JP2009203081A - Lamellar hydroxide, monolayer nanosheet and their production methods - Google Patents
Lamellar hydroxide, monolayer nanosheet and their production methods Download PDFInfo
- Publication number
- JP2009203081A JP2009203081A JP2008043681A JP2008043681A JP2009203081A JP 2009203081 A JP2009203081 A JP 2009203081A JP 2008043681 A JP2008043681 A JP 2008043681A JP 2008043681 A JP2008043681 A JP 2008043681A JP 2009203081 A JP2009203081 A JP 2009203081A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- hydroxide
- layered
- iii
- anion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002135 nanosheet Substances 0.000 title claims abstract description 23
- 239000002356 single layer Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 title claims description 41
- 239000013078 crystal Substances 0.000 claims abstract description 74
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims abstract description 65
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims abstract description 60
- JAWGVVJVYSANRY-UHFFFAOYSA-N cobalt(3+) Chemical compound [Co+3] JAWGVVJVYSANRY-UHFFFAOYSA-N 0.000 claims abstract description 47
- -1 perchlorate anion Chemical class 0.000 claims abstract description 33
- 239000010410 layer Substances 0.000 claims abstract description 25
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims abstract description 23
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims abstract description 20
- 239000000243 solution Substances 0.000 claims abstract description 14
- PKSIZOUDEUREFF-UHFFFAOYSA-N cobalt;dihydrate Chemical compound O.O.[Co] PKSIZOUDEUREFF-UHFFFAOYSA-N 0.000 claims abstract description 13
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims abstract description 10
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 claims abstract description 7
- 229910001488 sodium perchlorate Inorganic materials 0.000 claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 150000001450 anions Chemical class 0.000 claims description 9
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 7
- 239000007800 oxidant agent Substances 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- AHOIXWDZUQMNJD-UHFFFAOYSA-N [Br].CC#N Chemical compound [Br].CC#N AHOIXWDZUQMNJD-UHFFFAOYSA-N 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052794 bromium Inorganic materials 0.000 abstract description 20
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 abstract description 14
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052599 brucite Inorganic materials 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000010571 fourier transform-infrared absorption spectrum Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000005349 anion exchange Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N iron (II) ion Substances [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910020366 ClO 4 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000435 bromine oxide Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical class [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- YPJCVYYCWSFGRM-UHFFFAOYSA-H iron(3+);tricarbonate Chemical compound [Fe+3].[Fe+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O YPJCVYYCWSFGRM-UHFFFAOYSA-H 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000642 polymer Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical class [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- IXGNPUSUVRTQGW-UHFFFAOYSA-M sodium;perchlorate;hydrate Chemical compound O.[Na+].[O-]Cl(=O)(=O)=O IXGNPUSUVRTQGW-UHFFFAOYSA-M 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、水酸化コバルト層状結晶からなる層状水酸化物と単層ナノシート及びそれらの製造方法に関する。 The present invention relates to a layered hydroxide composed of a cobalt hydroxide layered crystal, a single layer nanosheet, and a production method thereof.
ハイドロタルク石状の化合物やアニオン型クレイとして知られている層状複水酸化物は、陰イオン交換材料、吸着剤、触媒、ナノリアクターやモレキュラーシーブ、ポリマー複合材、生体材料などとしての応用が期待されている(たとえば、非特許文献1〜5参照。)。この層状水酸化物の各層を剥離することにより、プラス電荷を有する単一層の薄片すなわち、ナノシートが形成される(たとえば、非特許文献6〜8参照。)。該単層ナノシートは多層フィルムやコア/シェル構造を作製する際の理想的なビルディングブロックとなり得る。また、この層状複水酸化物は、弱いアルカリ性の条件で二価と三価の金属イオンを含んだ水溶液を加水分解して合成されるが、一般的にゲル状あるいは結晶性が低い(たとえば、非特許文献9参照。)。特性解析やイオン交換材料、触媒、電子・光学材料などへ応用する場合には高結晶性材料の方が特性の面で優れている。最近、Al3+を含む層状の結晶体が尿素やヘキサメチレンテトラミンを用いた均一沈殿法により得られている(例えば、非特許文献10,11参照。)。さらに、硝酸コバルト溶液中で鉄(II)イオンを空気酸化することにより、水酸化コバルト(II)・鉄(III)の炭酸塩が合成された。この化合物は0.1〜0.4μmの結晶が球状に凝集している(例えば、非特許文献12参照)。
本発明者らは、水酸化コバルト(II)・鉄(II)または鉄(III)よりなる層状結晶とその各層を剥離して得られる単層ナノシートについては、すでに公表した(非特許文献14参照。)。これらの層状水酸化物は、すべて二種類以上の金属成分を含有し、それらの金属が異なった価数を持っている点で共通している。
アニオンがインターカレートされた水酸化コバルト(II) [α−Co(OH)2]は既に公知である(例えば、非特許文献13参照)。しかし、このα−Co(OH)2は二価と三価金属からなる前述した層状複水酸化物と構造が異なり、また、アニオン交換性も低い。そのため、その各層を剥離して単層ナノシートにすることは難しい。
Layered double hydroxides, known as hydrotalcite compounds and anionic clays, are expected to be applied as anion exchange materials, adsorbents, catalysts, nanoreactors, molecular sieves, polymer composites, biomaterials, etc. (For example, see Non-Patent Documents 1 to 5.) By exfoliating each layer of the layered hydroxide, a single layer flake having a positive charge, that is, a nanosheet is formed (for example, see Non-Patent Documents 6 to 8). The single-layer nanosheet can be an ideal building block for producing multilayer films and core / shell structures. The layered double hydroxide is synthesized by hydrolyzing an aqueous solution containing divalent and trivalent metal ions under weak alkaline conditions, but generally has a low gel or crystallinity (for example, (Refer nonpatent literature 9.). When applied to characteristic analysis, ion exchange materials, catalysts, electronic / optical materials, etc., highly crystalline materials are superior in terms of properties. Recently, a layered crystal containing Al 3+ has been obtained by a uniform precipitation method using urea or hexamethylenetetramine (see, for example, Non-Patent Documents 10 and 11). Further, cobalt (II) hydroxide / iron (III) carbonate was synthesized by air oxidizing iron (II) ions in a cobalt nitrate solution. In this compound, crystals of 0.1 to 0.4 μm are aggregated in a spherical shape (for example, see Non-Patent Document 12).
The present inventors have already announced a layered crystal composed of cobalt hydroxide (II) / iron (II) or iron (III) and a single layer nanosheet obtained by peeling each layer (see Non-Patent Document 14). .) These layered hydroxides all have two or more kinds of metal components, and are common in that these metals have different valences.
Cobalt hydroxide (II) [α-Co (OH) 2 ] in which an anion is intercalated is already known (see, for example, Non-Patent Document 13). However, this α-Co (OH) 2 has a structure different from that of the above-described layered double hydroxide composed of divalent and trivalent metals, and has low anion exchangeability. Therefore, it is difficult to peel each of the layers into a single-layer nanosheet.
本発明は、上記の現状に鑑み、結晶性の優れた水酸化コバルトの層状結晶とその各層を剥離した単一層からなるナノシートならびにそれらの製造方法を提供することを課題とする。 An object of the present invention is to provide a layered crystal of cobalt hydroxide having excellent crystallinity, a nanosheet composed of a single layer from which each layer is peeled, and a method for producing them.
本発明は、上記の課題を解決するものとして、以下の発明を提供する。 The present invention provides the following inventions to solve the above problems.
発明1は、水酸化コバルト層状結晶からなる層状水酸化物であって、その層状結晶が水酸化コバルト(II)とコバルト(III)からなり、アニオンがインターカレートされていることを特徴とする。 Invention 1 is a layered hydroxide comprising a cobalt hydroxide layered crystal, wherein the layered crystal is composed of cobalt hydroxide (II) and cobalt (III), and an anion is intercalated. .
発明2は、発明1の層状水酸化物であって、インターカレートされているアニオンが臭素アニオンであることを特徴とする。 Invention 2 is the layered hydroxide of Invention 1, characterized in that the intercalated anion is a bromine anion.
発明3は、発明1の層状水酸化物であって、インターカレートされているアニオンが過塩素酸アニオンであることを特徴とする。 Invention 3 is the layered hydroxide of Invention 1, characterized in that the intercalated anion is a perchlorate anion.
発明4は、 発明1の層状水酸化物の製造方法であって、ブルーサイト型水酸化コバルト(II)結晶からなる層状水酸化物を酸化剤溶液中に分散させて、前記ブルーサイト型水酸化コバルト(II)結晶の一部を酸化してコバルト(III)を生成することを特徴とする。 Invention 4 is a method for producing a layered hydroxide according to Invention 1, wherein the layered hydroxide composed of brucite-type cobalt (II) hydroxide is dispersed in an oxidant solution, and the brucite-type hydroxide is obtained. A part of the cobalt (II) crystal is oxidized to produce cobalt (III).
発明5は、発明2の層状水酸化物の製造方法であって、発明4の製法において、その酸化剤溶液が、臭素のアセトニトリル溶液であることを特徴とする。 Invention 5 is a method for producing a layered hydroxide according to Invention 2, wherein the oxidizing agent solution is an acetonitrile solution of bromine in the production method of Invention 4.
発明6は、 発明3の層状水酸化物の製造方法であって、塩酸と過塩素酸ナトリウムとの水溶液に、発明2の層状結晶を分散させ、窒素ガス雰囲気中にて攪拌して、臭素アニオンを過塩素酸アニオンに置換することを特徴とする。 Invention 6 is a method for producing a layered hydroxide of Invention 3, wherein the layered crystal of Invention 2 is dispersed in an aqueous solution of hydrochloric acid and sodium perchlorate, and stirred in a nitrogen gas atmosphere to produce a bromine anion. Is substituted with a perchlorate anion.
発明7は、水酸化コバルト結晶からなる単層ナノシートであって、発明1から3のいずれかの層状水酸化物の各層が剥離されてなることを特徴とする。 Invention 7 is a single-layer nanosheet made of cobalt hydroxide crystal, wherein each layer of the layered hydroxide according to Inventions 1 to 3 is peeled off.
発明8は、 発明7の単層ナノシートの製造方法であって、発明3の層状水酸化物をホルムアミドに分散させることにより、前記層状結晶の各層を剥離させることを特徴とする。 Invention 8 is a method for producing a single-layer nanosheet of Invention 7, wherein each layer of the layered crystal is separated by dispersing the layered hydroxide of Invention 3 in formamide.
非特許文献14の水酸化コバルト・鉄結晶の製造方法は、鉄(II)がコバルト(II)よりも酸化されやすいため、ブルーサイト型水酸化物中の鉄だけが酸化されることによって実現される。すなわち、異なる金属成分の酸化性の違いを利用したものであり、生成物中の二価(コバルト)と三価(鉄)金属の原子比は出発物質のブルーサイト型水酸化物のモル比の設定で決まってくる。それに対して、本願は同一金属に異なる価数(二価、三価)を与える層状水酸化物を生成させようとするものである。酸化過程におけるそれぞれの価数の含有率は最も安定性の高い層状水酸化物の構造[Co(II):Co(III)=2:1]への変換により自発的に実現される。このことは、出発物質の仕込み量の影響を受けないで、生成物中の二価と三価の比が常に一定であるという利点がある。
臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶および過塩素酸アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶は、前述のように生成物の組成が常に一定であり、製造の際に生成物の組成にばらつきがないという利点がある。
さらに、この層状結晶の各層を剥離することにより、水酸化コバルト(II)・コバルト(III)単層ナノシートが初めて実現された。
また、本発明の方法により、上記の層状結晶あるいは単層ナノシートを簡単なプロセスで容易に製造することが出来る。
The manufacturing method of cobalt hydroxide / iron crystal of Non-Patent Document 14 is realized by oxidizing only iron in the brucite type hydroxide because iron (II) is more easily oxidized than cobalt (II). The That is, it utilizes the difference in oxidizability of different metal components, and the atomic ratio of divalent (cobalt) and trivalent (iron) metal in the product is the molar ratio of the brucite-type hydroxide of the starting material. It depends on the setting. On the other hand, the present application is intended to generate layered hydroxides that give different valences (divalent and trivalent) to the same metal. The content of each valence in the oxidation process is realized spontaneously by conversion to the most stable layered hydroxide structure [Co (II): Co (III) = 2: 1]. This has the advantage that the divalent to trivalent ratio in the product is always constant without being affected by the starting material charge.
The cobalt hydroxide (II) / cobalt (III) layered crystal intercalated with bromine anion and the cobalt hydroxide (II) / cobalt (III) layered crystal intercalated with perchlorate anion are as described above. Further, there is an advantage that the composition of the product is always constant and there is no variation in the composition of the product during the production.
Furthermore, by separating each layer of the layered crystal, a cobalt hydroxide (II) / cobalt (III) single layer nanosheet was realized for the first time.
Further, the layered crystal or single-layer nanosheet can be easily produced by a simple process by the method of the present invention.
本発明は、既知のブルーサイト型水酸化コバルト(II)結晶を出発物質とすることからなる。この化合物は、格子定数a=3.176Å、c=4.643Åの層状結晶であり、一辺の長さ3〜4μm、厚さ50±20nmである。 The present invention comprises starting from known brucite-type cobalt (II) hydroxide crystals. This compound is a layered crystal having lattice constants a = 3.17617, c = 4.643Å, a length of one side of 3 to 4 μm, and a thickness of 50 ± 20 nm.
本発明の臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶は、前記結晶の形状が維持されるので、一辺の長さは前記結晶と同じである。層間隔は臭素アニオンがインターカレートされたので、7.7ű0.2Åに広がる。該臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶の製造方法は、臭素のアセトニトリル溶液の中に、上述のピンク色のブルーサイト型水酸化コバルト(II)層状結晶を分散させて室温で撹拌することからなる。 In the cobalt hydroxide (II) / cobalt (III) layered crystal intercalated with the bromine anion of the present invention, the shape of the crystal is maintained, and therefore the length of one side is the same as the crystal. Since the bromine anion was intercalated, the layer spacing was expanded to 7.7 mm ± 0.2 mm. The method for producing a cobalt hydroxide (II) / cobalt (III) layered crystal in which the bromine anion is intercalated is the above-described pink brucite type cobalt hydroxide (II) layered in a bromine acetonitrile solution. It consists of dispersing the crystals and stirring at room temperature.
上記において、臭素と水酸化コバルト(II)とのモル比は、コバルト(II)からコバルト(III)への変換率はCo(II):Co(III)=2:1であると仮定すれば、1:6が理論的な量であるが、種々の実験により臭素の量はこの40倍を必要とした。臭素の量がこの範囲の値よりも少ないと、未反応のブルーサイト型水酸化コバルト(II)結晶[β−Co(OH)2]が残存する。逆に、著しく過剰量の臭素を使用してもCo(II):Co(III)=2:1であって、二価のコバルトはこの比率以上には酸化されない。したがって、Co(II):Co(III)=2:1の場合が水酸化コバルト(II)・コバルト(III)における最も安定な構造と考えられる。この操作により、臭素アニオンがインターカレートされた黒褐色の水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物が生成される。 In the above, the molar ratio of bromine and cobalt hydroxide (II) is assumed to be Co (II): Co (III) = 2: 1 when the conversion ratio of cobalt (II) to cobalt (III) is 1: 6 is a theoretical amount, but various experiments have required 40 times the amount of bromine. When the amount of bromine is less than the value in this range, unreacted brucite-type cobalt (II) hydroxide crystals [β-Co (OH) 2 ] remain. On the other hand, even if a significantly excessive amount of bromine is used, Co (II): Co (III) = 2: 1, and divalent cobalt is not oxidized beyond this ratio. Therefore, the case of Co (II): Co (III) = 2: 1 is considered to be the most stable structure in cobalt hydroxide (II) .cobalt (III). By this operation, a layered hydroxide composed of blackish brown cobalt hydroxide (II) / cobalt (III) layered crystals intercalated with bromine anions is produced.
次に、過塩素酸アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物は、形状はそのまま維持されるが、層間隔は9.2ű0.2Åとなる。該過塩素酸アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物の製造方法は、塩酸と過塩素酸ナトリウムとの水溶液を入れた容器の中に、臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物を分散させ、容器中の空気を窒素ガスで置換した後、該容器を密閉し、振盪させることからなる。 Next, the layered hydroxide comprising cobalt hydroxide (II) / cobalt (III) layered crystals intercalated with perchlorate anion maintains the shape as it is, but the layer spacing is 9.29 ± 0. .2cm. A method for producing a layered hydroxide comprising cobalt hydroxide (II) / cobalt (III) layered crystals intercalated with the perchlorate anion is prepared in a container containing an aqueous solution of hydrochloric acid and sodium perchlorate. Then, a layered hydroxide composed of cobalt hydroxide (II) / cobalt (III) layered crystals intercalated with bromine anion is dispersed, and the air in the container is replaced with nitrogen gas, and then the container is sealed. Consists of shaking.
上記において、過塩素酸ナトリウムと臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)とのモル比は3×102:1〜1×102:1の範囲が好ましく、過塩素酸ナトリウムの量は上記の範囲の最大値でアニオン交換には十分であり、これ以上使用しても試薬が無駄になるだけである。また、過塩素酸ナトリウムの量は上記の最小値以下でもアニオン交換は可能であるが、交換作用を円滑に進行させるには上記の範囲程度に過剰に使用することが従来周知の層状複水酸化物におけるアニオン交換において通常行われている。 In the above, the molar ratio of sodium perchlorate and cobalt hydroxide (II) / cobalt (III) intercalated with bromine anion is preferably in the range of 3 × 10 2 : 1 to 1 × 10 2 : 1 The amount of sodium perchlorate is sufficient for anion exchange at the maximum value in the above range, and the reagent is only wasted when used more than this. In addition, anion exchange is possible even when the amount of sodium perchlorate is less than the above minimum value, but it is well known that it is used in excess of the above range in order to facilitate the exchange action. Usually used in anion exchange in products.
また、上記においては、塩酸を用いて溶液を酸性にすることが必要で、塩酸を添加しないと、過塩素酸アニオンへの交換が妨害され、臭素アニオンが一部分しか交換されない結晶や炭酸イオン(CO3 2−)に由来する層間隔7.6Åを有する結晶との混合物のピークが現れる。また、この際、濃度の高い塩酸を使用すると結晶構造が破壊されるので、塩酸の最適濃度は、2.5mmol/L程度である。上記の操作を施すことにより、過塩素酸アニオンがインターカレートされた黒褐色の水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物が生成する。 In the above, it is necessary to make the solution acidic with hydrochloric acid. If hydrochloric acid is not added, the exchange to perchlorate anion is hindered, and crystals or carbonate ions (CO The peak of a mixture with a crystal having a layer spacing of 7.6 cm derived from 3 2− ) appears. At this time, since the crystal structure is destroyed when hydrochloric acid having a high concentration is used, the optimum concentration of hydrochloric acid is about 2.5 mmol / L. By performing the above operation, a layered hydroxide composed of black-brown cobalt hydroxide (II) / cobalt (III) layered crystals intercalated with perchlorate anions is produced.
次に、過塩素酸アニオンがインターカレートされた黒褐色の水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物の各層をばらばらに剥離すると水酸化コバルト(II)・コバルト(III)単層ナノシートになる。該単層ナノシートの面方向の寸法は、剥離する前の過塩素酸アニオンがインターカレートされた黒褐色の水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物の寸法が最大となり、剥離処理の際に結晶の破壊が生じれば、これよりも寸法が小さくなる。該単層ナノシートの製造方法は、ホルムアミドを入れた容器の中に、過塩素酸アニオンがインターカレートされた黒褐色の水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物を分散させ、容器中の空気を窒素ガスで置換した後、容器を密栓し室温で超音波処理することにより、半透明のコロイド状懸濁液が得られる。さらに、各層がばらばらに剥離された該懸濁液中の粒子成分を除去するために、遠心分離操作を行う。
次に、実施例を示して、さらに具体的に説明する。
Next, when each layer of the layered hydroxide composed of black-brown cobalt hydroxide (II) / cobalt (III) layered crystals intercalated with perchlorate anions is separated, cobalt (II) / cobalt ( III) It becomes a single layer nanosheet. The dimension of the single-layer nanosheet in the plane direction is the largest of the layered hydroxide composed of black-brown cobalt (II) / cobalt (III) layered crystals intercalated with perchlorate anions before peeling. Thus, if the crystal breaks during the peeling process, the size becomes smaller. In the method for producing the single-layer nanosheet, a layered hydroxide composed of black-brown cobalt (II) / cobalt (III) layered crystals intercalated with perchlorate anions is placed in a container containing formamide. After dispersing and replacing the air in the container with nitrogen gas, the container is sealed and sonicated at room temperature to obtain a translucent colloidal suspension. Further, a centrifugal separation operation is performed in order to remove the particle components in the suspension from which the layers are separated.
Next, an example is shown and it demonstrates still more concretely.
まず、既知化合物であるブルーサイト型水酸化コバルト(II)を次のように合成した。
マグネティックスタラーおよび窒素導入管を取り付けた1000cm3の三口フラスコに、和光純薬工業(株)製の塩化コバルト・六水和物(純度99.5%)1.19g(5ミリモル)、和光純薬工業(株)製のヘキサメチレンテトラミン(純度99.0%)12.62g(90ミリモル)および脱イオン水1000cm3を入れた。窒素ガスを流すと共に、内容物を撹拌しながら、5時間加熱還流した。沈殿したピンク色の固体をろ過し、脱イオン水で3回洗浄した。収量はおよそ0.46gであった。
First, a known compound, brucite-type cobalt (II) hydroxide, was synthesized as follows.
To a 1000 cm 3 three-necked flask equipped with a magnetic stirrer and a nitrogen introduction tube, 1.19 g (5 mmol) of cobalt chloride hexahydrate (purity 99.5%) manufactured by Wako Pure Chemical Industries, Ltd. 12.62 g (90 mmol) of hexamethylenetetramine (purity 99.0%) manufactured by Yakuhin Kogyo Co., Ltd. and 1000 cm 3 of deionized water were added. While flowing nitrogen gas, the contents were heated to reflux for 5 hours while stirring. The precipitated pink solid was filtered and washed 3 times with deionized water. The yield was approximately 0.46 g.
得られたピンク色の固体であるブルーサイト型水酸化コバルト(II) [β−Co(OH)2]の走査型電子顕微鏡像の写真を図1aと図1bに示した。この図から、一辺の長さがおよそ3〜4μmで、厚さが50±20nmの均一な六角形の板状結晶からなることが分かった。 Scanning electron micrographs of the obtained pink solid, brucite-type cobalt hydroxide (II) [β-Co (OH) 2 ], are shown in FIGS. 1a and 1b. From this figure, it was found that each side consists of a uniform hexagonal plate crystal having a length of about 3 to 4 μm and a thickness of 50 ± 20 nm.
図2のIに、上記ピンク色のβ−Co(OH)2のX線回折のパターンを示した。このパターンから、格子定数a=3.176Å、c=4.643Åを有し、層間隔が約4.6Åであるブルーサイト型結晶であり、この値は、文献値とよく一致している(Z.Liu, et al:J.Am.Chem.Soc.,127巻、13869頁、2005年)。 2 shows an X-ray diffraction pattern of the pink β-Co (OH) 2 . From this pattern, it is a brucite type crystal having lattice constants a = 3.176 Å, c = 4.643 、, and a layer spacing of about 4.6 、, and this value is in good agreement with literature values ( Z. Liu, et al: J. Am. Chem. Soc., 127, 13869, 2005).
和光純薬工業(株)製の臭素(純度99%以上)5.0gと和光純薬工業(株)製のアセトニトリル(純度99.0%)500cm3を三角フラスコに入れて溶解させた溶液に、参考例で得られたブルーサイト型水酸化コバルト(II)の六角板状層状結晶0.45gを加えて分散させ、空気中、室温で5日間撹拌した。この分散液はピンク色から黒褐色に変化した。黒褐色の生成物をろ過し、ろ液が無色になるまでアセトニトリルで洗浄した。黒褐色の生成物が0.57g得られた。 In a solution obtained by dissolving 5.0 g of bromine (purity 99% or more) manufactured by Wako Pure Chemical Industries, Ltd. and 500 cm 3 of acetonitrile (purity 99.0%) manufactured by Wako Pure Chemical Industries, Ltd. into an Erlenmeyer flask. Then, 0.45 g of hexagonal plate-like layered crystal of brucite-type cobalt hydroxide (II) obtained in Reference Example was added and dispersed, and stirred in air at room temperature for 5 days. This dispersion changed from pink to blackish brown. The blackish brown product was filtered and washed with acetonitrile until the filtrate was colorless. 0.57 g of a dark brown product was obtained.
得られた黒褐色の生成物のX線回折のパターンを図2のIIに示した。臭素で酸化され、かつ臭素アニオンがインターカレートされた結果、層間隔が7.7Åに広がった。この値は、カウンターイオンとして臭素アニオンを有するハイドロタルク石状の層状化合物の文献値とよく一致している(M.Lal,ほか、J.Solid State Chem.39巻、368頁、1981年)。 The X-ray diffraction pattern of the obtained blackish brown product is shown in II of FIG. As a result of oxidation with bromine and intercalation of bromine anions, the layer spacing increased to 7.7 mm. This value is in good agreement with literature values for hydrotalcite-like layered compounds having bromine anions as counter ions (M. Lal, et al., J. Solid State Chem. 39, 368, 1981).
次に、酸化ならびに臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)層状結晶からなる層状水酸化物を塩酸に溶解後、誘導結合プラズマ発光分光分析によって、コバルトの含有量を求めた。また、前記層状結晶を硫酸に溶解した後、同様な発光分光分析を行うことにより臭素の含有量を測定した。さらに、前記層状結晶を硫酸およびヨウ素アニオンを含む水溶液中で過剰のヨウ素アニオンをチオ硫酸ナトリウムで滴定することにより、三価のコバルト(Co3+)の量を求めた。また、この試料中に含まれる水分量は熱重量分析により求めた。
これらの測定結果から、上記実施例1で得られた臭素アニオンがインターカレートされた生成物の化学組成は、Co2+ 0.66Co3+ 0.34(OH)2Br0.34・0.4H2Oであると見積もられた。また、この臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)六角板状層状結晶からなる層状水酸化物は、図3に示したX線回折パターンの結果から、菱面体晶格子で、その格子定数はa=3.110Å、c=23.18Åであった。
上記で得られた生成物のCo2+とCo3+の原子比は2:1であったので、上記の化学組成の生成物を得るために必要とする臭素の量は、
Co2+(OH)2 + x/2Br2 → Co2+ 1−xCo3+ x(OH)2Brx
の式から、水酸化コバルト(II)1モルに対し1/6モルの臭素で十分のはずである。しかし、実際には、この40倍の臭素を用いて5日間反応させないと未反応のβ−Co(OH)2が消失しなかった。これらの結果について図4に示した。この図から、1/3Co3+に酸化するのに必要な臭素の量は式で示した量の40倍であり、反応時間は5日間を要することがわかった。
また、図5a)、b)に臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)の六角板状層状結晶からなる層状水酸化物の走査型電子顕微鏡像の写真を示したが、臭素アニオンがインターカレートされても、その平面的な形状は、出発物質として使用したβ−Co(OH)2の六角板状の形態が維持されていることが分かる。
さらに、図6にフーリエ変換赤外吸収スペクトルを示したが、出発物質として用いたβ−Co(OH)2の吸収は、図6のIのように、3630cm−1にOHのシャープな伸縮振動の吸収が現れているのに対し、IIの臭素アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)六角板状層状結晶からなる層状水酸化物では、このOHの吸収位置が3450cm−1にシフトし、さらに水分を吸収したために1620cm−1に水分子に由来する曲げモードの吸収が現れている。
Next, a cobalt hydroxide (II) / cobalt (III) layered crystal in which oxidation and bromine anion are intercalated is dissolved in hydrochloric acid, and then the content of cobalt is determined by inductively coupled plasma optical emission spectrometry. Asked. Further, after the layered crystal was dissolved in sulfuric acid, the content of bromine was measured by performing the same emission spectroscopic analysis. Furthermore, the amount of trivalent cobalt (Co 3+ ) was determined by titrating excess iodine anions with sodium thiosulfate in an aqueous solution containing sulfuric acid and iodine anions. The amount of water contained in this sample was determined by thermogravimetric analysis.
From these measurement results, the chemical composition of the product obtained by intercalating the bromine anion obtained in Example 1 was Co 2+ 0.66 Co 3+ 0.34 (OH) 2 Br 0.34 · 0. Estimated to be 4H 2 O. Further, the layered hydroxide composed of cobalt hydroxide (II) / cobalt (III) hexagonal plate layered crystals intercalated with bromine anion is obtained from the results of the X-ray diffraction pattern shown in FIG. The lattice constant of the crystal lattice was a = 3.110Å and c = 23.18Å.
Since the product obtained above had a Co 2+ to Co 3+ atomic ratio of 2: 1, the amount of bromine required to obtain a product of the above chemical composition was:
Co 2+ (OH) 2 + x / 2Br 2 → Co 2+ 1-x Co 3+ x (OH) 2 Br x
From the formula, 1/6 mole of bromine should be sufficient for 1 mole of cobalt (II) hydroxide. However, in actuality, unreacted β-Co (OH) 2 did not disappear unless the reaction was performed for 5 days using 40 times as much bromine. These results are shown in FIG. From this figure, it was found that the amount of bromine necessary to oxidize to 1 / 3Co 3+ was 40 times the amount shown in the formula, and the reaction time required 5 days.
FIGS. 5a) and 5b) are photographs of scanning electron microscope images of layered hydroxides composed of hexagonal plate layered crystals of cobalt hydroxide (II) and cobalt (III) intercalated with bromine anions. However, even if the bromine anion is intercalated, it can be seen that the planar shape of the hexagonal plate of β-Co (OH) 2 used as the starting material is maintained.
Further, FIG. 6 shows a Fourier transform infrared absorption spectrum, and the absorption of β-Co (OH) 2 used as a starting material is a sharp stretching vibration of OH at 3630 cm −1 as shown in I of FIG. In the layered hydroxide composed of cobalt hydroxide (II) / cobalt (III) hexagonal plate-like crystals intercalated with II bromine anion, the absorption position of this OH is shifted to 3450 cm -1, absorption of bending mode from the water molecules appears in the 1620Cm- 1 to further absorb moisture.
和光純薬工業(株)製の過塩素酸ナトリウム・一水和物(純度98.0%)175gと和光純薬工業(株)製の濃度0.25モル/Lの塩酸水溶液5cm3に脱イオン水495cm3を加えた溶液を三角フラスコに入れ、さらに、実施例1で得られた黒褐色の層状水酸化物(Co2+ 0.66Co3+ 0.34(OH)2Br0.34・0.4H2O)0.5gを入れて分散させ、三角フラスコ内を窒素ガスで置換し、室温で1日間振盪させた。黒褐色の粉末をろ過し、水で洗浄した後、空気中で乾燥した。収量は0.42gであった。 Dehydrated into 175 g of sodium perchlorate monohydrate (purity 98.0%) manufactured by Wako Pure Chemical Industries, Ltd. and 5 cm 3 of an aqueous hydrochloric acid solution having a concentration of 0.25 mol / L manufactured by Wako Pure Chemical Industries, Ltd. A solution to which 495 cm 3 of ionic water was added was placed in an Erlenmeyer flask, and further, a black-brown layered hydroxide obtained in Example 1 (Co 2+ 0.66 Co 3+ 0.34 (OH) 2 Br 0.34 · 0). .4H 2 O) 0.5 g was added and dispersed, the inside of the Erlenmeyer flask was replaced with nitrogen gas, and the mixture was shaken at room temperature for 1 day. The blackish brown powder was filtered, washed with water and dried in air. The yield was 0.42g.
図2−a)のIIIに、得られた黒褐色粉末のX線回折のパターンを示した。この結果から、層間隔は9.2Åであり、この値は、ClO4 −を含む層状のMg−Al複水酸化物において、9.24Åとすでに報告されている値とよく一致している(K.Okamoto,ほか、J.Mater.Chem.16巻、1608頁、2006年)。 The X-ray diffraction pattern of the black-brown powder obtained is shown in Fig. 2-a) III. From this result, the layer spacing is 9.2 mm, and this value is in good agreement with the value already reported as 9.24 mm in the layered Mg—Al double hydroxide containing ClO 4 — ( K. Okamoto, et al., J. Mater. Chem. 16, 1608, 2006).
また、図6のIIIにこの生成物のフーリエ変換赤外吸収スペクトルを示したが、1120cm−1に過塩素酸アニオンに由来する特徴的な吸収が現れていることから、臭素アニオンが過塩素酸アニオンで置換されたことが分かる。 Moreover, the Fourier transform infrared absorption spectrum of this product was shown in III of FIG. 6, but since a characteristic absorption derived from a perchlorate anion appears at 1120 cm −1 , the bromine anion is perchloric acid. It turns out that it was substituted with an anion.
さらに、図7にこの過塩素酸アニオンで置換された生成物の走査型電子顕微鏡像の写真を示したが、六角板状で層状構造が維持されていることが分かった。 Furthermore, FIG. 7 shows a photograph of a scanning electron microscope image of the product substituted with the perchlorate anion. It was found that the layered structure was maintained in a hexagonal plate shape.
また、図8にエネルギー分散型X線分析の結果を示したが、ClO4 formと記載されているパターンから分かるように塩素原子のシグナルが現れており、臭素アニオンが過塩素酸アニオンで置換されたことが傍証される。なお、この図に現れている炭素(C)と銅(Cu)のシグナルは、サンプル作製の際に用いた炭素をコートした銅グリッドに由来するものである。
以上のことより、本実施例により、過塩素酸アニオンがインターカレートされた水酸化コバルト(II)とコバルト(III)の六角板状層状結晶からなる層状水酸化物が得られたことが明らかである。
Further, FIG. 8 shows the result of energy dispersive X-ray analysis. As can be seen from the pattern described as ClO 4 form, a signal of a chlorine atom appears, and the bromine anion is replaced with a perchlorate anion. That is proved. In addition, the signals of carbon (C) and copper (Cu) appearing in this figure are derived from the copper grid coated with carbon used in sample preparation.
From the above, it is clear that a layered hydroxide composed of hexagonal plate layered crystals of cobalt (II) hydroxide and cobalt (III) intercalated with perchlorate anions was obtained by this example. It is.
三角フラスコに和光純薬工業(株)製のホルムアミド(純度98.5%)100cm3を入れ,さらに、実施例2で得られた過塩素酸アニオンがインターカレートされた水酸化コバルト(II)・コバルト(III)六角板状層状結晶0.1gを添加した。フラスコ内の空気を窒素ガスで置換した後、密栓し、室温で30分間超音波処理を施すと半透明のコロイド状懸濁液が生成した。この操作で層が剥離されなかった粒子を1000rpmで5分間の条件で遠心分離して取り除いた。該懸濁液の中に、シリコンウエハーを5分間浸漬した後、水で洗浄し、該ウエハーを窒素気流中で乾燥した。 Cobalt (II) hydroxide in which Wako Pure Chemical Industries, Ltd. formamide (purity 98.5%) 100 cm 3 was put into an Erlenmeyer flask, and the perchlorate anion obtained in Example 2 was intercalated. Cobalt (III) hexagonal plate layered crystal 0.1g was added. After replacing the air in the flask with nitrogen gas, the flask was sealed and sonicated at room temperature for 30 minutes to produce a translucent colloidal suspension. The particles whose layers were not separated by this operation were removed by centrifugation at 1000 rpm for 5 minutes. A silicon wafer was immersed in the suspension for 5 minutes, washed with water, and dried in a nitrogen stream.
上記の処理を施したシリコンウエハーを、原子間力顕微鏡を用いて観察した結果を図9に示した。この結果から、面方向の寸法は数百nmで、厚さは約0.8nmのナノシートであることが分かった。また、図10に透過型電子顕微鏡像の写真を示したが、この図から面内方向の寸法は数百nmの不規則な形状をしているが、原子間力顕微鏡での結果とよく一致している。上記のような寸法、形態を示すことから、層状結晶の各層がばらばらに剥離されて単層の結晶(ナノシート)になったことが確認された。 The result of observing the silicon wafer subjected to the above treatment using an atomic force microscope is shown in FIG. From this result, it was found that the sheet was a nanosheet having a dimension in the plane direction of several hundred nm and a thickness of about 0.8 nm. In addition, FIG. 10 shows a photograph of a transmission electron microscope image. From this figure, the in-plane dimension is an irregular shape of several hundreds of nanometers. I'm doing it. Since it showed the above dimensions and forms, it was confirmed that each layer of the layered crystal was peeled apart to form a single layer crystal (nanosheet).
本発明により得られた、水酸化コバルト(II)・コバルト(III)系の層状結晶からなる層状水酸化物ならびにその層が剥離された単層の水酸化コバルト(II)・コバルト(III)ナノシートは、すぐれた磁気特性を有する微細なデバイスへの応用が期待される。 A layered hydroxide comprising a layered crystal of cobalt hydroxide (II) / cobalt (III) and a single layer of cobalt hydroxide (II) / cobalt (III) nanosheet from which the layer has been peeled, obtained by the present invention Is expected to be applied to fine devices having excellent magnetic properties.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008043681A JP5339331B2 (en) | 2008-02-26 | 2008-02-26 | Layered hydroxide and single-layer nanosheet and method for producing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008043681A JP5339331B2 (en) | 2008-02-26 | 2008-02-26 | Layered hydroxide and single-layer nanosheet and method for producing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009203081A true JP2009203081A (en) | 2009-09-10 |
JP5339331B2 JP5339331B2 (en) | 2013-11-13 |
Family
ID=41145716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008043681A Expired - Fee Related JP5339331B2 (en) | 2008-02-26 | 2008-02-26 | Layered hydroxide and single-layer nanosheet and method for producing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5339331B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012240873A (en) * | 2011-05-18 | 2012-12-10 | National Institute For Materials Science | Layered double hydroxide having i3-, and method for producing the same |
WO2015012078A1 (en) * | 2013-07-25 | 2015-01-29 | 株式会社ノリタケカンパニーリミテド | Anion-conducting material and method for manufacturing same |
CN107069051A (en) * | 2017-04-25 | 2017-08-18 | 北京师范大学 | Bromine intercalation stratiform Co2+/Co3+Application of the hydroxide in lithium-air battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002321922A (en) * | 2001-04-23 | 2002-11-08 | Toyota Central Res & Dev Lab Inc | Cobalt hydroxide oxide lamellar particle and its manufacturing method |
JP2003226681A (en) * | 2002-01-31 | 2003-08-12 | National Institute Of Advanced Industrial & Technology | Metal hydroxide and water layer |
JP2005001905A (en) * | 2003-06-10 | 2005-01-06 | National Institute For Materials Science | Manganese-cobalt flaky oxide |
JP2005335965A (en) * | 2004-05-24 | 2005-12-08 | National Institute For Materials Science | Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use |
JP2007031189A (en) * | 2005-07-25 | 2007-02-08 | National Institute For Materials Science | Method for peeling layered double hydroxide, double hydroxide nanosheet, composite thin film material thereof, method for producing the same, and method for producing layered double hydroxide thin film material |
JP2008290913A (en) * | 2007-05-24 | 2008-12-04 | National Institute For Materials Science | Cobalt hydroxide-iron crystal and cobalt hydroxide-iron monolayer nanosheet, and methods for producing the crystal and the nanosheet |
JP2009184869A (en) * | 2008-02-06 | 2009-08-20 | National Institute For Materials Science | Method for producing layered rare earth hydroxide |
-
2008
- 2008-02-26 JP JP2008043681A patent/JP5339331B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002321922A (en) * | 2001-04-23 | 2002-11-08 | Toyota Central Res & Dev Lab Inc | Cobalt hydroxide oxide lamellar particle and its manufacturing method |
JP2003226681A (en) * | 2002-01-31 | 2003-08-12 | National Institute Of Advanced Industrial & Technology | Metal hydroxide and water layer |
JP2005001905A (en) * | 2003-06-10 | 2005-01-06 | National Institute For Materials Science | Manganese-cobalt flaky oxide |
JP2005335965A (en) * | 2004-05-24 | 2005-12-08 | National Institute For Materials Science | Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use |
JP2007031189A (en) * | 2005-07-25 | 2007-02-08 | National Institute For Materials Science | Method for peeling layered double hydroxide, double hydroxide nanosheet, composite thin film material thereof, method for producing the same, and method for producing layered double hydroxide thin film material |
JP2008290913A (en) * | 2007-05-24 | 2008-12-04 | National Institute For Materials Science | Cobalt hydroxide-iron crystal and cobalt hydroxide-iron monolayer nanosheet, and methods for producing the crystal and the nanosheet |
JP2009184869A (en) * | 2008-02-06 | 2009-08-20 | National Institute For Materials Science | Method for producing layered rare earth hydroxide |
Non-Patent Citations (4)
Title |
---|
JPN6013003394; 馬仁志ほか: 'コバルト-鉄層状複水酸化物のトポケミカル合成及び単層剥離' 日本化学会第87春季年会講演予稿集1 , 20070312, p.341, 社団法人日本化学会 * |
JPN6013003396; Z. Liu et al.: 'Selective and Controlled Synthesis of alfa- and beta-Cobalt Hydroxides in Highly Developed Hexagonal' Journal of the American Chemical Society Vol.127, No.40, 20050917, p.13869-13874, American Chemical Society * |
JPN6013003399; Z. Liang et al.: 'Microwave-assisted synthesis of beta-Co(OH)2 and Co3O4 nanosheets via a layered precursor conversion' Canadian Journal of Chemistry Vol.84, No.8, 200608, p.1050-1053, NRC Canada * |
JPN6013003401; E. Hosono et al.: 'Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide ba' Journal of Materials Chemistry Vol.15, No.19, 20050521, p.1938-1945, The Royal Society of Chemistry * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012240873A (en) * | 2011-05-18 | 2012-12-10 | National Institute For Materials Science | Layered double hydroxide having i3-, and method for producing the same |
WO2015012078A1 (en) * | 2013-07-25 | 2015-01-29 | 株式会社ノリタケカンパニーリミテド | Anion-conducting material and method for manufacturing same |
JPWO2015012078A1 (en) * | 2013-07-25 | 2017-03-02 | 株式会社ノリタケカンパニーリミテド | Anion conducting material and method for producing the same |
CN107069051A (en) * | 2017-04-25 | 2017-08-18 | 北京师范大学 | Bromine intercalation stratiform Co2+/Co3+Application of the hydroxide in lithium-air battery |
Also Published As
Publication number | Publication date |
---|---|
JP5339331B2 (en) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thirumalairajan et al. | Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO 3 nanostructures comprised of nanosheet petals | |
JP5910887B2 (en) | Water-swellable layered double hydroxide and production method thereof, gel-like or sol-like substance, double hydroxide nanosheet and production method thereof | |
Huang et al. | Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides | |
Dong et al. | Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies | |
Cai et al. | Template-free synthesis of hierarchical spindle-like γ-Al 2 O 3 materials and their adsorption affinity towards organic and inorganic pollutants in water | |
Srivastava et al. | Morphologically controlled synthesis of copper oxides and their catalytic applications in the synthesis of propargylamine and oxidative degradation of methylene blue | |
Wang et al. | Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration | |
Peng et al. | Multipath fabrication of hierarchical CuAl layered double hydroxide/carbon fiber composites for the degradation of ammonia nitrogen | |
JP6097306B2 (en) | Manganese-containing metal phosphate and method for producing the same | |
Li et al. | Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets | |
Xiao et al. | Self-assembled 3D flower-like Ni2+–Fe3+ layered double hydroxides and their calcined products | |
Yang et al. | Control of the formation of rod-like ZnO mesocrystals and their photocatalytic properties | |
Lv et al. | In situ synthesis of nanolamellas of hydrophobic magnesium hydroxide | |
Peng et al. | Controllable synthesis and photoreduction performance towards Cr (vi) of BiOCl microrods with exposed (110) crystal facets | |
Choi et al. | Growth mechanism of cubic MgO granule via common ion effect | |
Hu et al. | Solvothermal synthesis of orthorhombic Sb 2 WO 6 hierarchical structures and their visible-light-driven photocatalytic activity | |
JP2008290913A (en) | Cobalt hydroxide-iron crystal and cobalt hydroxide-iron monolayer nanosheet, and methods for producing the crystal and the nanosheet | |
Xiao et al. | Dual surfactants-assisted adsorption of lithium ions in liquid lithium resources on a superhydrophilic spinel-type H4Ti5O12 ion sieve | |
JP6099040B2 (en) | Composite layered double hydroxide | |
Hou et al. | Exfoliation of layered double hydroxides by an electrostatic repulsion in aqueous solution | |
Pudukudy et al. | Facile chemical synthesis of nanosheets self-assembled hierarchical H2WO4 microspheres and their morphology-controlled thermal decomposition into WO3 microspheres | |
Luan et al. | Thermal annealing and graphene modification of exfoliated hydrogen titanate nanosheets for enhanced lithium-ion intercalation properties | |
JP5339331B2 (en) | Layered hydroxide and single-layer nanosheet and method for producing them | |
Sun et al. | Formation of hierarchically polyhedral Cu 7 S 4 cages from Cu 2 O templates and their structure-dependent photocatalytic performances | |
Zhou et al. | Synthesis and catalytic property of facet-controlled Co 3 O 4 structures enclosed by (111) and (113) facets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130731 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5339331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |