JP4862147B2 - Resin composition containing colloidal particulate layered double hydroxide / amino acid composite - Google Patents

Resin composition containing colloidal particulate layered double hydroxide / amino acid composite Download PDF

Info

Publication number
JP4862147B2
JP4862147B2 JP2004055260A JP2004055260A JP4862147B2 JP 4862147 B2 JP4862147 B2 JP 4862147B2 JP 2004055260 A JP2004055260 A JP 2004055260A JP 2004055260 A JP2004055260 A JP 2004055260A JP 4862147 B2 JP4862147 B2 JP 4862147B2
Authority
JP
Japan
Prior art keywords
layered double
double hydroxide
resin
amino acid
formamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004055260A
Other languages
Japanese (ja)
Other versions
JP2005239980A (en
Inventor
俊行 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004055260A priority Critical patent/JP4862147B2/en
Publication of JP2005239980A publication Critical patent/JP2005239980A/en
Application granted granted Critical
Publication of JP4862147B2 publication Critical patent/JP4862147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、層状複水酸化物・アミノ酸複合物から誘導される金属水酸化物成分をその構造中に有する微粒子を含有する樹脂組成物とその製造法に関するものである。   The present invention relates to a resin composition containing fine particles having a metal hydroxide component derived from a layered double hydroxide / amino acid complex in its structure and a method for producing the same.

層状複水酸化物またはハイドロタルサイトと呼ばれる化合物は、以下の一般式で表される層状化合物である。
[M2+ 1−xM3+ (OH)][An− x/n・mHO]または[Li 1/3Al3+ 2/3(OH)][An− 1/3n・mHO]
{上記式中、 M2+ は2価金属、 M3+ は3価金属(3価金属の一部を4価金属に置き換えることも可能)、An− は層間陰イオンで、mは適当な有理数、nは整数、xは1を超えない有理数を表す。}
上記一般式において前半部の[M2+ 1−xM3+ (OH)]または[Li 1/3Al3+ 2/3(OH)]は、層状複水酸化物の基本層またはホスト層と呼ばれる金属水酸化物層であり、この基本層が一般式後半部の陰イオンと水分子から成る中間層またはゲスト層と呼ばれる層と交互に積み重なっている。
A compound called layered double hydroxide or hydrotalcite is a layered compound represented by the following general formula.
[M 2 + 1-x M 3+ x (OH) 2 ] [A n− x / n · mH 2 O] or [Li + 1/3 Al 3+ 2/3 (OH) 2 ] [A n− 1 / 3n・ MH 2 O]
{In the above formula, M 2+ is a divalent metal, M 3+ is (also possible to replace some of the trivalent metal tetravalent metal) trivalent metal, A n-in interlayer anion, m is an appropriate rational number , N is an integer, and x is a rational number not exceeding 1. }
In the above general formula, [M2 + 1- xM3 + x (OH) 2 ] or [Li + 1 / 3Al3 + 2/3 (OH) 2 ] in the first half is a layered double hydroxide base layer or host It is a metal hydroxide layer called a layer, and this basic layer is alternately stacked with a layer called an intermediate layer or guest layer composed of anions and water molecules in the latter half of the general formula.

層状複水酸化物は、難燃化剤、安定剤、成型改質剤および保温性改良剤などとして樹脂に添加され利用されてきた。特に、環境への配慮から毒性のない金属から構成されているMg-Al系層状複水酸化物は、層状複水酸化物のなかでも最もよく利用されている。しかし、樹脂練り込み時の分散性は悪く、このための様々な検討がなされてきた(特許文献1〜3参照)。 過去のこうした検討により、ある程度の分散性向上を達成してはいるが、技術の進歩に伴い、分散性への要求はさらに厳しくなることは必至である。   Layered double hydroxides have been added to resins and used as flame retardants, stabilizers, molding modifiers, and heat retention improvers. In particular, Mg—Al-based layered double hydroxides composed of non-toxic metals from the consideration of the environment are most often used among layered double hydroxides. However, the dispersibility at the time of resin kneading is poor, and various studies for this purpose have been made (see Patent Documents 1 to 3). Although past studies have achieved some degree of improvement in dispersibility, it is inevitable that the demand for dispersibility will become more severe as technology advances.

分散性向上の技術開発として、1つには、層状複水酸化物自体を直接樹脂中においてナノメーターレベルで分散する技術が報告されている。この技術は、陰イオン性モノマー(フェノール性水酸基を有する化合物)を層状複水酸化物の層間陰イオンとして含有させたものを、フェノール樹脂又は変性フェノール樹脂の合成段階で、該樹脂原料モノマーに混合、重合させることによって、層状複水酸化物が剥離した状態で分散した樹脂組成物を得るものである(特許文献4〜7参照)。これは、層状複水酸化物の層間に存在するモノマーが重合して分子量が増大することにより層間を非常に大きく押し広げたため、層状複水酸化物が樹脂合成過程において剥離状態で分散したものである。したがって、このような手法による場合、陰イオンのモノマーが存在する樹脂のみに適用が限られ、一般的には、他の層状無機化合物の例と同様、熱硬化性樹脂との樹脂組成物に限られ、熱可塑性樹脂に層状複水酸化物を剥離状態で分散させることは不可能であった。   As a technical development for improving dispersibility, one technique has been reported in which a layered double hydroxide itself is directly dispersed in a resin at a nanometer level. In this technology, an anionic monomer (a compound having a phenolic hydroxyl group) is added as an interlayer anion of a layered double hydroxide to the resin raw material monomer at the synthesis stage of the phenol resin or modified phenol resin. By polymerizing, a resin composition dispersed in a state where the layered double hydroxide is peeled off is obtained (see Patent Documents 4 to 7). This is because the layered double hydroxide was dispersed in the exfoliated state during the resin synthesis process because the monomers present between the layers of the layered double hydroxide were polymerized and the molecular weight increased and the layer was greatly expanded. is there. Therefore, in the case of such a method, the application is limited only to a resin in which an anionic monomer exists, and in general, as in the case of other layered inorganic compounds, it is limited to a resin composition with a thermosetting resin. Therefore, it was impossible to disperse the layered double hydroxide in a peeled state in the thermoplastic resin.

また、層状複水酸化物をグリセロールと反応させて層間距離を14.2オングストロームに広げたものをエチレン−酢酸ビニル共重合体と混錬することによって、層状複水酸化物を樹脂中で剥離した状態で分散した樹脂組成物を得たとするものもあるが(特許文献8参照)、剥離の機構及び剥離の状態は明らかにしていない。
一方、上述の層状複水酸化物自体を樹脂に直接分散させるような方法とは全く異なり、層状複水酸化物の主要構成成分である金属水酸化物層を構造中に有する微小粒子を合成してから、これを樹脂に高度に分散させる手法が考えられている。すなわち、高度に薄片化してコロイド粒子に転化した層状複水酸化物誘導体を作製し、この誘導体と樹脂との組成物を得る方法が報告されているが、このような手法が可能となった背景には、最近の2つの論文において(1つは本発明者によるもの)、層状複水酸化物を有機溶媒中で、層剥離させて分散させる報告があったためである。この技術を利用すれば、溶媒中で層状複水酸化物が層剥離して薄片化したコロイド粒子化層状複水酸化物誘導体が得られ、溶媒に溶かした樹脂と溶液中で分子レベルまたは分子レベルに近い状態で混合可能である。
In addition, by laminating the layered double hydroxide with ethylene-vinyl acetate copolymer obtained by reacting the layered double hydroxide with glycerol and extending the interlayer distance to 14.2 angstroms, the layered double hydroxide is released in the resin. Some have obtained a dispersed resin composition (see Patent Document 8), but the mechanism of peeling and the state of peeling are not clarified.
On the other hand, unlike the above-described method in which the layered double hydroxide itself is directly dispersed in the resin, fine particles having a metal hydroxide layer, which is the main component of the layered double hydroxide, in the structure are synthesized. Then, a method of highly dispersing this in a resin has been considered. In other words, a method of producing a layered double hydroxide derivative that has been highly exfoliated and converted into colloidal particles and obtaining a composition of this derivative and a resin has been reported. This is because, in two recent papers (one by the present inventor), there was a report that a layered double hydroxide was dispersed and separated in an organic solvent. If this technology is used, a layered double hydroxide derivative in which a layered double hydroxide is exfoliated and exfoliated in a solvent is obtained, and a molecular level or molecular level is obtained in a resin and a solution dissolved in a solvent. Can be mixed in a state close to.

この方法は、層状複水酸化物を直接樹脂または樹脂の前駆体に投入するのではなく、一旦、層状複水酸化物複合物を溶媒中で層剥離して安定なコロイド粒子化した特殊な層状複水酸化物誘導体を作製するため、特許文献4−8に記述の方法とは全く異なる。しかし、層状複水酸化物誘導体は層状複水酸化物の主要構成成分である金属水酸化物成分を有しているため、樹脂に添加した際に層状複水酸化物と同様の特性向上(難燃化、安定化、成型性改良および保温性改良など)が期待できる。溶媒中に剥離・分散に要する条件は、前者(非特許文献1参照)は溶媒としてホルムアミドを用いて室温で即時反応、後者(非特許文献2参照)では、ブタノールを用いて120℃−16時間還流を必要とするため、反応は前者が極めて簡便である。前者はMg-Al-系層状複水酸化物において、層間陰イオンとしてグリシンを用い、後者は、Zn-Al系層状複水酸化物においてドデシル硫酸を用いている。 In this method, the layered double hydroxide is not directly fed into the resin or the precursor of the resin, but once the layered double hydroxide composite is separated in a solvent to form a stable colloidal particle. In order to produce a double hydroxide derivative, it is completely different from the method described in Patent Documents 4-8. However, since the layered double hydroxide derivative has a metal hydroxide component which is the main component of the layered double hydroxide, the same characteristic improvement as the layered double hydroxide when added to the resin (difficulty) Combustion, stabilization, moldability improvement, heat retention improvement, etc.) can be expected. The conditions required for peeling and dispersion in the solvent are as follows: the former (see Non-Patent Document 1) uses formamide as a solvent and immediately reacts at room temperature; the latter (see Non-Patent Document 2) uses butanol at 120 ° C. for 16 hours. Since the reflux is required, the former is very simple. The former uses glycine as an interlayer anion in the Mg—Al— layered double hydroxide, and the latter uses dodecyl sulfate in the Zn—Al layered double hydroxide.

前者の手段に関しては、樹脂との親和性を向上させるため、グリシン以外のアミノ酸を層状複水酸化物に挿入し、それらの化合物もホルムアミド中で同じように層剥離が起こることを本発明者らはすでに見出している(特許文献9−11)が、そのホルムアミド中での層剥離のための諸条件あるいはそれらを利用した樹脂組成物についての性能については未だ充分確認されていない。一方、グリシンを層間陰イオンとした層状複水酸化物をホルムアミドに分散させ、溶媒に溶かした樹脂と溶液中で混合し、溶媒の除去によって樹脂とのナノコンポジットを作製した例は、樹脂としてポリビニルアルコール及び、ポリメチルメタクリ酸メチルを使用した例において報告がある(非特許文献3,4)。しかし、ポリビニルアルコール及び、ポリメチルメタクリ酸メチルとのナノコンポジットの報告においても、樹脂は水またはアセトンなどの溶媒で容易に層状複水酸化物と分離抽出されてしまい、グリシンを挿入した層状複水酸化物を用いた場合は樹脂との親和性が十分でないことが推測される。従って、層状複水酸化物をコロイド粒子に転化した層状複水酸化物誘導体を利用した樹脂組成物は、層状複水酸化物の金属水酸化物成分を高度に分散させる手法として有用であるにもかかわらず、未だ樹脂との親和性が良好で、十分な安定性を有する樹脂組成物は知られていない。   Regarding the former means, in order to improve the affinity with the resin, the present inventors have found that amino acids other than glycine are inserted into the layered double hydroxide, and that these compounds also cause delamination in the formamide. Has already been found (Patent Documents 9-11), but the conditions for layer peeling in formamide or the performance of a resin composition using them have not been sufficiently confirmed. On the other hand, a layered double hydroxide containing glycine as an interlayer anion is dispersed in formamide, mixed with a resin dissolved in a solvent in a solution, and a nanocomposite with the resin is prepared by removing the solvent. There are reports in examples using alcohol and methyl polymethyl methacrylate (Non-patent Documents 3 and 4). However, even in a nanocomposite report of polyvinyl alcohol and methyl polymethyl methacrylate, the resin is easily separated and extracted from the layered double hydroxide with a solvent such as water or acetone, and the layered double water into which glycine is inserted. When an oxide is used, it is estimated that the affinity with the resin is not sufficient. Therefore, the resin composition using the layered double hydroxide derivative obtained by converting the layered double hydroxide into colloidal particles is useful as a technique for highly dispersing the metal hydroxide component of the layered double hydroxide. Nevertheless, a resin composition having a good affinity with the resin and sufficient stability has not been known yet.

特開2000-290451号公報JP 2000-290451 A 特開2000-290452号公報JP 2000-290452 A 特開2001-164042号公報JP 2001-164042 特開2001-164131号公報JP 2001-164131 A 特開2001-234026号公報JP 2001-234026 A 特開2001-253997号公報Japanese Patent Laid-Open No. 2001-253997 特開2001-261927号公報Japanese Patent Laid-Open No. 2001-261927 特開2000-345057号公報JP 2000-345057 特開2003-221226号公報JP2003-221226 特開2003-226681号公報JP2003-226681 特願2003-327210号Japanese Patent Application No. 2003-327210 T. Hibino and W. Jones (2000年、Journal of MaterialsChemistry、第11巻、1321-1323頁)T. Hibino and W. Jones (2000, Journal of Materials Chemistry, Volume 11, pages 1321-1323) F. Leroux and J.-P. Besse (2001年、Chemistry of Materials、第13巻、3507-3515頁)F. Leroux and J.-P. Besse (2001, Chemistry of Materials, Vol. 13, pp. 3507-3515) B.-G. Liら(2003年、Materials Research Bulletin、第38巻、1567-1572頁)B.-G.Li et al. (2003, Materials Research Bulletin, 38, 1567-1572) B.-G. Liら(2003年、Colloid and Polymer Science、第281巻、998-1001頁)B.-G.Li et al. (2003, Colloid and Polymer Science, 281, 998-1001)

本発明の課題は、層状複水酸化物の樹脂に対する分散性の低さに関する問題点を解消することにあり、具体的には、層状複水酸化物・アミノ酸複合物を用い、該複合物をホルムアミドとの反応により、上記複合物に由来する金属水酸化物を安定したコロイド粒子状態で分散させるための手段を提供し、併せてこのコロイド粒子を用いて、樹脂中に金属水酸化物が高度に分散した樹脂組成物を提供することにある。   An object of the present invention is to eliminate the problems related to low dispersibility of a layered double hydroxide in a resin. Specifically, a layered double hydroxide / amino acid complex is used, By means of reaction with formamide, a means for dispersing metal hydroxide derived from the above composite in a stable colloidal particle state is provided, and at the same time, using this colloidal particle, the metal hydroxide is highly advanced in the resin. It is in providing the resin composition disperse | distributed to.

本発明者は、上記従来技術の層状複水酸化物の樹脂に対する分散性の低さに関する問題点を解消するため、層状複水酸化物の代わりに、コロイド粒子化層状複水酸化物・アミノ酸複合物(「背景技術」でいうところの層状複水酸化物誘導体)を用いることにより、該層状複水酸化物構造中の主要構成成分である金属水酸化物成分をナノメーターから数百ナノメーターレベルで樹脂中に分散させた樹脂組成物が得られること、さらに、該層状複水酸化物・アミノ酸複合物が乾燥状態にある場合には、該複合物を水蒸気により復元してから、ホルムアミドと混合することにより、コロイド分散性が回復し、金属水酸化物が同様に樹脂中に分散された樹脂組成物が得られることを見出し、本発明を完成させるに至ったものである。   In order to solve the above-described problems related to the low dispersibility of the layered double hydroxide in the resin of the prior art, the present inventor used a colloidal particle layered layered double hydroxide / amino acid composite instead of the layered double hydroxide. By using a product (a layered double hydroxide derivative as referred to in the “background art”), the metal hydroxide component, which is the main component in the layered double hydroxide structure, is reduced from nanometer to several hundred nanometer level. To obtain a resin composition dispersed in the resin, and when the layered double hydroxide / amino acid composite is in a dry state, the composite is restored with water vapor and mixed with formamide. As a result, it was found that colloidal dispersibility was recovered and a resin composition in which the metal hydroxide was similarly dispersed in the resin was obtained, and the present invention was completed.

すなわち、本発明においては、コロイド粒子化層状複水酸化物・アミノ酸複合物を得るには、層状複水酸化物にアミノ酸を含有せしめることによって層状複水酸化物・アミノ酸複合物を作製し、該複合物が適度な水分を含んだ状態で、ホルムアミドを加えることによって層状複水酸化物・アミノ酸複合物を薄片化して安定なコロイド粒子に転化させ、この新規コロイド粒子と樹脂とを溶液中で混合して、溶媒を除去することにより、金属水酸化物成分が高度に分散された樹脂組成物が得られる。   That is, in the present invention, in order to obtain a colloidal particle-layered layered double hydroxide / amino acid complex, a layered double hydroxide / amino acid complex is prepared by adding an amino acid to the layered double hydroxide, With the composite containing moderate moisture, formamide is added to slice the layered double hydroxide / amino acid composite into stable colloidal particles, and the new colloidal particles and resin are mixed in solution. Then, by removing the solvent, a resin composition in which the metal hydroxide component is highly dispersed is obtained.

したがって、本願発明は以下のとおりのものである
(1)乾燥又は長期保存によりホルムアミド中での層剥離特性を喪失した、層間イオンとして1種または2種以上のアミノ酸(但し、グリシン1種のみの場合を除く)を含有する層状複水酸化物・アミノ酸複合物を、凝縮水を生成させることなく水蒸気雰囲気下又は高湿度下に放置することを特徴とする、上記層状複水酸化物・アミノ酸複合物のホルムアミド中での層剥離特性の回復方法。
(2)乾燥又は長期保存によりホルムアミド中での層剥離特性を喪失した、層間イオンとして1種または2種以上のアミノ酸(但し、グリシン1種のみの場合を除く)を含有する層状複水酸化物・アミノ酸複合物を、凝縮水を生成させることなく水蒸気雰囲気下又は高湿度下に放置して、ホルムアミド中での剥離特性を回復させ、該剥離特性が回復した層状複水酸化物・アミノ酸複合物を、ホルムアミドと混合することにより、層状複水酸化物・アミノ酸複合物の層剥離による薄片化により形成されたコロイド粒子を含有するコロイド溶液を形成させ、該コロイド溶液と樹脂を溶媒に溶解した樹脂溶液と攪拌混合した後、ホルムアミドと溶媒を蒸発により除去せしめることを特徴とする、上記コロイド粒子が樹脂中に分散された樹脂組成物の製造方法。
Accordingly, the present invention is as follows.
(1) Layered double hydroxide containing one or more amino acids (except for the case of only one glycine) as an interlayer ion, which has lost its delamination property in formamide by drying or long-term storage A method for recovering delamination properties of the above layered double hydroxide / amino acid complex in formamide, wherein the amino acid complex is left in a steam atmosphere or high humidity without generating condensed water .
(2) Layered double hydroxides containing one or more amino acids (except for the case of only one glycine) as interlayer ions that have lost their delamination properties in formamide by drying or long-term storage A layered double hydroxide / amino acid complex in which the amino acid complex is left in a steam atmosphere or high humidity without generating condensed water to recover the peeling property in formamide and the peeling property is restored. Is mixed with formamide to form a colloidal solution containing colloidal particles formed by exfoliation by delamination of a layered double hydroxide / amino acid complex, and a resin in which the colloidal solution and the resin are dissolved in a solvent. After stirring and mixing with the solution, the formamide and the solvent are removed by evaporation, and a resin composition in which the colloidal particles are dispersed in the resin is produced. Manufacturing method.

本発明によれば、樹脂配合剤として有用でありながら分散性の低さに問題点がある層状複水酸化物の代わりに、層状複水酸化物の主要構成成分である金属水酸化物成分を有するコロイド粒子化した層状複水酸化物誘導体を高度に分散した形態で樹脂に複合し、難燃性、安定性、成型性、機械的強度および保温性等の様々な特性に優れる樹脂組成物を提供することが可能となるものである。   According to the present invention, instead of the layered double hydroxide that is useful as a resin compounding agent but has a problem of low dispersibility, the metal hydroxide component that is the main component of the layered double hydroxide is added. A resin composition excellent in various properties such as flame retardancy, stability, moldability, mechanical strength and heat retention is obtained by compounding a resin in a highly dispersed form with a colloidal particle-form layered double hydroxide derivative. It can be provided.

本発明に用いる前駆体としての層状複水酸化物・アミノ酸複合物(以下、単に層状複水酸化物という場合がある。)は、1種または2種以上の2価金属塩及び1種または2種以上の3価金属塩、あるいはさらに3価金属塩の一部を4価金属塩としたもの、若しくは一価金属塩及び3価金属塩を組み合わせたものと、1種または2種以上のアミノ酸とを、アルカリ条件下、溶液状態で混合することにより共沈殿させることにより得られる。この層状複水酸化物は、金属水酸化物からなる基本層と、陰イオン及び水分子とからなる中間層が交互に積層しており、中間層を構成する層間イオンとして、1種または2種以上のアミノ酸を含有するものである。 The layered double hydroxide / amino acid complex (hereinafter sometimes simply referred to as layered double hydroxide) as a precursor used in the present invention is one or two or more divalent metal salts and one or two. Trivalent metal salt of more than one species, or a part of trivalent metal salt converted to tetravalent metal salt, or a combination of monovalent metal salt and trivalent metal salt and one or more amino acids Can be obtained by coprecipitation by mixing in a solution state under alkaline conditions. In this layered double hydroxide, a basic layer made of a metal hydroxide and an intermediate layer made of an anion and a water molecule are alternately laminated, and one or two kinds of interlayer ions constituting the intermediate layer are formed. It contains the above amino acids.

本発明における前駆体としての層状複水酸化物を一般式で表すと、以下の通りである。
[M2+ 1−xM3+ (OH)][An− x/n・mHO]
{式中、 M2+ は2価金属、 M3+ は3価金属(3価金属の一部を4価金属に置き換えることも可能)、An− は層間陰イオンで、mは適当な有理数、nは整数、xは1を超えない有理数を表す。}
一般式において前半部の[M2+ 1−xM3+ (OH)]は、層状複水酸化物の基本層またはホスト層と呼ばれる金属水酸化物層であり、この基本層が一般式後半部の陰イオンと水分子から成る中間層またはゲスト層と呼ばれる層と交互に積み重なっている。同後半部の[An− x/n・mHO]または[An− 1/3n・mHO]は、陰イオン群と水分子からなる中間層であり、An−は、1種または2種以上のアミノ酸、金属塩由来の陰イオン及びその他上記共沈殿溶液中に含まれる水酸化物イオン、製造過程で混入する炭酸イオン等の各陰イオンを表す。
また、金属水酸化物層が一価金属と3価金属からなる場合として、例えばリチウムとアルミニウムからなる金属水酸化物層を有する層状複水酸化物は以下の式で表される。
[Li 1/3Al3+ 2/3(OH)][An− 1/3n・mHO]
(式中の符号は上記一般式と同様の意味である。)
このような金属水酸化物層がリチウムとアルミニウムの複水酸化物である場合には、アルミニウム塩とリチウム塩を使用するが、水酸化アルミニウムの副生を防ぐため、リチウム塩は過剰に投入する。このような層状複水酸化物も、金属水酸化物からなる基本層と、陰イオン及び水分子とからなる中間層が交互に積層しており、中間層を構成する層間イオンとして、1種または2種以上のアミノ酸を含有するものである。
The layered double hydroxide as a precursor in the present invention is represented by the following general formula.
[M 2+ 1-x M 3+ x (OH) 2 ] [A n− x / n · mH 2 O]
{Wherein, M 2+ is a divalent metal, M 3+ is (also possible to replace some of the trivalent metal tetravalent metal) trivalent metal, A n-in interlayer anion, m is an appropriate rational number, n represents an integer, and x represents a rational number not exceeding 1. }
In the general formula, [M2 + 1- xM3 + x (OH) 2 ] in the first half is a metal hydroxide layer called a base layer or a host layer of a layered double hydroxide, and this base layer is the latter half of the general formula. The layers are alternately stacked with an intermediate layer composed of anions and water molecules, or a layer called a guest layer. Of the latter half portion [A n- x / n · mH 2 O] or [A n- 1 / 3n · mH 2 O] is an intermediate layer consisting of an anion group and water molecules, A n-is 1 Each anion such as a seed or two or more amino acids, an anion derived from a metal salt, and other hydroxide ions contained in the coprecipitation solution, carbonate ions mixed in the production process, and the like.
Moreover, as a case where the metal hydroxide layer is composed of a monovalent metal and a trivalent metal, for example, a layered double hydroxide having a metal hydroxide layer composed of lithium and aluminum is represented by the following formula.
[Li + 1/3 Al 3 + 2/3 (OH) 2 ] [A n- 1/3 n · mH 2 O]
(The symbols in the formula have the same meaning as in the above general formula.)
When such a metal hydroxide layer is a double hydroxide of lithium and aluminum, an aluminum salt and a lithium salt are used. However, in order to prevent by-production of aluminum hydroxide, an excessive amount of lithium salt is added. . Such a layered double hydroxide also has a basic layer made of a metal hydroxide and an intermediate layer made of anions and water molecules alternately stacked, and one or more kinds of interlayer ions constituting the intermediate layer are used. It contains two or more amino acids.

本発明の層状複酸化物をさらに具体的に説明すると、上記2価金属イオンは、具体的には、Mg2+、Zn2+、Co2+、Ni2+及びCu2+等であり、同3価金属イオンは、Al3+、Fe3+、Cr3+及びCo3+等で、4価金属イオンはZr4+やSn4+等である。また、上記金属塩由来の陰イオンとしては、Cl、NO 及びSO 2−等が挙げられる。
本発明の層状酸化物としては、Mg-Al系層状複酸化物、Ni-Al系層状複酸化物、Co-Al系層状複酸化物あるいはZn-Al系層状複酸化物が挙げられるが、特にこれらに限定されるものではない。また、上記構造式中xは0.15〜0.33が好ましい。アミノ酸の含有量は、7.0×10-4 mol/g以下が好適であるが、特にこの範囲に限定されるものではない。
The layered double oxide of the present invention will be described more specifically. Specifically, the divalent metal ions are Mg 2+ , Zn 2+ , Co 2+ , Ni 2+, Cu 2+ and the like, and the trivalent metal ions are the same. Are Al 3+ , Fe 3+ , Cr 3+ and Co 3+ , and the tetravalent metal ions are Zr 4+ , Sn 4+, etc. Examples of the anion derived from the metal salt include Cl , NO 3 and SO 4 2− .
Examples of the layered oxide of the present invention include Mg-Al-based layered double oxide, Ni-Al-based layered double oxide, Co-Al-based layered double oxide, or Zn-Al-based layered double oxide. It is not limited to these. In the above structural formula, x is preferably 0.15 to 0.33. The amino acid content is preferably 7.0 × 10 −4 mol / g or less, but is not particularly limited to this range.

本発明に用いる前駆体である層状複水酸化物の製造手段は、すでに公知となっている他の層状複水酸化物の共沈殿による合成法、例えばS. Miyata (1980年、Clays and Clay Minerals、第28巻、50-56頁)などに報告されている方法と類似するが、空気中に存在する二酸化炭素由来の炭酸イオンが生産物に混入すると、後で層状複水酸化物に施す薄片化によるコロイド粒子への転化が起きにくくなるので、合成およびその後の洗浄・乾燥工程は、二酸化炭素及び/または炭酸イオンの非存在下、例えば窒素気流中で行うことがよく、また、使用する水は、予め炭酸イオンを除去しておくことが好ましい。    The means for producing the layered double hydroxide, which is a precursor used in the present invention, is a known synthesis method by coprecipitation of other layered double hydroxides, such as S. Miyata (1980, Clays and Clay Minerals 28, pp. 50-56), but when carbon dioxide-derived carbonate ions present in the air are mixed into the product, the flakes applied to the layered double hydroxide later Therefore, the synthesis and the subsequent washing / drying steps are preferably performed in the absence of carbon dioxide and / or carbonate ions, for example, in a nitrogen stream, and the water used. It is preferable to remove carbonate ions in advance.

本発明に用いる前駆体である層状複水酸化物の合成法は、例えば、マグネシウム、亜鉛、コバルト、ニッケル等の2価金属、及びアルミニウム、鉄、クロム等の3価金属の硝酸塩、塩化物あるいは硫酸塩を溶かした水溶液と、1種または2種以上のアミノ酸を溶かした水溶液を調整し、この2つの水溶液をゆっくりと混合する方法が好適である。
Mg以外の2価金属でアミノ酸を含有する層状複水酸化物を作製しようとした場合、アミノ酸のキレート効果による影響が大きいため、Mg以外の金属イオンは層状複水酸化物に取り込まれるよりは、キレート化により可溶化してしまい、Mg以外の金属系層状複水酸化物を効率的に得るのが難しくなることがある。これに対しては、アミノ酸投入量を減らすことで問題は解決される。使用するアミノ酸としては、樹脂との親和性の点で、グリシン以外のアミノ酸を用いることが好ましく、例えば、アラニン、ロイシン、グルタミン、リジン、ヒスチジン、アルギニン等が挙げられるが、この中では、後述する長期安定性の点において、アラニン、グルタミンが比較的安定であるため好ましい。
The method for synthesizing the layered double hydroxide used as a precursor for the present invention includes, for example, divalent metals such as magnesium, zinc, cobalt and nickel, and nitrates, chlorides or trivalent metals such as aluminum, iron and chromium. A method in which an aqueous solution in which a sulfate is dissolved and an aqueous solution in which one or more amino acids are dissolved is prepared, and these two aqueous solutions are slowly mixed is preferable.
When trying to make a layered double hydroxide containing an amino acid with a divalent metal other than Mg, the influence of the chelating effect of the amino acid is large, so metal ions other than Mg are incorporated into the layered double hydroxide, It may be solubilized by chelation and it may be difficult to efficiently obtain a metal-based layered double hydroxide other than Mg. On the other hand, the problem can be solved by reducing the amount of amino acid input. As the amino acid to be used, it is preferable to use an amino acid other than glycine in terms of affinity with the resin, and examples thereof include alanine, leucine, glutamine, lysine, histidine, arginine and the like. In terms of long-term stability, alanine and glutamine are preferable because they are relatively stable.

本発明により得られた前駆体としての層状複水酸化物は、ホルムアミドを加えると、極めて容易に層剥離が起こり、溶媒中に薄片化したコロイド粒子となって分散し、コロイド粒子化した層状複水酸化物・アミノ酸複合物、すなわち新規な層状複水酸化物誘導体に転化する。本発明によるコロイド粒子化層状複水酸化物・アミノ酸複合物は、コロイド溶液状態のまま、溶媒に溶かした樹脂と混合して、その後、ホルムアミド及び溶媒を除去すると、ナノメーターから数百ナノメーターレベルでコロイド粒子化層状複水酸化物・アミノ酸複合物が樹脂中に分散された形態で樹脂と複合化した樹脂組成物を得ることができる。   When a formamide is added to the layered double hydroxide as a precursor obtained by the present invention, delamination occurs very easily, and the layered double hydroxide is dispersed in the form of colloidal particles separated into a solvent. It is converted into a hydroxide / amino acid complex, that is, a novel layered double hydroxide derivative. The colloidal particle layered layered double hydroxide / amino acid composite according to the present invention is mixed with a resin dissolved in a solvent in a colloidal solution state, and then the formamide and the solvent are removed. Thus, it is possible to obtain a resin composition in which the colloidal particle layered layered double hydroxide / amino acid complex is complexed with the resin in a form dispersed in the resin.

本発明のコロイド粒子化した層状複水酸化物・アミノ酸複合物が配合される樹脂としては、水溶性ポリマーや、水酸基等の親水性基あるいは水溶性を付与する基を導入してホルムアミドや水などに可溶にした変性ポリエチレン、変性ポリプロピレン、変性ポリスチレン、変性ポリ塩化ビニル、ポリ乳酸及びそれらのポリマーアロイなどが挙げられる。溶媒中で薄片化した層状複水酸化物誘導体の液状物と変性ポリマー溶液を混合した後、溶媒を除去することによってナノメーターから数百ナノメーターレベルで層状複水酸化物誘導体が樹脂中に分散された形態で樹脂と複合化した樹脂組成物を得ることができる。この樹脂組成物は、そのまま樹脂組成物として用いても、他の樹脂組成物に対する添加剤として用いてもよい。添加剤として用いる場合は通常の溶融混錬で樹脂や樹脂組成物と複合化することが可能である。
したがって、本発明は、コロイド粒子化層状複水酸化物・アミノ酸複合物を樹脂に極めて高分散で添加できるため、各種樹脂に対する難燃化、安定化、成型改質、高強度化および保温性改良等に極めて有用な樹脂組成物を提供するものである。
As the resin compounded with the colloidal particle layered double hydroxide / amino acid composite of the present invention, a water-soluble polymer, a hydrophilic group such as a hydroxyl group, or a group imparting water solubility is introduced to formamide or water. And modified polyethylene, modified polypropylene, modified polystyrene, modified polyvinyl chloride, polylactic acid, and polymer alloys thereof. After mixing the liquid material of the layered double hydroxide derivative exfoliated in a solvent and the modified polymer solution, the layered double hydroxide derivative is dispersed in the resin at a nanometer to several hundred nanometer level by removing the solvent. Thus, a resin composition that is combined with the resin in the form obtained can be obtained. This resin composition may be used as it is as a resin composition or as an additive to other resin compositions. When used as an additive, it can be combined with a resin or resin composition by ordinary melt-kneading.
Therefore, in the present invention, the colloidal particle layered layered double hydroxide / amino acid composite can be added to the resin with extremely high dispersion, so that flame retardancy, stabilization, molding modification, high strength and improved heat retention for various resins are achieved. The present invention provides an extremely useful resin composition.

本発明の樹脂組成物に使用する層状複水酸化物・アミノ酸複合物は、ホルムアミドに投入すると層剥離によりコロイド粒子化するが、長期間保存する場合、この特性を失い、ホルムアミドと混合しても、層状複水酸化物・アミノ酸複合物は層剥離せず、ホルムアミド中に沈殿してしまう。この原因は、長期保存中、層間水が、時間の経過とともに喪失ことによるものと考えられ、このような特性の喪失までの時間は厳密には測定できないが、その目安は、室温、空気中保存で約6ヶ月程度である。   When the layered double hydroxide / amino acid composite used in the resin composition of the present invention is put into formamide, it is colloidalized by delamination, but when stored for a long period of time, it loses this property and can be mixed with formamide. The layered double hydroxide / amino acid complex does not peel off and precipitates in formamide. The cause of this is thought to be due to the loss of interlaminar water over time during long-term storage, and the time to loss of such characteristics cannot be measured strictly, but the standard is storage at room temperature in air About 6 months.

したがって、このような層剥離特性の喪失を防止するには、層状複水酸化物・アミノ酸複合物の層間水が乾燥により揮散しないように、密閉容器、あるいは密閉包装内に保存することが考えられるが、さらに簡便な方法として、本発明においては、このような長期保存あるいは乾燥によって、層間水を失い、層剥離特性が消失した層状複水酸化物・アミノ酸複合体を水蒸気雰囲気下、高湿度下で放置することにより、上記ホルムアミド中での層剥離特性が回復させることが可能である。すなわち、層剥離特性を消失した本発明の層状複水酸化物・アミノ酸複合物であっても、湿度80%(相対湿度)以上の高湿度下で12時間〜24時間おけば、層剥離特性が回復する。例えば、リジン、ヒスチジン、アルギニンを層間イオンとして含有する層状複水酸化物・アミノ酸複合体の場合、上記高湿度下に12時間さらせば再生する。ただし、これらの高湿度下あるいは水蒸気雰囲気下にさらす場合においては、凝縮水を生成させないことが重要である。
実際、凝縮水が層状複水酸化物・アミノ酸複合物に付着した場合、上記層剥離特性が回復しないこと、および層状複水酸化物・アミノ酸複合物を直接水に浸して層剥離特性を回復させようと試みた場合も、層剥離特性は回復しないことが実験により確かめられている。
Therefore, in order to prevent such loss of delamination property, it is conceivable that the layered double hydroxide / amino acid composite is stored in a sealed container or a sealed package so that the interlayer water does not volatilize by drying. However, as a simpler method, in the present invention, the layered double hydroxide / amino acid complex that has lost the interlayer water and has lost the delamination property due to such long-term storage or drying can be obtained in a steam atmosphere under high humidity. It is possible to recover the delamination property in the formamide by leaving it to stand. That is, even if it is the layered double hydroxide / amino acid composite of the present invention that has lost its delamination property, the delamination property can be obtained if it is kept at a high humidity of 80% (relative humidity) for 12 hours to 24 hours. Recover. For example, in the case of a layered double hydroxide / amino acid complex containing lysine, histidine, and arginine as interlayer ions, it is regenerated after being allowed to stand for 12 hours under the high humidity. However, it is important not to generate condensed water when exposed to these high humidity or water vapor atmospheres.
In fact, when condensed water adheres to the layered double hydroxide / amino acid composite, the above-mentioned layer peeling property does not recover, and the layered double hydroxide / amino acid composite is directly immersed in water to restore the layer peeling property. Experiments have confirmed that even when trying to do so, the delamination properties do not recover.

上記知見によれば、本発明において使用する層状水酸化物・アミノ酸複合物は、長期保存後においても再生可能であるという特徴を有するため扱いやすく、樹脂配合材として極めて有用である。
上記したことから明らかなように、本発明では層状複水酸化物そのものを樹脂に分散させたのではなく、層状複水酸化物を前駆体として、さらに正確には層状複水酸化物とアミノ酸の複合物を前駆体として、ホルムアミドとの反応によって、アミノ酸イオンを有する中間層と金属水酸化物層とを基本単位とする複合物層が数層以下または数層から数十層の大きさまで薄片化されたコロイド粒子化層状複水酸化物・アミノ酸複合物に転化し、これを樹脂と複合化させたもので、層状複水酸化物自体が樹脂に剥離して分散したものではない。
According to the above findings, the layered hydroxide / amino acid composite used in the present invention is easy to handle because it has the feature of being reproducible even after long-term storage, and is extremely useful as a resin compounding material.
As is apparent from the above, in the present invention, the layered double hydroxide itself is not dispersed in the resin, but the layered double hydroxide is used as a precursor, more precisely, the layered double hydroxide and the amino acid. Using a composite as a precursor, a composite layer consisting of an intermediate layer containing amino acid ions and a metal hydroxide layer as a basic unit by reaction with formamide is thinned to a size of several layers or several to several tens of layers. It is converted into a colloidal particle layered layered double hydroxide / amino acid composite, which is combined with a resin, and the layered double hydroxide itself is not separated and dispersed in the resin.

すなわち、本発明の樹脂組成物は、あらかじめコロイド粒子化した層状複水酸化物・アミノ酸複合物を、樹脂中に添加したものであって、上記従来技術に示されるようなモノマー陰イオンを有する層状複水酸化物を使用し、樹脂重合反応において該モノマーを反応させることにより樹脂中に分散させたものではない。このような方法では、配合する樹脂が限られ、層状複水酸化物の樹脂配合材としての用途は狭まる。これに対して、 本発明においては、ホルムアミドによりコロイド粒子化した層状複水酸化物・アミノ酸複合物を、樹脂に直接混合するものであり、この場合、樹脂溶液として親水性あるいは水溶性樹脂溶液を使用するのが好ましいものの、このようにして得られた層状複水酸化物・アミノ酸複合物が薄片化して分散した親水性あるいは水溶性樹脂は、疎水性樹脂その他の樹脂の配合剤として使用することができる。例えば、疎水性樹脂であっても、その構造の一部に親水性基あるいは水溶性付与基を導入して、上記親水性あるいは水溶性樹脂との親和性を向上させれば、層状複水酸化物・アミノ酸複合物を含有する上記親水性あるいは水溶性樹脂中に分散された状態で配合することが可能であるし、逆にコロイド粒子化した層状複水酸化物・アミノ酸複合物を分散させた親水性あるいは水溶性樹脂に予め適度に疎水性を付与する基が適度に導入されていれば、この樹脂組成物を疎水性樹脂に分散させることも可能であり、その適用範囲は広い。

以下に、本発明の実施例を示すが、本発明は特にこれにより限定されるものではない。
That is, the resin composition of the present invention is obtained by adding a layered double hydroxide / amino acid composite, which has been colloidalized in advance, to a resin, and has a monomeric anion as shown in the above prior art. A double hydroxide is not used, and the monomer is reacted in the resin polymerization reaction to be dispersed in the resin. In such a method, the resin to mix | blend is restricted and the use as a resin compounding material of a layered double hydroxide becomes narrow. In contrast, in the present invention, a layered double hydroxide / amino acid complex colloidalized with formamide is directly mixed with a resin. In this case, a hydrophilic or water-soluble resin solution is used as the resin solution. Although it is preferable to use, the hydrophilic or water-soluble resin in which the layered double hydroxide / amino acid complex obtained in this way is exfoliated and dispersed should be used as a compounding agent for hydrophobic resins and other resins. Can do. For example, even in the case of a hydrophobic resin, if a hydrophilic group or a water-solubilizing group is introduced into a part of the structure to improve the affinity with the hydrophilic or water-soluble resin, layered double hydroxide Can be blended in the above-mentioned hydrophilic or water-soluble resin containing the compound / amino acid complex, and conversely, the layered double hydroxide / amino acid complex formed into colloidal particles is dispersed. If a group imparting appropriate hydrophobicity to a hydrophilic or water-soluble resin is appropriately introduced in advance, this resin composition can be dispersed in the hydrophobic resin, and its application range is wide.

Examples of the present invention are shown below, but the present invention is not particularly limited thereby.

〔実施例1〕
L-アラニン5.01gを、水に溶かした後、2N-NaOH水溶液を適量加えてpHを10に調整した。これとは別に、硝酸マグネシウム6和物4.81gと硝酸アルミニウム9水和物2.35gを溶かした水溶液を用意し、上述のアラニン水溶液に50ml/hの速度で加えた。このとき、混合溶液は常にpHが10となるように、2N-NaOH水溶液を適宜加えた。以上により得られた共沈殿物を、水洗後風乾し、前駆体となる層状複水酸化物・アラニン複合体を合成した。これら一連の実験は、空気中からの炭酸イオンの混入を避けるため、合成および洗浄・乾燥は、すべて窒素気流中で行い、使用する水も脱イオン・蒸留処理の後、JIS K 0102に従って炭酸を除去した。得られた層状複水酸化物・アラニン複合体とホルムアミドを混合すると、直ちに半透明なコロイド溶液である液状物となり、層状複水酸化物・アラニン複合体物を薄片化したコロイド粒子化層状複水酸化物・アラニン複合体に転化することができた。得られた液状物をポリビニルアルコール水溶液と固形分でコロイド粒子化層状複水酸化物・アラニン複合体がポリビニルアルコールに対して10wt%となるように混合し、溶媒を蒸発させて除去することにより、半透明な樹脂組成物が得られた。得られた樹脂組成物をX線回折で分析したところ、この樹脂組成物は、層状複水酸化物・アラニン複合体に由来する約8オングストロームに相当する弱い底面反射を示した。
[Example 1]
After dissolving 5.01 g of L-alanine in water, an appropriate amount of 2N-NaOH aqueous solution was added to adjust the pH to 10. Separately, an aqueous solution in which 4.81 g of magnesium nitrate hexahydrate and 2.35 g of aluminum nitrate nonahydrate were dissolved was prepared and added to the above-mentioned aqueous alanine solution at a rate of 50 ml / h. At this time, 2N-NaOH aqueous solution was appropriately added so that the mixed solution always had a pH of 10. The coprecipitate obtained above was washed with water and air-dried to synthesize a layered double hydroxide / alanine complex as a precursor. In these series of experiments, in order to avoid contamination of carbonate ions from the air, synthesis, washing and drying are all performed in a nitrogen stream, and the water used is also deionized and distilled, and then carbonated according to JIS K 0102. Removed. When the obtained layered double hydroxide / alanine complex and formamide are mixed, it immediately becomes a liquid that is a translucent colloidal solution, and the layered double hydroxide / alanine complex is flaked into a colloid particle layered layered double water. It was possible to convert to an oxide-alanine complex. By mixing the obtained liquid material with an aqueous polyvinyl alcohol solution and a solid content so that the colloidal particle layered double hydroxide-alanine complex is 10 wt% with respect to the polyvinyl alcohol, the solvent is evaporated and removed, A translucent resin composition was obtained. When the obtained resin composition was analyzed by X-ray diffraction, this resin composition showed weak bottom reflection corresponding to about 8 angstroms derived from the layered double hydroxide / alanine complex.

〔実施例2〕
L-アラニン5.01gを、水に溶かした後、2N-NaOH水溶液を適量加えてpHを10に調整した。これとは別に、硝酸マグネシウム6和物4.81gと硝酸アルミニウム9水和物2.35gを溶かした水溶液を用意し、上述のアラニン水溶液に50ml/hの速度で加えた。このとき、混合溶液は常にpHが10となるように、2N-NaOH水溶液を適宜加えた。以上により得られた共沈殿物を、水洗後風乾し、前駆体となる層状複水酸化物・アラニン複合体を合成した。これら一連の実験は、空気中からの炭酸イオンの混入を避けるため、合成および洗浄・乾燥は、すべて窒素気流中で行い、使用する水も脱イオン・蒸留処理の後、JIS K 0102に従って炭酸を除去した。得られた層状複水酸化物・アラニン複合体とホルムアミドを混合すると、直ちに半透明なコロイド溶液である液状物となり、層状複水酸化物・アラニン複合体物を薄片化したコロイド粒子化層状複水酸化物・アラニン複合体に転化することができた。得られた液状物をポリビニルアルコール水溶液と固形分でコロイド粒子化層状複水酸化物・アラニン複合体がポリビニルアルコールに対して5wt%となるように混合し、溶媒を蒸発させて除去することにより、半透明な樹脂組成物が得られた。得られた樹脂組成物をX線回折で分析したところ、この樹脂組成物は、層状複水酸化物・アラニン複合体に由来する約8オングストロームに相当する非常に弱い底面反射を示した。
[Example 2]
After dissolving 5.01 g of L-alanine in water, an appropriate amount of 2N-NaOH aqueous solution was added to adjust the pH to 10. Separately, an aqueous solution in which 4.81 g of magnesium nitrate hexahydrate and 2.35 g of aluminum nitrate nonahydrate were dissolved was prepared and added to the above-mentioned aqueous alanine solution at a rate of 50 ml / h. At this time, 2N-NaOH aqueous solution was appropriately added so that the mixed solution always had a pH of 10. The coprecipitate obtained above was washed with water and air-dried to synthesize a layered double hydroxide / alanine complex as a precursor. In these series of experiments, in order to avoid contamination of carbonate ions from the air, synthesis, washing and drying are all performed in a nitrogen stream, and the water used is also deionized and distilled, and then carbonated according to JIS K 0102. Removed. When the obtained layered double hydroxide / alanine complex and formamide are mixed, it immediately becomes a liquid that is a translucent colloidal solution, and the layered double hydroxide / alanine complex is flaked into a colloid particle layered layered double water. It was possible to convert to an oxide-alanine complex. By mixing the obtained liquid material with an aqueous polyvinyl alcohol solution and a solid content so that the colloidal particle layered double hydroxide-alanine complex is 5 wt% with respect to the polyvinyl alcohol, the solvent is evaporated and removed, A translucent resin composition was obtained. When the obtained resin composition was analyzed by X-ray diffraction, this resin composition showed very weak bottom reflection corresponding to about 8 angstroms derived from the layered double hydroxide / alanine complex.

〔実施例3〕
L-グルタミン8.22gを、水に溶かした後、2N-NaOH水溶液を適量加えてpHを10に調整した。これとは別に、硝酸マグネシウム6和物4.81gと硝酸アルミニウム9水和物2.35gを溶かした水溶液を用意し、上述のグルタミン水溶液に50ml/hの速度で加えた。このとき、混合溶液は常にpHが10となるように、2N-NaOH水溶液を適宜加えた。以上により得られた共沈殿物を、水洗後風乾し、前駆体となる層状複水酸化物・グルタミン複合体を合成した。これら一連の実験は、空気中からの炭酸イオンの混入を避けるため、合成および洗浄・乾燥は、すべて窒素気流中で行い、使用する水も脱イオン・蒸留処理の後、JIS K 0102に従って炭酸を除去した。得られた層状複水酸化物・グルタミン複合体とホルムアミドを混合すると、直ちに半透明なコロイド溶液である液状物となり、層状複水酸化物・グルタミン複合体物を薄片化したコロイド粒子化層状複水酸化物・グルタミン複合体に転化することができた。得られた液状物をポリビニルアルコール水溶液と固形分でコロイド粒子化層状複水酸化物・グルタミン複合体がポリビニルアルコールに対して5wt%となるように混合し、溶媒を蒸発させて除去することにより、樹脂組成物が得られた。得られた樹脂組成物をX線回折で分析したところ、この樹脂組成物は、層状複水酸化物・グルタミン複合体に由来する約8オングストロームに相当する底面反射はかすかに観測される程度であった。
Example 3
After 8.22 g of L-glutamine was dissolved in water, an appropriate amount of 2N-NaOH aqueous solution was added to adjust the pH to 10. Separately, an aqueous solution in which 4.81 g of magnesium nitrate hexahydrate and 2.35 g of aluminum nitrate nonahydrate were dissolved was prepared and added to the above-mentioned glutamine aqueous solution at a rate of 50 ml / h. At this time, 2N-NaOH aqueous solution was appropriately added so that the mixed solution always had a pH of 10. The coprecipitate obtained above was washed with water and air-dried to synthesize a layered double hydroxide / glutamine complex as a precursor. In these series of experiments, in order to avoid contamination of carbonate ions from the air, synthesis, washing and drying are all performed in a nitrogen stream, and the water used is also deionized and distilled, and then carbonated according to JIS K 0102. Removed. When the obtained layered double hydroxide / glutamine complex and formamide are mixed, it immediately becomes a liquid which is a translucent colloidal solution, and the layered double hydroxide / glutamine complex is flaked into a colloidal particle layered layered double water. It was possible to convert to an oxide-glutamine complex. By mixing the obtained liquid material with a polyvinyl alcohol aqueous solution and a solid content so that the colloidal particle layered double hydroxide / glutamine complex is 5 wt% with respect to the polyvinyl alcohol, the solvent is evaporated and removed, A resin composition was obtained. The obtained resin composition was analyzed by X-ray diffraction. As a result, the bottom reflection corresponding to about 8 angstroms derived from the layered double hydroxide / glutamine complex was only slightly observed in this resin composition. It was.

〔比較例1〕
実施例1〜3に準拠して作製した炭酸イオン型層状複水酸化物に、適量のホルムアミドを加えたが、分散は悪く、層状複水酸化物は容器下部に沈殿し、半透明なコロイド溶液である液状物は得られなかった。このため、無理にホルムアミドと炭酸イオン型層状複水酸化物の混合物をポリビニルアルコール水溶液に加えて溶媒を蒸発させても、層状複水酸化物の粒子がポリビニルアルコール樹脂中に凝集していることが肉眼でも観察できるほど、固体粉末の分散性が極めて悪い樹脂組成物しか得られなかった。
(Comparative Example 1)
An appropriate amount of formamide was added to the carbonate ion-type layered double hydroxide prepared in accordance with Examples 1 to 3, but the dispersion was poor, and the layered double hydroxide precipitated at the bottom of the container, resulting in a translucent colloidal solution. The liquid which is is not obtained. For this reason, even if the solvent is evaporated by adding a mixture of formamide and carbonate ion-type layered double hydroxide to the polyvinyl alcohol aqueous solution, the layered double hydroxide particles may be aggregated in the polyvinyl alcohol resin. Only a resin composition with extremely poor dispersibility of the solid powder was obtained so that it could be observed with the naked eye.

〔比較例2〕
実施例1〜3および比較例1に準拠して作製した炭酸イオン型層状複水酸化物を水洗、乾燥後水中に浸したが、分散は悪く、層状複水酸化物は容器下部に沈殿し、半透明なコロイド溶液である液状物は得られなかった。このため、無理に炭酸イオン型層状複水酸化物の水に懸濁させた混合物をポリビニルアルコール水溶液に加えて水を蒸発させても、層状複水酸化物の粒子がポリビニルアルコール樹脂中に凝集していることが肉眼でも観察できるほど、固体粉末の分散性が極めて悪い樹脂組成物しか得られなかった。
(Comparative Example 2)
The carbonate ion-type layered double hydroxide prepared according to Examples 1 to 3 and Comparative Example 1 was washed with water, dried and immersed in water, but the dispersion was poor, and the layered double hydroxide precipitated at the bottom of the container, A liquid material which is a translucent colloidal solution was not obtained. For this reason, even if a mixture of carbonic acid ion-type layered double hydroxides suspended in water is added to the polyvinyl alcohol aqueous solution and the water is evaporated, the layered double hydroxide particles aggregate in the polyvinyl alcohol resin. Thus, only a resin composition having a very poor dispersibility of the solid powder was obtained.

〔実施例4〕
7ヶ月室温で保存し剥離特性が消失した、層状複水酸化物・アルギニン複合体を、25℃、相対湿度90%の一定の温度、湿度下で、凝縮水が層状複水酸化物・アルギニン複合体に直接付着しないようにして、13時間放置した。次いで、この放置しておいた層状複水酸化物・アルギニン複合体を、ホルムアミドと混合した。これにより、直ちに半透明なコロイド溶液である液状物が得られ、層状複水酸化物・アルギニン複合体物を薄片化したコロイド粒子化層状複水酸化物・アルギニン複合体に転化することができた。この得られた液状物は、実施例1−3で樹脂との配合を行った層状複水酸化物・アラニン複合体または層状複水酸化物・グルタミン複合体のときと同様、長期に放置しても沈殿などが生じない安定したコロイド溶液であった。
一方、上記剥離特性が消失した層状複水酸化物・アルギニン複合体を、直接水中に12時間浸し、取り出した複合体をホルムアミドと混合した。この場合、コロイド溶液は得られず、ホルムアミド溶液下部に沈殿が生じた。
Example 4
The layered double hydroxide / arginine complex, which has been stored at room temperature for 7 months and has lost its peeling properties, is condensed into a layered double hydroxide / arginine complex at a constant temperature and humidity of 25 ° C. and 90% relative humidity. It was allowed to stand for 13 hours without directly adhering to the body. Next, the left layered double hydroxide / arginine complex was mixed with formamide. As a result, a liquid material which is a translucent colloidal solution was immediately obtained, and the layered double hydroxide / arginine complex was converted into a colloidal particle layered layered double hydroxide / arginine complex obtained by flaking. . This obtained liquid was left for a long period of time as in the case of the layered double hydroxide / alanine complex or the layered double hydroxide / glutamine complex blended with the resin in Example 1-3. Also, it was a stable colloidal solution with no precipitation.
On the other hand, the layered double hydroxide / arginine complex in which the peeling property disappeared was directly immersed in water for 12 hours, and the taken-out complex was mixed with formamide. In this case, no colloidal solution was obtained, and precipitation occurred at the bottom of the formamide solution.

Claims (2)

乾燥又は長期保存によりホルムアミド中での層剥離特性を喪失した、層間イオンとして1種または2種以上のアミノ酸(但し、グリシン1種のみの場合を除く)を含有する層状複水酸化物・アミノ酸複合物を、凝縮水を生成させることなく水蒸気雰囲気下又は高湿度下に放置することを特徴とする、上記層状複水酸化物・アミノ酸複合物のホルムアミド中での層剥離特性の回復方法。Layered double hydroxide / amino acid complex containing one or more amino acids (except for the case of only one glycine) as an interlayer ion, which has lost its delamination properties in formamide after drying or long-term storage A method for recovering delamination properties of a layered double hydroxide / amino acid complex in formamide, wherein the product is allowed to stand in a steam atmosphere or high humidity without generating condensed water. 乾燥又は長期保存によりホルムアミド中での層剥離特性を喪失した、層間イオンとして1種または2種以上のアミノ酸(但し、グリシン1種のみの場合を除く)を含有する層状複水酸化物・アミノ酸複合物を、凝縮水を生成させることなく水蒸気雰囲気下又は高湿度下に放置して、ホルムアミド中での剥離特性を回復させ、該剥離特性が回復した層状複水酸化物・アミノ酸複合物を、ホルムアミドと混合することにより、層状複水酸化物・アミノ酸複合物の層剥離による薄片化により形成されたコロイド粒子を含有するコロイド溶液を形成させ、該コロイド溶液と樹脂を溶媒に溶解した樹脂溶液と攪拌混合した後、ホルムアミドと溶媒を蒸発により除去せしめることを特徴とする、上記コロイド粒子が樹脂中に分散された樹脂組成物の製造方法。   Layered double hydroxide / amino acid complex containing one or more amino acids (except for the case of only one glycine) as an interlayer ion, which has lost its delamination properties in formamide after drying or long-term storage The product is allowed to stand in a steam atmosphere or high humidity without generating condensed water to recover the release properties in formamide, and the layered double hydroxide / amino acid composite recovered in the release properties is converted into formamide. To form a colloidal solution containing colloidal particles formed by exfoliating the layered double hydroxide / amino acid complex by delamination, and stirring the resin solution in which the colloidal solution and the resin are dissolved in a solvent. A method for producing a resin composition in which the colloidal particles are dispersed in a resin, wherein after mixing, formamide and a solvent are removed by evaporation .
JP2004055260A 2004-02-27 2004-02-27 Resin composition containing colloidal particulate layered double hydroxide / amino acid composite Expired - Lifetime JP4862147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055260A JP4862147B2 (en) 2004-02-27 2004-02-27 Resin composition containing colloidal particulate layered double hydroxide / amino acid composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055260A JP4862147B2 (en) 2004-02-27 2004-02-27 Resin composition containing colloidal particulate layered double hydroxide / amino acid composite

Publications (2)

Publication Number Publication Date
JP2005239980A JP2005239980A (en) 2005-09-08
JP4862147B2 true JP4862147B2 (en) 2012-01-25

Family

ID=35022038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055260A Expired - Lifetime JP4862147B2 (en) 2004-02-27 2004-02-27 Resin composition containing colloidal particulate layered double hydroxide / amino acid composite

Country Status (1)

Country Link
JP (1) JP4862147B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187797B2 (en) * 2005-07-25 2013-04-24 独立行政法人物質・材料研究機構 Method for peeling layered double hydroxide, double hydroxide nanosheet, composite thin film material, production method, and production method of layered double hydroxide thin film material
CN102274754B (en) * 2011-06-16 2013-04-10 北京化工大学 Method for raising multiphase asymmetric catalytic activity and asymmetric selectivity

Also Published As

Publication number Publication date
JP2005239980A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
Henrist et al. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis
JP5317293B2 (en) Method for producing anion-exchange layered double hydroxide
Chen et al. Solvent effect on mineral modification: selective synthesis of cerium compounds by a facile solution route
US7364716B2 (en) Surface modified nanoparticle and method of preparing same
JP5910887B2 (en) Water-swellable layered double hydroxide and production method thereof, gel-like or sol-like substance, double hydroxide nanosheet and production method thereof
Yang et al. Preparation and properties of poly (vinyl alcohol)/exfoliated α-zirconium phosphate nanocomposite films
JP4572289B2 (en) Colloidal particle-formed hydroxide resin compounding agent and resin composition containing the same
JPWO2012050222A1 (en) High aspect ratio magnesium hydroxide
JP7132800B2 (en) Magnesium hydroxide particles and method for producing the same
JP4478785B2 (en) Highly dispersible hydroxide resin compounding agent and resin composition
WO2007051377A1 (en) Hydrotalcite laminated by organic anion(s) comprising a double bond and its use as a heat stabilizer
JP4129521B2 (en) Layered double hydroxide
JP4862147B2 (en) Resin composition containing colloidal particulate layered double hydroxide / amino acid composite
Hou et al. Exfoliation of layered double hydroxides by an electrostatic repulsion in aqueous solution
JP4019138B2 (en) Layered double hydroxide containing glycine as interlayer anion
JP4178238B2 (en) Highly dispersible layered double hydroxide
Kameda et al. Uptake of Nd 3+ and Sr 2+ by Li–Al layered double hydroxide intercalated with triethylenetetramine-hexaacetic acid: kinetic and equilibrium studies
JP2005089277A (en) Hydrotalcite compound particle powder and aqueous dispersion containing it
Kogiso et al. Semisolid phase synthesis of metal-complexed organic nanotubes
CN108502910B (en) Insoluble inorganic salt micro-nano material and preparation method and application thereof
KR20100024280A (en) Method of synthesizing hydrotalcite and stibilizer using the hydrotalcite
JP2012246194A (en) Lamellar double hydroxide colloidal dispersion and method for manufacturing the same
Ruiz et al. Composite films based on salicylic acid-layered zinc hydroxide and polyvinyl alcohol: Preparation, characterization, properties and potential applications
JP2005255441A (en) Method for producing layered double hydroxide having ion-exchangeable anion by removing carbonate ion from hydrotalcite and use of the hydroxide
JP5424479B2 (en) Water-dispersed colloidal solution and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350