycine as an interlayer anion. Glycine has the simplest structure among amino acids and has only two carbon atoms and an alkyl group. Therefore, the affinity with the resin is poor. On the other hand, since asparagine, glutamine and arginine used in the present invention have an alkyl group in the side chain, they have a much higher affinity for the resin than glycine.

【0023】したがって、本発明の層状複水酸化物は、
樹脂に対する難燃化剤、安定剤、成型改質剤、透明性お
よび保温性改良剤等の配合剤として極めて有用なもので
ある。
Therefore, the layered double hydroxide of the present invention is
It is extremely useful as a compounding agent for resins such as flame retardants, stabilizers, molding modifiers, and transparency and heat retention improving agents.

【0024】以下に、本発明の実施例を示すが、本発明
は特にこれにより限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited thereto.

【実施例1】L-アスパラギン1水和物8.45gを、水に溶か
した後、2N-NaOH水溶液を適量加えてpHを10に調整し
た。これとは別に、硝酸マグネシウム6水和物4.81gと
硝酸アルミニウム6水和物2.34gを溶かした水溶液を用意
し、上述のL-アスパラギン水溶液に50ml/hの速度で加え
た。このとき、混合溶液は常にpHが10となるように、2N
-NaOH水溶液を適宜加えた。以上により得られた共沈殿
物を、水洗・風乾後、メノウ乳鉢により摩砕して粉末試
料を得た。これら一連の実験は、空気中からの炭酸イオ
ンの混入を避けるため、合成および洗浄・乾燥は、すべ
て窒素気流中で行い、使用する水も脱イオン・蒸留処理
の後、JIS K 0102に従って炭酸を除去した。得られた粉
末試料はX線回折装置によって測定され、底面間隔が8.0
4Åの層状複水酸化物単相であることが確認された。こ
の層状複水酸化物に適量のホルムアミドを加えたとこ
ろ、基本層の剥離により、容器下部に沈殿してくる固相
のない半透明な液状物が得られた。
[Example 1] After dissolving 8.45 g of L-asparagine monohydrate in water, an appropriate amount of 2N-NaOH aqueous solution was added to adjust the pH to 10. Separately, an aqueous solution prepared by dissolving 4.81 g of magnesium nitrate hexahydrate and 2.34 g of aluminum nitrate hexahydrate was prepared and added to the above L-asparagine aqueous solution at a rate of 50 ml / h. At this time, make sure that the pH of the mixed solution is always 10
-NaOH aqueous solution was added accordingly. The coprecipitate obtained above was washed with water and air-dried, and then ground in an agate mortar to obtain a powder sample. In these series of experiments, in order to avoid mixing of carbonate ions from the air, synthesis, washing and drying were all performed in a nitrogen stream, and the water used was also deionized and distilled, and then carbonated according to JIS K 0102. Removed. The obtained powder sample was measured by an X-ray diffractometer and the bottom spacing was 8.0.
It was confirmed that it was a 4 Å layered double hydroxide single phase. When an appropriate amount of formamide was added to this layered double hydroxide, a semi-transparent liquid substance without a solid phase which precipitated in the lower part of the container was obtained due to peeling of the basic layer.

【0025】[0025]

【実施例2】L-グルタミン8.22gを、水に溶かした後、2N
-NaOH水溶液を適量加えてpHを10に調整した。これとは
別に、硝酸マグネシウム6水和物4.81gと硝酸アルミニ
ウム6水和物2.34gを溶かした水溶液を用意し、上述のL-
グルタミン水溶液に50ml/hの速度で加えた。このとき、
混合溶液は常にpHが10となるように、2N-NaOH水溶液を
適宜加えた。以上により得られた共沈殿物を、水洗・風
乾後、メノウ乳鉢により摩砕して粉末試料を得た。これ
ら一連の実験は、空気中からの炭酸イオンの混入を避け
るため、合成および洗浄・乾燥は、すべて窒素気流中で
行い、使用する水も脱イオン・蒸留処理の後、JIS K 01
02に従って炭酸を除去した。得られた粉末試料はX線回
折装置によって測定され、底面間隔が8.11Åの層状複水
酸化物単相であることが確認された。この層状複水酸化
物に適量のホルムアミドを加えたところ、基本層の剥離
により、容器下部に沈殿してくる固相のない半透明な液
状物が得られた。
Example 2 After dissolving 8.22 g of L-glutamine in water, 2N
-PH was adjusted to 10 by adding an appropriate amount of NaOH aqueous solution. Separately, prepare an aqueous solution in which 4.81 g of magnesium nitrate hexahydrate and 2.34 g of aluminum nitrate hexahydrate are prepared, and the above L-
It was added to the glutamine aqueous solution at a rate of 50 ml / h. At this time,
A 2N-NaOH aqueous solution was appropriately added so that the mixed solution always had a pH of 10. The coprecipitate obtained above was washed with water and air-dried, and then ground in an agate mortar to obtain a powder sample. In these series of experiments, in order to avoid mixing carbonate ions from the air, synthesis, washing and drying were all performed in a nitrogen stream, and the water used was also deionized and distilled, and then JIS K 01
Carbonate was removed according to 02. The obtained powder sample was measured by an X-ray diffractometer, and it was confirmed that it was a layered double hydroxide single phase with a bottom spacing of 8.11 Å. When an appropriate amount of formamide was added to this layered double hydroxide, a semi-transparent liquid substance without a solid phase which precipitated in the lower part of the container was obtained due to peeling of the basic layer.

【0026】[0026]

【実施例3】L-アルギニン9.80gを、水に溶かした後、2N
-NaOH水溶液を適量加えてpHを10に調整した。これとは
別に、硝酸マグネシウム6水和物4.81gと硝酸アルミニ
ウム6水和物2.34gを溶かした水溶液を用意し、上述のL-
アルギニン水溶液に50ml/hの速度で加えた。このとき、
混合溶液は常にpHが10となるように、2N-NaOH水溶液を
適宜加えた。以上により得られた共沈殿物を、水洗・風
乾後、メノウ乳鉢により摩砕して粉末試料を得た。これ
ら一連の実験は、空気中からの炭酸イオンの混入を避け
るため、合成および洗浄・乾燥は、すべて窒素気流中で
行い、使用する水も脱イオン・蒸留処理の後、JIS K 01
02に従って炭酸を除去した。得られた粉末試料はX線回
折装置によって測定され、底面間隔が8.19Åの層状複水
酸化物単相であることが確認された。この層状複水酸化
物に適量のホルムアミドを加えたところ、基本層の剥離
により、容器下部に沈殿してくる固相のない半透明な液
状物が得られた。
[Example 3] After dissolving 9.80 g of L-arginine in water, 2N
-PH was adjusted to 10 by adding an appropriate amount of NaOH aqueous solution. Separately, prepare an aqueous solution in which 4.81 g of magnesium nitrate hexahydrate and 2.34 g of aluminum nitrate hexahydrate are prepared, and the above L-
It was added to the aqueous arginine solution at a rate of 50 ml / h. At this time,
A 2N-NaOH aqueous solution was appropriately added so that the mixed solution always had a pH of 10. The coprecipitate obtained above was washed with water and air-dried, and then ground in an agate mortar to obtain a powder sample. In these series of experiments, in order to avoid mixing carbonate ions from the air, synthesis, washing and drying were all performed in a nitrogen stream, and the water used was also deionized and distilled, and then JIS K 01
Carbonate was removed according to 02. The obtained powder sample was measured by an X-ray diffractometer, and it was confirmed that it was a layered double hydroxide single phase with a bottom distance of 8.19Å. When an appropriate amount of formamide was added to this layered double hydroxide, a semi-transparent liquid substance without a solid phase which precipitated in the lower part of the container was obtained due to peeling of the basic layer.

【0027】[0027]

【比較例1】L-アスパラギン酸7.49gを、水に溶かした
後、2N-NaOH水溶液を適量加えてpHを10に調整した。こ
れとは別に、硝酸マグネシウム6水和物4.81gと硝酸ア
ルミニウム6水和物2.34gを溶かした水溶液を用意し、上
述のL-アスパラギン酸水溶液に50ml/hの速度で加えた。
このとき、混合溶液は常にpHが10となるように、2N-NaO
H水溶液を適宜加えた。以上により得られた共沈殿物
を、水洗・風乾後、メノウ乳鉢により摩砕して粉末試料
を得た。これら一連の実験は、空気中からの炭酸イオン
の混入を避けるため、合成および洗浄・乾燥は、すべて
窒素気流中で行い、使用する水も脱イオン・蒸留処理の
後、JIS K 0102に従って炭酸を除去した。得られた粉末
試料はX線回折装置によって測定され、底面間隔が12.35
と7.82Åの層状複水酸化物混合相であることが確認され
た。この層状複水酸化物に適量のホルムアミドを加えた
が、分散は悪く、層状複水酸化物は容器下部に沈殿し
た。
[Comparative Example 1] 7.49 g of L-aspartic acid was dissolved in water, and the pH was adjusted to 10 by adding an appropriate amount of 2N-NaOH aqueous solution. Separately, an aqueous solution prepared by dissolving 4.81 g of magnesium nitrate hexahydrate and 2.34 g of aluminum nitrate hexahydrate was prepared and added to the above-mentioned L-aspartic acid aqueous solution at a rate of 50 ml / h.
At this time, the pH of the mixed solution should always be 10 so that 2N-NaO
Aqueous H solution was added as appropriate. The coprecipitate obtained above was washed with water and air-dried, and then ground in an agate mortar to obtain a powder sample. In these series of experiments, in order to avoid mixing of carbonate ions from the air, synthesis, washing and drying were all performed in a nitrogen stream, and the water used was also deionized and distilled, and then carbonated according to JIS K 0102. Removed. The obtained powder sample was measured by an X-ray diffractometer and the bottom spacing was 12.35.
And 7.82Å were confirmed to be a layered double hydroxide mixed phase. An appropriate amount of formamide was added to this layered double hydroxide, but the dispersion was poor and the layered double hydroxide precipitated in the lower part of the container.

【0028】[0028]

【比較例2】実施例1〜3および比較例1に準拠して作製し
た炭酸イオン型層状複水酸化物に、適量のホルムアミド
を加えたが、分散は悪く、層状複水酸化物は容器下部に
沈殿した。
[Comparative Example 2] An appropriate amount of formamide was added to the carbonate ion-type layered double hydroxides produced according to Examples 1 to 3 and Comparative Example 1, but the dispersion was poor, and the layered double hydroxides were stored at the bottom of the container. Precipitated.

【0029】[0029]

【発明の効果】本発明に係る層状複水酸化物は、基本層
単層までに容易に剥離・分散し、樹脂用配合剤として分
散性が好適であるばかりでなく、樹脂との親和性が高
く、樹脂に対する配合剤として極めて有用なものであ
る。
EFFECTS OF THE INVENTION The layered double hydroxide according to the present invention can be easily peeled and dispersed up to the base layer single layer, and not only the dispersibility is suitable as a compounding agent for resins, but also the compatibility with resins. It is expensive and extremely useful as a compounding agent for resins.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】金属水酸化物からなる基本層と、陰イオン
及び水分子とからなる中間層が交互に積層した層状複水
酸化物において、中間層を構成する層間イオンとして、
アスパラギン、グルタミンおよびアルギニンからなる群
から選ばれる1種または2種以上のアミノ酸を含有する
ことを特徴とする層状複水酸化物。
1. In a layered double hydroxide in which a basic layer made of a metal hydroxide and an intermediate layer made of anions and water molecules are alternately laminated, as an interlayer ion constituting the intermediate layer,
A layered double hydroxide containing one or more amino acids selected from the group consisting of asparagine, glutamine and arginine.
【請求項2】1種または2種以上の2価金属塩、及び/
または1種または2種以上の3価金属塩と、アスパラギ
ン、グルタミンおよびアルギニンからなる群から選ばれ
る1種または2種以上のアミノ酸とをアルカリ条件下、
溶液状態で混合することにより共沈殿させて得られたも
のである請求項1記載の層状複水酸化物。
2. One or more divalent metal salts, and / or
Alternatively, one or two or more trivalent metal salts and one or more amino acids selected from the group consisting of asparagine, glutamine and arginine are treated under alkaline conditions.
The layered double hydroxide according to claim 1, which is obtained by coprecipitation by mixing in a solution state.
【請求項3】アスパラギン、グルタミンおよびアルギニ
ンからなる群から選ばれた1種または2種以上のアミノ
酸の使用量が、使用する金属塩中の陰イオン成分の合計
モル数の2倍未満である請求項2に記載の層状複水酸化
物。
3. The amount of one or more amino acids selected from the group consisting of asparagine, glutamine and arginine is less than twice the total number of moles of anionic components in the metal salt used. Item 2. The layered double hydroxide according to Item 2.
【請求項4】請求項1〜3のいずれか一項に記載の層状
複水酸化物が、基本層である金属水酸化物層に剥離、分
散された形態で含有する液状物。
4. A liquid material containing the layered double hydroxide according to any one of claims 1 to 3 in a form of being peeled and dispersed in a metal hydroxide layer which is a basic layer.
【請求項5】請求項1〜3のいずれか一項記載の層状複
水酸化物にホルムアミドを添加したものである請求項4
に記載の液状物。
5. The layered double hydroxide according to claim 1, to which formamide is added.
The liquid substance described in.
【請求項6】請求項1〜3のいずれか一項記載の層状複
水酸化物、若しくは請求項4または5に記載の液状物を
含有する樹脂用配合剤。
6. A compounding agent for resins containing the layered double hydroxide according to any one of claims 1 to 3 or the liquid material according to claim 4 or 5.
【請求項7】1種または2種以上の2価金属塩、及び/
または1種または2種以上の3価金属塩と、アスパラギ
ン、グルタミンおよびアルギニンからなる群から選ばれ
る1種または2種以上のアミノ酸水溶液とをアルカリ条
件下、溶液状態で混合することにより共沈殿させること
を特徴とする層状複水酸化物の製造法。
7. One or more divalent metal salts, and / or
Alternatively, one or more trivalent metal salts and one or more aqueous amino acid solution selected from the group consisting of asparagine, glutamine and arginine are mixed under alkaline conditions in a solution state to coprecipitate. A method for producing a layered double hydroxide, comprising:
【請求項8】アスパラギン、グルタミンおよびアルギニ
ンからなる群から選ばれた1種または2種以上のアミノ
酸の使用量が、使用する金属塩中の陰イオン成分の合計
モル数の2倍未満である請求項7に記載の層状複水酸化
物の製造方法。
8. The amount of one or more amino acids selected from the group consisting of asparagine, glutamine and arginine is less than twice the total number of moles of anionic components in the metal salt used. Item 8. A method for producing a layered double hydroxide according to Item 7.
【請求項9】共沈殿の後、共沈殿物を洗浄、乾燥するこ
とを特徴とする請求項7または8に記載の層状複水酸化
物製造方法。
9. The method for producing a layered double hydroxide according to claim 7, wherein the coprecipitate is washed and dried after the coprecipitation.
【請求項10】層状複水酸化物の製造工程を、二酸化炭
素および/または炭酸イオンの非存在下で行うことを特
徴とする請求項7〜9いずれか1項に記載の層状複水酸
化物の製造方法。
10. The layered double hydroxide according to claim 7, wherein the step of producing the layered double hydroxide is carried out in the absence of carbon dioxide and / or carbonate ions. Manufacturing method.
【請求項11】層状複水酸化物の製造工程を、窒素気流
中で行うことを特徴とする請求項7〜10いずれか一項
に記載の層状複水酸化物の製造方法。
11. The method for producing a layered double hydroxide according to claim 7, wherein the step for producing a layered double hydroxide is performed in a nitrogen stream.
JP2002022771A 2002-01-31 2002-01-31 Layered double hydroxide Expired - Lifetime JP4129521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022771A JP4129521B2 (en) 2002-01-31 2002-01-31 Layered double hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022771A JP4129521B2 (en) 2002-01-31 2002-01-31 Layered double hydroxide

Publications (2)

Publication Number Publication Date
JP2003226681A true JP2003226681A (en) 2003-08-12
JP4129521B2 JP4129521B2 (en) 2008-08-06

Family

ID=27745683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022771A Expired - Lifetime JP4129521B2 (en) 2002-01-31 2002-01-31 Layered double hydroxide

Country Status (1)

Country Link
JP (1) JP4129521B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238194A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Colloid particulate hydroxide base compounding agent for resin and resin composition containing the same
JP2006176563A (en) * 2004-12-21 2006-07-06 Japan Polypropylene Corp Thermoplastic resin composition for interior trim component and interior trim component molded from the same
JP2006232981A (en) * 2005-02-24 2006-09-07 Fuji Xerox Co Ltd Surface-coated flame-retardant particle and its manufacturing method, and flame-retardant resin composition and its manufacturing method
JP2006274385A (en) * 2005-03-30 2006-10-12 Tayca Corp Corrosion preventive coating composition using layered double hydroxide which peels in water and rust preventive treatment metallic material using the same
JP2006281154A (en) * 2005-04-04 2006-10-19 Kyoeisha Chem Co Ltd Adsorbent for ionizable matter in aqueous solution
JP2007031189A (en) * 2005-07-25 2007-02-08 National Institute For Materials Science Method for peeling layered double hydroxide, double hydroxide nanosheet, composite thin film material thereof, method for producing the same, and method for producing layered double hydroxide thin film material
JP2007039549A (en) * 2005-08-03 2007-02-15 Tayca Corp Rust preventive coating material composition using layered composite hydroxide exfoliating in water
WO2009051130A1 (en) * 2007-10-18 2009-04-23 National Institute For Materials Science Acrylic adhesive composition and pressure-sensitive adhesive sheet using the same
JP2009203081A (en) * 2008-02-26 2009-09-10 National Institute For Materials Science Lamellar hydroxide, monolayer nanosheet and their production methods
CN101879314A (en) * 2009-12-08 2010-11-10 山东炳坤腾泰陶瓷科技有限公司 Method for synthesizing bio-medicament/hydrotalcite-like composite material
US20120322647A1 (en) * 2011-06-16 2012-12-20 Beijing University Of Chemical Technology Method for enhancing heterogeneous asymmetric selectivity and catalytic activity
JP2016511300A (en) * 2013-01-17 2016-04-14 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Method for producing anticorrosion coating
JP2016056035A (en) * 2014-09-05 2016-04-21 国立研究開発法人物質・材料研究機構 Method for single layer peeling layered transition metal hydroxide nanocone, method for manufacturing transition metal oxide nanocone and electrode material using transition metal hydroxide nanosheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572289B2 (en) * 2004-02-27 2010-11-04 独立行政法人産業技術総合研究所 Colloidal particle-formed hydroxide resin compounding agent and resin composition containing the same
JP2005238194A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Colloid particulate hydroxide base compounding agent for resin and resin composition containing the same
JP2006176563A (en) * 2004-12-21 2006-07-06 Japan Polypropylene Corp Thermoplastic resin composition for interior trim component and interior trim component molded from the same
JP2006232981A (en) * 2005-02-24 2006-09-07 Fuji Xerox Co Ltd Surface-coated flame-retardant particle and its manufacturing method, and flame-retardant resin composition and its manufacturing method
US8044130B2 (en) 2005-02-24 2011-10-25 Fuji Xerox Co., Ltd. Surface-coated flame-retardant particle and method of producing the same, and flame-retardant resin composition and method of producing the same
JP2006274385A (en) * 2005-03-30 2006-10-12 Tayca Corp Corrosion preventive coating composition using layered double hydroxide which peels in water and rust preventive treatment metallic material using the same
JP2006281154A (en) * 2005-04-04 2006-10-19 Kyoeisha Chem Co Ltd Adsorbent for ionizable matter in aqueous solution
JP2007031189A (en) * 2005-07-25 2007-02-08 National Institute For Materials Science Method for peeling layered double hydroxide, double hydroxide nanosheet, composite thin film material thereof, method for producing the same, and method for producing layered double hydroxide thin film material
JP2007039549A (en) * 2005-08-03 2007-02-15 Tayca Corp Rust preventive coating material composition using layered composite hydroxide exfoliating in water
WO2009051130A1 (en) * 2007-10-18 2009-04-23 National Institute For Materials Science Acrylic adhesive composition and pressure-sensitive adhesive sheet using the same
JP2009096930A (en) * 2007-10-18 2009-05-07 Nitto Denko Corp Acrylic adhesive composition and pressure-sensitive adhesive sheet using the same
US8895653B2 (en) 2007-10-18 2014-11-25 National Institute For Materials Science Acrylic adhesive composition, and pressure-sensitive adhesive sheet employing the same
JP2009203081A (en) * 2008-02-26 2009-09-10 National Institute For Materials Science Lamellar hydroxide, monolayer nanosheet and their production methods
CN101879314A (en) * 2009-12-08 2010-11-10 山东炳坤腾泰陶瓷科技有限公司 Method for synthesizing bio-medicament/hydrotalcite-like composite material
CN101879314B (en) * 2009-12-08 2012-05-30 山东炳坤腾泰陶瓷科技有限公司 Method for synthesizing bio-medicament/hydrotalcite-like composite material
US20120322647A1 (en) * 2011-06-16 2012-12-20 Beijing University Of Chemical Technology Method for enhancing heterogeneous asymmetric selectivity and catalytic activity
US9192926B2 (en) * 2011-06-16 2015-11-24 Beijing University Of Chemical Technology Method for enhancing heterogeneous asymmetric selectivity and catalytic activity
JP2016511300A (en) * 2013-01-17 2016-04-14 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH Method for producing anticorrosion coating
JP2016056035A (en) * 2014-09-05 2016-04-21 国立研究開発法人物質・材料研究機構 Method for single layer peeling layered transition metal hydroxide nanocone, method for manufacturing transition metal oxide nanocone and electrode material using transition metal hydroxide nanosheet

Also Published As

Publication number Publication date
JP4129521B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP2003226681A (en) Metal hydroxide and water layer
Zhang et al. Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions
Shin et al. Phosphorus removal by hydrotalcite-like compounds (HTLcs)
Hang et al. Preparation and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides
Taibi et al. Layered nickel hydroxide salts: synthesis, characterization and magnetic behaviour in relation to the basal spacing
CN100542966C (en) Rod hydrotalcite-like compound and preparation method thereof
JP6557597B2 (en) Layered double hydroxide
JP2000290012A (en) Production of anion-layered double hydroxide intercalation compound and product thereof
JP4178238B2 (en) Highly dispersible layered double hydroxide
JP4019138B2 (en) Layered double hydroxide containing glycine as interlayer anion
Kim et al. A novel synthesis of an Fe 3+/Fe 2+ layered double hydroxide (‘green rust’) via controlled electron transfer with a conducting polymer
TW201247781A (en) Polyphenylene sulfide resin composition and molded body formed by the same
Leal et al. Layered materials as nanocontainers for active corrosion protection: A brief review
WO2007051377A1 (en) Hydrotalcite laminated by organic anion(s) comprising a double bond and its use as a heat stabilizer
JP4572289B2 (en) Colloidal particle-formed hydroxide resin compounding agent and resin composition containing the same
bin Hussein et al. The effect of polymers onto the size of zinc layered hydroxide salt and its calcined product
JP4478785B2 (en) Highly dispersible hydroxide resin compounding agent and resin composition
RU2540402C1 (en) Layered hydroxide with hydrotalcite structure containing nickel with oxidation rate +3, and method for preparing it
CN109502656B (en) Spherical Co (II) Co (III) hydrotalcite-like material and preparation method thereof
WO2000038524A1 (en) Aluminosilicate antibacterial agents
Gao et al. The mechanism on the pH value influencing the property of glutamic acid/layered double hydroxide compounds
CN1919453A (en) Magnetic nano copper-chromic composite metal oxide catalyst and its preparing process
JP4862147B2 (en) Resin composition containing colloidal particulate layered double hydroxide / amino acid composite
Siti Nurasikin et al. Synthesis and Characterization of Layered-Double Hydroxide 3-(4-Hydroxyphenyl) Propionate Nanocomposite
Zhao et al. Synthesis of Layered Hydroxide Zinc m‐Aminobenzoate Compounds and Their Exfoliation Reactions

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4129521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term