WO2000038524A1 - Aluminosilicate antibacterial agents - Google Patents

Aluminosilicate antibacterial agents Download PDF

Info

Publication number
WO2000038524A1
WO2000038524A1 PCT/JP1999/007244 JP9907244W WO0038524A1 WO 2000038524 A1 WO2000038524 A1 WO 2000038524A1 JP 9907244 W JP9907244 W JP 9907244W WO 0038524 A1 WO0038524 A1 WO 0038524A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminosilicate particles
group
antibacterial agent
aluminosilicate
particles
Prior art date
Application number
PCT/JP1999/007244
Other languages
French (fr)
Japanese (ja)
Inventor
Mikio Sakaguchi
Takanori Kodera
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to JP2000590488A priority Critical patent/JP3292726B2/en
Publication of WO2000038524A1 publication Critical patent/WO2000038524A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper

Definitions

  • the present invention relates to an antibacterial agent comprising aluminosilicate particles having a novel particle form carrying a metal (sometimes referred to as an aluminosilicate antibacterial agent).
  • aluminosilicate antibacterial agent comprising aluminosilicate particles having a novel particle form carrying a metal (sometimes referred to as an aluminosilicate antibacterial agent).
  • Zeolite particles carrying an antibacterial metal are inexpensive and highly stable, so they are widely applied to polymers and fibers as antibacterial agents.
  • the antibacterial agent disclosed in Japanese Patent Publication No. 63-260810 A zeolite composition is disclosed.
  • zeolite particles exhibit a smooth, dice-like angular shape with a smooth surface due to the cubic habit of the crystal system, and are therefore kneaded into polymers and fibers, and coated on these surfaces together with a binder.
  • the binding to the polymer or the fiber is not sufficient, and the strength of the polymer or the fiber may be deteriorated.
  • the surface area of the zeolite particles alone or exposed on the surface of polymers, fibers, etc. is small, so that the antibacterial effect is insufficient.
  • the exposed surface area is not a specific surface area due to gas adsorption or the like, but is a surface that is preferably in contact with bacteria, in other words, a geometric surface area. Disclosure of the invention
  • An object of the present invention is to provide an aluminosilicate antibacterial agent having excellent antibacterial properties and filling properties.
  • the gist of the present invention is:
  • M is Na and Z or K
  • R is Na
  • A is from the group consisting of C0 3, S O4, NO3, OH and C 1
  • a is 1 to 6
  • b is 2 to 8
  • c is 2 to 12
  • d is 0 to 4 (excluding 0)
  • m is 1 to 2
  • n is 1 to 3
  • y indicates 0 to 32
  • Aluminosilicate particles having a composition represented by the following formula and having any one of a needle shape, a plate shape, and a columnar shape include at least one selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg, and Ce.
  • Antibacterial agent consisting of aluminosilicate particles carrying metal
  • M is Na and Z or K
  • R is Na, K
  • A is CO 3, S0 4, NOs, from the group consisting of OH and C 1
  • a! Is 0 to 1 (except 1), a and + a 2 are 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4, m is 1 to 2, and n is 1 -3 and y indicate 0-32.
  • a 2 H 20 indicates structural water present in the crystal
  • yH 20 indicates crystal water.
  • Aluminosilicate particles having a composition represented by the following formula and having any one of a needle shape, a plate shape, and a columnar shape include at least one selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg, and Ce.
  • An antimicrobial agent comprising aluminosilicate particles carrying a metal, and
  • M is Na and Roh or K
  • R is Na
  • a is 1 to 6
  • b is 2 to 8
  • c is 2 to 12
  • d is 0 to 4 (excluding 0)
  • m is 1 to 2
  • n is 1 to 3
  • y indicates 0 to 32)
  • Aluminum having a composition represented by the formula: needle-like, plate-like, or columnar Nosilicide particles are protonated, and then antibacterial consisting of metal-supported aluminosilicate particles that carry one or more metals selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg and Ce.
  • a method for producing an antibacterial agent BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a view showing the crystal morphology of the raw material aluminosilicate particles obtained in Example 7.
  • FIG. 2 shows an X-ray diffraction pattern 5 of the raw material aluminosilicate particles obtained in Example 7.
  • FIG. 3 is a view showing a crystal form of the antibacterial agent particles obtained in Example 9.
  • FIG. 4 is an X-ray diffraction pattern of the antibacterial agent particles obtained in Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
  • Aluminosilicate gate particles used as a raw material in the present invention have the formula (1): aM 2 0 ⁇ b A 12 0 3 ⁇ c S i 0 2 - d RmAn ⁇ y H 2 0
  • M is Na and / or K
  • R is Na, K
  • A is C_ ⁇ 3, S0 4, N0 3, from ⁇ _H and C 1
  • a is 1 to 6
  • b is 2 to 8
  • c is 2 to 12
  • d is 0 to 4 (excluding 0)
  • m is 1 to 2
  • n is 1 ⁇ 3
  • y indicates 0 ⁇ 32
  • the antibacterial agent of the present invention has one major feature in using aluminosilicate particles having the above composition and having the above form. By using such aluminosilicate particles, it has excellent antibacterial properties and also has good filling properties for polymers, fibers The effect that an excellent antibacterial agent can be obtained is exhibited.
  • M is preferably Na.
  • aM 2 ⁇ is, ai 'Naz O' az ' Ks OC
  • a + a 2' represented by a).
  • R is preferably N a
  • A is preferably C_ ⁇ 3 or N_ ⁇ 3.
  • the aluminosilicate particles used in the present invention have a needle-like, plate-like, or columnar shape.
  • the needle-like form refers to a form having a thickness of 50 O nm or less and an aspect ratio of 2.0 or more to the thickness
  • the plate-like form refers to a thickness. Is 300 nm or less, and the plate diameter is 2.0 or more in terms of the aspect ratio with respect to the thickness.
  • the columnar shape means that the thickness is 50 nm or more and the length is long. It means that the aspect ratio with respect to the thickness is 1.0 or more and less than 2.0.
  • Such aluminosilicate particles can be obtained as an aggregate of needle-like crystals, plate-like crystals or columnar crystals depending on the production conditions.
  • the aluminosilicate particles are preferably those in which the above-mentioned crystals are aggregated to form a spherical, tetrapod-like, or massive aggregate, and these secondary aggregates may be used.
  • the aluminosilicate particles are a spherical aggregate
  • the “main X-ray diffraction peak” refers to the strongest peak or a peak showing a diffraction intensity of 20% or more of the strongest diffraction peak intensity.
  • JCPDS Joint Commiteon Powder Diffraction Standards
  • JCPDS Joint Commiteon Powder Diffraction Standards
  • aluminosilicate particles JCPDS (Joint Commiteon Powder Diffraction Standards) No. 20-379, 20-743, 25-776, 25-149, 2 5-1 5 0 0, 3 0-1 1 70, 3 1-1 272, 34-1 76, 3 5-4 79, 35-6 53, 3 8-5 1 3, 3 8-5 1
  • Those having at least one type of force-clinite-like X-ray diffraction pattern selected from the group consisting of 4, 38—5 15 and 45-1373 are preferred.
  • the average particle size of the aluminosilicate particles used in the present invention is preferably from 0.1 to 500 m, more preferably from 1 to 100 m.
  • equation (2) when the specified aluminosilicate particles are used as a raw material of an antibacterial agent and the antibacterial agent is kneaded into a plastic, it may react with an antioxidant and change color. Therefore, from the viewpoint of preventing such discoloration, equation (2):
  • M is Na and or K
  • R is Na, K
  • C one or more of the Bareru selected from the group consisting of a and Mg, bees (0 3, 30 4, 1 ⁇ 0 3, one or more Bareru selected from the group consisting of ⁇ _H and C 1, a, from 0 to 1 (where , 1), a, + a 2 is 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4, m is 1 to 2, n is 1 to 3, y is 0 To 32.]
  • an aluminosilicate particle (hereinafter, sometimes referred to as an aluminosilicate particle (A)) having a composition represented by the following formula and having any one of a needle shape, a plate shape, and a column shape as an antibacterial agent.
  • a 2 H 2 ⁇ denotes structural water present in the crystals of the aluminosilicate particles (A), and such water component is a so-called immobile water which is not released by heating. is there.
  • yH 20 indicates crystallization water present in the crystals of the aluminosilicate particles (A), and such water components are released by heating at 600 at 1 hour.
  • the aluminosilicate particles (A) represented by the formula (2) are the aluminosilicate particles represented by the formula (1) [The aluminosilicate particles represented by the formula (1) are referred to as raw material aluminosilicate particles. May be obtained by performing a protonation treatment described below. In the aluminosilicate particles used as raw materials, d is a value other than 0. In the aluminosilicate particles (A), d may be 0.
  • the antimicrobial agent in which a metal is supported on such aluminosilicate particles (A) is a raw material before protonation treatment. Its crystallinity is lower than that of aluminosilicate particles.
  • the crystallinity of the antibacterial agent is 1% or more and less than 100% as compared with the raw material aluminosilicate particles before the protonation treatment, preferably. Is 1 to 50%, more preferably 1 to 20%.
  • the crystallinity of the aluminosilicate particles is lower than 1%, it becomes difficult to carry the amount of metal necessary for the expression of antibacterial properties. Therefore, the crystallinity is preferably 1% or more.
  • the crystallinity can be determined by X-ray diffraction, and refers to the ratio of the highest diffraction intensity of the antimicrobial agent at the same peak to the highest diffraction intensity of the aluminosilicate particles as a raw material.
  • the crystallinity of the antibacterial agent can be adjusted to a desired range by the degree of the protonation treatment.
  • aluminosilicate Ichito particles used in the present invention include, but are not limited especially, for example, an alumina raw material and silica raw material C_ ⁇ 3 2 -, S_ ⁇ 4 2 -, N 0 3 -, C
  • the reaction may be carried out in an alkaline solution in the presence of 1-or the like.
  • the alumina raw material include aluminum oxide, aluminum hydroxide, and sodium aluminate.
  • the silica raw material include gay sand, silica stone, water glass, and sodium gayate.
  • a raw material for both the alumina raw material and the silica raw material for example, clay minerals such as kaolin, montmorillonite, bentonite, myriki, talc, and aluminosilicate minerals such as mullite may be used. Good.
  • C_ ⁇ 3 2 - The raw materials, carbon dioxide, sodium carbonate, potassium carbonate, sodium potassium, calcium carbonate, magnesium carbonate and the like, S_ ⁇ 4 2 -
  • the raw material for NO 3 include sodium sulfate, potassium sulfate, and potassium sodium sulfate.
  • the NO 3 ⁇ material include nitric acid, sodium nitrate, and potassium nitrate.
  • the C 1 ⁇ material include sodium chloride and chloride. Potassium and the like.
  • Examples of the alkali of the alkaline solution include oxides such as sodium oxide and potassium oxide; hydroxides such as sodium hydroxide and hydroxylated lime; carbonates such as sodium carbonate, carbonated lime and sodium carbonate; Sodium bicarbonate, bicarbonate such as hydrogen bicarbonate, etc. can be used. If necessary, oxides such as calcium oxide and magnesium oxide; hydroxides such as calcium hydroxide and magnesium hydroxide; carbonates such as calcium carbonate, magnesium carbonate and dolomite; calcium hydrogen carbonate and magnesium hydrogen carbonate And the like may be used.
  • the aluminosilicate particles used in the present invention can be obtained by blending and mixing the above various compounds at a predetermined ratio.
  • the mixing ratio is appropriately determined depending on the desired composition of the obtained aluminosilicate particles.
  • the solid content concentration of the aluminosilicate particles represented by the above composition during the reaction is desirably 0.1 to 50% by weight.
  • the reaction temperature when producing aluminosilicate particles increases the degree of crystallinity of the aluminosilicate particles, stabilizes the morphology of the aluminosilicate particles, and reduces the chemical and pressure resistance load on the reaction vessel.
  • the temperature is preferably 15 to 300 ° C, more preferably 60 to 150 ° C, and further preferably 80 to 130 ° C.
  • the reaction time is preferably at least 2 hours, more preferably at least 8 hours, from the viewpoint of completely performing the crystallization reaction.
  • the aluminosilicate particles obtained by such a method are excellent in sorption properties and dispersibility, and have the property of increasing the mechanical strength of the filling material when used as a filler.
  • powders are suitable because of their high dispersibility.
  • a metal is supported on the aluminosilicate particles.
  • the metal used in the present invention is at least one selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg and Ce. Since these are antibacterial metals, they are supported. Aluminosilicate particles are useful as antibacterial agents.
  • antibacterial refers to fungi and bacteria, and refers to the property of killing or inhibiting the growth of these bacteria.
  • Examples of a method for supporting a metal include an ion exchange method and a method for depositing fine metal particles.
  • the ion exchange method include a method in which aluminosilicate particles are dispersed in a solution of a metal salt, ion-exchanged, filtered, washed, dried, and, if necessary, heat-treated.
  • the method for depositing fine metal particles there is a method in which aluminosilicate particles are dispersed in a solution of a metal salt, and fine metal particles are precipitated on the surfaces of the aluminosilicate particles using a precipitant such as an acid or an alkali.
  • the amount of metal carried in the antibacterial agent should be 0.1 to 10% by weight in terms of the total amount of metals such as Ag, Cu, Fe, Zn, Ca, Mg, and Ce from the viewpoint of antibacterial properties and economy. And more preferably 0.5 to 5% by weight.
  • the amount of metal carried in the antibacterial agent is measured by X-ray fluorescence. It is to be noted that the crystallization of the obtained antibacterial agent does not substantially change simply by supporting the metal on the aluminosilicate particles as a raw material.
  • proton treatment proton exchange by reacting in H 2 S_ ⁇ 4, HC 1, HN0 3, NH 4 N 0 gradually acidic aqueous solution containing 3 or the like aluminosilicate gates particles, or once Then, a method of heating or heating as necessary is used. Further, after the support, heat treatment may be performed at 100 to 800 ° C. if necessary. Such a protonation treatment is performed before or after the metal is supported on the aluminosilicate particles. You can do it when you let it.
  • a specific protonation method is as follows.
  • the aluminosilicate particles are dispersed in ion-exchanged water so as to have a solid concentration of 1 to 30% by weight.
  • the pH of the slurry at this time is between 8 and 13.
  • the acid is slowly added to the slurry while stirring.
  • it is preferable to perform the acid treatment so that the pH of the slurry is 2 to 7, preferably 3 to 5.
  • the pH of the slurry during the acid treatment is preferably within this range. .
  • the antibacterial agent of the present invention obtained by the above-described method is not only excellent in antibacterial properties but also has a complex surface, so that it is also excellent in filling properties and used in powder. It may be used as a mixture with other inorganic powders, organic powders, metal powders and the like, and may be used as a molded product if necessary. Specific applications include additives for various detergents, fillers for paper, plastics, fibers, fabrics, and building materials, pigments for cosmetics, and water treatment agents.
  • the antibacterial agent of the present invention and the anti-discoloration agent and stabilizer may be simultaneously added, or may be adhered to and coated on the particle surface.
  • discoloration inhibitors or stabilizers include metal oxides such as zinc oxide, phosphate, hydrotalcites, magnesium oxide, calcium oxide, titanium oxide, calcium stearate, phenolic, sulfuric, and phosphorus-based materials.
  • Antioxidants, ultraviolet absorbers and the like will be described in more detail with reference to Examples.
  • the produced aluminosilicate particles were washed, filtered, and dried to obtain powder of the aluminosilicate particles.
  • the obtained aluminosilicate particles had a form in which needle-like crystals were aggregated.
  • the powder of the obtained aluminosilicate particles was subjected to X-ray diffraction using an X-ray diffractometer (RAD-C, CuK, manufactured by Rigaku Corporation). It had a strong diffraction peak at 69 nm, which corresponded to J CPDS No. 38-513.
  • the composition of the aluminosilicate gates particles been filed schematically 3Na 2 0 ⁇ 3 A 1 2 ⁇ 3 ⁇ 6 S i 0 2 ⁇ NaN_ ⁇ 3 ⁇ 4 H 2 0.
  • Example 2 77 g of the obtained powder of aluminosilicate particles was added to a solution of 3.38 g of silver nitrate dissolved in 1000 Om1 of ion-exchanged water, and dispersed at 100 ° C for 1 hour to ion-exchange Ag. After that, the mixture was filtered and washed to obtain Antibacterial Agent 1.
  • the obtained antibacterial agent 1 had a spherical shape in which needle-like crystals were aggregated, and contained 2.38% by weight of Ag.
  • the amount of metal such as Ag in the antibacterial agent was measured by X-ray fluorescence.
  • Example 2 50 g of the aluminosilicate powder used in Example 1 was added to ion-exchanged water to which 75 g of 1N hydrochloric acid had been added, dispersed at 100 ° C. for 1 hour, and subjected to protonation treatment. Ag was ion-exchanged in the same manner as in Example 1 to obtain Antibacterial Agent 2.
  • the obtained antibacterial agent 2 showed a spherical morphology in which needle-like crystals similar to the antibacterial agent 1 were aggregated, had a crystallinity of 76%, and supported 2.48% by weight of Ag.
  • Example 2 In a solution prepared by dissolving 16 g of the aluminosilicate particles obtained in Example 1 in 63 ml of silver nitrate and 7.279 g of zinc nitrate hexahydrate in 160 ml of deionized water. The mixture was dispersed at 100 ° C. for 2 hours, ion-exchanged Ag and Zn, and then filtered and washed to obtain antibacterial agent 3.
  • the obtained antimicrobial agent 3 is the same needle as antimicrobial agent 1. It exhibited a spherical morphology of aggregates of crystalline crystals, and 2.49% by weight of Ag and 7.7% by weight of Zn were supported.
  • Example 2 16 g of the aluminosilicate particles obtained in Example 1 was dissolved in a solution obtained by dissolving 2.683 g of silver nitrate 63 and calcium nitrate tetrahydrate in 1.600 ml of ion-exchanged water. The mixture was added and dispersed at 100 ° C. for 2 hours to ion-exchange Ag and Ca, followed by filtration and washing to obtain antibacterial agent 4.
  • the obtained antibacterial agent 4 exhibited a spherical morphology in which needle-like crystals were aggregated like the antibacterial agent 1, and contained 2.38% by weight of Ag and 1.9% by weight of Ca.
  • Example 2 16 g of the aluminosilicate particles obtained in Example 1 were mixed with 0.63 g of silver nitrate, 2.9 13 g of magnesium nitrate hexahydrate and 14.08 g of ammonium nitrate in deionized water. It was added to a solution dissolved in 160 ml, dispersed at 100 ° C. for 2 hours, ion-exchanged Ag and Mg, and then filtered and washed to obtain antibacterial agent 5. The obtained antibacterial agent 5 exhibited a spherical morphology in which needle-like crystals were aggregated, as in antibacterial agent 1, and contained 2.38% by weight of Ag and 7.7% by weight of ⁇ .
  • a powder of 77 g of the aluminosilicate particles obtained in Example 1 was dissolved in 3.000 g of ion-exchanged water with 3.38 g of silver nitrate and 3.4.1 g of cerium nitrate hexahydrate.
  • the solution was added to the solution, dispersed at 100 ° C. for 1 hour, ion-exchanged Ag and Ce, and then filtered and washed to obtain antibacterial agent 6.
  • the obtained antibacterial agent 6 exhibited a spherical morphology in which needle-like crystals were aggregated as in antibacterial agent 1, and contained 2.5% by weight of Ag and 2.8% by weight of Ce.
  • aluminosilicate particles was obtained in the same manner as in Example 1. The obtained aluminosilicide particles were composed of columnar and needle-like crystals which were aggregated into tetrapods.
  • the composition of the aluminosilicate particles was approximately 3Na 2 0 '3A l 2 0 3 ⁇ 7Si 0 2 -2NaN0 3 -. 4 were are H 2 ⁇ the S EM photograph of the obtained aluminosilicate Ichito particles
  • Figure 1 shows the X-ray diffraction pattern in Figure 2.
  • antibacterial agent 7 showed a form in which columnar and needle-like crystals aggregated and developed into a tetrapod-like form, and contained 2.49% by weight of Ag.
  • Antibacterial agent 2 obtained in Example 2 was further heat-treated at 600 ° C. for 5 hours to obtain antibacterial agent 8.
  • the obtained antimicrobial agent 8 had the same particle morphology and Ag carrying amount as antimicrobial agent 1.
  • Example 7 After 100 g of the raw material aluminosilicate particles obtained in Example 7 were dispersed in 900 g of ion-exchanged water and the temperature was raised to 100 ° C, lmo 1 Z1 aqueous nitric acid solution was added to 1 m 1 / 95 Om 1 was added dropwise at a rate of minutes. The pH of the solution at the end of the dropwise addition was 3.2. The solid content was separated by filtration, washed, and ion-exchanged water containing 58 g of silver nitrate dissolved therein 900 g g, and dispersed at 100 ° C. for 1 hour to carry out Ag ion exchange, followed by filtration and washing to obtain antibacterial agent 9.
  • the crystallinity of the obtained antibacterial agent 9 was 36%, and octane was carried in an amount of 0.91% by weight.
  • Approximate composition of an antimicrobial agent, excluding the A g was 3 ⁇ 2 0 ⁇ 3 A 12 0 3 ⁇ 7 S i 0 2 ⁇ 0. 2NaN_ ⁇ 3 ⁇ 4 ⁇ 2 ⁇ .
  • Fig. 3 shows a SEM photograph of the obtained antibacterial agent
  • Fig. 4 shows its X-ray diffraction pattern.
  • the crystallinity of the antibacterial agent was determined by comparing the maximum diffraction intensity in the X-ray diffraction pattern of the raw material aluminosilicate particles obtained in Example 7 shown in FIG. 2 with the antibacterial agent obtained in this example shown in FIG. It was calculated as the ratio of the highest diffraction intensity, which is the same corresponding peak in the X-ray diffraction pattern of the agent.
  • the crystallinity of the antibacterial agent in other examples was calculated in the same manner.
  • Example 7 After 100 g of the aluminosilicate particles obtained in Example 7 were dispersed in 900 g of ion-exchanged water and heated to 100 ° C, 300 ml of lmo 1/1 nitric acid aqueous solution was added at a rate of lm 1 / min. It was dropped. The pH of the solution at the end of the dropwise addition was 4.9. After the solids were separated by filtration and washed, 1.58 g of silver nitrate was added to 900 g of ion-exchanged water in which they had been dissolved, dispersed at 100 ° C for 1 hour, and subjected to Ag ion exchange, followed by filtration and washing. Thus, an antibacterial agent 10 was obtained.
  • the obtained antimicrobial agent 10 had a crystallinity of 45% and was loaded by 98% by weight of ⁇ t.
  • Approximate composition of an antimicrobial agent, excluding the A g was 3H 2 0 ⁇ 3 A 12 0 3 ⁇ 7 S i 0 2 ⁇ 0. 2NaN_ ⁇ 3 ⁇ 4 ⁇ 2 ⁇ .
  • the antibacterial properties of the antibacterial agents 1 to 10 obtained in Examples 1 to 10 were evaluated.
  • Staphylococcus aureus IFO12732
  • Antibacterial agents were suspended and dispersed in an agar medium, and the respective minimum inhibitory concentrations (MIC) after 24 hours at 37 ° C. was evaluated.
  • MIC minimum inhibitory concentrations
  • Table 1 As a comparative example, a conventional zeolite carrying an antibacterial metal (Ag, carrying amount: 2.0% by weight) was used. In the table, ⁇ indicates that the growth of the fungus was inhibited, and X indicates that the fungus had grown.
  • the antimicrobial agents 1 to 10 obtained in Examples 1 to 10 all had a lower MIC than the conventional antimicrobial metal-supported zeolite used in Comparative Examples. It is small and has excellent antibacterial properties. Industrial applicability
  • the aluminosilicate antibacterial agent of the present invention has excellent antibacterial properties, has an aggregated form such as a sphere, and has a large surface area, and therefore has excellent filling properties. And fillers for paper, plastics, fibers, building materials, etc., pigments for cosmetics, and water treatment agents.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paper (AREA)

Abstract

Aluminosilicate antibacterial agents having excellent antibacterial and packing properties. These antibacterial agents consist of aluminosilicate particles which have a composition aM2O.bAl2O3.cSiO2.dRmAn.yH2O (wherein M represents Na and/or K:R represents one or more members selected from the group consisting of Na, K, Ca and Mg; A represents one or more members selected from the group consisting of CO3, SO4, NO3, OH and Cl; a is from 1 to 6; b is from 2 to 8; c is from 2 to 12; d is from 0 to 4 (excluding 0); m is from 1 to 2; n is from 1 to 3; and y is from 0 to 32); are in the form of needles, plates or columns, and carry thereon one or more metals selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg and Ce.

Description

明 細 書 アルミノシリケ一ト抗菌剤 技術分野  Description Aluminosilicate antimicrobial agent Technical field
本発明は、 金属を担持させた新規な粒子形態を有するアルミノシリケ一ト粒子 からなる抗菌剤 (アルミノシリケ一ト抗菌剤という場合がある) に関する。 従来の技術  TECHNICAL FIELD The present invention relates to an antibacterial agent comprising aluminosilicate particles having a novel particle form carrying a metal (sometimes referred to as an aluminosilicate antibacterial agent). Conventional technology
抗菌性金属を担持させたゼォライト粒子は、 安価で安定性が高いことから、 抗 菌剤として高分子、 繊維へ広く応用され、 例えば特公昭 6 3— 2 6 0 8 1 0号公 報に抗菌性ゼォライト組成物が開示されている。 しかしながら、 ゼォライト粒子 は、 その結晶系である立方晶の晶癖から表面が平滑なサイコロ状の角張った形態 を呈するため、 高分子や繊維へ練り込んだり、 結合剤とともにこれらの表面にコ 一ティングした場合、 高分子や繊維との結合性が充分でなく、 高分子や繊維の強 度が劣化する可能性があるという欠点がある。 また、 ゼォライト粒子単独あるい は高分子、 繊維等の表面での暴露表面積が小さいため、 抗菌性効果が不十分であ るという欠点がある。 なお、 ここでいう暴露表面積とは、 ガス吸着等による比表 面積ではなく、 菌と好適に接触する表面をいい、 言い換えれば、 幾何学的表面積 の大きさのことである。 発明の開示  Zeolite particles carrying an antibacterial metal are inexpensive and highly stable, so they are widely applied to polymers and fibers as antibacterial agents.For example, the antibacterial agent disclosed in Japanese Patent Publication No. 63-260810 A zeolite composition is disclosed. However, zeolite particles exhibit a smooth, dice-like angular shape with a smooth surface due to the cubic habit of the crystal system, and are therefore kneaded into polymers and fibers, and coated on these surfaces together with a binder. In this case, there is a drawback that the binding to the polymer or the fiber is not sufficient, and the strength of the polymer or the fiber may be deteriorated. Another drawback is that the surface area of the zeolite particles alone or exposed on the surface of polymers, fibers, etc. is small, so that the antibacterial effect is insufficient. Here, the exposed surface area is not a specific surface area due to gas adsorption or the like, but is a surface that is preferably in contact with bacteria, in other words, a geometric surface area. Disclosure of the invention
本発明は、 優れた抗菌性及び充塡性を有するアルミノシリケート抗菌剤を提供 することを目的とする。  An object of the present invention is to provide an aluminosilicate antibacterial agent having excellent antibacterial properties and filling properties.
即ち、 本発明の要旨は、  That is, the gist of the present invention is:
( 1 ) a M2 0 · b A 1 2 03 · c S i 02 - d R mA n · y H 2 0 〔式中、 Mは Na及び Z又は K、 Rは Na、 K、 C a及び Mgからなる群より選 ばれる 1種以上、 Aは C03 、 S O4 、 NO3 、 OH及び C 1からなる群より選 ばれる 1種以上、 aは 1〜6、 bは 2〜8、 cは 2〜1 2、 dは 0〜4 (ただし 、 0は除く) 、 mは 1〜2、 nは 1〜3、 yは 0〜32を示す〕 (1) a M 2 0 · b A 1 2 0 3 · c S i 0 2 - d R mA n · y H 2 0 Wherein, M is Na and Z or K, R is Na, K, selection barrel (1) or more from the group consisting of C a and Mg, A is from the group consisting of C0 3, S O4, NO3, OH and C 1 One or more selected, a is 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4 (excluding 0), m is 1 to 2, n is 1 to 3, y indicates 0 to 32)
で表わされる組成を有し、 針状、 板状又は柱状のいずれかの形態を有するアルミ ノシリゲート粒子に Ag, Cu, Fe, Zn, Ca, Mg及び Ceからなる群よ り選ばれる 1種以上の金属を担持させたアルミノシリケ一ト粒子からなる抗菌剤 Aluminosilicate particles having a composition represented by the following formula and having any one of a needle shape, a plate shape, and a columnar shape include at least one selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg, and Ce. Antibacterial agent consisting of aluminosilicate particles carrying metal
(2) a! M2 0 · a 2 H2 0 · b A 123 · c S i 02 - dRmAn - y H 2 〇 (2) a! M 2 0 · a 2 H 2 0 · b A 1 2 〇 3 · c S i 0 2 - dRmAn - y H 2 〇
〔式中、 Mは Na及び Z又は K、 Rは Na、 K、 C a及び Mgからなる群より選 ばれる 1種以上、 Aは CO3 、 S04 、 NOs 、 OH及び C 1からなる群より選 ばれる 1種以上、 a! は 0〜 1 (ただし、 1は除く) 、 a , + a2 は 1〜6、 b は 2〜8、 cは 2〜1 2、 dは 0〜4、 mは 1〜2、 nは 1〜3、 yは 0〜32 を示す。 ただし、 a2 H2 0は結晶中に存在する構造水を示し、 yH2 0は結晶 水を示す。 〕 Wherein, M is Na and Z or K, R is Na, K, selection barrel (1) or more from the group consisting of C a and Mg, A is CO 3, S0 4, NOs, from the group consisting of OH and C 1 One or more selected, a! Is 0 to 1 (except 1), a and + a 2 are 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4, m is 1 to 2, and n is 1 -3 and y indicate 0-32. Here, a 2 H 20 indicates structural water present in the crystal, and yH 20 indicates crystal water. ]
で表わされる組成を有し、 針状、 板状又は柱状のいずれかの形態を有するアルミ ノシリゲート粒子に Ag, Cu, Fe, Zn, Ca, Mg及び Ceからなる群よ り選ばれる 1種以上の金属を担持させたアルミノシリケ一ト粒子からなる抗菌剤 、 並びに Aluminosilicate particles having a composition represented by the following formula and having any one of a needle shape, a plate shape, and a columnar shape include at least one selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg, and Ce. An antimicrobial agent comprising aluminosilicate particles carrying a metal, and
(3) aM2 0 · b A 12 03 · c S i 02 - d RmAn - y H2 (3) aM 2 0 · b A 12 0 3 · c S i 0 2 - d RmAn - y H 2 〇
〔式中、 Mは Na及びノ又は K、 Rは Na、 K、 C a及び Mgからなる群より選 ばれる 1種以上、 Aは C03 、 S04 、 NOs 、 OH及び C 1からなる群より選 ばれる 1種以上、 aは 1〜6、 bは 2〜8、 cは 2〜1 2、 dは 0〜4 (ただし 、 0は除く) 、 mは 1〜2、 nは 1〜3、 yは 0〜32を示す〕 Wherein, M is Na and Roh or K, R is Na, K, selection barrel (1) or more from the group consisting of C a and Mg, A than C0 3, S0 4, NOs, the group consisting of OH and C 1 One or more selected, a is 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4 (excluding 0), m is 1 to 2, n is 1 to 3, y indicates 0 to 32)
で表わされる組成を有し、 針状、 板状又は柱状のいずれかの形態を有するアルミ ノシリゲート粒子をプロトン化処理し、 次いで Ag, Cu, Fe, Zn, C a, Mg及び C eからなる群より選ばれる 1種以上の金属を担持させる、 金属を担持 したアルミノシリケ一ト粒子からなる抗菌剤の製造法であって、 プロトン化処理 前のアルミノシリゲート粒子と比較して、 前記抗菌剤の結晶化度が 1 %以上 1 0 0%未満である、 金属を担持したアルミノシリケ一ト粒子からなる抗菌剤の製造 法、 に関する。 図面の簡単な説明 Aluminum having a composition represented by the formula: needle-like, plate-like, or columnar Nosilicide particles are protonated, and then antibacterial consisting of metal-supported aluminosilicate particles that carry one or more metals selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg and Ce. A method of producing an agent, wherein the antibacterial agent has a crystallinity of 1% or more and less than 100% as compared with the aluminosilicate particles before the protonation treatment, from metal-supported aluminosilicate particles. A method for producing an antibacterial agent. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 7で得られた原料アルミノシリケ一ト粒子の結晶形態を示す図 である。  FIG. 1 is a view showing the crystal morphology of the raw material aluminosilicate particles obtained in Example 7.
図 2は、 実施例 7で得られた原料アルミノシリケ一ト粒子の X線回折パタ一ン 5める。  FIG. 2 shows an X-ray diffraction pattern 5 of the raw material aluminosilicate particles obtained in Example 7.
図 3は、 実施例 9で得られた抗菌剤粒子の結晶形態を示す図である。  FIG. 3 is a view showing a crystal form of the antibacterial agent particles obtained in Example 9.
図 4は、 実施例 9で得られた抗菌剤粒子の X線回折パターンである。 発明を実施するための最良の形態  FIG. 4 is an X-ray diffraction pattern of the antibacterial agent particles obtained in Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において原料として用いられるアルミノシリゲート粒子は、 式 (1) : aM2 0 · b A 12 03 · c S i 02 - d RmAn ■ y H2 0 Aluminosilicate gate particles used as a raw material in the present invention have the formula (1): aM 2 0 · b A 12 0 3 · c S i 0 2 - d RmAn ■ y H 2 0
〔式中、 Mは Na及び/又は K、 Rは Na、 K、 C a及び Mgからなる群より選 ばれる 1種以上、 Aは C〇3 、 S04 、 N03 、 〇H及び C 1からなる群より選 ばれる 1種以上、 aは 1〜6、 bは 2〜8、 cは 2〜1 2、 dは 0〜4 (ただし 、 0は除く) 、 mは 1〜 2、 nは 1〜 3、 yは 0〜 32を示す〕 Wherein, M is Na and / or K, R is Na, K, C a and selection barrel (1) or more from the group consisting of Mg, A is C_〇 3, S0 4, N0 3, from 〇_H and C 1 One or more selected from the group consisting of: a is 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4 (excluding 0), m is 1 to 2, and n is 1 ~ 3, y indicates 0 ~ 32)
で表わされる組成を有し、 かつ針状、 板状又は柱状のいずれかの形態を有する。 本発明の抗菌剤においては、 前記組成を有し、 かつ前記形態を有するアルミノ シリケ一ト粒子を使用することに一つの大きな特徴がある。 かかるアルミノシリ ゲート粒子を用いることにより、 抗菌性に優れ、 高分子、 繊維等への充填性にも 優れた抗菌剤を得ることができるという効果が発現される。 And has a needle-like, plate-like or columnar form. The antibacterial agent of the present invention has one major feature in using aluminosilicate particles having the above composition and having the above form. By using such aluminosilicate particles, it has excellent antibacterial properties and also has good filling properties for polymers, fibers The effect that an excellent antibacterial agent can be obtained is exhibited.
前記アルミノシリケ一ト粒子の組成において、 Mは、 好ましくは N aである。 尚、 Mが Na及び Kである場合、 aM2 〇は、 a i ' Naz O ' az ' Ks O C 但し、 a +a2 ' = a) で表わされる。 また、 Rは、 好ましくは N aであり 、 Aは、 好ましくは C〇3 又は N〇3 である。 In the composition of the aluminosilicate particles, M is preferably Na. Incidentally, when M is Na and K, aM 2 〇 is, ai 'Naz O' az ' Ks OC However, a + a 2' represented by = a). Also, R is preferably N a, A is preferably C_〇 3 or N_〇 3.
本発明に用いられるアルミノシリゲート粒子は、 針状、 板状又は柱状の形態を 有するものである。 ここで、 針状の形態とは、 太さが 5 0 O nm以下で、 長さが 太さに対してアスペク ト比で 2. 0以上のものをいい、 板状の形態とは、 厚さが 3 0 0 nm以下で、 板状径が厚みに対してァスぺク ト比で 2. 0以上のものをい レ、、 柱状の形態とは、 太さが 5 0 nm以上で、 長さが太さに対してァスぺク ト比 で 1. 0以上 2. 0未満のものをいう。  The aluminosilicate particles used in the present invention have a needle-like, plate-like, or columnar shape. Here, the needle-like form refers to a form having a thickness of 50 O nm or less and an aspect ratio of 2.0 or more to the thickness, and the plate-like form refers to a thickness. Is 300 nm or less, and the plate diameter is 2.0 or more in terms of the aspect ratio with respect to the thickness. The columnar shape means that the thickness is 50 nm or more and the length is long. It means that the aspect ratio with respect to the thickness is 1.0 or more and less than 2.0.
このようなアルミノシリケ一ト粒子は、 製造条件によっては針状結晶、 板状結 晶又は柱状結晶の集合体として得られる。 なお、 アルミノシリケ一ト粒子は、 前 記結晶が集合して球状、 テトラポッ ド状、 塊状の集合体を形成したものが好まし く、 これらの二次集合体でもよい。  Such aluminosilicate particles can be obtained as an aggregate of needle-like crystals, plate-like crystals or columnar crystals depending on the production conditions. The aluminosilicate particles are preferably those in which the above-mentioned crystals are aggregated to form a spherical, tetrapod-like, or massive aggregate, and these secondary aggregates may be used.
アルミノシリケ一ト粒子が球状の集合体である場合、 球状の粒子形状を保つ観 点から、 d = 0. 3 6 5 ± 0. 0 1 5 nmに主たる X線回折ピークを有するもの が好ましい。 ここで、 「主たる X線回折ピ一ク」 とは、 最強のピークあるいは最 も強い回折ピーク強度に対し 20%以上の回折強度を示すピークをいう。  When the aluminosilicate particles are a spherical aggregate, those having a main X-ray diffraction peak at d = 0.365 ± 0.015 nm are preferable from the viewpoint of maintaining the spherical particle shape. Here, the “main X-ray diffraction peak” refers to the strongest peak or a peak showing a diffraction intensity of 20% or more of the strongest diffraction peak intensity.
また、 アルミノシリケ一ト粒子としては、 JCPDS (J o i n t C omm i t t e e o n P owd e r D i f f r a c t i o n S t a n d a r d s) No. 20— 3 7 9、 20 - 74 3、 25 - 77 6、 25— 1 4 9 9、 2 5 - 1 5 0 0、 3 0— 1 1 70、 3 1— 1 272、 34 - 1 7 6、 3 5 - 4 7 9 、 35— 6 53、 3 8— 5 1 3、 3 8— 5 1 4、 3 8— 5 1 5及び 4 5 - 1 3 7 3からなる群より選ばれる 1種以上の力ンクリナイ ト様の X線回折パターンを有 するものが好ましい。 特に、 カンクリナイ ト様の X線回折パターン JCPDS No. 38— 5 1 3を示し、 概略組成が、 a = 3, b = 3, c = 6, d = 2, R = Na, m= 1 , n= 1〜3であるものが好ましい。 Also, as the aluminosilicate particles, JCPDS (Joint Commiteon Powder Diffraction Standards) No. 20-379, 20-743, 25-776, 25-149, 2 5-1 5 0 0, 3 0-1 1 70, 3 1-1 272, 34-1 76, 3 5-4 79, 35-6 53, 3 8-5 1 3, 3 8-5 1 Those having at least one type of force-clinite-like X-ray diffraction pattern selected from the group consisting of 4, 38—5 15 and 45-1373 are preferred. In particular, the X-ray diffraction pattern JCPDS No. 38—5 13 is shown, and it is preferable that the approximate composition is a = 3, b = 3, c = 6, d = 2, R = Na, m = 1, n = 1 to 3.
また、 本発明に用いられるアルミノシリケ一ト粒子の粒径は、 平均粒径で 0. 1— 500 mが好ましく、 1〜 1 00 mがより好ましい。  The average particle size of the aluminosilicate particles used in the present invention is preferably from 0.1 to 500 m, more preferably from 1 to 100 m.
ところで、 前記規定されるアルミノシリケ一ト粒子を抗菌剤の原料として用い 、 該抗菌剤をプラスチックに練り込むと酸化防止剤と反応して変色する場合があ る。 そこで、 かかる変色を防止するという観点から、 式 (2) :  By the way, when the specified aluminosilicate particles are used as a raw material of an antibacterial agent and the antibacterial agent is kneaded into a plastic, it may react with an antioxidant and change color. Therefore, from the viewpoint of preventing such discoloration, equation (2):
a 1 M2 0 · a2 H2 0 · b A 12 03 - c S i 02 - d RmAn · y H2 0 〔式中、 Mは Na及び 又は K、 Rは Na、 K、 C a及び Mgからなる群より選 ばれる 1種以上、 八は( 03、 304、 1^03、 〇H及び C 1からなる群より選 ばれる 1種以上、 a , は 0〜 1 (ただし、 1は除く) 、 a , + a2 は 1〜6、 b は 2〜8、 cは 2〜1 2、 dは 0〜4、 mは 1〜2、 nは 1〜3、 yは 0〜32 を示す。 〕 a 1 M 2 0 · a 2 H 2 0 · b A 1 2 0 3 - c S i 0 2 - d RmAn · y H 2 0 wherein, M is Na and or K, R is Na, K, C one or more of the Bareru selected from the group consisting of a and Mg, bees (0 3, 30 4, 1 ^ 0 3, one or more Bareru selected from the group consisting of 〇_H and C 1, a, from 0 to 1 (where , 1), a, + a 2 is 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4, m is 1 to 2, n is 1 to 3, y is 0 To 32.]
で表わされる組成を有し、 針状、 板状又は柱状のいずれかの形態を有するアルミ ノシリケ一ト粒子 〔以下、 アルミノシリケ一ト粒子 (A) という場合がある〕 を 抗菌剤に用いることが好ましい。 ここで、 a2 H2 ◦とは、 アルミノシリケ一ト 粒子 (A) の結晶中に存在する構造水を示しており、 かかる水成分は、 加熱によ り離脱することがない、 いわゆる不動水である。 一方、 yH2 0とは、 アルミノ シリゲート粒子 (A) の結晶中に存在する結晶水を示しており、 かかる水成分は 、 600でで 1時間加熱することにより離脱する。 It is preferable to use an aluminosilicate particle (hereinafter, sometimes referred to as an aluminosilicate particle (A)) having a composition represented by the following formula and having any one of a needle shape, a plate shape, and a column shape as an antibacterial agent. . Here, a 2 H 2 ◦ denotes structural water present in the crystals of the aluminosilicate particles (A), and such water component is a so-called immobile water which is not released by heating. is there. On the other hand, yH 20 indicates crystallization water present in the crystals of the aluminosilicate particles (A), and such water components are released by heating at 600 at 1 hour.
式 (2) で表されるアルミノシリケ一ト粒子 (A) は、 式 (1) で表されるァ ルミノシリゲート粒子 〔式 (1) で表されるアルミノシリゲート粒子を原料アル ミノシリケート粒子という場合がある〕 に対し後述するプロトン化処理を行うこ とにより得られる。 尚、 原料アルミノシリケ一ト粒子では、 dは 0の場合を除く 力 アルミノシリゲート粒子 (A) では、 dは 0であってもよい。 かかるアルミ ノシリケ一ト粒子 (A) に金属を担持させた抗菌剤は、 プロトン化処理前の原料 アルミノシリケ一ト粒子と比較して、 その結晶化度が低下している。 このような 結晶化度の低下は、 原料アルミノシリケ一ト粒子の組成中、 プロトン化に伴い M が減少し、 Hに置き換わることに起因しており、 プロトン化処理後においては、 原料アルミノシリケ一ト粒子の組成における a M2 0は、 アルミノシリゲート粒 子 (A) の組成において a , M2 0 · a 2 H 2 〇と示されることになる。 前記し たプラスチックの変色防止という観点から、 具体的には、 プロトン化処理前の原 料アルミノシリケ一ト粒子と比較して、 かかる抗菌剤の結晶化度は 1 %以上 1 0 0 %未満、 好ましくは 1〜5 0 %、 より好ましくは 1〜2 0 %である。 アルミノ シリケート粒子の結晶化度が 1 %より低くなると、 抗菌性の発現に必要な量の金 属を担持させにく くなるため、 結晶化度は 1 %以上であることが好ましい。 ここで、 結晶化度は X線回折によって求めることができ、 原料としてのアルミ ノシリゲート粒子の最高回折強度に対する同一ピークにおける抗菌剤の最高回折 強度の割合をいう。 The aluminosilicate particles (A) represented by the formula (2) are the aluminosilicate particles represented by the formula (1) [The aluminosilicate particles represented by the formula (1) are referred to as raw material aluminosilicate particles. May be obtained by performing a protonation treatment described below. In the aluminosilicate particles used as raw materials, d is a value other than 0. In the aluminosilicate particles (A), d may be 0. The antimicrobial agent in which a metal is supported on such aluminosilicate particles (A) is a raw material before protonation treatment. Its crystallinity is lower than that of aluminosilicate particles. This decrease in crystallinity is due to the fact that in the composition of the raw material aluminosilicate particles, M decreases with protonation and is replaced by H. After the protonation treatment, the raw material aluminosilicate particles A M 20 in the composition of (a) is represented as a, M 20 · a 2 H 2に お い て in the composition of the aluminosilicate particles (A). From the viewpoint of preventing discoloration of the plastic described above, specifically, the crystallinity of the antibacterial agent is 1% or more and less than 100% as compared with the raw material aluminosilicate particles before the protonation treatment, preferably. Is 1 to 50%, more preferably 1 to 20%. If the crystallinity of the aluminosilicate particles is lower than 1%, it becomes difficult to carry the amount of metal necessary for the expression of antibacterial properties. Therefore, the crystallinity is preferably 1% or more. Here, the crystallinity can be determined by X-ray diffraction, and refers to the ratio of the highest diffraction intensity of the antimicrobial agent at the same peak to the highest diffraction intensity of the aluminosilicate particles as a raw material.
抗菌剤の結晶化度は、 プロトン化処理の程度により所望の範囲に調整すること ができる。  The crystallinity of the antibacterial agent can be adjusted to a desired range by the degree of the protonation treatment.
本発明に用いられる原料アルミノシリケ一ト粒子を製造する方法としては、 特 に限定がないが、 例えば、 アルミナ原料とシリカ原料を C〇3 2—、 S〇4 2—、 N 0 3 —、 C 1 - 等の存在下、 アルカリ溶液中で反応させる方法等が挙げられる。 アルミナ原料としては、 例えば、 酸化アルミニウム、 水酸化アルミニウム、 ァ ルミン酸ナトリウム等が挙げられる。 シリカ原料としては、 例えば、 ゲイ砂、 ケ ィ石、 水ガラス、 ゲイ酸ナトリウム等が挙げられる。 あるいは、 アルミナ原料及 びシリカ原料の両者の原料となるものとして、 例えば、 カオリン、 モンモリロナ イ ト、 ベントナイ ト、 マイ力、 タルク等の粘土鉱物及びムラィ ト等のアルミノケ ィ酸塩鉱物を用いてもよい。 As a method for producing the raw material aluminosilicate Ichito particles used in the present invention include, but are not limited especially, for example, an alumina raw material and silica raw material C_〇 3 2 -, S_〇 4 2 -, N 0 3 -, C The reaction may be carried out in an alkaline solution in the presence of 1-or the like. Examples of the alumina raw material include aluminum oxide, aluminum hydroxide, and sodium aluminate. Examples of the silica raw material include gay sand, silica stone, water glass, and sodium gayate. Alternatively, as a raw material for both the alumina raw material and the silica raw material, for example, clay minerals such as kaolin, montmorillonite, bentonite, myriki, talc, and aluminosilicate minerals such as mullite may be used. Good.
C〇3 2— の原料としては、 炭酸ガス、 炭酸ナトリウム、 炭酸カリウム、 炭酸ナ トリウムカリウム、 炭酸カルシウム、 炭酸マグネシウム等が挙げられ、 S〇4 2— の原料としては、 硫酸ナトリウム、 硫酸カリウム、 硫酸ナトリウムカリウム等が 挙げられ、 NO3 ― の原料としては、 硝酸、 硝酸ナトリウム、 硝酸カリウム等が 挙げられ、 C 1— の原料としては、 塩化ナトリウム、 塩化カリウム等が挙げられ 。 C_〇 3 2 - The raw materials, carbon dioxide, sodium carbonate, potassium carbonate, sodium potassium, calcium carbonate, magnesium carbonate and the like, S_〇 4 2 - Examples of the raw material for NO 3 include sodium sulfate, potassium sulfate, and potassium sodium sulfate. Examples of the NO 3 − material include nitric acid, sodium nitrate, and potassium nitrate. Examples of the C 1− material include sodium chloride and chloride. Potassium and the like.
アルカリ溶液のアルカリとしては、 酸化ナトリウム、 酸化カリウム等の酸化物 ;水酸化ナトリウム、 水酸化力リゥム等の水酸化物;炭酸ナトリウム、 炭酸力リ ゥム、 炭酸ナトリウムカリゥム等の炭酸塩;炭酸水素ナトリウム、 炭酸水素力リ ゥム等の炭酸水素塩等が使用できる。 必要に応じて、 酸化カルシウム、 酸化マグ ネシゥム等の酸化物;水酸化カルシウム、 水酸化マグネシウム等の水酸化物;炭 酸カルシウム、 炭酸マグネシウム、 ドロマイ ト等の炭酸塩;炭酸水素カルシウム 、 炭酸水素マグネシウム等の炭酸水素塩等を使用してもよい。  Examples of the alkali of the alkaline solution include oxides such as sodium oxide and potassium oxide; hydroxides such as sodium hydroxide and hydroxylated lime; carbonates such as sodium carbonate, carbonated lime and sodium carbonate; Sodium bicarbonate, bicarbonate such as hydrogen bicarbonate, etc. can be used. If necessary, oxides such as calcium oxide and magnesium oxide; hydroxides such as calcium hydroxide and magnesium hydroxide; carbonates such as calcium carbonate, magnesium carbonate and dolomite; calcium hydrogen carbonate and magnesium hydrogen carbonate And the like may be used.
本発明に用いられるアルミノシリケート粒子は、 前記の各種化合物を所定の割 合で配合し混合して得ることができる。 配合の割合については、 得られる所望の アルミノシリケ一ト粒子の組成により、 適宜決定される。 特に、 原料の配合比率 は、 各原料を aM2 0、 b A 12 〇3 、 c S i〇2 、 dRm Anで表示した場合 (例えば、 K〇Hは K2 〇、 Na OHは Na2 〇と換算する) 、 bZc = 0. 0 1〜1 0、 a/c = 0. 0 1〜1 00及び 3 ( = 0. 0 1〜 1 0 0の範囲であ ることが望ましい。 The aluminosilicate particles used in the present invention can be obtained by blending and mixing the above various compounds at a predetermined ratio. The mixing ratio is appropriately determined depending on the desired composition of the obtained aluminosilicate particles. In particular, the mixing ratios of the raw materials are expressed as aM 20 , b A 12 〇 3 , c S i 〇 2 , dRm An (for example, K〇H is K 2 〇, Na OH is Na 2を, BZc = 0.01 to 10; a / c = 0.01 to 100 and 3 (= 0.01 to 100).
また、 反応中の前記組成で表されるアルミノシリケ一ト粒子の固形分濃度は、 0. 1〜5 0重量%であることが望ましい。  The solid content concentration of the aluminosilicate particles represented by the above composition during the reaction is desirably 0.1 to 50% by weight.
また、 アルミノシリケ一ト粒子を製造する際の反応温度は、 アルミノシリケ一 ト粒子の結晶化度を高め、 アルミノシリケ一ト粒子の形態を安定化させる観点及 び反応容器への化学的、 耐圧的負荷を低減させる観点から、 好ましくは 1 5〜3 0 0°C、 より好ましくは 6 0〜 1 50 、 さらに好ましくは 80〜1 30 °Cであ る。 また、 反応時間は、 結晶化反応を完全に行わせる観点から、 好ましくは 2時 間以上、 より好ましくは 8時間以上が望ましい。 かかる方法で得られるアルミノシリケ一ト粒子は、 収着性及び分散性に優れ、 充塡剤として用いたときに被充填物の機械的強度を増加させるという性質を有す る。 また、 アルミノシリケ一ト粒子の使用形態としては、 分散性が高いことから 粉体での使用が適している。 In addition, the reaction temperature when producing aluminosilicate particles increases the degree of crystallinity of the aluminosilicate particles, stabilizes the morphology of the aluminosilicate particles, and reduces the chemical and pressure resistance load on the reaction vessel. From the viewpoint of reduction, the temperature is preferably 15 to 300 ° C, more preferably 60 to 150 ° C, and further preferably 80 to 130 ° C. The reaction time is preferably at least 2 hours, more preferably at least 8 hours, from the viewpoint of completely performing the crystallization reaction. The aluminosilicate particles obtained by such a method are excellent in sorption properties and dispersibility, and have the property of increasing the mechanical strength of the filling material when used as a filler. As for the form of use of the aluminosilicate particles, powders are suitable because of their high dispersibility.
次いで、 アルミノシリケ一ト粒子に金属を担持させる。 本発明に用いられる金 属は、 Ag, Cu, Fe, Zn, C a, Mg及び C eからなる群より選ばれる 1 種以上であり、 これらは抗菌性金属であることから、 これらが担持されたアルミ ノシリゲート粒子は抗菌剤として有用である。 なお、 「抗菌性」 とは、 真菌及び 細菌を対象とし、 これらの菌を死滅させ又はその生育を阻止する性質を意味する ο  Next, a metal is supported on the aluminosilicate particles. The metal used in the present invention is at least one selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg and Ce. Since these are antibacterial metals, they are supported. Aluminosilicate particles are useful as antibacterial agents. The term “antibacterial” refers to fungi and bacteria, and refers to the property of killing or inhibiting the growth of these bacteria.
金属を担持させる方法として、 イオン交換法、 微粒子金属の被着法が挙げられ る。 イオン交換法の具体例としては、 金属塩の溶液中にアルミノシリゲート粒子 を分散させてイオン交換させ、 濾過、 洗浄、 乾燥後、 必要により熱処理する方法 が挙げられる。 微粒子金属の被着法の具体例としては、 金属塩の溶液中にアルミ ノシリゲート粒子を分散させ、 酸、 アルカリ等の沈澱剤で金属微粒子をアルミノ シリケ一ト粒子表面に析出させる方法が挙げられる。 抗菌剤中の金属の担持量は 、 抗菌性及び経済性の観点から、 Ag, Cu, Fe, Zn, C a, Mg, Ce等 の金属の総量で 0. 1〜1 0重量%であることが好ましく、 0. 5〜5重量%で あることがより好ましい。 抗菌剤中の金属の担持量は、 蛍光 X線により測定する 。 尚、 原料としてのアルミノシリゲート粒子に金属を担持させるだけでは、 得ら れる抗菌剤の結晶化度は実質的に変化しない。  Examples of a method for supporting a metal include an ion exchange method and a method for depositing fine metal particles. Specific examples of the ion exchange method include a method in which aluminosilicate particles are dispersed in a solution of a metal salt, ion-exchanged, filtered, washed, dried, and, if necessary, heat-treated. As a specific example of the method for depositing fine metal particles, there is a method in which aluminosilicate particles are dispersed in a solution of a metal salt, and fine metal particles are precipitated on the surfaces of the aluminosilicate particles using a precipitant such as an acid or an alkali. The amount of metal carried in the antibacterial agent should be 0.1 to 10% by weight in terms of the total amount of metals such as Ag, Cu, Fe, Zn, Ca, Mg, and Ce from the viewpoint of antibacterial properties and economy. And more preferably 0.5 to 5% by weight. The amount of metal carried in the antibacterial agent is measured by X-ray fluorescence. It is to be noted that the crystallization of the obtained antibacterial agent does not substantially change simply by supporting the metal on the aluminosilicate particles as a raw material.
プロトン化処理の具体例としては、 H2 S〇4、 HC 1、 HN03、 NH4 N 03 等を含んだ酸性水溶液をアルミノシリゲート粒子に徐々に、 あるいは一度に 反応させることでプロトン交換し、 必要に応じて加温又は加熱する方法が挙げら れる。 さらに、 担持後、 必要に応じて 1 00〜800 °Cで熱処理してもよい。 か かるプロトン化処理は、 金属をアルミノシリケート粒子に担持させる前又は担持 させる時に行うことができる。 Specific examples of the proton treatment, proton exchange by reacting in H 2 S_〇 4, HC 1, HN0 3, NH 4 N 0 gradually acidic aqueous solution containing 3 or the like aluminosilicate gates particles, or once Then, a method of heating or heating as necessary is used. Further, after the support, heat treatment may be performed at 100 to 800 ° C. if necessary. Such a protonation treatment is performed before or after the metal is supported on the aluminosilicate particles. You can do it when you let it.
プロトン化処理に用いる酸の種類に特に制限はなく、 公知の有機酸や無機酸を 使用することができる。  There is no particular limitation on the type of acid used for the protonation treatment, and known organic acids and inorganic acids can be used.
具体的なプロトン化処理の方法は以下の通りである。 アルミノシリケ一ト粒子 をィォン交換水中に固形分濃度が 1〜 3 0重量%となるように分散する。 このと きのスラリーの p Hは 8〜 1 3の間である。 このスラリーを攪拌しながら徐々に 酸を添加する。 このとき、 スラリーの p Hが 2〜7、 好ましくは 3〜5となるよ うに酸処理を行うのが好ましい。 アルミノシリケ一ト粒子の結晶性を維持し、 抗 菌性の発現に必要な量の金属の担持を確保するという観点から、 酸処理時のスラ リ一の p Hは本範囲内にあることが好ましい。  A specific protonation method is as follows. The aluminosilicate particles are dispersed in ion-exchanged water so as to have a solid concentration of 1 to 30% by weight. The pH of the slurry at this time is between 8 and 13. The acid is slowly added to the slurry while stirring. At this time, it is preferable to perform the acid treatment so that the pH of the slurry is 2 to 7, preferably 3 to 5. From the viewpoint of maintaining the crystallinity of the aluminosilicate particles and securing the amount of metal required for the development of antibacterial properties, the pH of the slurry during the acid treatment is preferably within this range. .
以上の方法で得られた本発明の抗菌剤は、 抗菌性に優れるのみならず、 その表 面が複雑な形状を有したものであるため、 充塡性にも優れており、 粉末での利用 に適し、 また、 他の無機粉末、 有機粉末、 金属粉末等と混合して使用してもよく 、 さらに必要に応じて成形体として使用してもよい。 その具体的な用途として、 各種洗浄剤用添加剤、 紙,プラスチック ,繊維 ·織物 ·建材類への充填剤、 化粧 品用顔料、 水処理剤が挙げられる。  The antibacterial agent of the present invention obtained by the above-described method is not only excellent in antibacterial properties but also has a complex surface, so that it is also excellent in filling properties and used in powder. It may be used as a mixture with other inorganic powders, organic powders, metal powders and the like, and may be used as a molded product if necessary. Specific applications include additives for various detergents, fillers for paper, plastics, fibers, fabrics, and building materials, pigments for cosmetics, and water treatment agents.
また変色防止の観点から、 本発明の抗菌剤と変色防止剤や安定剤を同時に添加 、 あるいは粒子表面に被着、 被覆してもよい。 変色防止剤あるいは安定剤として は、 例えば酸化亜鉛、 リン酸塩、 ハイ ドロタルサイ ト類、 酸化マグネシウム、 酸 化カルシウム、 酸化チタン、 ステアリン酸カルシウムなどの金属石鹼、 フエノー ル系、 硫黄系、 リン系などの酸化防止剤、 紫外線吸収剤などが挙げられる。 以下、 実施例を挙げて、 本発明をさらに詳細に説明する。  From the viewpoint of preventing discoloration, the antibacterial agent of the present invention and the anti-discoloration agent and stabilizer may be simultaneously added, or may be adhered to and coated on the particle surface. Examples of discoloration inhibitors or stabilizers include metal oxides such as zinc oxide, phosphate, hydrotalcites, magnesium oxide, calcium oxide, titanium oxide, calcium stearate, phenolic, sulfuric, and phosphorus-based materials. Antioxidants, ultraviolet absorbers and the like. Hereinafter, the present invention will be described in more detail with reference to Examples.
実施例 1 Example 1
水酸化ナトリウム 9 4 gをイオン交換水 1 0 0 0 m lに溶解させ、 さらに硝酸 ( 6 1 %) 1 3 0 gとアルミン酸ナトリゥ厶溶液 (N a 2 〇= 2 0 . 3 1重量% A 1 2 0 3 = 2 5 . 8 2重量%、 H 2 0 = 5 3 . 8 7重量 1 2 4 gを混合 した溶液に、 水ガラス (N a 2 〇= 9. 7重量%、 S i 02 = 2 9. 7重量%、 H2 O= 6 0. 6重量%) 1 27 gを添加混合し、 1 0 0°Cで 1 5時間反応させ た。 反応後、 生成したアルミノシリゲート粒子を洗浄し、 濾過し、 乾燥して、 ァ ルミノシリゲート粒子の粉体を得た。 得られたアルミノシリゲート粒子は、 針状 結晶が集合した形態を有していた。 また、 得られたアルミノシリゲート粒子の粉 体は、 X線回折装置 ( (株) リガク製、 RAD— C、 CuK 、 以下同じ) を用 いて X線回折を行なった結果、 d= 0. 3 6 9 nmに強い回折ピークを有し、 J CPDS No. 3 8— 5 1 3に相当していた。 アルミノシリゲート粒子の組成 は、 概略 3Na2 0 · 3 A 123 · 6 S i 02 · NaN〇3 · 4 H2 0であつ た。 Sodium hydroxide 9 4 g dissolved in deionized water 1 0 0 0 ml, further nitrate (6 1%) 1 3 0 g and aluminate Natoriu厶溶solution (N a 2 〇 = 2 0.3 1 wt% A 1 2 0 3 = 2 5.8 2 wt%, mixing the H 2 0 = 5 3. 8 7 wt 1 2 4 g The solution, water glass (N a 2 〇 = 9.7 wt%, S i 0 2 = 2 9.7 wt%, H 2 O = 6 0. 6 % by weight) were added to and mixed with 1 27 g, 1 The reaction was carried out at 00 ° C for 15 hours. After the reaction, the produced aluminosilicate particles were washed, filtered, and dried to obtain powder of the aluminosilicate particles. The obtained aluminosilicate particles had a form in which needle-like crystals were aggregated. The powder of the obtained aluminosilicate particles was subjected to X-ray diffraction using an X-ray diffractometer (RAD-C, CuK, manufactured by Rigaku Corporation). It had a strong diffraction peak at 69 nm, which corresponded to J CPDS No. 38-513. The composition of the aluminosilicate gates particles, been filed schematically 3Na 2 0 · 3 A 1 23 · 6 S i 0 2 · NaN_〇 3 · 4 H 2 0.
得られたアルミノシリケート粒子の粉末 77 gを、 硝酸銀 3. 3 8 gをイオン 交換水 1 0 0 Om 1に溶解した溶液に添加し、 1 0 0°Cで 1時間分散させて Ag をイオン交換させた後、 濾過洗浄して、 抗菌剤 1を得た。 得られた抗菌剤 1は、 針状結晶が集合した球状の形態を示し、 Agが 2. 3 8重量%担持されていた。 なお、 抗菌剤中における A g等の金属の担持量は、 蛍光 X線により測定した。 実施例 2  77 g of the obtained powder of aluminosilicate particles was added to a solution of 3.38 g of silver nitrate dissolved in 1000 Om1 of ion-exchanged water, and dispersed at 100 ° C for 1 hour to ion-exchange Ag. After that, the mixture was filtered and washed to obtain Antibacterial Agent 1. The obtained antibacterial agent 1 had a spherical shape in which needle-like crystals were aggregated, and contained 2.38% by weight of Ag. The amount of metal such as Ag in the antibacterial agent was measured by X-ray fluorescence. Example 2
実施例 1で用いたアルミノシリケート粉末 5 0 gを、 1規定の塩酸 75 gを添 加したイオン交換水中に添加して、 1 0 0°Cで 1時間分散させ、 プロトン化処理 した後、 さらに実施例 1 と同様にして Agをイオン交換させ、 抗菌剤 2を得た。 得られた抗菌剤 2は、 抗菌剤 1 と同様な針状結晶が集合した球状の形態を示し、 結晶化度は 7 6%であり、 Agが 2. 4 8重量%担持されていた。  50 g of the aluminosilicate powder used in Example 1 was added to ion-exchanged water to which 75 g of 1N hydrochloric acid had been added, dispersed at 100 ° C. for 1 hour, and subjected to protonation treatment. Ag was ion-exchanged in the same manner as in Example 1 to obtain Antibacterial Agent 2. The obtained antibacterial agent 2 showed a spherical morphology in which needle-like crystals similar to the antibacterial agent 1 were aggregated, had a crystallinity of 76%, and supported 2.48% by weight of Ag.
実施例 3 Example 3
実施例 1で得られたアルミノシリケ一ト粒子の粉末 1 6 gを、 硝酸銀 6 3 gと硝酸亜鉛 6水和物 7. 27 9 gとをイオン交換水 1 6 0 0m lに溶解した溶 液中に添加して、 1 0 0°Cで 2時間分散させ、 Ag及び Z nをイオン交換させた 後、 濾過洗浄して、 抗菌剤 3を得た。 得られた抗菌剤 3は、 抗菌剤 1 と同様な針 状結晶が集合した球状の形態を示し、 Agが 2. 4 9重量%、 Znが 7. 7重量 %担持されていた。 In a solution prepared by dissolving 16 g of the aluminosilicate particles obtained in Example 1 in 63 ml of silver nitrate and 7.279 g of zinc nitrate hexahydrate in 160 ml of deionized water. The mixture was dispersed at 100 ° C. for 2 hours, ion-exchanged Ag and Zn, and then filtered and washed to obtain antibacterial agent 3. The obtained antimicrobial agent 3 is the same needle as antimicrobial agent 1. It exhibited a spherical morphology of aggregates of crystalline crystals, and 2.49% by weight of Ag and 7.7% by weight of Zn were supported.
実施例 4 Example 4
実施例 1で得られたアルミノシリゲート粒子の粉末 1 6 gを、 硝酸銀 6 3 と硝酸カルシウム 4水和物 2. 6 8 3 gをイオン交換水 1 6 0 0 m lに溶解し た溶液中に添加して、 1 0 0°Cで 2時間分散させ、 Ag及び C aをイオン交換さ せた後、 濾過洗浄して、 抗菌剤 4を得た。 得られた抗菌剤 4は、 抗菌剤 1 と同様 な針状結晶が集合した球状の形態を示し、 Agが 2. 3 8重量%、 C aが 1. 9 重量%担持されていた。  16 g of the aluminosilicate particles obtained in Example 1 was dissolved in a solution obtained by dissolving 2.683 g of silver nitrate 63 and calcium nitrate tetrahydrate in 1.600 ml of ion-exchanged water. The mixture was added and dispersed at 100 ° C. for 2 hours to ion-exchange Ag and Ca, followed by filtration and washing to obtain antibacterial agent 4. The obtained antibacterial agent 4 exhibited a spherical morphology in which needle-like crystals were aggregated like the antibacterial agent 1, and contained 2.38% by weight of Ag and 1.9% by weight of Ca.
実施例 5 Example 5
実施例 1で得られたアルミノシリケ一ト粒子の粉末 1 6 gを、 硝酸銀 0. 6 3 g、 硝酸マグネシウム 6水和物 2. 9 1 3 g及び硝酸アンモニゥム 1 4. 0 8 g をイオン交換水 1 6 0 0 m lに溶解した溶液中に添加して、 1 0 0°Cで 2時間分 散させ、 Ag及び Mgをイオン交換させた後、 濾過洗浄して、 抗菌剤 5を得た。 得られた抗菌剤 5は、 抗菌剤 1 と同様な針状結晶が集合した球状の形態を示し、 Agが 2. 38重量%、 ^^が7. 7重量%担持されていた。  16 g of the aluminosilicate particles obtained in Example 1 were mixed with 0.63 g of silver nitrate, 2.9 13 g of magnesium nitrate hexahydrate and 14.08 g of ammonium nitrate in deionized water. It was added to a solution dissolved in 160 ml, dispersed at 100 ° C. for 2 hours, ion-exchanged Ag and Mg, and then filtered and washed to obtain antibacterial agent 5. The obtained antibacterial agent 5 exhibited a spherical morphology in which needle-like crystals were aggregated, as in antibacterial agent 1, and contained 2.38% by weight of Ag and 7.7% by weight of ^^.
実施例 6 Example 6
実施例 1で得られたアルミノシリケ一ト粒子の粉末 77 gを、 硝酸銀 3. 3 8 gと硝酸セリウム 6水和物 3 3. 4 1 gとをイオン交換水 1 0 0 0 m lに溶解し た溶液中に添加し、 1 0 0°Cで 1時間分散させ、 Ag及び C eをイオン交換させ た後、 濾過洗浄して、 抗菌剤 6を得た。 得られた抗菌剤 6は、 抗菌剤 1 と同様な 針状結晶が集合した球状の形態を示し、 Agが 2. 5重量%、 C eが 2. 8重量 %担持されていた。  A powder of 77 g of the aluminosilicate particles obtained in Example 1 was dissolved in 3.000 g of ion-exchanged water with 3.38 g of silver nitrate and 3.4.1 g of cerium nitrate hexahydrate. The solution was added to the solution, dispersed at 100 ° C. for 1 hour, ion-exchanged Ag and Ce, and then filtered and washed to obtain antibacterial agent 6. The obtained antibacterial agent 6 exhibited a spherical morphology in which needle-like crystals were aggregated as in antibacterial agent 1, and contained 2.5% by weight of Ag and 2.8% by weight of Ce.
実施例 7 Example 7
水酸化ナトリウム 4 7 gをイオン交換水 1 0 0 0m l中に溶解させ、 さらにァ ルミン酸ナトリウム溶液 (N a 2 0二 2 0. 3 1重量%、 A 123 = 25. 8 2重量%、 H2 0 = 5 3. 8 7重量 73 gを混合した溶液に、 水ガラス (N a 2 0= 9. 7重量 、 S i 02 = 2 9. 7重量%、 H2 0= 6 0. 6重量%) 1 1 9 gを添加混合し、 1 0 0°Cで 2時間反応させた。 反応後、 水酸化ナトリウ ム 1 5 gをイオン交換水 5 Om l中に溶解させ、 硝酸 (6 1 5 7 gを混合し た溶液を、 得られた反応液に追加添加し、 さらに 1 0 0°Cで 1 0時間反応させた 。 反応後、 実施例 1 と同様にアルミノシリゲート粒子の粉体を得た。 得られたァ ルミノシリゲート粒子は、 柱状及び針状結晶が集合してテトラポッ ド状に発達し た形態を有していた。 また、 得られたアルミノシリケ一ト粒子の粉体は、 X線回 折装置を用いて X線回折を行なった結果、 d = 0. 3 6 8 nmに強い回折ピーク を有し、 JCPDS No. 3 8— 5 1 3に相当していた。 アルミノシリケ一ト 粒子の組成は、 概略 3Na2 0 ' 3A l 2 03 · 7 S i 02 - 2NaN03 - 4 H2 〇であった。 得られたアルミノシリケ一ト粒子の S EM写真を図 1に、 その X線回折パターンを図 2に示す。 Sodium hydroxide 4 7 g was dissolved in deionized water 1 in 0 0 0 m l, further § Rumin sodium solution (N a 2 0 two 2 0.3 1 wt%, A 1 23 = 25.8 2% by weight, H 2 0 = 5 3.87 weight 73 g was added to the mixed solution, and water glass (Na 20 = 9.7 weight%, Sio 2 = 29.7 weight%, H 2 0 = 60.6% by weight), and mixed, and reacted at 100 ° C for 2 hours. After the reaction, 15 g of sodium hydroxide was dissolved in 5 Oml of ion-exchanged water, and a solution obtained by mixing nitric acid (615 g) was further added to the obtained reaction solution. The reaction was carried out at 10 ° C. After the reaction, a powder of aluminosilicate particles was obtained in the same manner as in Example 1. The obtained aluminosilicide particles were composed of columnar and needle-like crystals which were aggregated into tetrapods. The powder of the obtained aluminosilicate particles was subjected to X-ray diffraction using an X-ray diffraction apparatus, and as a result, d = 0.368 It had a strong diffraction peak at nm, which corresponded to JCPDS No. 38-51 3. The composition of the aluminosilicate particles was approximately 3Na 2 0 '3A l 2 0 3 · 7Si 0 2 -2NaN0 3 -. 4 were are H 2 〇 the S EM photograph of the obtained aluminosilicate Ichito particles Figure 1 shows the X-ray diffraction pattern in Figure 2.
得られたアルミノシリケート粒子の粉末を用いた以外は、 実施例 1 と同様に処 理して、 Agをイオン交換させて、 抗菌剤 7を得た。 得られた抗菌剤 7は、 柱状 及び針状の結晶が集合してテトラポッ ド状に発達した形態を示し、 Agが 2. 4 9重量%担持されていた。  Except that the obtained aluminosilicate particle powder was used, the same treatment as in Example 1 was carried out to ion-exchange Ag to obtain antibacterial agent 7. The obtained antibacterial agent 7 showed a form in which columnar and needle-like crystals aggregated and developed into a tetrapod-like form, and contained 2.49% by weight of Ag.
実施例 8 Example 8
実施例 2において得られた抗菌剤 2を、 さらに 6 0 0 °Cで 5時間熱処理して抗 菌剤 8を得た。 得られた抗菌剤 8の粒子形態と A g担持量は抗菌剤 1 と同様であ つた。  Antibacterial agent 2 obtained in Example 2 was further heat-treated at 600 ° C. for 5 hours to obtain antibacterial agent 8. The obtained antimicrobial agent 8 had the same particle morphology and Ag carrying amount as antimicrobial agent 1.
実施例 9 Example 9
実施例 7において得られた原料アルミノシリケ一ト粒子 1 0 0 gをイオン交換 水 9 0 0 gに分散させ 1 0 0°Cまで昇温した後、 l mo 1 Z 1硝酸水溶液を 1 m 1 /分の速度で 9 5 Om 1滴下した。 滴下終了時の溶液の pHは 3. 2であった 。 固形分を濾別、 洗浄した後、 硝酸銀し 5 8 gを溶解したイオン交換水 9 0 0 g中に添加し、 1 00°Cで 1時間分散させて A gイオン交換を行った後、 濾過洗 浄して抗菌剤 9を得た。 得られた抗菌剤 9の結晶化度は 36%であり、 八 が0 . 9 1重量%担持されていた。 A gを除いた抗菌剤の概略組成は、 3Η2 0 · 3 A 12 03 · 7 S i 02 · 0. 2NaN〇3 · 4Η2 〇であった。 得られた抗菌 剤の S EM写真を図 3に、 その X線回折パターンを図 4に示す。 After 100 g of the raw material aluminosilicate particles obtained in Example 7 were dispersed in 900 g of ion-exchanged water and the temperature was raised to 100 ° C, lmo 1 Z1 aqueous nitric acid solution was added to 1 m 1 / 95 Om 1 was added dropwise at a rate of minutes. The pH of the solution at the end of the dropwise addition was 3.2. The solid content was separated by filtration, washed, and ion-exchanged water containing 58 g of silver nitrate dissolved therein 900 g g, and dispersed at 100 ° C. for 1 hour to carry out Ag ion exchange, followed by filtration and washing to obtain antibacterial agent 9. The crystallinity of the obtained antibacterial agent 9 was 36%, and octane was carried in an amount of 0.91% by weight. Approximate composition of an antimicrobial agent, excluding the A g was 3Η 2 0 · 3 A 12 0 3 · 7 S i 0 2 · 0. 2NaN_〇 3 · 2 〇. Fig. 3 shows a SEM photograph of the obtained antibacterial agent, and Fig. 4 shows its X-ray diffraction pattern.
尚、 本抗菌剤の結晶化度は、 図 2に示す実施例 7で得られた原料アルミノシリ ケート粒子の X線回折パターンにおける最高回折強度に対する、 図 4に示す本実 施例で得られた抗菌剤の X線回折パターンにおける、 対応する同一ピークである 最高回折強度の割合として算出した。 他の実施例における抗菌剤の結晶化度も同 様にして算出した。  The crystallinity of the antibacterial agent was determined by comparing the maximum diffraction intensity in the X-ray diffraction pattern of the raw material aluminosilicate particles obtained in Example 7 shown in FIG. 2 with the antibacterial agent obtained in this example shown in FIG. It was calculated as the ratio of the highest diffraction intensity, which is the same corresponding peak in the X-ray diffraction pattern of the agent. The crystallinity of the antibacterial agent in other examples was calculated in the same manner.
実施例 1 0 Example 10
実施例 7において得られたアルミノシリケ一ト粒子 1 00 gをイオン交換水 9 00 gに分散させ 1 00°Cまで昇温した後、 lmo 1/1硝酸水溶液を lm 1 / 分の速度で 300 ml滴下した。 滴下終了時の溶液の pHは 4. 9であった。 固 形分を濾別、 洗浄した後、 硝酸銀 1. 58 gを溶解したイオン交換水 900 g中 に添加し、 1 00°Cで 1時間分散させて Agイオン交換を行った後、 濾過洗浄し て抗菌剤 1 0を得た。 得られた抗菌剤 1 0の結晶化度は 45%であり、 ^t . 98重量%担持されていた。 A gを除いた抗菌剤の概略組成は、 3H2 0 · 3 A 12 03 · 7 S i 02 · 0. 2NaN〇3 · 4Η2 〇であった。 After 100 g of the aluminosilicate particles obtained in Example 7 were dispersed in 900 g of ion-exchanged water and heated to 100 ° C, 300 ml of lmo 1/1 nitric acid aqueous solution was added at a rate of lm 1 / min. It was dropped. The pH of the solution at the end of the dropwise addition was 4.9. After the solids were separated by filtration and washed, 1.58 g of silver nitrate was added to 900 g of ion-exchanged water in which they had been dissolved, dispersed at 100 ° C for 1 hour, and subjected to Ag ion exchange, followed by filtration and washing. Thus, an antibacterial agent 10 was obtained. The obtained antimicrobial agent 10 had a crystallinity of 45% and was loaded by 98% by weight of ^ t. Approximate composition of an antimicrobial agent, excluding the A g was 3H 2 0 · 3 A 12 0 3 · 7 S i 0 2 · 0. 2NaN_〇 3 · 2 〇.
以上のように、 実施例 1〜1 0で得られた抗菌剤 1〜1 0は、 いずれもその粒 子表面が針状の複雑な形態を有しているため、 粒子表面積が大きいことがわかる 試験例  As described above, it can be seen that the antibacterial agents 1 to 10 obtained in Examples 1 to 10 all have a large particle surface area because their particle surfaces have a complicated acicular shape. Test example
実施例 1〜 1 0で得られた抗菌剤 1〜 1 0について抗菌性を評価した。 抗菌性 の評価には、 黄色ぶどう状球菌 ( I FO 1 2732 ) を用い、 抗菌剤を寒天培地 に懸濁分散させ、 37°Cで 24時間後のそれぞれの最小発育阻止濃度 (M I C) により評価した。 その結果を表 1に示す。 なお、 比較例として、 従来の、 抗菌性 金属 (A g、 担持量: 2 . 0重量%) を担持させたゼォライトを用いた。 また、 表中、 ◎は 「菌の生育が阻止されたこと」 、 Xは 「菌が生育したこと」 をそれぞ れ示す。 The antibacterial properties of the antibacterial agents 1 to 10 obtained in Examples 1 to 10 were evaluated. For the evaluation of antibacterial activity, Staphylococcus aureus (IFO12732) was used. Antibacterial agents were suspended and dispersed in an agar medium, and the respective minimum inhibitory concentrations (MIC) after 24 hours at 37 ° C. Was evaluated. The results are shown in Table 1. As a comparative example, a conventional zeolite carrying an antibacterial metal (Ag, carrying amount: 2.0% by weight) was used. In the table, ◎ indicates that the growth of the fungus was inhibited, and X indicates that the fungus had grown.
表 1 table 1
Figure imgf000016_0001
表 1に示されるように、 実施例 1〜1 0で得られた抗菌剤 1〜 1 0は、 いずれ も比較例で用いた、 従来の、 抗菌性金属を担持させたゼォライトに較べ、 M I C が小さく、 優れた抗菌性を有していることがわかる。 産業上の利用可能性
Figure imgf000016_0001
As shown in Table 1, the antimicrobial agents 1 to 10 obtained in Examples 1 to 10 all had a lower MIC than the conventional antimicrobial metal-supported zeolite used in Comparative Examples. It is small and has excellent antibacterial properties. Industrial applicability
本発明のアルミノシリゲート抗菌剤は、 優れた抗菌性を有し、 また球状等の集 合形態を有し、 その表面積が大きいため充塡性にも優れており、 各種洗浄剤用添 加剤や紙、 プラスチック、 繊維、 建材類等への充填剤、 化粧品用顔料、 水処理剤 に使用することができる。  The aluminosilicate antibacterial agent of the present invention has excellent antibacterial properties, has an aggregated form such as a sphere, and has a large surface area, and therefore has excellent filling properties. And fillers for paper, plastics, fibers, building materials, etc., pigments for cosmetics, and water treatment agents.

Claims

請 求 の 範 囲 The scope of the claims
1. aM2 0■ b A 12 03 · c S i 02 - d RmAn · y H2 0 1. aM 2 0 ■ b A 12 0 3 · c S i 0 2 - d RmAn · y H 2 0
〔式中、 Mは Na及び Z又は K、 Rは Na、 K、 C a及び Mgからなる群より選 ばれる 1種以上、 Aは C〇3 、 S04 、 NOs 、 OH及び C 1からなる群より選 ばれる 1種以上、 aは 1〜6、 bは 2〜8、 cは 2〜1 2、 dは 0〜4 (ただし 、 0は除く) 、 mは 1〜2、 nは 1〜3、 yは 0〜32を示す〕 Wherein, M is Na and Z or K, R is Na, K, selection barrel (1) or more from the group consisting of C a and Mg, A is C_〇 3, S0 4, NOs, the group consisting of OH and C 1 At least 1 kind, a is 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4 (excluding 0), m is 1 to 2, and n is 1 to 3. , Y represents 0 to 32)
で表わされる組成を有し、 針状、 板状又は柱状のいずれかの形態を有するアルミ ノシリケ一ト粒子に Ag, Cu, Fe, Zn, C a, Mg及び Ceからなる群よ り選ばれる 1種以上の金属を担持させたアルミノシリケ一ト粒子からなる抗菌剤 Selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg, and Ce in the form of needle-like, plate-like, or columnar aluminosilicate particles having a composition represented by Antibacterial agent consisting of aluminosilicate particles carrying more than one kind of metal
2. a 1 M2 0 · a 2 H2 0 · b A 12 03 · c S i 02 - d RmAn - y H 2. a 1 M 2 0 · a 2 H 2 0 · b A 1 2 0 3 · c S i 0 2 - d RmAn - y H
2 〇 2 〇
〔式中、 Mは Na及び 又は K、 Rは Na、 K、 C a及び M gからなる群より選 ばれる 1種以上、 Aは C〇3 、 S04 、 N03 、 〇H及び C 1からなる群より選 ばれる 1種以上、 a, は 0〜1 (ただし、 1は除く) 、 a, +a2 は 1〜6、 b は 2〜8、 cは 2〜1 2、 dは 0〜4、 mは 1〜2、 nは 1〜3、 yは 0〜32 を示す。 ただし、 a 2 H2 0は結晶中に存在する構造水を示し、 yH2 0は結晶 水を示す。 〕 Wherein, M is Na and or K, R is Na, K, C a and M g consisting selection barrel (1) or more from the group, A is C_〇 3, S0 4, N0 3, from 〇_H and C 1 One or more selected from the group consisting of: a, 0 to 1 (excluding 1), a, + a 2 is 1 to 6, b is 2 to 8, c is 2 to 12, and d is 0 to 4, m is 1-2, n is 1-3, y is 0-32. Here, a 2 H 20 indicates structural water present in the crystal, and yH 20 indicates crystal water. ]
で表わされる組成を有し、 針状、 板状又は柱状のいずれかの形態を有するアルミ ノシリゲート粒子に Ag, Cu, Fe, Zn, Ca, Mg及び Ceからなる群よ り選ばれる 1種以上の金属を担持させたアルミノシリケ一ト粒子からなる抗菌剤 Aluminosilicate particles having a composition represented by the following formula and having any of a needle-like, plate-like, or columnar shape are added to at least one selected from the group consisting of Ag, Cu, Fe, Zn, Ca, Mg, and Ce. Antibacterial agent consisting of aluminosilicate particles carrying metal
3. アルミノシリゲート粒子が d = 0. 365 ±0. 0 1 5 nmに主たる X線 回折ピークを有する請求項 1又は 2記載の抗菌剤。 3. The main X-rays at d = 0.365 ± 0.015 nm for aluminosilicate particles 3. The antibacterial agent according to claim 1, which has a diffraction peak.
4. アルミノシリケ一ト粒子が J CPDS No. 20— 3 7 9、 20— 74 3、 25— 77 6、 25— 1 4 9 9、 25— 1 5 0 0、 30 1 1 70、 3 1 - 1 272、 34 - 1 7 6、 3 5 - 4 7 9、 35— 6 5 3、 3 8 - 5 1 3、 38 - 5 1 4、 3 8 - 5 1 5及び 4 5 - 1 373からなる群より選ばれる 1種以上の力 ンクリナイ ト様 X線回折パターンを有する請求項 1〜 3いずれか記載の抗菌剤。 4. The aluminosilicate particles are J CPDS No. 20-379, 20-743, 25-776, 25-149, 9, 25-150, 30 1 1 70, 3 1-1 272, 34-1 76, 3 5-4 79, 35-6 5 3, 3 8-5 1 3, 38-5 1 4, 3 8-5 15 and 4 5-1 373 The antibacterial agent according to any one of claims 1 to 3, wherein the antibacterial agent has one or more selected X-ray diffraction patterns.
5. aM2 0 · b A 12 03 · c S i 02 - d RmAn · y H2 0 5. aM 2 0 · b A 12 0 3 · c S i 0 2 - d RmAn · y H 2 0
〔式中、 Mは Na及びノ又は K、 Rは Na、 K、 C a及び M gからなる群より選 ばれる 1種以上、 Aは C03 、 S〇4 、 N03 、 OH及び C 1からなる群より選 ばれる 1種以上、 aは 1〜6、 bは 2〜8、 cは 2〜1 2、 dは 0〜4 (ただし 、 0は除く) 、 mは 1〜2、 nは 1〜3、 yは 0〜32を示す〕 Wherein, M is Na and Roh or K, R is Na, K, C a and selection barrel (1) or more from the group consisting of M g, A is C0 3, from S_〇 4, N0 3, OH and C 1 One or more selected from the group consisting of: a is 1 to 6, b is 2 to 8, c is 2 to 12, d is 0 to 4 (excluding 0), m is 1 to 2, and n is 1 ~ 3, y indicates 0 ~ 32)
で表わされる組成を有し、 針状、 板状又は柱状のいずれかの形態を有するアルミ ノシリケ一ト粒子をプロトン化処理し、 次いで Ag, Cu, F e, Zn, C a, Mg及び C eからなる群より選ばれる 1種以上の金属を担持させる、 金属を担持 したアルミノシリケ一ト粒子からなる抗菌剤の製造法であって、 プロトン化処理 前のアルミノシリケ一ト粒子と比較して、 前記抗菌剤の結晶化度が 1 %以上 1 0 0 %未満である、 金属を担持したアルミノシリケ一ト粒子からなる抗菌剤の製造 Aluminosilicate particles having a composition represented by the following formula and having any one of a needle shape, a plate shape, and a column shape are subjected to protonation treatment, and then Ag, Cu, Fe, Zn, Ca, Mg, and Ce A method for producing an antimicrobial agent comprising metal-supported aluminosilicate particles, which carries one or more metals selected from the group consisting of: Of antibacterial agents consisting of metal-supported aluminosilicate particles with a crystallinity of 1% or more and less than 100%
PCT/JP1999/007244 1998-12-25 1999-12-24 Aluminosilicate antibacterial agents WO2000038524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000590488A JP3292726B2 (en) 1998-12-25 1999-12-24 Aluminosilicate antibacterial agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37107698 1998-12-25
JP10/371076 1998-12-25

Publications (1)

Publication Number Publication Date
WO2000038524A1 true WO2000038524A1 (en) 2000-07-06

Family

ID=18498103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007244 WO2000038524A1 (en) 1998-12-25 1999-12-24 Aluminosilicate antibacterial agents

Country Status (3)

Country Link
JP (1) JP3292726B2 (en)
TW (1) TW592638B (en)
WO (1) WO2000038524A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244339A (en) * 2001-02-21 2002-08-30 Tomoegawa Paper Co Ltd Electrostatic charge image developing toner
JP2002284517A (en) * 2001-03-26 2002-10-03 Kao Corp Aluminosiucate particle
JP2003012403A (en) * 2001-06-25 2003-01-15 Earth Chem Corp Ltd Poisonous feed agent for controlling harmful insect
JP2004244789A (en) * 2003-01-21 2004-09-02 Kao Corp Deodorant antibacterial fiber product
WO2005014059A1 (en) * 2003-08-08 2005-02-17 Kao Corporation Deodorant
JP2005232654A (en) * 2004-02-23 2005-09-02 Kao Corp Deodorizing, antibacterial fibrous product
JP2006191966A (en) * 2005-01-11 2006-07-27 Kao Corp Absorbent article
JP2006307404A (en) * 2005-03-30 2006-11-09 Kao Corp Deodorizing and antibacterial fiber product
JP2014218486A (en) * 2013-05-10 2014-11-20 公立大学法人大阪市立大学 Antibacterial deodorant and production method thereof
CN114276582A (en) * 2020-09-27 2022-04-05 合肥杰事杰新材料股份有限公司 Antibacterial agent, preparation method thereof and antibacterial composition containing antibacterial agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100505A (en) * 1983-05-06 1985-06-04 デンツプライ インタ−ナシヨナル インコ−ポレ−テツド Oxygen barrier layer for polymeric material
EP0190903A2 (en) * 1985-02-04 1986-08-13 Exxon Research And Engineering Company A crystalline zeolite composition having a cancrinite-like structure and a process for its preparation
EP0270129A2 (en) * 1986-12-05 1988-06-08 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
WO1999023033A1 (en) * 1997-10-31 1999-05-14 Kao Corporation Aluminosilicate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100505A (en) * 1983-05-06 1985-06-04 デンツプライ インタ−ナシヨナル インコ−ポレ−テツド Oxygen barrier layer for polymeric material
EP0190903A2 (en) * 1985-02-04 1986-08-13 Exxon Research And Engineering Company A crystalline zeolite composition having a cancrinite-like structure and a process for its preparation
EP0270129A2 (en) * 1986-12-05 1988-06-08 Shinagawa Fuel Co., Ltd. Antibiotic zeolite
WO1999023033A1 (en) * 1997-10-31 1999-05-14 Kao Corporation Aluminosilicate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244339A (en) * 2001-02-21 2002-08-30 Tomoegawa Paper Co Ltd Electrostatic charge image developing toner
JP2002284517A (en) * 2001-03-26 2002-10-03 Kao Corp Aluminosiucate particle
JP4614562B2 (en) * 2001-03-26 2011-01-19 花王株式会社 Aluminosilicate particles
JP2003012403A (en) * 2001-06-25 2003-01-15 Earth Chem Corp Ltd Poisonous feed agent for controlling harmful insect
JP4731741B2 (en) * 2001-06-25 2011-07-27 アース製薬株式会社 Poisonous bait for pest control
JP2004244789A (en) * 2003-01-21 2004-09-02 Kao Corp Deodorant antibacterial fiber product
JP4526271B2 (en) * 2003-01-21 2010-08-18 花王株式会社 Absorbent articles
US7662354B2 (en) 2003-08-08 2010-02-16 Kao Corporation Deodorant
JP4721899B2 (en) * 2003-08-08 2011-07-13 花王株式会社 Deodorants
WO2005014059A1 (en) * 2003-08-08 2005-02-17 Kao Corporation Deodorant
JP4526278B2 (en) * 2004-02-23 2010-08-18 花王株式会社 Deodorant antibacterial fiber products
JP2005232654A (en) * 2004-02-23 2005-09-02 Kao Corp Deodorizing, antibacterial fibrous product
JP2006191966A (en) * 2005-01-11 2006-07-27 Kao Corp Absorbent article
JP4651392B2 (en) * 2005-01-11 2011-03-16 花王株式会社 Absorbent articles
JP2006307404A (en) * 2005-03-30 2006-11-09 Kao Corp Deodorizing and antibacterial fiber product
JP2014218486A (en) * 2013-05-10 2014-11-20 公立大学法人大阪市立大学 Antibacterial deodorant and production method thereof
CN114276582A (en) * 2020-09-27 2022-04-05 合肥杰事杰新材料股份有限公司 Antibacterial agent, preparation method thereof and antibacterial composition containing antibacterial agent

Also Published As

Publication number Publication date
JP3292726B2 (en) 2002-06-17
TW592638B (en) 2004-06-21

Similar Documents

Publication Publication Date Title
JP5317293B2 (en) Method for producing anion-exchange layered double hydroxide
JP2615274B2 (en) Antibacterial calcium carbonate powder
WO2000038524A1 (en) Aluminosilicate antibacterial agents
WO2009096597A1 (en) Selective adsorbent material, and method for production thereof
JP4157946B2 (en) Metal hydroxide / zeolite composite and adsorbent comprising the same
JP4338470B2 (en) Hydrotalcite particles and method for producing the same
JP3977151B2 (en) Deodorants
ES2229105T3 (en) IN SITU CONFORMED ELEMENTS CONTAINING CRYSTAL ANIONIC CLAY.
CN109502656B (en) Spherical Co (II) Co (III) hydrotalcite-like material and preparation method thereof
CA2870652A1 (en) Antimicrobial chemical compositions
KR100929402B1 (en) Antimicrobial Porous Beads and Manufacturing Method Thereof
JP2006281068A (en) Adsorbent
JPH09241019A (en) Method of synthesis of carbonated hydrocarmite
JP2000007326A (en) Spindle-like or spherical alkali aluminum sulfate hydroxide, its production and compounding agent for resin
JP2909336B2 (en) Decomposer for free chlorine in water
EP0585467A1 (en) Silver-bearing tobermorite
JP2016107257A (en) Adsorbing agent and method for producing the same
JP2000264626A (en) Production of calcium-aluminum-based layered double hydroxide
JPWO2020040270A1 (en) Layered double hydroxide crystal, anion adsorbent and method for producing the layered double hydroxide crystal
CA2343145A1 (en) Zinc-modified composite polybasic salt, process for producing the same, and use
Jatav et al. Synthesis and characterization of hydrotalcites
JPH1043609A (en) Ion exchanger
JP6957077B2 (en) Layered double hydroxide crystal, anion adsorbent and method for producing the layered double hydroxide crystal
CN113842874B (en) Modified bentonite and preparation method and application thereof
WO2021117708A1 (en) Method for manufacturing layered double hydroxide crystal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 590488

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase