JP2003221285A - Inorganic foam composition and inorganic foam, and method for manufacturing inorganic foam - Google Patents

Inorganic foam composition and inorganic foam, and method for manufacturing inorganic foam

Info

Publication number
JP2003221285A
JP2003221285A JP2002332849A JP2002332849A JP2003221285A JP 2003221285 A JP2003221285 A JP 2003221285A JP 2002332849 A JP2002332849 A JP 2002332849A JP 2002332849 A JP2002332849 A JP 2002332849A JP 2003221285 A JP2003221285 A JP 2003221285A
Authority
JP
Japan
Prior art keywords
inorganic
powder
foam
specific gravity
inorganic foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002332849A
Other languages
Japanese (ja)
Other versions
JP3898116B2 (en
Inventor
Toyoyuki Okamoto
豊之 岡本
Kenji Yamamura
健二 山村
Toshiki Yamane
敏樹 山根
Shiro Kutogi
志郎 久冨木
Hiroaki Watanabe
広明 渡辺
Naoki Mori
直樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo System Plants Co Ltd
Original Assignee
Toyo System Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo System Plants Co Ltd filed Critical Toyo System Plants Co Ltd
Priority to JP2002332849A priority Critical patent/JP3898116B2/en
Publication of JP2003221285A publication Critical patent/JP2003221285A/en
Application granted granted Critical
Publication of JP3898116B2 publication Critical patent/JP3898116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic foam composition, by which wastes can be recycled as resources, an inorganic foam having a required specific-gravity value can be stably obtained, and an inorganic foam having excellent performance for improving water quality can be formed, to provide an inorganic foam, in which layers having various specific-gravity values are integrally laminated and which has excellent immovability, and furthermore to provide a manufacturing method for an inorganic foam, which is excellent in energy saving property and besides makes smaller the load to equipment such as a heating furnace and where foaming surely occurs to form air bubbles and the inorganic foam excellent in stability of product quality can be obtained. <P>SOLUTION: The inorganic foam composition contains inorganic powder, which is obtained by pulverizing inorganic waste materials, and a shell powder, which is obtained by pulverizing shells. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス質廃材、焼
却灰、煉瓦質廃材等の無機系廃材を用いた無機系発泡体
組成物及び無機系発泡体並びに無機系発泡体の製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to an inorganic foam composition, an inorganic foam, and a method for producing an inorganic foam using an inorganic waste material such as glassy waste material, incinerated ash and brick waste material. Is.

【0002】[0002]

【従来の技術】従来より、無機系廃材の1種であるガラ
ス質廃材や石炭灰等の再資源化のために、ガラス質廃材
や石炭灰等を用いてガラス質等のマトリックス中に均一
で独立又は連続した気泡を形成し、断熱性や防音性に優
れたガラス質発泡体や軽量の人工骨材等が開発されてい
る。例えば、(特許文献1)には「ビンガラス等を粉砕
したものに石灰石粉末を混合した原料を造粒後、810
〜960℃で加熱する泡ガラスの製造方法」が開示され
ている。
2. Description of the Related Art Conventionally, in order to recycle glassy waste materials and coal ash, which are one type of inorganic waste materials, the glassy waste materials and coal ash have been used to uniformly disperse them in a matrix of glassy material. Glassy foams, lightweight artificial aggregates, etc., which form independent or continuous bubbles and are excellent in heat insulation and soundproofing, have been developed. For example, in (Patent Document 1), “a granulated raw material in which limestone powder is mixed with crushed bottle glass etc.
The manufacturing method of the foam glass heated at -960 degreeC is disclosed.

【0003】(特許文献2)には「石炭灰に廃ガラスと
粘結剤と酸化鉄,炭化珪素,炭材等の発泡剤とを混合し
て粉砕した後成形し、これを焼成する人工軽量骨材の製
造方法」が開示されている。
[Patent Document 2] "Artificial lightweight in which coal ash is mixed with waste glass, a binder, and a foaming agent such as iron oxide, silicon carbide, or carbon material, which is crushed and then molded and fired. A method of manufacturing an aggregate "is disclosed.

【0004】(特許文献3)には「廃ガラスを破砕して
粉粒状に形成し、これに炭酸ナトリウム等の金属炭酸
塩、炭化珪素等の金属炭化物、窒化珪素等の金属窒化物
の少なくとも1種を添加し加熱するガラス発泡体の製造
方法」が開示されている。
[Patent Document 3] describes that "waste glass is crushed to form powder particles, and at least one of metal carbonates such as sodium carbonate, metal carbides such as silicon carbide, and metal nitrides such as silicon nitride. A method of making a glass foam by adding seeds and heating "is disclosed.

【0005】(特許文献4)には「粗粉砕ガラス粉と微
粉砕ガラス粉とを混合し、これに炭化珪素を添加し加熱
するガラス質発泡体の製造方法」が開示されている。
(Patent Document 4) discloses "a method for producing a glassy foam by mixing coarsely pulverized glass powder and finely pulverized glass powder, adding silicon carbide to the mixture, and heating".

【0006】[0006]

【特許文献1】特開昭58−60634号公報[Patent Document 1] JP-A-58-60634

【特許文献2】特開平11−335146号公報[Patent Document 2] Japanese Patent Laid-Open No. 11-335146

【特許文献3】特開平11−343128号公報[Patent Document 3] JP-A-11-343128

【特許文献4】特開平11−236232号公報[Patent Document 4] Japanese Patent Laid-Open No. 11-236232

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の技術においては、以下のような課題を有していた。 (1)(特許文献3)に開示の技術は、粉粒状にされた
廃ガラスや発泡剤の粒径が特定されていないので、原料
を加熱する条件が一定でも、廃ガラス等の粒径によって
溶融状態や発泡状態等が異なり、比重や気泡の大きさ等
が安定せず品質の安定性に欠けるという課題を有してい
た。 (2)(特許文献1)乃至(特許文献4)に開示の技術
は、原料のガラスとしてガラス廃材等を用いているが、
発泡剤として主に石灰石等の天然資源や炭化珪素等の化
学薬品を用いているため、省資源性に欠けるという課題
を有していた。
However, the above conventional techniques have the following problems. In the technology disclosed in (1) (Patent Document 3), the particle size of the powdered waste glass or the foaming agent is not specified, so even if the conditions for heating the raw material are constant, There is a problem in that the molten state and the foamed state are different, the specific gravity and the size of the bubbles are not stable, and the quality is not stable. (2) Although the techniques disclosed in (Patent Document 1) to (Patent Document 4) use glass scraps or the like as the raw material glass,
Since a natural resource such as limestone or a chemical agent such as silicon carbide is mainly used as the foaming agent, there is a problem that the resource saving property is lacking.

【0008】本発明は上記従来の課題を解決するもの
で、廃棄物の再資源化を図ることができるとともに所望
する比重を有する無機系発泡体が安定して得られ、また
水質改善作用に優れる無機系発泡体を形成することがで
きる無機系発泡体組成物を提供することを目的とする。
また、本発明は、比重の異なる層が積層され一体化され
湖沼等の水中に投下したときには高比重層を下にして沈
降し着地し着地性に優れる無機系発泡体を提供すること
を目的とする。また、本発明は、省エネルギー性に優れ
るとともに加熱炉等の設備負荷も少なく、さらに確実に
発泡して気泡が形成され製品得率の高い無機系発泡体の
製造方法を提供することを目的とする。また、1以上の
比重を有する無機系基体層と1未満の比重を有する低比
重発泡体層とが一体化された無機系発泡体を容易に製造
することができる無機系発泡体の製造方法を提供するこ
とを目的とする。
The present invention solves the above-mentioned problems of the prior art. It is possible to recycle waste, obtain an inorganic foam having a desired specific gravity in a stable manner, and have an excellent water quality improving action. It is an object to provide an inorganic foam composition capable of forming an inorganic foam.
Further, the present invention has an object to provide an inorganic foam excellent in landing property, in which layers having different specific gravities are laminated and integrated, and when they are dropped into water such as lakes and marshes, they settle down with the high specific gravity layer facing down and land. To do. Another object of the present invention is to provide a method for producing an inorganic foam which is excellent in energy saving and has a small equipment load such as a heating furnace, and is further surely foamed to form bubbles and having a high product yield. . Further, there is provided a method for producing an inorganic foam capable of easily producing an inorganic foam in which an inorganic base layer having a specific gravity of 1 or more and a low specific gravity foam layer having a specific gravity of less than 1 are integrated. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記従来の課題を解決す
るために本発明の無機系発泡体組成物及び無機系発泡体
並びに無機系発泡体の製造方法は、以下の構成を有して
いる。
In order to solve the above-mentioned conventional problems, an inorganic foam composition, an inorganic foam and a method for producing an inorganic foam of the present invention have the following constitutions. .

【0010】本発明の請求項1に記載の無機系発泡体組
成物は、無機系廃材を粉砕して得られる無機系粉体と、
貝殻を粉砕して得られる貝殻粉体と、を含有した構成を
有している。この構成により、以下のような作用が得ら
れる。 (1)無機系廃材や貝殻という廃棄物を用いているの
で、廃棄物の再資源化を図ることができ省資源性に優れ
る。 (2)貝殻は硬度が低く粉砕し易いので貝殻粉体が容易
に得られ、粉砕設備負荷や工数等を小さくすることがで
きる。 (3)加熱することで、貝殻が含有する炭酸カルシウム
が分解して炭酸ガスを発生し溶融した無機系粉体を発泡
させて気泡を形成するとともに、貝殻が含有するフミン
酸が燃焼して焼失し微細孔を形成し表面積の大きな無機
系発泡体が安定して得られる。 (4)貝殻の種類によっては赤貝等のように繊維質を有
し、所定の溶融温度で溶融発泡して形成された気泡の周
囲に該繊維質が位置して補強剤として機能し、気泡が破
裂するのを防止する。 (5)貝殻はカルシウムイオンだけでなくマグネシウム
イオンも有し、これらが、無機系粉体が溶融した溶融体
の粘性を小さくして冷却時に発生する残留ひずみを少な
くするので冷却時に割れ難くなり、板状等の長尺の無機
系発泡体を形成し易く成形性に優れる。 (6)貝殻粉体が加熱によって分解して生成される酸化
カルシウムが、水分や二酸化炭素を吸収するので吸湿性
等に優れた無機系発泡体を製造することができる。 (7)酸化カルシウムが水分を吸収して生成される水酸
化カルシウムが溶出し易いので、土壌改質剤として用い
ることができる無機系発泡体を製造することができる。 (8)貝殻粉体の主成分は炭酸カルシウムであるが、そ
れ以外の組成物も含有しており全てが熱分解しないの
で、基体内に貝殻残渣が分散して存在する。このため、
加熱されて形成された無機系発泡体を浄水処理材等とし
て水中に浸漬すると、無機系発泡体の破壊面や貝殻残渣
等からカルシウム、マグネシウム等が水中に溶出する。
これにより、水に溶解しているリン酸が、溶出したカル
シウムとの反応や無機系発泡体内のカルシウム分に吸着
されてリン酸カルシウム(不溶性)になり水質の改善を
行うことができる。また、溶出したマグネシウムが貝類
や藻類等の成育を促進することができる。
The inorganic foam composition according to claim 1 of the present invention comprises an inorganic powder obtained by pulverizing an inorganic waste material,
And a shell powder obtained by crushing shells. With this configuration, the following effects can be obtained. (1) Since wastes such as inorganic waste materials and shells are used, the wastes can be recycled and excellent in resource saving. (2) Since the shell has a low hardness and is easily crushed, shell powder can be easily obtained, and the load of the crushing equipment and the number of steps can be reduced. (3) By heating, the calcium carbonate contained in the shell decomposes to generate carbon dioxide gas, and the molten inorganic powder is foamed to form bubbles, and the humic acid contained in the shell burns and burns out. Thus, an inorganic foam having fine pores and a large surface area can be stably obtained. (4) Depending on the type of shell, it has a fibrous material such as red shell and the like, and the fibrous material is positioned around the bubbles formed by melting and foaming at a predetermined melting temperature to function as a reinforcing agent. Prevent bursting. (5) The shell has not only calcium ions but also magnesium ions, and these reduce the viscosity of the melt in which the inorganic powder is melted and reduce the residual strain generated during cooling, which makes it difficult to break during cooling. It is easy to form a long inorganic foam such as a plate and has excellent moldability. (6) Since calcium oxide produced by decomposing shell powder by heating absorbs water and carbon dioxide, it is possible to produce an inorganic foam having excellent hygroscopicity. (7) Since calcium hydroxide, which is generated by absorbing water by calcium oxide, is easily eluted, an inorganic foam that can be used as a soil modifier can be produced. (8) The main component of the shell powder is calcium carbonate, but since other components are also included and all do not undergo thermal decomposition, shell residues are dispersed in the substrate. For this reason,
When the inorganic foam formed by heating is immersed in water as a water purification treatment material or the like, calcium, magnesium, etc. are eluted from the fractured surface of the inorganic foam, shell residue, etc. in water.
As a result, the phosphoric acid dissolved in water reacts with the eluted calcium or is adsorbed by the calcium component in the inorganic foam to become calcium phosphate (insoluble), which can improve the water quality. In addition, the eluted magnesium can promote the growth of shellfish and algae.

【0011】ここで、無機系廃材としては、ガラス質廃
材、焼却灰、煉瓦質廃材、家畜や魚の骨等が用いられ、
これらの1種若しくは複数種を混合して用いることがで
きる。ガラス質廃材としては、薬品用びん,化粧品用び
ん,食料調味料用びん,飲料用びん等のガラスびん、板
ガラス、窓ガラス、テレビやディスプレイのガラスパネ
ル等の廃棄物、ガラス製品工場から発生するスクラップ
等が用いられる。焼却灰としては、石炭発電やゴミ発
電,若しくは都市ゴミ焼却炉等の固体燃料を主として使
用する燃焼装置の石炭灰等が用いられる。煉瓦質廃材と
しては、赤煉瓦,耐火煉瓦,軽量煉瓦,舗道煉瓦,釉薬
煉瓦,鉱滓煉瓦,珪灰煉瓦,セメント煉瓦等の廃棄物、
煉瓦製品工場から発生するスクラップ等が用いられる。
家畜や魚の骨としては、牛,豚,馬,鶏等の家畜や魚を
加工した際に得られる骨が用いられる。
Here, as the inorganic waste material, glassy waste material, incinerated ash, brick waste material, bones of livestock and fish, etc. are used.
These 1 type or multiple types can be mixed and used. Glassy waste materials are generated from chemical bottles, cosmetic bottles, food seasoning bottles, glass bottles such as beverage bottles, plate glass, window glass, wastes such as glass panels of TVs and displays, and glass product factories. Scrap or the like is used. As the incineration ash, coal ash of a combustion device which mainly uses solid fuel such as coal power generation, garbage power generation, or municipal waste incinerator is used. Brick materials include red brick, refractory brick, lightweight brick, pavement brick, glaze brick, slag brick, silica ash brick, cement brick, etc.
Scrap generated from a brick product factory is used.
As the bones of livestock and fish, bones obtained when processing livestock and fish such as cows, pigs, horses and chickens are used.

【0012】貝殻としては、牡蠣,帆立貝,赤貝,ハマ
グリ,アサリ,アワビ,サザエ,シジミ,カラスガイ,
ドブガイ等の二枚貝や巻貝の殻が用いられる。なお、貝
殻は、砂等を除去するために水洗した後、乾燥させてか
ら粉砕する。湿式で粉砕を行う場合には、粉砕してから
乾燥させてもよい。また、赤貝は無機繊維質を有し、溶
融発泡して形成された気泡の周囲に該繊維質が位置して
補強剤として機能し、気泡が破裂するのを防止し、気泡
の安定化,均一化を図ることができるので好適に用いら
れる。
The shells include oysters, scallops, red clams, clams, clams, abalone, turban shells, clams, mussels,
Bivalves and snail shells such as bluffs are used. The shell is washed with water to remove sand, etc., dried, and then ground. When the wet pulverization is performed, it may be pulverized and then dried. In addition, the red shell has an inorganic fibrous material, and the fibrous material is located around the bubbles formed by melt-foaming and functions as a reinforcing agent, preventing the bubbles from bursting, stabilizing the bubbles and making them uniform. Since it can be realized, it is preferably used.

【0013】無機系廃材や貝殻の粉砕は、ハンマクラッ
シャ,エッジランナ,スクリーンミル,ローラミル,エ
ロフォールミル,ボールミル,ジェットミル等の粉砕機
を用いて行うことができる。
The crushing of the inorganic waste materials and shells can be carried out by using a crusher such as a hammer crusher, an edge runner, a screen mill, a roller mill, an elofol mill, a ball mill and a jet mill.

【0014】本発明の請求項2に記載の発明は、請求項
1に記載の無機系発泡体組成物であって、前記無機系粉
体100重量部に対し、貝殻粉体1〜25重量部好まし
くは8〜20重量部より好ましくは10〜15重量部を
含有した構成を有している。この構成により、請求項1
で得られる作用に加え、以下のような作用が得られる。 (1)貝殻粉体が所定量配合されているので、加熱して
無機系粉体を溶融すると最適量の炭酸ガスが発生し気泡
が形成され、発泡倍率の大きな無機系発泡体が得られ
る。 (2)貝殻粉体の密度が小さいので容量が多く、無機系
粉体に均一に混合させることができる。
The invention according to claim 2 of the present invention is the inorganic foam composition according to claim 1, wherein 1 to 25 parts by weight of the shell powder is added to 100 parts by weight of the inorganic powder. It preferably has a structure containing 8 to 20 parts by weight, more preferably 10 to 15 parts by weight. With this configuration, claim 1
In addition to the effect obtained in step 1, the following effect is obtained. (1) Since the shell powder is blended in a predetermined amount, when the inorganic powder is heated and melted, an optimum amount of carbon dioxide gas is generated to form bubbles, and an inorganic foam having a large expansion ratio is obtained. (2) Since the shell powder has a low density, it has a large capacity and can be uniformly mixed with the inorganic powder.

【0015】ここで、貝殻粉体の含有量としては、無機
系粉体100重量部に対し、貝殻粉体1〜25重量部好
ましくは8〜20重量部より好ましくは10〜15重量
部が好適である。無機系粉体100重量部に対し貝殻粉
体が10〜15重量部であると貝殻粉体が分解して発生
する炭酸ガス量が最適で、発泡量が多く機械的強度も高
い無機系発泡体が得られる。8〜10重量部になると貝
殻粉体の種類によっては分解して発生する炭酸ガス量が
少なく発泡し難くなる傾向がみられるが、比較的大きな
発泡倍率が得られる。15〜20重量部になると貝殻粉
体が分解して発生する炭酸ガス量が多く無機系発泡体の
表面に細かなひび割れが発生しガスが抜けてしまい嵩が
増え難くなる傾向がみられるが、比較的高い機械的強度
が得られる。1〜8重量部になると貝殻粉体が分解して
発生する炭酸ガス量が少なく嵩が増え難く、また連続気
泡を形成することが困難になる傾向がみられ、20〜2
5重量部になると無機系発泡体の表面のひび割れが大き
くなり機械的強度が低下する傾向がみられる。特に、1
重量部より少なくなるか25重量部より多くなるとこれ
らの傾向が著しいので好ましくない。
The content of the shell powder is 1 to 25 parts by weight, preferably 8 to 20 parts by weight, more preferably 10 to 15 parts by weight, based on 100 parts by weight of the inorganic powder. Is. When the shell powder is 10 to 15 parts by weight with respect to 100 parts by weight of the inorganic powder, the amount of carbon dioxide gas generated by the decomposition of the shell powder is optimal, and the amount of foaming is large and the mechanical strength of the inorganic foam is also high. Is obtained. When the amount is 8 to 10 parts by weight, depending on the type of shell powder, the amount of carbon dioxide gas generated by decomposition is small and it tends to be difficult to foam, but a relatively large expansion ratio is obtained. When the amount is 15 to 20 parts by weight, the amount of carbon dioxide gas generated by decomposition of the shell powder is large and fine cracks are generated on the surface of the inorganic foam, and gas tends to escape, which makes it difficult to increase the bulk. A relatively high mechanical strength is obtained. When the amount is 1 to 8 parts by weight, the amount of carbon dioxide gas generated by decomposition of the shell powder is small and it is difficult to increase the bulk, and it tends to be difficult to form open cells.
If the amount is 5 parts by weight, the surface of the inorganic foam will have large cracks and the mechanical strength will tend to decrease. Especially 1
If the amount is less than 25 parts by weight or more than 25 parts by weight, these tendencies are remarkable, which is not preferable.

【0016】本発明の請求項3に記載の発明は、請求項
1又は2に記載の無機系発泡体組成物であって、前記無
機系粉体の粒径が、0.01〜3000μm好ましくは
0.1〜1000μmより好ましくは0.5〜500μ
mである構成を有している。この構成により、請求項1
又は2で得られる作用に加え、以下のような作用が得ら
れる。 (1)無機系粉体の粒径が所定の範囲に調整されている
ので、無機系粉体の溶融温度が安定するとともに気泡の
大きさも安定し気泡の粒径分布が小さく、機械的強度を
高めることができるとともに無機系発泡体の品質の安定
性に優れる。
The invention according to claim 3 of the present invention is the inorganic foam composition according to claim 1 or 2, wherein the particle size of the inorganic powder is 0.01 to 3000 μm, preferably 0.1 to 1000 μm, more preferably 0.5 to 500 μm
It has a configuration that is m. With this configuration, claim 1
Alternatively, the following action is obtained in addition to the action obtained in 2. (1) Since the particle size of the inorganic powder is adjusted within a predetermined range, the melting temperature of the inorganic powder is stable, the size of the bubbles is stable, the particle size distribution of the bubbles is small, and the mechanical strength is improved. It can be increased and the stability of the quality of the inorganic foam is excellent.

【0017】ここで、無機系粉体の粒径としては、0.
01〜3000μm好ましくは0.1〜1000μmよ
り好ましくは0.5〜500μmが好適である。粒径が
0.5〜500μmの場合は機械的強度に優れ加熱溶融
後の冷却時にも割れ難い無機系発泡体を得ることができ
る。0.5μmより小さくなるにつれ無機系廃材の粉砕
効率が低下し粉砕設備負荷と工数が増大するとともに焼
成時に溶融し易く溶融温度のコントロールが困難になる
傾向がみられる。0.1μmより小さくなるにつれこの
傾向が大きくなるとともに、粉砕時にバグフィルタ等の
集塵装置に捕集される量が増加し粉砕設備負荷が増大す
る傾向がみられる。また、500μmより大きくなるに
つれ無機系粉体間の隙間が大きいため焼成時に溶融して
結合し難く機械的強度が低下し加熱溶融後の冷却時に無
機系発泡体が割れ易くなる傾向がみられる。1000μ
mより大きくなるにつれこの傾向が大きくなるととも
に、無機系粉体の種類によっては無機系発泡体の比重が
大きくなり無機系発泡体の製品の比重のコントロールが
困難になり、さらに無機系粉体は熱伝導率が小さいため
焼成時に無機系粉体の内部にまで熱が伝わり難く焼成が
不十分な箇所が形成され無機系発泡体の機械的強度が低
下する傾向がみられる。特に、粒径が0.01μmより
小さくなるか3000μmより大きくなるとこれらの傾
向が著しいため、いずれも好ましくない。なお、この範
囲の粒径を有する無機系粉体を造粒し所定粒径の造粒粉
にして用いることもできる。
Here, the particle size of the inorganic powder is 0.
0 to 3000 μm, preferably 0.1 to 1000 μm, more preferably 0.5 to 500 μm. When the particle size is 0.5 to 500 μm, it is possible to obtain an inorganic foam which is excellent in mechanical strength and is hard to crack even after cooling after heating and melting. As the particle size becomes smaller than 0.5 μm, the pulverization efficiency of the inorganic waste material decreases, the pulverization equipment load and the man-hour increase, and it tends to be melted during firing, making it difficult to control the melting temperature. This tendency becomes larger as the particle size becomes smaller than 0.1 μm, and the amount collected by the dust collector such as a bag filter at the time of crushing increases, and the load of crushing equipment tends to increase. Further, as it becomes larger than 500 μm, since the gap between the inorganic powders is large, it is difficult to melt and bond at the time of firing, the mechanical strength is lowered, and the inorganic foam tends to be easily cracked at the time of cooling after heating and melting. 1000μ
This tendency becomes larger as it becomes larger than m, and the specific gravity of the inorganic foam increases depending on the type of the inorganic powder, making it difficult to control the specific gravity of the product of the inorganic foam. Since the thermal conductivity is low, it is difficult to transfer heat to the inside of the inorganic powder during firing, and a portion where the firing is insufficient is formed, and the mechanical strength of the inorganic foam tends to decrease. In particular, when the particle size is smaller than 0.01 μm or larger than 3000 μm, these tendencies are remarkable, and thus both are not preferable. It is also possible to granulate an inorganic powder having a particle size within this range and use it as a granulated powder having a predetermined particle size.

【0018】無機系粉体は、重力分級機,慣性分級機,
遠心分級機,篩い分け機等の乾式分級装置やスピッツカ
ステン,スパイラル分級機等の重力式やハイドロサイク
ロン等の遠心力式の湿式分級装置によって所定粒径に分
級すると、所定の範囲に確実に調整できるので好まし
い。なお、湿式分級装置を用いた場合には、分級後に乾
燥するか、加熱炉で加熱する場合に200℃付近で完全
に水分等を蒸発させてから昇温を行う。無機系粉体で成
形された成形体内の水分が加熱炉内で膨張して成形体が
崩れるのを防止するためである。
Inorganic powders are classified by gravity classifier, inertia classifier,
If a dry classifier such as a centrifugal classifier or a sieving machine or a gravity type wet classifier such as a Spitzkasten or a spiral classifier or a centrifugal force type wet classifier such as a hydrocyclone classifies to a predetermined particle size, it will surely adjust within a predetermined range It is preferable because it is possible. When a wet classifier is used, the temperature is raised after drying or after completely evaporating water or the like at about 200 ° C. when heating in a heating furnace. This is to prevent the water content in the molded body molded from the inorganic powder from expanding in the heating furnace and the molded body from collapsing.

【0019】無機系粉体の粒度分布としては、粒径10
00μmの無機系粉体の積算ふるい下%を100重量%
としたとき、その内訳が、粒径250μmの積算ふるい
下%で50〜70重量%、粒径500μmの積算ふるい
下%で70〜90重量%のものが好適である。この粒度
分布を有する無機系粉体は、加熱溶融時に焼結が十分に
進行するため機械的強度に優れるとともに、気泡が均一
に分散し均質性に優れた無機系発泡体を形成することが
できる。なお、粒径が1000〜3000μmの無機系
粉体は、0.1〜1000μmの粒径を有する無機系粉
体100重量部に対して0〜30重量部の割合で添加混
合することができる。これにより、添加量に応じて、形
成される無機系発泡体の比重を大きくすることができ、
無機系発泡体の製品の比重のコントロールを容易に行う
ことができる。比重を1以上にすることによって自重で
水に容易に沈降するので、水の濾過や活性化等を行う際
に特に都合がよく、また、比重を1未満にすることによ
って軽量化を計ることができる。なお、0.1〜100
0μmの粒径を有する無機系粉体に1000〜3000
μmの粒径を有する無機系粉体を添加しない場合(添加
量0重量部の場合)は、気泡が均一に分散し均質性に優
れた無機系発泡体を形成することができる。粒径が10
00〜3000μmの無機系粉体の添加量が30重量部
より多くなるにつれ、焼成時に無機系粉体の内部にまで
熱が伝わり難く焼成が不十分な箇所が多数形成され、無
機系発泡体の機械的強度が低下する傾向がみられるため
好ましくない。1000〜3000μmの無機系粉体を
添加混合しない場合は、ハンマクラッシャ等の粉砕機を
用いて再度粉砕して、粒径が1000μm以下の無機系
粉体にして用いることができる。
The particle size distribution of the inorganic powder is 10
100% by weight of integrated sieve of inorganic powder of 00 μm
In that case, it is preferable that the content thereof is 50 to 70% by weight in terms of cumulative sieving with a particle size of 250 μm and 70 to 90% by weight in terms of cumulative sieving with a particle size of 500 μm. The inorganic powder having this particle size distribution has excellent mechanical strength because the sintering progresses sufficiently during heating and melting, and it is possible to form an inorganic foam having excellent homogeneity by uniformly dispersing cells. . The inorganic powder having a particle size of 1000 to 3000 μm can be added and mixed at a ratio of 0 to 30 parts by weight with respect to 100 parts by weight of the inorganic powder having a particle size of 0.1 to 1000 μm. This makes it possible to increase the specific gravity of the formed inorganic foam, depending on the amount added.
The specific gravity of the product of the inorganic foam can be easily controlled. By setting the specific gravity to 1 or more, it easily settles in water under its own weight, which is particularly convenient when performing filtration or activation of water, and by setting the specific gravity to less than 1, weight reduction can be achieved. it can. In addition, 0.1-100
1000 to 3000 for inorganic powder having a particle size of 0 μm
When the inorganic powder having a particle diameter of μm is not added (when the addition amount is 0 part by weight), the cells are uniformly dispersed and an inorganic foam having excellent homogeneity can be formed. Particle size is 10
As the addition amount of the inorganic powder having a particle size of 0 to 3000 μm is more than 30 parts by weight, it is difficult for heat to be transferred to the inside of the inorganic powder during firing, and a large number of insufficient firing sites are formed. It is not preferable because the mechanical strength tends to decrease. When the inorganic powder having a particle size of 1000 to 3000 μm is not added and mixed, the powder can be pulverized again using a crusher such as a hammer crusher to be used as an inorganic powder having a particle diameter of 1000 μm or less.

【0020】本発明の請求項4に記載の発明は、請求項
1乃至3の内いずれか1に記載の無機系発泡体組成物で
あって、前記貝殻粉体の粒径が、0.1〜3000μm
である構成を有している。この構成により、請求項1乃
至3の内いずれか1で得られる作用に加え、以下のよう
な作用が得られる。 (1)貝殻粉体の粒径が0.1〜3000μmなので、
凝集し難く無機系粉体に点在するように分散させること
ができ、加熱して溶融発泡することで気泡を点在するよ
うに均一に分布させることができる。 (2)この結果、比較的径の大きな独立した気泡を形成
することができ、比重が1より大きな無機系発泡体を形
成することができる。
The invention according to claim 4 of the present invention is the inorganic foam composition according to any one of claims 1 to 3, wherein the shell powder has a particle size of 0.1. ~ 3000 μm
Has a configuration that is With this configuration, the following action is obtained in addition to the action obtained in any one of claims 1 to 3. (1) Since the particle size of shell powder is 0.1 to 3000 μm,
It is difficult to aggregate and can be dispersed so as to be scattered in the inorganic powder, and bubbles can be uniformly distributed so as to be scattered by heating and melting and foaming. (2) As a result, it is possible to form independent bubbles having a relatively large diameter, and it is possible to form an inorganic foam having a specific gravity of more than 1.

【0021】ここで、貝殻粉体の粒径としては、JIS
の標準ふるいを用いたふるい分け法や顕微鏡法等によっ
て測定された粒径をいう。貝殻粉体の粒径が0.1μm
より小さくなるにつれ粉砕設備負荷と工数が増大すると
ともに貝殻粉体が凝集し易く無機系粉体に均一に分散し
難くなる傾向がみられ、3000μmより大きくなるに
つれ加熱されて1個の貝殻粉体が分解したときに発生す
るガス量が多く粗大な気泡を形成し易くなり、そこを起
点として無機系発泡体が割れ易くなり、さらに無機系粉
体に対する相対的な貝殻粉体の個数が少なくなるので気
泡の数が少なくなり無機系発泡体の発泡倍率が小さくな
る傾向がみられるため、いずれも好ましくない。なお、
貝殻粉体は、請求項3で説明した無機系粉体と同様に分
級することができる。これにより、粒径を0.1〜30
00μmの範囲に確実に調整できる。
The particle size of the shell powder is JIS
The particle size measured by a sieving method using a standard sieve, a microscopic method, or the like. Particle size of shell powder is 0.1 μm
As the load of crushing equipment and man-hour increase as it gets smaller, the shell powder tends to agglomerate easily and it becomes difficult to disperse it uniformly in the inorganic powder, and as it exceeds 3000 μm, one shell powder is heated. A large amount of gas is generated when is decomposed, and coarse bubbles are easily formed, and the inorganic foam is easily cracked from there, and the number of shell powder relative to the inorganic powder is reduced. Therefore, the number of cells is reduced and the expansion ratio of the inorganic foam tends to be small, which is not preferable. In addition,
The shell powder can be classified in the same manner as the inorganic powder described in claim 3. As a result, the particle size is 0.1 to 30
It can be reliably adjusted to the range of 00 μm.

【0022】本発明の請求項5に記載の発明は、請求項
1乃至3の内いずれか1に記載の無機系発泡体組成物で
あって、前記貝殻粉体の粒径が、0.1〜1000μm
である構成を有している。この構成により、請求項1乃
至3の内いずれか1で得られる作用に加え、以下のよう
な作用が得られる。 (1)貝殻粉体の粒径が無機系粉体の粒径と略同一の
0.1〜1000μmなので、無機系粉体に均一に分散
させることができ、加熱して溶融発泡することで気泡を
均一に分布させることができる。 (2)この結果、貝殻粉体の粒子が小さく均一に分散し
ているので、多数の独立した気泡と、それらが多数繋が
った連続気泡を形成することができ、比重が1より小さ
な無機系発泡体を形成することができる。 (3)気泡の粒径を小さく形成することができるので、
浄水処理材として用いた場合には、水中の浮遊物質等を
捕捉することができ浄水性能に優れる。
A fifth aspect of the present invention is the inorganic foam composition according to any one of the first to third aspects, wherein the shell powder has a particle size of 0.1. ~ 1000 μm
Has a configuration that is With this configuration, the following action is obtained in addition to the action obtained in any one of claims 1 to 3. (1) Since the particle diameter of the shell powder is 0.1 to 1000 μm, which is almost the same as the particle diameter of the inorganic powder, it can be uniformly dispersed in the inorganic powder, and bubbles can be formed by heating and melting and foaming. Can be evenly distributed. (2) As a result, since the particles of the shell powder are small and uniformly dispersed, it is possible to form a large number of independent bubbles and continuous bubbles formed by connecting them, and an inorganic foam having a specific gravity of less than 1. Can form a body. (3) Since the particle size of the bubbles can be made small,
When used as a water purification treatment material, it is possible to capture suspended substances in water and has excellent water purification performance.

【0023】ここで、貝殻粉体の粒径が0.1μmより
小さくなるにつれ粉砕設備負荷と工数が増大するととも
に貝殻粉体が凝集し易く無機系粉体に均一に分散し難く
なる傾向がみられ、1000μmより大きくなるにつれ
加熱されて1個の貝殻粉体が分解したときに発生するガ
ス量が多く粗大な気泡を形成するとともに、無機系粉体
に対する相対的な貝殻粉体の個数が少なくなり連続気泡
が形成され難くなる傾向がみられるため、いずれも好ま
しくない。なお、貝殻粉体の粒径は、請求項4で説明し
たものと同様にふるい分け法等によって測定されるもの
が用いられる。
Here, as the particle size of the shell powder becomes smaller than 0.1 μm, the load of crushing equipment and the number of steps increase, and the shell powder tends to agglomerate and tends to be difficult to be uniformly dispersed in the inorganic powder. As a result, a large amount of gas is generated when one shell powder is decomposed by being heated as it becomes larger than 1000 μm and coarse bubbles are formed, and the number of shell powder relative to the inorganic powder is small. Since it tends to be difficult to form open cells, both are not preferable. The particle size of the shell powder used is that measured by a sieving method or the like as described in claim 4.

【0024】本発明の請求項6に記載の発明は、請求項
1乃至3の内いずれか1に記載の無機系発泡体組成物で
あって、前記貝殻粉体の粒径が、0.01〜50μm好
ましくは0.1〜10μmである構成を有している。こ
の構成により、請求項1乃至3の内いずれか1で得られ
る作用に加え、以下のような作用が得られる。 (1)貝殻粉体の密度が小さく、かつ粒径が小さいので
粒子の個数が多く、無機系粉体の表面に貝殻粉体をまぶ
した状態となり、微細な気泡を均一に分散して形成させ
ることができる。 (2)この結果、微細な気泡が多数繋がった連続気泡を
形成することができ、表面積が大きく比重が1より大き
な無機系発泡体を形成することができる。
The invention according to claim 6 of the present invention is the inorganic foam composition according to any one of claims 1 to 3, wherein the shell powder has a particle size of 0.01. ˜50 μm, preferably 0.1 to 10 μm. With this configuration, the following action is obtained in addition to the action obtained in any one of claims 1 to 3. (1) Since the density of the shell powder is small and the particle size is small, the number of particles is large, so that the surface of the inorganic powder is sprinkled with the shell powder, and fine air bubbles are uniformly dispersed and formed. be able to. (2) As a result, it is possible to form continuous cells in which a large number of fine cells are connected, and it is possible to form an inorganic foam having a large surface area and a specific gravity of more than 1.

【0025】ここで、貝殻粉体の粒径が0.1μmより
小さくなるにつれ粉砕設備等の設備負荷と工数が増大す
るとともに貝殻粉体が凝集し易く無機系粉体に均一に分
散し難くなる傾向がみられ、10μmより大きくなるに
つれ、連続気泡を形成するのに必要な無機系粉体に対す
る相対的な貝殻粉体の個数が不足し連続気泡が形成され
難くなる傾向がみられる。特に、粒径が0.01μmよ
り小さくなるか50μmより大きくなると、これらの傾
向が著しいため、いずれも好ましくない。また、貝殻粉
体としては、貝殻粉体を粉砕するときに用いられるバグ
フィルタやエアフィルタ等のろ過集塵装置や電気集塵装
置等の集塵装置で集塵された貝殻粉体が好適に用いられ
る。バグフィルタでは0.1〜10μmの粒径を有する
貝殻粉体が、エアフィルタや電気集塵装置では0.01
μm程度の微細な粒径を有する貝殻粉体の捕集ができ、
効率がよいからである。なお、貝殻粉体の粒径は、請求
項4で説明したものと同様に顕微鏡法等で測定されたも
のが用いられる。
Here, as the particle size of the shell powder becomes smaller than 0.1 μm, the load and man-hours of the crushing equipment and the like increase, and the shell powder easily aggregates and becomes difficult to be uniformly dispersed in the inorganic powder. There is a tendency, and as the particle size becomes larger than 10 μm, the number of shell powder relative to the inorganic powder required to form the open cells is insufficient, and the open cells tend to be less likely to be formed. In particular, when the particle size is smaller than 0.01 μm or larger than 50 μm, these tendencies are remarkable, and neither is preferable. Further, as the shell powder, shell powder collected by a filter dust collector such as a bag filter or an air filter used when crushing the shell powder or a dust collector such as an electric dust collector is preferably used. Used. In the bag filter, shell powder having a particle size of 0.1 to 10 μm is 0.01 in the air filter and the electrostatic precipitator.
Capable of collecting shell powder having a fine particle size of about μm,
This is because it is efficient. As the particle size of the shell powder, the particle size measured by a microscope method or the like is used as in the case described in claim 4.

【0026】本発明の請求項7に記載の発明は、請求項
1乃至6の内いずれか1に記載の無機系発泡体組成物で
あって、前記無機系廃材が、ガラス質廃材を含有した構
成を有している。この構成により、請求項1乃至6の内
いずれか1で得られる作用に加え、以下のような作用が
得られる。 (1)ガラス質廃材は、1000℃以下の低温で軟化す
るものが多いので加熱炉等の設備負荷が小さく、また溶
融体の粘性が高いので気泡を形成し易く比重の制御を容
易に行うことができ、さらに機械的強度が高く耐久性に
優れる。また、板状等の長尺の無機系発泡体を形成し易
く成形性に優れる。 (2)ガラス質廃材が溶融固化した後は、カドミウム,
シアン等の有害物質を溶出しないので、河川や湖等の浄
水処理材として最適な無機系発泡体が得られる。
The invention according to claim 7 of the present invention is the inorganic foam composition according to any one of claims 1 to 6, wherein the inorganic waste material contains a glassy waste material. Have a configuration. With this configuration, the following action is obtained in addition to the action obtained in any one of claims 1 to 6. (1) Since many glassy waste materials are softened at a low temperature of 1000 ° C. or less, the load of equipment such as a heating furnace is small, and the viscosity of the melt is high, so that bubbles are easily formed and the specific gravity is easily controlled. And has high mechanical strength and excellent durability. Further, it is easy to form a long inorganic foam such as a plate and has excellent moldability. (2) After the glassy waste material is melted and solidified, cadmium,
Since it does not elute harmful substances such as cyanide, it is possible to obtain an optimal inorganic foam as a water treatment material for rivers and lakes.

【0027】ここで、ガラス質廃材は、他の無機系廃材
に所定の割合で混合して用いることもできる。これによ
り、融点を下げるとともに溶融時の粘性を高めることが
できる。
Here, the glassy waste material can be mixed with other inorganic waste material at a predetermined ratio and used. Thereby, the melting point can be lowered and the viscosity at the time of melting can be increased.

【0028】本発明の請求項8に記載の無機系発泡体
は、無機系廃材を粉砕して得られた無機系粉体が加熱さ
れ溶融した無機系基体層と、前記無機系廃材を粉砕して
得られた前記無機系粉体と貝殻粉体との均一混合物が加
熱され前記無機系基体層と一体化され比重が前記無機系
基体層より小さく形成された低比重発泡体層と、を備え
た構成を有している。この構成により、以下のような作
用が得られる。 (1)低比重発泡体層と一体化された無機系基体層を有
しているので、機械的強度が比較的乏しい低比重発泡体
層を補強することができ機械的強度を高めることができ
耐久性に優れる。 (2)無機系基体層の比重が低比重発泡体層の比重より
大きいため、無機系基体層の比重を1以上に形成するこ
とにより無機系発泡体を湖,沼,海等の水中に沈めた場
合には、低比重発泡体層を上向きにして無機系基体層を
湖底等に設置することができる。このため、表面積の大
きな低比重発泡体層に水流が当たり易くなるとともに低
比重発泡体層に藻が付着したり微生物群が定着し易く、
低比重発泡体層で有機物の分解や水の浄化等を効率よく
行うことができる。 (3)湖沼等の水中に投下したときには比重の高い無機
系基体層を下にして沈降し着地し水中での定置性に優
れ、湖沼等の底に安定に定着し湖沼等の浄化を行うこと
ができる。
The inorganic foam according to claim 8 of the present invention is obtained by pulverizing an inorganic base material layer obtained by pulverizing an inorganic waste material by heating and melting the inorganic base material layer and the inorganic waste material. And a low specific gravity foam layer formed by heating a homogeneous mixture of the inorganic powder and the shell powder obtained as described above to be integrated with the inorganic base layer and having a specific gravity smaller than that of the inorganic base layer. It has a different configuration. With this configuration, the following effects can be obtained. (1) Since it has the inorganic base layer integrated with the low specific gravity foam layer, it can reinforce the low specific gravity foam layer having relatively low mechanical strength and enhance the mechanical strength. Excellent durability. (2) Since the specific gravity of the inorganic base layer is higher than that of the low specific gravity foam layer, the inorganic base layer is formed to have a specific gravity of 1 or more so that the inorganic foam is submerged in water such as a lake, a swamp, or the sea. In that case, the inorganic base layer can be placed on the lake bottom or the like with the low specific gravity foam layer facing upward. Therefore, it becomes easy for the water flow to hit the low specific gravity foam layer having a large surface area, and algae easily adhere to the low specific gravity foam layer or microbial groups are easily fixed,
The low specific gravity foam layer can efficiently decompose organic substances and purify water. (3) When it is dropped into water such as lakes and marshes, it is settled and settled with the inorganic base layer having a high specific gravity facing down, and it has excellent emplacement properties in water, and it is stably fixed at the bottom of lakes and marshes and purified. You can

【0029】ここで、無機系基体層としては、無機系廃
材を粉砕して得られた無機系粉体や、貝殻粉体,炭酸カ
ルシウム,ドロマイト,石灰石や大理石等を切断等した
際に得られる廃棄物粉状体等が添加された無機系粉体を
溶融して形成されたものが用いられる。また、請求項4
に記載の無機系発泡体組成物を溶融発泡させたものを用
いることもできる。比重を1以上無機系粉体の比重以下
にすることができるからである。低比重発泡体層として
は、無機系粉体に貝殻粉体が添加されて、加熱されて無
機系基体層と一体化され比重が無機系基体層より小さく
形成されたものが用いられる。また、請求項5に記載の
無機系発泡体組成物を溶融発泡させたものを用いること
もできる。比重を1未満にすることができるからであ
る。
Here, the inorganic base layer is obtained by cutting inorganic powder obtained by crushing an inorganic waste material, shell powder, calcium carbonate, dolomite, limestone, marble, etc. A material formed by melting an inorganic powder to which waste powder or the like is added is used. In addition, claim 4
It is also possible to use a product obtained by melt-foaming the inorganic foam composition described in 1. This is because the specific gravity can be set to 1 or more and the specific gravity of the inorganic powder or less. As the low specific gravity foam layer, a layer in which shell powder is added to inorganic powder and heated to be integrated with the inorganic base layer so that the specific gravity is smaller than that of the inorganic base layer is used. Moreover, the thing which melt-foamed the inorganic type foam composition of Claim 5 can also be used. This is because the specific gravity can be less than 1.

【0030】なお、無機系基体層と低比重発泡体層の厚
さ(無機系基体層と低比重発泡体層の体積比)は、無機
系粉体等の種類に応じて、無機系発泡体全体の比重が1
以上になるような範囲で種々選択することができる。全
体の比重が1未満の場合は、湖沼等の水中に投下した際
に沈降せず、湖沼等の底に安定に定着させることができ
ないからである。
The thickness of the inorganic base layer and the low specific gravity foam layer (volume ratio of the inorganic base layer and the low specific gravity foam layer) depends on the type of the inorganic powder and the like. Overall specific gravity is 1
Various selections can be made within the above range. This is because when the specific gravity of the whole is less than 1, it does not settle when dropped in water such as lakes and marshes and cannot be stably fixed to the bottom of lakes and marshes.

【0031】本発明の請求項9に記載の無機系発泡体の
製造方法は、請求項1乃至7の内いずれか1に記載の無
機系発泡体組成物を各々混合する混合工程と、前記混合
工程で得られた混合粉体を750〜1100℃好ましく
は900〜1000℃に加熱して溶融発泡させる加熱発
泡工程と、を備えた構成を有している。この構成によ
り、以下のような作用が得られる。 (1)混合された無機系発泡体組成物を所定の温度範囲
で加熱して溶融発泡させるので、無機系粉体を十分に軟
化させて貝殻粉体を完全に包み込み、貝殻粉体の分解に
よって発生した炭酸ガスで確実に発泡させることができ
安定性に優れる。 (2)貝殻粉体が均一に混合しているので溶融助剤とし
て働き全体の溶融温度を低下させるとともに、破壊の起
点となり易い溶融斑の発生を防ぎ機械的強度を安定させ
る。 (3)加熱温度が750〜1100℃好ましくは900
〜1000℃と比較的低いので、加熱炉等の設備負荷が
少なく、また省エネルギー性に優れる。
The method for producing an inorganic foam according to claim 9 of the present invention comprises a mixing step of mixing the inorganic foam composition according to any one of claims 1 to 7, and the mixing. The mixed powder obtained in the step is heated to 750 to 1100 ° C., preferably 900 to 1000 ° C. to melt and foam, and a heating and foaming step is provided. With this configuration, the following effects can be obtained. (1) Since the mixed inorganic foam composition is heated in a predetermined temperature range to melt and foam, the inorganic powder is sufficiently softened to completely wrap the shell powder, and the shell powder is decomposed. The generated carbon dioxide gas can surely cause foaming and has excellent stability. (2) Since the shell powder is uniformly mixed, it acts as a melting aid to lower the melting temperature of the whole and prevent the generation of melting spots that are likely to be the starting point of breakage and stabilize the mechanical strength. (3) The heating temperature is 750 to 1100 ° C., preferably 900
Since the temperature is relatively low at up to 1000 ° C., the load on equipment such as a heating furnace is small, and energy saving is excellent.

【0032】ここで、加熱発泡工程としては、混合工程
で得られた混合粉体をステンレス製等の型枠内に充填し
て、若しくはステンレス製等のメッシュベルトやキャタ
ピラー等の上に堆積して、又は型等で成型して形成され
た成形体を、ボックス炉,シャットルキルン,ローラー
ハースキルン,トンネル式等の加熱炉内で間歇式若しく
は連続式に加熱し、無機系粉体(成形体)を溶融させる
ものが用いられる。加熱発泡工程では、貝殻粉体が分解
して発生した炭酸ガスによって、無機系粉体(成形体)
が溶融して軟化した溶融体内に気泡が形成される。な
お、混合工程の後、混合粉体を造粒して造粒粉を形成す
る造粒工程を加えることもできる。これにより、微細な
無機系粉体等が凝集等を起こすのを防止し加熱発泡工程
において成形体の成形性高めることができ作業性に優れ
るとともに製品得率を高めることができる。
Here, in the heating and foaming step, the mixed powder obtained in the mixing step is filled in a mold made of stainless steel or deposited on a mesh belt or caterpillar made of stainless steel. , Or a molded body formed by molding with a mold, etc., is heated in a box furnace, a shuttle kiln, a roller hearth kiln, a tunnel furnace, etc. in an intermittent or continuous manner, and an inorganic powder (molded body) What melts is used. In the heating and foaming process, the carbon dioxide gas generated by the decomposition of the shell powder causes an inorganic powder (molded body).
Bubbles are formed in the melted material that is melted and softened. In addition, after the mixing step, a granulating step of granulating the mixed powder to form a granulated powder can be added. As a result, it is possible to prevent the fine inorganic powder or the like from agglomerating, etc., and improve the moldability of the molded product in the heat-foaming step, which is excellent in workability and the product yield.

【0033】加熱発泡工程における加熱温度としては、
無機系粉体の種類にもよるが、750〜1100℃好ま
しくは900〜1000℃が好適に用いられる。加熱温
度が900℃より低くなるにつれ無機系粉体の軟化が不
十分で貝殻粉体が分解しても発泡し難い傾向がみられ、
1000℃より高くなるにつれ貝殻粉体が分解して発生
した気泡が膨張して粗大化し細かな気泡が得られ難くな
ったり発泡したものが再溶融して平滑なガラス状になっ
たりする傾向がみられる。特に、750℃より低くなる
か1100℃より高くなるとこれらの傾向が著しくなる
ため、いずれも好ましくない。
The heating temperature in the heating and foaming step is
Although depending on the type of the inorganic powder, 750 to 1100 ° C, preferably 900 to 1000 ° C is preferably used. As the heating temperature becomes lower than 900 ° C, the softening of the inorganic powder is insufficient and it tends to be difficult to foam even if the shell powder is decomposed.
As the temperature rises above 1000 ° C, the air bubbles generated by the decomposition of the shell powder expand and become coarse, making it difficult to obtain fine air bubbles, and the foamed substances tend to remelt and become a smooth glassy material. To be In particular, when the temperature is lower than 750 ° C. or higher than 1100 ° C., these tendencies become remarkable, and thus both are not preferable.

【0034】加熱発泡工程では、750〜1100℃の
加熱温度において、成形体の厚さや大きさに応じて5〜
20分間保持される。保持時間が5分より少なくなるに
つれ発泡ムラが生じ気泡の大きさが著しく不揃いになる
傾向がみられ、20分より多くなるにつれ気泡が膨張し
て粗大化する傾向がみられるため、いずれも好ましくな
い。また、成形体の厚さや大きさによっては伝熱斑を生
じ、不均質な無機系発泡体が形成されるので、それを防
止するために、成形体は加熱炉の大きさに応じて所定の
厚さや大きさに形成される。
In the heating and foaming step, at a heating temperature of 750 to 1100 ° C., depending on the thickness and size of the molded body,
Hold for 20 minutes. When the holding time is less than 5 minutes, foaming unevenness occurs and the sizes of the bubbles tend to be significantly uneven, and when the holding time is more than 20 minutes, the bubbles tend to expand and become coarse. Absent. In addition, heat transfer unevenness occurs depending on the thickness and size of the molded body, and an inhomogeneous inorganic foam is formed.Therefore, in order to prevent this, the molded body has a predetermined size depending on the size of the heating furnace. It is formed in thickness and size.

【0035】特に好ましくは、長尺状のトンネル式等の
加熱炉内を(1)600〜750℃、(2)850〜9
50℃、(3)950〜1000℃、(4)900〜9
50℃の温度に予め保持された複数区域に分域して、各
区域を順に5〜20分間で通過するように混合粉体を搬
送して加熱溶融させるものが用いられる。予め所定の温
度に保持された区域を混合粉体が搬送されていくので、
連続生産が可能で生産性に優れる。また、600〜75
0℃で予熱された後に850℃以上に加熱されるので、
無機系粉体の溶融及び貝殻粉体の分解・発泡を確実に行
うことができ製品得率を高めることができる。また、そ
の後に900〜950℃に加熱されるので、製品にクラ
ック等が生じるのを防止し設計通りの機械的強度を得る
ことができ製品得率を高めることができる。
Particularly preferably, the temperature is set to (1) 600 to 750 ° C. and (2) 850 to 9 in a long tunnel type heating furnace.
50 ° C, (3) 950 to 1000 ° C, (4) 900 to 9
What is divided into a plurality of zones previously held at a temperature of 50 ° C., and the mixed powder is conveyed and heated and melted so as to pass through each zone in order for 5 to 20 minutes is used. Since the mixed powder is conveyed through the area that is held at a predetermined temperature in advance,
Excellent productivity with continuous production. Also, 600 to 75
Since it is preheated at 0 ° C and then heated to 850 ° C or higher,
The melting of the inorganic powder and the decomposition / foaming of the shell powder can be reliably performed, and the product yield can be increased. Further, after that, since the product is heated to 900 to 950 ° C., it is possible to prevent the product from being cracked, obtain the mechanical strength as designed, and improve the product yield.

【0036】加熱発泡工程で得られた溶融発泡体は、加
熱炉内で除冷、若しくは空気中で自然冷却、又は空気や
水等で急冷されて、長尺状,塊状等の無機系発泡体が形
成され、必要に応じて、破砕され若しくは切断され又は
割られる。無機系発泡体は、例えば、盛り土,埋め戻
し,裏込め等に用いる土木用資材として、コンクリート
やアスファルト等の軽量骨材,断熱材,防音材等の建築
用資材として、破砕等を行った後に土と混ぜて土壌改質
材等として用いることができる。特に、家屋床下や屋根
裏,壁等に用いる断熱材として使用すれば、家屋等の軽
量化を図ることができるとともに、大きな表面積によっ
て断熱性や除湿性等が付与されるので好適に用いられ
る。また、カルシウムやマグネシウム等を含有し、さら
に多孔質で表面積が大きいので、浄水処理材として使用
すれば優れた水質改善性能を示し好適である。また、多
孔質なので水中で藻類や草類が繁茂し易く漁礁としても
好適である。また、その保水性や軽量性等を利用すると
ともに貝殻残渣等からカルシウムやマグネシウム等が溶
出して植物の生長を助長するので、屋上庭園や鉢植え等
の軽量土壌材として用いることもできる。また、貝殻粉
体の粒度によって無機系発泡体の比重の制御を容易に行
うことができるので、比重を1未満やほぼ1に形成して
水面や水中に浮島や筏のように浮遊する浄水処理材とし
て用いることができる。また、1以上の比重に形成して
湖沼等の底や水槽や花瓶等の底、河川の岸等に安定に着
地させて水質の浄化を行う浄水処理材として用いること
ができる。なお、無機系発泡体は、加熱後冷却時に割れ
難く長尺の無機系発泡体の成形が可能であることから、
鉄筋コンクリートの床スラブ内に埋設する軽量化材とし
て用いることができ、これにより廃棄物処理等の問題が
発生せず環境保全性や安全性に優れる。現在、発泡スチ
ロール製で形成された軽量化材が主に用いられているた
め、解体時には飛散し周囲の環境を汚染するとともに廃
棄物処理等でも問題を発生し、火災時には有毒ガスの発
生源ともなるからである。
The molten foam obtained in the heat-foaming step is cooled in a heating furnace, naturally cooled in air, or rapidly cooled with air, water or the like to obtain a long or lumpy inorganic foam. Are formed and, if desired, crushed or cut or cracked. The inorganic foam is, for example, as a civil engineering material used for embankment, backfilling, backfilling, etc., as a lightweight aggregate such as concrete and asphalt, a heat insulating material, a soundproofing material, etc. It can be mixed with soil and used as a soil modifier. In particular, when it is used as a heat insulating material for the underfloor of a house, an attic, a wall, etc., it is possible to reduce the weight of a house and the like, and since it has a large surface area, heat insulating property, dehumidifying property and the like are imparted. Further, since it contains calcium, magnesium, etc., and is porous and has a large surface area, it is suitable for use as a water purification treatment material because it exhibits excellent water quality improving performance. In addition, since it is porous, algae and grasses easily grow in water, which is suitable as a fishing reef. Moreover, since calcium, magnesium and the like are eluted from shell residue and the like to promote the growth of plants by utilizing their water retention and lightweight properties, they can also be used as lightweight soil materials for rooftop gardens and potted plants. In addition, the specific gravity of the inorganic foam can be easily controlled by the particle size of the shell powder, so that the specific gravity is set to less than 1 or almost 1 to float on the water surface or in water like floating islands and rafts. It can be used as a material. Further, it can be used as a water purification material that is formed to have a specific gravity of 1 or more and is stably landed on the bottom of lakes and marshes, the bottom of water tanks and vases, the shore of rivers, etc. to purify water. Incidentally, since the inorganic foam, since it is possible to mold a long inorganic foam that is hard to crack upon cooling after heating,
It can be used as a lightweight material to be embedded in a reinforced concrete floor slab, and as a result, it has excellent environmental protection and safety without causing problems such as waste treatment. At present, lightweight materials made of Styrofoam are mainly used, so when dismantled, it scatters, pollutes the surrounding environment and causes problems in waste disposal, etc., and also becomes a source of toxic gas in case of fire. Because.

【0037】本発明の請求項10に記載の無機系発泡体
の製造方法は、a.無機系廃材を粉砕して得られた無機
系粉体100重量部に対し石粉0〜10重量部を含有す
る、又は、b.請求項4に記載の無機系発泡体組成物を
含有する高比重粉体層と、請求項5に記載の無機系発泡
体組成物を含有する低比重粉体層と、を積層する積層工
程と、前記積層工程で得られた積層物を750〜110
0℃好ましくは900〜1000℃に加熱し前記高比重
粉体層と前記低比重粉体層を溶融させて各々無機系基体
層と低比重発泡体層を形成するとともに前記無機系基体
層と前記低比重発泡体層とを一体化する加熱工程と、を
備えた構成を有している。この構成により、以下のよう
な作用が得られる。 (1)積層工程において異なる組成を有する低比重粉体
層と高比重粉体層を積層した後に加熱工程において溶融
し一体化するので、比重が1以上の無機系基体層と比重
が1未満の低比重発泡体層が一体化された無機系発泡体
を容易に形成することができ生産性に優れる。
The method for producing an inorganic foam according to claim 10 of the present invention comprises: a. Including 0 to 10 parts by weight of stone powder to 100 parts by weight of inorganic powder obtained by pulverizing an inorganic waste material, or b. A lamination step of laminating a high specific gravity powder layer containing the inorganic foam composition according to claim 4 and a low specific gravity powder layer containing the inorganic foam composition according to claim 5. The laminated product obtained in the laminating step is 750 to 110.
The high specific gravity powder layer and the low specific gravity powder layer are melted by heating to 0 ° C., preferably 900 to 1000 ° C. to form an inorganic base layer and a low specific gravity foam layer, respectively, and the inorganic base layer and the And a heating step of integrating the low specific gravity foam layer with each other. With this configuration, the following effects can be obtained. (1) Since the low specific gravity powder layer and the high specific gravity powder layer having different compositions are laminated in the laminating step and then melted and integrated in the heating step, the inorganic base layer having a specific gravity of 1 or more and the specific gravity of less than 1 An inorganic foam in which a low-density foam layer is integrated can be easily formed, and the productivity is excellent.

【0038】ここで、積層工程としては、a.ガラス質
廃材,焼却灰,煉瓦質廃材等の無機系廃材を粉砕して得
られた無機系粉体100重量部に対し石粉0〜10重量
部を含有する、又は、b.請求項4に記載の無機系発泡
体組成物を含有する高比重粉体層を、ステンレス製等の
型枠内に敷き詰め、若しくはステンレス製等のメッシュ
ベルトやキャタピラー等の上に堆積し、次いで、請求項
5に記載の無機系発泡体組成物を含有する低比重粉体層
を高比重粉体層の上に積層するものが用いられる。これ
により、加熱工程において、低比重粉体層の自重で低比
重発泡体層が無機系基体層の上に圧着されて一体化され
る。なお、低比重粉体層の上に高比重粉体層を積層して
もよい。加熱工程において、高比重粉体層の自重により
同様に圧着されて一体化されるからである。
Here, as the laminating step, a. Including 0 to 10 parts by weight of stone powder to 100 parts by weight of inorganic powder obtained by pulverizing inorganic waste materials such as glassy waste materials, incinerated ash, brick waste materials, or b. A high specific gravity powder layer containing the inorganic foam composition according to claim 4 is spread in a mold made of stainless steel or is deposited on a mesh belt or a caterpillar made of stainless steel, and then, What laminated | stacks the low specific gravity powder layer containing the inorganic type foam composition of Claim 5 on a high specific gravity powder layer is used. As a result, in the heating step, the low specific gravity foam layer is pressure-bonded to the inorganic base layer by the weight of the low specific gravity powder layer to be integrated. A high specific gravity powder layer may be laminated on the low specific gravity powder layer. This is because, in the heating step, the high specific gravity powder layer is similarly pressed and integrated by its own weight.

【0039】無機系粉体に添加される石粉としては、石
灰石や大理石等を破砕,切断,切削等することによって
得られる廃棄物粉状体等が用いられる。また、貝殻粉体
を用いることもできる。いずれも従来は廃棄されていた
ものを有効に活用することができ、再資源化を図ること
ができ省資源性に優れる。石粉は、高比重粉体層の無機
系粉体100重量部に対し0〜10重量部好ましくは
0.5〜8重量部の範囲で添加される。無機系粉体10
0重量部に対し石粉を0.5〜8重量部添加することに
より、石灰石や大理石等から得られた廃棄物粉状体が加
熱分解して炭酸ガスを発生し無機系基体層をわずかに発
泡させて気泡を形成させることができ無機系基体層の表
面積を大きくして湖や池等の水中に浸漬したときに藻の
付着や微生物群の定着を容易にすることができる。な
お、石粉の添加量が0.5重量部より少なくなるにつれ
無機系基体層が発泡し難くなる傾向がみられ、8重量部
より多くなるにつれ無機系粉体が溶融一体化し難く割れ
易くなり機械的強度が低下する傾向がみられる。特に、
添加量が10重量部より多くなるとこの傾向が著しいた
め好ましくない。
As the stone powder added to the inorganic powder, a waste powder or the like obtained by crushing, cutting or cutting limestone or marble is used. In addition, shell powder can also be used. All of them can effectively utilize what has been conventionally discarded, can be recycled, and are excellent in resource saving. The stone powder is added in an amount of 0 to 10 parts by weight, preferably 0.5 to 8 parts by weight, based on 100 parts by weight of the inorganic powder in the high specific gravity powder layer. Inorganic powder 10
By adding 0.5 to 8 parts by weight of stone powder to 0 parts by weight, the waste powder obtained from limestone, marble, etc. is thermally decomposed to generate carbon dioxide gas and slightly foam the inorganic base layer. Thus, air bubbles can be formed and the surface area of the inorganic base layer can be increased to facilitate the attachment of algae and the fixing of microorganisms when immersed in water such as lakes and ponds. When the amount of stone powder added was less than 0.5 parts by weight, the inorganic base layer tended to be less likely to foam, and when it was more than 8 parts by weight, the inorganic powder was less likely to be melt-integrated and fragile. The strength tends to decrease. In particular,
If the addition amount is more than 10 parts by weight, this tendency is remarkable, which is not preferable.

【0040】加熱工程では、高比重粉体層と低比重粉体
層を積層した積層物を、ボックス炉,シャットルキル
ン,ローラーハースキルン,トンネル式等の加熱炉内で
間歇式若しくは連続式に加熱し、低比重粉体層と高比重
粉体層を溶融して無機系基体層と低比重発泡体層とを形
成するとともに、その境界面で一体化する。加熱工程の
加熱温度としては、請求項7の加熱発泡工程で説明した
ものと同様なので、説明を省略する。また、無機系廃材
としては請求項1で説明したものが用いられ、無機系廃
材を粉砕した無機系粉体の粒径としては請求項3で説明
したものを用いることができるので、説明を省略する。
In the heating step, the laminate obtained by laminating the high specific gravity powder layer and the low specific gravity powder layer is heated intermittently or continuously in a heating furnace such as a box furnace, a shuttle kiln, a roller hearth kiln, or a tunnel type. Then, the low-specific-gravity powder layer and the high-specific-gravity powder layer are melted to form the inorganic base layer and the low-specific gravity foam layer, and they are integrated at the boundary surface. The heating temperature in the heating step is the same as that described in the heating and foaming step of claim 7, and thus the description thereof is omitted. Further, as the inorganic waste material, the one described in claim 1 is used, and as the particle diameter of the inorganic powder obtained by crushing the inorganic waste material, the one described in claim 3 can be used, and therefore the description is omitted. To do.

【0041】[0041]

【発明の実施の形態】以下、本発明の一実施の形態を、
図面を参照しながら説明する。 (実施の形態1)図1は本発明の実施の形態1における
無機系発泡体の斜視図である。図1において、1は実施
の形態1における無機系発泡体、1aはガラス系廃材等
の無機系廃材が粉砕された無機系粉体が溶融して形成さ
れた無機系発泡体1の基体、1bは牡蠣殻等の貝殻が粉
砕されて形成され無機系粉体に添加された貝殻粉体が分
解した残渣である貝殻残渣、1cは貝殻粉体中の炭酸カ
ルシウムが発泡して基体1aに形成された連続気泡や独
立気泡からなる気泡である。貝殻粉体の主成分は炭酸カ
ルシウムであるが、それ以外の組成物も含有しており全
てが熱分解しないので、特に貝殻粉体の粒径が大きな場
合は基体1a内に貝殻残渣1bが分散して存在する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below.
A description will be given with reference to the drawings. (Embodiment 1) FIG. 1 is a perspective view of an inorganic foam according to Embodiment 1 of the present invention. In FIG. 1, 1 is an inorganic foam according to the first embodiment, 1a is a substrate of an inorganic foam 1 formed by melting an inorganic powder obtained by pulverizing an inorganic waste such as a glass waste, and 1b. Is a shell residue, which is a residue formed by crushing shells such as oyster shells and decomposed by the shell powder added to the inorganic powder, and 1c is formed on the substrate 1a by foaming calcium carbonate in the shell powder. The bubbles are composed of open cells and closed cells. The main component of the shell powder is calcium carbonate, but since it does not thermally decompose because it also contains other compositions, the shell residue 1b is dispersed in the substrate 1a especially when the particle size of the shell powder is large. And then exist.

【0042】以上のように構成された実施の形態1にお
ける無機系発泡体について、その製造方法を以下説明す
る。始めに、ガラス質廃材等の無機系廃材を粉砕し粒径
0.01〜3000μmに形成された無機系粉体を形成
する。これとは別に牡蠣殻等の貝殻を粉砕し粒径0.1
〜3000μmに形成された貝殻粉体を形成する。無機
系粉体100重量部に対し、貝殻粉体1〜25重量部を
添加混合し無機系発泡体組成物を作成する。次いで、混
合工程において、この無機系発泡体組成物を均一に混合
し混合粉体を作成する。次いで、加熱発泡工程におい
て、作成された混合粉体をステンレス製等の型枠内に充
填して、若しくはステンレス製等のメッシュベルトやキ
ャタピラー等の上に堆積して、又は型等で成型して形成
された成形体を、トンネル式等の加熱炉内で750〜1
100℃の温度で間歇式若しくは連続式に加熱する。よ
り好ましくは、加熱炉内を(1)600〜750℃、
(2)850〜950℃、(3)950〜1000℃、
(4)900〜950℃の温度に予め保持された複数区
域に分域して、各区域を順に5〜20分間で通過するよ
うに混合粉体を搬送して連続式に加熱溶融させる。加熱
発泡工程では、貝殻粉体が分解して発生した炭酸ガスに
よって、溶融して軟化した無機系粉体内に気泡が形成さ
れる。
A method of manufacturing the inorganic foamed material according to the first embodiment having the above-described structure will be described below. First, an inorganic waste material such as a glassy waste material is crushed to form an inorganic powder having a particle size of 0.01 to 3000 μm. Separately from this, oyster shells and other shells are crushed to a particle size of 0.1.
Form shell powder formed to ~ 3000 μm. 1 to 25 parts by weight of shell powder is added and mixed with 100 parts by weight of the inorganic powder to prepare an inorganic foam composition. Next, in a mixing step, this inorganic foam composition is uniformly mixed to prepare a mixed powder. Next, in the heat-foaming step, the mixed powder thus prepared is filled in a mold made of stainless steel or the like, or is deposited on a mesh belt or a caterpillar made of stainless steel, or molded by a mold or the like. The formed body is heated to 750 to 1 in a tunnel type heating furnace.
It is heated intermittently or continuously at a temperature of 100 ° C. More preferably, the inside of the heating furnace is (1) 600 to 750 ° C.,
(2) 850 to 950 ° C, (3) 950 to 1000 ° C,
(4) The mixed powder is divided into a plurality of zones preliminarily held at a temperature of 900 to 950 ° C., and the mixed powder is conveyed so as to pass through each zone in order for 5 to 20 minutes to be continuously heated and melted. In the heating and foaming step, carbon dioxide gas generated by decomposition of the shell powder forms bubbles in the melted and softened inorganic powder.

【0043】以上のように実施の形態1における無機系
発泡体は構成されているので、以下のような作用が得ら
れる。 (1)無機系廃材や貝殻という廃棄物を用いているの
で、廃棄物の再資源化を図ることができ省資源性に優れ
る。 (2)貝殻は硬度が低く粉砕し易いので貝殻粉体が容易
に得られ、粉砕設備負荷や工数等を小さくすることがで
きる。 (3)加熱することで、貝殻が含有する炭酸カルシウム
が分解して炭酸ガスを発生し溶融した無機系粉体を発泡
させて気泡を形成するとともに、貝殻が含有するフミン
酸が燃焼して焼失し微細孔を形成し表面積の大きな無機
系発泡体が安定して得られる。 (4)貝殻はカルシウムイオンだけでなくマグネシウム
イオンも有し、これらが、無機系粉体が溶融した溶融体
の粘性を小さくして冷却時に発生する残留ひずみを少な
くするので冷却時に割れ難くなり、板状等の長尺の無機
系発泡体を形成し易く成形性に優れる。 (5)貝殻粉体が加熱によって分解して生成される酸化
カルシウムが、水分や二酸化炭素を吸収するので吸湿性
等に優れる無機系発泡体を製造することができる。 (6)酸化カルシウムが水分を吸収して生成される水酸
化カルシウムが溶出し易いので、土壌改質剤として用い
ることができる無機系発泡体を製造することができる。 (7)加熱されて形成された無機系発泡体を水中に浸漬
すると、無機系発泡体の破壊面や貝殻残渣からカルシウ
ム、マグネシウム等が水中に溶出する。これにより、水
に溶解しているリン酸が、溶出したカルシウムによって
リン酸カルシウム(不溶性)になり水質の改善を行うこ
とができ浄水処理材として最適である。また、表面積が
大きいことに加えて溶出したマグネシウムが貝類や藻類
等の成育を促進することができ、漁礁としても最適であ
る。 (8)無機系粉体の粒径が所定の範囲に調整されている
ので、無機系粉体の溶融温度が安定するとともに気泡の
大きさも安定し、機械的強度を高めることができるとと
もに無機系発泡体の品質の安定性に優れる。 (9)貝殻粉体の粒径が0.1〜3000μmなので、
凝集し難く無機系粉体に点在するように分散させること
ができ、基体内に気泡を点在するように均一に分布させ
ることができる。この結果、比較的径の大きな独立した
気泡を形成することができ、比重が1より大きな無機系
発泡体が得られる。これにより、湖沼等の底や水槽や花
瓶等の底、河川の岸等に安定に着地させて水質の浄化を
行う浄水処理材として用いることができる。
As described above, since the inorganic foamed material according to the first embodiment is constructed, the following effects can be obtained. (1) Since wastes such as inorganic waste materials and shells are used, the wastes can be recycled and excellent in resource saving. (2) Since the shell has a low hardness and is easily crushed, shell powder can be easily obtained, and the load of the crushing equipment and the number of steps can be reduced. (3) By heating, the calcium carbonate contained in the shell decomposes to generate carbon dioxide gas, and the molten inorganic powder is foamed to form bubbles, and the humic acid contained in the shell burns and burns out. Thus, an inorganic foam having fine pores and a large surface area can be stably obtained. (4) The shell has not only calcium ions but also magnesium ions, and these reduce the viscosity of the melt in which the inorganic powder is melted and reduce the residual strain generated during cooling, making it difficult to break during cooling. It is easy to form a long inorganic foam such as a plate and has excellent moldability. (5) Calcium oxide produced by decomposition of shell powder by heating absorbs water and carbon dioxide, so that an inorganic foam having excellent hygroscopicity can be produced. (6) Since calcium hydroxide produced by absorbing water with calcium oxide is easily eluted, an inorganic foam that can be used as a soil modifier can be produced. (7) When the inorganic foam formed by heating is immersed in water, calcium, magnesium and the like are eluted in water from the fractured surface of the inorganic foam and the shell residue. As a result, the phosphoric acid dissolved in water becomes calcium phosphate (insoluble) due to the eluted calcium, and the water quality can be improved, which is optimal as a water purification treatment material. Further, in addition to having a large surface area, the eluted magnesium can promote the growth of shellfish, algae, etc., and is optimal as a fishing reef. (8) Since the particle size of the inorganic powder is adjusted within a predetermined range, the melting temperature of the inorganic powder is stable and the size of the bubbles is also stable, so that the mechanical strength can be increased and the inorganic powder can be improved. Excellent stability of foam quality. (9) Since the particle size of shell powder is 0.1 to 3000 μm,
It is difficult to aggregate and can be dispersed so as to be scattered in the inorganic powder, and bubbles can be evenly distributed in the substrate so as to be scattered. As a result, it is possible to form independent cells having a relatively large diameter, and an inorganic foam having a specific gravity of more than 1 can be obtained. As a result, it can be used as a water purification material that purifies water quality by stably landing on the bottom of lakes and marshes, the bottom of tanks and vases, and the shores of rivers.

【0044】ここで、本実施の形態においては、貝殻粉
体の粒径が0.1〜3000μmに形成された場合につ
いて説明したが、0.1〜1000μmの範囲で形成す
ることもできる。これにより、以下のような作用が得ら
れる。 (1)貝殻粉体が凝集し難く無機系粉体に均一に分散さ
せることができ、加熱して溶融発泡することで基体内に
気泡を均一に分布させることができる。 (2)この結果、多数の独立した気泡と、それらが多数
繋がった連続気泡を形成することができ、比重が1より
小さな無機系発泡体を形成することができる。これによ
り、湖沼等の水面や水中に浮遊させて浄水処理材を兼ね
た浮島や筏等を形成することができる。
Here, in the present embodiment, the case where the shell powder has a particle size of 0.1 to 3000 μm has been described, but it can also be formed in the range of 0.1 to 1000 μm. As a result, the following effects are obtained. (1) The shell powder does not easily agglomerate and can be uniformly dispersed in the inorganic powder, and the bubbles can be uniformly distributed in the substrate by heating and melting and foaming. (2) As a result, it is possible to form a large number of independent cells and continuous cells in which they are connected, and it is possible to form an inorganic foam having a specific gravity of less than 1. As a result, it is possible to form floating islands and rafts that also float on the surface of water such as lakes and marshes, and also as water purification treatment materials.

【0045】また、貝殻粉体の粒径を0.01〜50μ
m好ましくは0.1〜10μmに形成することもでき
る。これにより、以下のような作用が得られる。 (1)貝殻粉体の密度が小さく、かつ粒径が小さいので
粒子の個数が多くなるため、無機系粉体の表面に貝殻粉
体をまぶした状態となり、微細な気泡を基体内に均一に
分散して形成させることができる。 (2)この結果、微細な気泡が多数繋がった連続気泡を
形成することができ、表面積が大きく比重が1より大き
な無機系発泡体を形成することができる。これにより、
湖沼等の底や水槽や花瓶等の底、河川の岸等に安定に着
地させて水質の浄化を行う浄水処理材として用いること
ができる。
The particle size of the shell powder is 0.01 to 50 μm.
m, preferably 0.1 to 10 μm. As a result, the following effects are obtained. (1) Since the density of the shell powder is small and the particle size is small, the number of particles is large, so the surface of the inorganic powder is sprinkled with the shell powder, and fine bubbles are evenly distributed in the substrate. It can be dispersed and formed. (2) As a result, it is possible to form continuous cells in which a large number of fine cells are connected, and it is possible to form an inorganic foam having a large surface area and a specific gravity of more than 1. This allows
It can be used as a water purification material that purifies water quality by steadily landing on the bottom of lakes, tanks, vases, etc., or on the shore of a river.

【0046】また、以上のように構成された実施の形態
1における無機系発泡体の製造方法によれば、以下のよ
うな作用が得られる。 (1)混合された無機系発泡体組成物を所定の温度範囲
で加熱して溶融発泡させるので、無機系粉体を十分に軟
化させて貝殻粉体を完全に包み込み、貝殻粉体の分解に
よって発生した炭酸ガスで確実に発泡させることができ
安定性に優れる。 (2)貝殻粉体が均一に混合しているので溶融助剤とし
て働き全体の溶融温度を低下させるとともに、破壊の起
点となり易い溶融斑の発生を防ぎ機械的強度を安定させ
る。また、貝殻粉体の粒度を変えるだけで無機系発泡体
の比重を自由に調整することができ自在性に優れる。 (3)加熱温度が750〜1100℃好ましくは900
〜1000℃と比較的低いので、加熱炉等の設備負荷が
少なく、また省エネルギー性に優れる。 (4)加熱炉内を複数区域に分域して、各区域を順に通
過するように混合粉体を搬送して連続式に加熱溶融させ
ることで、連続生産が可能で生産性に優れるとともに無
機系粉体の溶融及び貝殻粉体の分解・発泡を確実に行う
ことができ製品得率を高めることができる。
Further, according to the method for manufacturing an inorganic foamed body of the first embodiment configured as described above, the following effects can be obtained. (1) Since the mixed inorganic foam composition is heated in a predetermined temperature range to melt and foam, the inorganic powder is sufficiently softened to completely wrap the shell powder, and the shell powder is decomposed. The generated carbon dioxide gas can surely cause foaming and has excellent stability. (2) Since the shell powder is uniformly mixed, it acts as a melting aid to lower the melting temperature of the whole and prevent the generation of melting spots that are likely to be the starting point of breakage and stabilize the mechanical strength. Further, the specific gravity of the inorganic foam can be freely adjusted by simply changing the particle size of the shell powder, which is excellent in flexibility. (3) The heating temperature is 750 to 1100 ° C., preferably 900
Since the temperature is relatively low at up to 1000 ° C., the load on equipment such as a heating furnace is small, and energy saving is excellent. (4) The heating furnace is divided into a plurality of zones, and the mixed powder is conveyed so as to sequentially pass through each zone and continuously heated and melted, which enables continuous production and is excellent in productivity and inorganic It is possible to reliably perform melting of the powder of the system and decomposition / foaming of the powder of the shell, and it is possible to improve the product yield.

【0047】(実施の形態2)図2は実施の形態2にお
ける無機系発泡体の斜視図であり、図3は実施の形態2
における無機系発泡体の製造装置の要部模式図である。
図2において、1´は実施の形態2における無機系発泡
体、2はガラス質廃材等の無機系廃材を粉砕して得られ
た粒径0.01〜3000μmの無機系粉体が加熱され
溶融した無機系基体層、3はガラス質廃材等の無機系廃
材を粉砕して得られた粒径0.01〜3000μmの無
機系粉体と牡蠣殻等の貝殻を粉砕して得られた粒径0.
1〜1000μmの貝殻粉体が混合されて加熱され溶融
して無機系基体層2と一体化された低比重発泡体層、3
aは無機系基体層2と低比重発泡体層3の境界面であ
る。図3において、4はトンネル式等の長尺状の加熱
炉、5は加熱炉4内を移動するステンレス製等のメッシ
ュベルト、6はメッシュベルト5上に配設された第1ホ
ッパ、6aは第1ホッパ6からメッシュベルト5上に所
定の厚みで供給され堆積した高比重粉体層である。高比
重粉体層6aはガラス質廃材等の無機系廃材を粉砕して
得られた無機系粉体100重量部に対し大理石等の切削
粉等の石粉0〜10重量部好ましくは0.5〜8重量部
を含有するものである。7は第1ホッパ6と加熱炉4と
の間のメッシュベルト5上に配設された第2ホッパ、7
aは第2ホッパ7から高比重粉体層6aの上に所定の厚
みで堆積され積層された低比重粉体層である。低比重粉
体層7aは粒径0.01〜3000μmに形成された無
機系粉体に粒径0.1〜1000μmに形成された貝殻
粉体が添加された無機系発泡体組成物を含有するもので
ある。
(Second Embodiment) FIG. 2 is a perspective view of an inorganic foam according to the second embodiment, and FIG. 3 is a second embodiment.
FIG. 3 is a schematic view of a main part of an apparatus for manufacturing an inorganic foam in FIG.
In FIG. 2, 1'indicates the inorganic foam according to the second embodiment, and 2 indicates the inorganic powder having a particle diameter of 0.01 to 3000 μm obtained by crushing the inorganic waste material such as glassy waste material by heating and melting. The inorganic base layer 3 is a particle size obtained by crushing an inorganic powder having a particle size of 0.01 to 3000 μm obtained by crushing an inorganic waste material such as a glassy waste material and a shell such as an oyster shell. 0.
Low specific gravity foam layer in which shell powder of 1 to 1000 μm is mixed, heated and melted to be integrated with the inorganic base layer 2, 3
a is a boundary surface between the inorganic base layer 2 and the low specific gravity foam layer 3. In FIG. 3, 4 is a long heating furnace such as a tunnel type, 5 is a mesh belt made of stainless steel or the like that moves in the heating furnace 4, 6 is a first hopper arranged on the mesh belt 5, and 6a is The high specific gravity powder layer is supplied from the first hopper 6 onto the mesh belt 5 with a predetermined thickness and deposited. The high specific gravity powder layer 6a is 0 to 10 parts by weight of stone powder such as cutting powder such as marble, preferably 0.5 to 100 parts by weight of inorganic powder obtained by crushing inorganic waste material such as glassy waste material. It contains 8 parts by weight. 7 is a second hopper disposed on the mesh belt 5 between the first hopper 6 and the heating furnace 4,
Reference character a is a low specific gravity powder layer which is deposited and laminated from the second hopper 7 on the high specific gravity powder layer 6a to a predetermined thickness. The low specific gravity powder layer 7a contains an inorganic foam composition in which the shell powder having a particle diameter of 0.1 to 1000 μm is added to the inorganic powder having a particle diameter of 0.01 to 3000 μm. It is a thing.

【0048】以上のように構成された実施の形態2にお
ける無機系発泡体について、以下その製造方法を説明す
る。始めに、ガラス質廃材等の無機系廃材を粉砕し粒径
0.01〜3000μmに形成された無機系粉体を形成
する。この無機系粉体100重量部に対し石粉0〜10
重量部好ましくは0.5〜8重量部を添加混合したもの
を第1ホッパ6に貯留しておく。また、ガラス質廃材等
の無機系廃材を粉砕し粒径0.01〜3000μmに形
成された無機系粉体を形成する。さらに、牡蠣殻等の貝
殻を粉砕し粒径0.1〜1000μmに形成された貝殻
粉体を形成する。この無機系粉体100重量部に対し貝
殻粉体1〜25重量部を添加混合したものを第2ホッパ
7に貯留しておく。積層工程において、第1ホッパ6か
らメッシュベルト5上に無機系粉体等を堆積し高比重粉
体層6aを形成する。次いで、第2ホッパ7から無機系
粉体等を高比重粉体層6aの上に堆積し低比重粉体層7
aを積層する。次いで、加熱工程において、高比重粉体
層6aと低比重粉体層7aが積層された積層物を加熱炉
4で750〜1100℃好ましくは900〜1000℃
に加熱する。この結果、高比重粉体層6aが溶融して無
機系基体層2を形成し低比重粉体層7aが溶融して低比
重発泡体層3を形成するとともに、低比重発泡体層3が
自重で無機系基体層2に圧着され低比重発泡体層3と無
機系基体層2とが一体化される。
A method of manufacturing the inorganic foamed material according to the second embodiment having the above-described structure will be described below. First, an inorganic waste material such as a glassy waste material is crushed to form an inorganic powder having a particle size of 0.01 to 3000 μm. Stone powder 0-10 for 100 parts by weight of this inorganic powder
One part by weight, preferably 0.5 to 8 parts by weight is added and mixed and stored in the first hopper 6. Further, an inorganic waste material such as a glassy waste material is crushed to form an inorganic powder having a particle diameter of 0.01 to 3000 μm. Further, a shell such as an oyster shell is crushed to form a shell powder having a particle size of 0.1 to 1000 μm. A mixture of 1 to 25 parts by weight of shell powder to 100 parts by weight of this inorganic powder is stored in the second hopper 7. In the laminating step, inorganic powder or the like is deposited on the mesh belt 5 from the first hopper 6 to form the high specific gravity powder layer 6a. Then, an inorganic powder or the like is deposited from the second hopper 7 on the high specific gravity powder layer 6a to form the low specific gravity powder layer 7a.
a is laminated. Next, in the heating step, the laminate obtained by laminating the high specific gravity powder layer 6a and the low specific gravity powder layer 7a is heated in the heating furnace 4 at 750 to 1100 ° C, preferably 900 to 1000 ° C.
Heat to. As a result, the high specific gravity powder layer 6a is melted to form the inorganic base layer 2, the low specific gravity powder layer 7a is melted to form the low specific gravity foam layer 3, and the low specific gravity foam layer 3 is self-weighted. Then, the low specific gravity foam layer 3 and the inorganic base layer 2 are integrated by pressure bonding to the inorganic base layer 2.

【0049】以上のように、実施の形態2における無機
系発泡体は構成されているので、以下のような作用が得
られる。 (1)低比重発泡体層と一体化された無機系基体層を有
しているので、機械的強度が比較的乏しい低比重発泡体
層を補強することができ機械的強度を高めることができ
耐久性に優れる。 (2)無機系基体層の比重が低比重発泡体層の比重より
大きいため、無機系基体層の比重を1以上に形成するこ
とにより無機系発泡体を湖,沼,海等の水中に沈めた場
合には、低比重発泡体層を上向きにして無機系基体層を
湖底等に設置することができる。このため、表面積の大
きな低比重発泡体層に水流が当たり易くなるとともに低
比重発泡体層に藻の付着や微生物群の付着が容易に行わ
れ、低比重発泡体層で有機物の分解や水の浄化等を効率
よく行うことができる。 (3)湖沼等の水中に投下したときには比重の高い無機
系基体層を下にして沈降し着地し水中での定置性に優
れ、湖沼等の底に安定に定着し湖沼等の浄化を行うこと
ができる。
As described above, since the inorganic foamed material according to the second embodiment is constituted, the following effects can be obtained. (1) Since it has the inorganic base layer integrated with the low specific gravity foam layer, it can reinforce the low specific gravity foam layer having relatively low mechanical strength and enhance the mechanical strength. Excellent durability. (2) Since the specific gravity of the inorganic base layer is higher than that of the low specific gravity foam layer, the inorganic base layer is formed to have a specific gravity of 1 or more so that the inorganic foam is submerged in water such as a lake, a swamp, or the sea. In that case, the inorganic base layer can be placed on the lake bottom or the like with the low specific gravity foam layer facing upward. For this reason, the water flow is likely to hit the low specific gravity foam layer with a large surface area, and algae and microbial groups are easily attached to the low specific gravity foam layer, and decomposition of organic substances and water in the low specific gravity foam layer are performed. Purification can be efficiently performed. (3) When it is dropped into water such as lakes and marshes, it is settled and settled with the inorganic base layer having a high specific gravity facing down, and it has excellent emplacement properties in water, and it is stably fixed at the bottom of lakes and marshes and purified. You can

【0050】また、実施の形態2における無機系発泡体
の製造方法によれば、以下のような作用が得られる。 (1)積層工程において異なる組成を有する低比重粉体
層と高比重粉体層を積層した後に加熱工程において溶融
し一体化するので、比重が1以上の無機系基体層と比重
が1未満の低比重発泡体層が一体化された無機系発泡体
を容易に形成することができ生産性に優れる。 (2)高比重粉体層と低比重粉体層の厚さを制御するこ
とで無機系基体層と低比重発泡体層の体積比を容易に調
整することができる。この結果、全体の比重が1以上に
なるように無機系発泡体を製造することができ、湖沼等
の水中に投下した際に無機系基体層が下向きになって沈
降し、湖沼等の底に安定に定着する無機系発泡体を製造
することができる。
Further, according to the method for manufacturing an inorganic foam in the second embodiment, the following effects can be obtained. (1) Since the low specific gravity powder layer and the high specific gravity powder layer having different compositions are laminated in the laminating step and then melted and integrated in the heating step, the inorganic base layer having a specific gravity of 1 or more and the specific gravity of less than 1 An inorganic foam in which a low-density foam layer is integrated can be easily formed, and the productivity is excellent. (2) By controlling the thicknesses of the high specific gravity powder layer and the low specific gravity powder layer, the volume ratio of the inorganic base layer and the low specific gravity foam layer can be easily adjusted. As a result, the inorganic foam can be produced so that the overall specific gravity becomes 1 or more, and when the inorganic foam is dropped into water such as lakes and marshes, the inorganic substrate layer faces downward and settles to the bottom of lakes and marshes. It is possible to produce an inorganic foam that is stably fixed.

【0051】なお、本実施の形態においては、無機系粉
体と石粉を混合した高比重粉体層を用いた場合について
説明したが、粒径0.01〜3000μmに形成された
無機系粉体に粒径0.1〜3000μmに形成された貝
殻粉体が添加された無機系発泡体組成物を含有する高比
重粉体層を用いることもできる。これにより、比重が1
より大きく貝殻残渣を含有した無機系基体層を得ること
ができる。この無機系基体層は、水に浸漬するとカルシ
ウムやマグネシウムを溶出するので、浄水処理材や漁礁
として最適である。
In this embodiment, the case of using the high specific gravity powder layer in which the inorganic powder and the stone powder are mixed has been described, but the inorganic powder formed to have a particle diameter of 0.01 to 3000 μm is used. It is also possible to use a high specific gravity powder layer containing an inorganic foam composition to which is added a shell powder having a particle size of 0.1 to 3000 μm. As a result, the specific gravity is 1
It is possible to obtain an inorganic base layer containing a larger amount of shell residue. Since this inorganic base layer dissolves calcium and magnesium when immersed in water, it is optimal as a water purification treatment material and a fishing reef.

【0052】[0052]

【実施例】以下、本発明を実施例により具体的に説明す
る。なお、本発明はこれらの実施例に限定されるもので
はない。 (実施例1)無機系廃材としてのガラスびん,窓ガラス
等のガラス質廃材を、エッジランナ等の粉砕機を使用し
て平均粒径2〜3mmに粗粉砕した。次いでエロフォー
ルミル等の粉砕機を使用して微粉砕した。次に、20メ
ッシュの標準ふるい(目開き850μm)を用いた分級
装置によって分級し、粒径が850μm以下の無機系粉
体を得た。次に、牡蠣,帆立貝,赤貝等の貝殻を水洗し
て乾燥した後、エッジランナ等の粉砕機を使用して平均
粒径2〜3mmに粗粉砕した。次いでエロフォールミル
等の粉砕機を使用して微粉砕した。次に、16メッシュ
の標準ふるい(目開き1000μm)を用いた分級装置
によって分級し、粒径が1000μm以下の貝殻粉体を
得た。粉砕・分級された無機系発泡体組成物を、混合工
程において、無機系粉体100重量部と、貝殻粉体12
重量部と、を攪拌型等の混合機で十分に混合して混合粉
体を得た。加熱発泡工程においては、ステンレス製等で
形成された幅1.5mのメッシュベルトが長さ25mに
渡って張設されたトンネル式の加熱炉を用いた。得られ
た混合粉体をメッシュベルト上に厚み約14mm、幅約
1.0m、メッシュベルトの長手方向に沿って1.2m
の長さに堆積した。メッシュベルトは、第1ゾーン60
0〜750℃、第2ゾーン850℃、第3ゾーン940
℃、第4ゾーン960℃、第5・6ゾーン940℃に保
たれた加熱炉内を各ゾーンを5〜10分の通過時間で通
過するように設定されており、加熱炉に入った混合粉体
は、30〜60分かけて溶融発泡され、厚み約45m
m、幅約1.0m、長さ約1.2mの板状の実施例1の
無機系発泡体を得た。実施例1の無機系発泡体の比重を
測定したところ、0.6であった。この無機系発泡体は
水に浮くことが確認された。破断面を観察したところ、
内径0.3〜2mmの気泡が均一に分布していることが
確認された。
EXAMPLES The present invention will be specifically described below with reference to examples. The present invention is not limited to these examples. (Example 1) A glassy waste material such as a glass bottle and a window glass as an inorganic waste material was roughly crushed to an average particle diameter of 2 to 3 mm by using a crusher such as an edge runner. Then, it was finely pulverized using a pulverizer such as an Elofol mill. Next, the particles were classified by a classifier using a 20-mesh standard sieve (opening 850 μm) to obtain an inorganic powder having a particle size of 850 μm or less. Next, shells such as oysters, scallops and red shells were washed with water and dried, and then coarsely crushed to an average particle size of 2 to 3 mm using a crusher such as an edge runner. Then, it was finely pulverized using a pulverizer such as an Elofol mill. Next, classification was performed by a classifier using a 16-mesh standard sieve (opening 1000 μm) to obtain a shell powder having a particle size of 1000 μm or less. In the mixing step, 100 parts by weight of the inorganic powder and the shell powder 12 were added to the pulverized and classified inorganic foam composition.
Part by weight was sufficiently mixed with a mixer such as a stirrer to obtain a mixed powder. In the heating and foaming step, a tunnel type heating furnace in which a mesh belt made of stainless steel or the like and having a width of 1.5 m is stretched over a length of 25 m was used. The obtained mixed powder is approximately 14 mm thick and 1.0 m wide on the mesh belt, and 1.2 m along the longitudinal direction of the mesh belt.
Deposited to length. The mesh belt is in the first zone 60
0 to 750 ° C, second zone 850 ° C, third zone 940
The mixed powder that has been set to pass through each zone within 5 to 10 minutes in the heating furnace maintained at ℃, 4th zone 960 ° C, and 5th and 6th zone 940 ° C. The body is melt-foamed over 30 to 60 minutes and the thickness is about 45 m.
m, a width of about 1.0 m, and a length of about 1.2 m were obtained as a plate-shaped inorganic foam of Example 1. When the specific gravity of the inorganic foam of Example 1 was measured, it was 0.6. It was confirmed that this inorganic foam floats on water. Observing the fracture surface,
It was confirmed that bubbles having an inner diameter of 0.3 to 2 mm were uniformly distributed.

【0053】(実施例2)実施例1の無機系発泡体を製
造するために牡蠣,帆立貝,赤貝等の貝殻をエロフォー
ルミル等の粉砕機を使用して微粉砕したが、このときに
バグフィルタやエアフィルタ等のろ過集塵装置等で集塵
された0.01〜50μmの粒径を有する貝殻粉体を準
備した。この貝殻粉体を、実施例1と同様にして得られ
た無機系粉体100重量部に対して11重量部添加混合
した以外は、実施例1と同様にして、実施例2の無機系
発泡体を得た。実施例2の無機系発泡体の比重を測定し
たところ、1.1であった。これを水に浸漬すると沈む
ことが確認された。破断面を観察したところ、内径0.
2〜1mmの気泡が均一に分布していることが確認され
た。
(Example 2) In order to produce the inorganic foam of Example 1, shells such as oysters, scallops and red shells were finely pulverized using a pulverizer such as an elofol mill. A shell powder having a particle size of 0.01 to 50 μm collected by a filter dust collector such as a filter or an air filter was prepared. Inorganic foaming of Example 2 was performed in the same manner as in Example 1 except that 11 parts by weight of this shell powder was added and mixed with 100 parts by weight of the inorganic powder obtained in the same manner as in Example 1. Got the body When the specific gravity of the inorganic foam of Example 2 was measured, it was 1.1. It was confirmed that this would sink when immersed in water. When the fracture surface was observed, the inner diameter was 0.
It was confirmed that bubbles of 2 to 1 mm were uniformly distributed.

【0054】(比較例1)実施例1と同様にして得られ
た無機系粉体100重量部に対して炭化珪素(平均粒径
3.9μm、品名C−4000F、屋久島電工社製)を
4重量部添加混合した以外は、実施例1と同様にして、
比較例1の無機系発泡体を得た。比較例1の無機系発泡
体の比重を測定したところ、0.4であった。
(Comparative Example 1) Silicon carbide (average particle size 3.9 μm, product name C-4000F, manufactured by Yakushima Electric Works) was added to 4 parts by weight of 100 parts by weight of the inorganic powder obtained in the same manner as in Example 1. In the same manner as in Example 1 except that parts by weight were added and mixed,
The inorganic foam of Comparative Example 1 was obtained. When the specific gravity of the inorganic foam of Comparative Example 1 was measured, it was 0.4.

【0055】(溶出試験)実施例1,2の無機系発泡体
を水に浸漬した際の有害物質の溶出量について評価した
結果を(表1)に示す。
(Dissolution Test) The results of evaluating the amount of harmful substances eluted when the inorganic foams of Examples 1 and 2 were immersed in water are shown in (Table 1).

【表1】 (表1)に示す測定方法において、「JK0102」と
表示されているものは「JIS K 0102」の略で
あり、「S49環告」と表示されているものは「昭和4
9年環境庁告示」の略であり、「S46環告」と表示さ
れているものは「昭和46年環境庁告示」の略である。
この結果、本実施例の無機系発泡体によれば、有害物質
の溶出はみられないことが明らかになった。
[Table 1] In the measurement method shown in (Table 1), the one labeled "JK0102" is an abbreviation for "JIS K 0102", and the one labeled "S49 Notification" is "Showa 4".
It is an abbreviation for "Environment Agency Notification of 9 years", and what is displayed as "S46 Announcement" is an abbreviation of "Notice of Environment Agency 1969".
As a result, it was revealed that no harmful substance was eluted in the inorganic foam of this example.

【0056】(浄水処理材としての評価)実施例1,2
及び比較例1の無機系発泡体を用いて、浄水処理材とし
ての評価を行った。図4は浄水処理材の評価試験装置の
模式図である。図4において、10は浄水処理材の評価
試験装置、11は容量100mlのカラム、12は一辺
が約1cmの略立方体状に切断若しくは破砕されカラム
11内に充填された実施例1,2等の試料である無機系
発泡体、13は容量約1Lのビーカー、14は0.4m
g/Lのアンモニア性窒素と0.2mg/Lのリン酸態
リンとを含有しビーカー13に注入された約1Lの水溶
液、15はカラム11の下流側とビーカー13に接続さ
れカラム11を通過した水溶液14をビーカー13に供
給する液体循環路、16はビーカー13とカラム11の
上流側に接続されビーカー13内の水溶液14をカラム
11に供給する液体循環路、17は液体循環路16に配
設され水溶液14を循環するローラーチューブポンプ等
のポンプである。本評価試験では、容量が100mlの
カラム11内に充填した略同一容積の無機系発泡体12
の水質浄化性能について評価した。なお、無機系発泡体
12は、一辺が約1cmの略立方体状に切断若しくは破
砕した後、常温の室内で10日間自然乾燥したものを用
い、カラム11内に充填した。充填量は、実施例1の無
機系発泡体では25.5g、実施例2の無機系発泡体で
は50.2g、比較例1の無機系発泡体では20.1g
であった。また、カラム11を通過する水溶液14の流
量が200ml/hになるようにポンプ17を調整し
た。なお、アンモニア性窒素を0.4mg/L、リン酸
態リンを0.2mg/Lとしたのは、汚濁負荷がかなり
大きな河川を想定したからである。なお、比較例1の無
機系発泡体は、カラムに充填する際、互いに擦れ合った
部分が比較的容易に崩れ、粉状化するものが多数発生し
た。一方、実施例1,2の無機系発泡体では、そのよう
な現象はみられなかった。このことは、実施例1,2の
無機系発泡体は機械的強度に優れていることを示してい
る。
(Evaluation as Water Purification Material) Examples 1 and 2
Also, the inorganic foam of Comparative Example 1 was used for evaluation as a water purification treatment material. FIG. 4 is a schematic diagram of an evaluation test device for a water purification treatment material. In FIG. 4, 10 is a water purification treatment material evaluation test device, 11 is a column having a capacity of 100 ml, 12 is a cube having a side of about 1 cm, which is cut or crushed and packed in the column 11 of Examples 1 and 2 and the like. The sample is an inorganic foam, 13 is a beaker with a capacity of about 1 L, 14 is 0.4 m
About 1 L of an aqueous solution containing g / L of ammonia nitrogen and 0.2 mg / L of phosphoric acid phosphate injected into the beaker 13, 15 is connected to the downstream side of the column 11 and the beaker 13 and passes through the column 11. The liquid circulation path for supplying the prepared aqueous solution 14 to the beaker 13, 16 is a liquid circulation path connected to the upstream side of the beaker 13 and the column 11 for supplying the aqueous solution 14 in the beaker 13 to the column 11, and 17 is the liquid circulation path 16. A pump such as a roller tube pump that is provided and circulates the aqueous solution 14. In this evaluation test, the inorganic foam 12 having a substantially same volume filled in the column 11 having a capacity of 100 ml is used.
The water purification performance was evaluated. The inorganic foam 12 was cut or crushed into a substantially cubic shape with one side of about 1 cm, and then naturally dried in a room at room temperature for 10 days, and the inorganic foam 12 was filled in the column 11. The filling amount of the inorganic foam of Example 1 was 25.5 g, the inorganic foam of Example 2 was 50.2 g, and the inorganic foam of Comparative Example 1 was 20.1 g.
Met. Further, the pump 17 was adjusted so that the flow rate of the aqueous solution 14 passing through the column 11 was 200 ml / h. In addition, the reason why the amount of ammonia nitrogen is 0.4 mg / L and the amount of phosphate phosphorus is 0.2 mg / L is because a river having a considerably large pollution load is assumed. In addition, in the case of the inorganic foam of Comparative Example 1, when packed in a column, the parts rubbed against each other were relatively easily broken, and many powdered substances were generated. On the other hand, no such phenomenon was observed in the inorganic foams of Examples 1 and 2. This indicates that the inorganic foams of Examples 1 and 2 are excellent in mechanical strength.

【0057】以上のように構成された評価試験装置10
を用いてポンプ17を駆動して実験を開始した後、0,
1,3,5,12,24,48時間後の水溶液14をビ
ーカー13から採取し、採取した水溶液についてアンモ
ニア性窒素とリン酸態リンの測定を行った。その結果
を、図5及び図6に示す。図5は実験開始からの経過時
間とアンモニア性窒素の比濃度との関係を示す図であ
り、図6は実験開始からの経過時間とリン酸態リンの比
濃度との関係を示す図である。ここで、比濃度とは、実
験開始前(経過時間0)のアンモニア性窒素等の濃度を
1としたときの各経過時間におけるアンモニア性窒素等
の濃度との比を示したものである。
Evaluation test apparatus 10 configured as described above
After starting the experiment by driving the pump 17 using
The aqueous solution 14 after 1, 3, 5, 12, 24, and 48 hours was collected from the beaker 13, and ammonia nitrogen and phosphoric acid phosphorus were measured for the collected aqueous solution. The results are shown in FIGS. 5 and 6. FIG. 5 is a diagram showing the relationship between the elapsed time from the start of the experiment and the specific concentration of ammoniacal nitrogen, and FIG. 6 is a diagram showing the relationship between the elapsed time from the start of the experiment and the specific concentration of phosphate phosphorus. . Here, the specific concentration indicates the ratio with respect to the concentration of ammonia nitrogen etc. at each elapsed time when the concentration of ammonia nitrogen etc. before the start of the experiment (elapsed time 0) is set to 1.

【0058】図5に示すように、貝殻粉体を用いた実施
例1及び実施例2の無機系発泡体は、試験開始から約4
8時間でアンモニア性窒素の比濃度を0.2以下の低濃
度にすることができた。このことからアンモニア性窒素
については、貝殻粉体を用いた実施例1及び実施例2の
無機系発泡体は、炭化珪素を用いた比較例1の無機系発
泡体とほぼ同様の水質改善作用を示すことが明らかにな
った。
As shown in FIG. 5, the inorganic foams of Example 1 and Example 2 using the shell powder were about 4 from the start of the test.
The specific concentration of ammoniacal nitrogen could be reduced to a low concentration of 0.2 or less in 8 hours. From this, with respect to ammonia nitrogen, the inorganic foams of Examples 1 and 2 using the shell powder have substantially the same water quality improving effect as the inorganic foam of Comparative Example 1 using silicon carbide. It became clear to show.

【0059】次に、リン酸態リンについては、図6に示
すように、実施例1の無機系発泡体で実験開始から48
時間で比濃度を0.4以下にすることができた。一方、
比較例1の無機系発泡体では、実験開始から48時間で
比濃度は0.7程度であったことから、実施例1の無機
系発泡体は、リン酸態リンの除去効果が著しく優れてい
ることが明らかになった。このことは、無機系発泡体の
破壊面から貝殻が含有するカルシウム、マグネシウムが
水中に溶出することにより、リン酸態リンがリン酸カル
シウム(不溶性)になり、又はカルシウムを含有する貝
殻に水中のリン酸態リンが吸着することによりリン酸カ
ルシウムが形成されて水質の改善が行われるものである
と推察している。実施例1の無機系発泡体のリン酸態リ
ンの除去能力が、実施例2の無機系発泡体より高いの
は、実施例1の無機系発泡体に用いられた貝殻粉体の粒
径が0.1〜1000μmと大きいため、基体内に貝殻
残渣(カルシウム分)が分散して多量に存在しているか
らであり、水中のリン酸態リンをリン酸カルシウムにし
て除去しているからであると推察している。以上のよう
に本実施例によれば、アンモニア性窒素及びリン酸態リ
ンの除去効果に優れるとともに有害物質の溶出がみられ
ず、さらに機械的強度が高く水流等の外力によって崩壊
し難く浄水処理材として最適の無機系発泡体が得られる
ことが明らかになった。
Next, as for phosphoric acid phosphate, as shown in FIG. 6, the inorganic foam of Example 1 was used from the start of the experiment to 48%.
The specific concentration could be reduced to 0.4 or less in time. on the other hand,
In the inorganic foam of Comparative Example 1, the specific concentration was about 0.7 within 48 hours from the start of the experiment. Therefore, the inorganic foam of Example 1 was remarkably excellent in the effect of removing phosphate phosphorus. It became clear that there is. This means that phosphate-phosphorus becomes calcium phosphate (insoluble) by elution of calcium and magnesium contained in the shell from the fracture surface of the inorganic foam, or the calcium-containing shell contains phosphate in water. It is presumed that calcium phosphate is formed by the adsorption of activated phosphorus to improve the water quality. The ability of the inorganic foam of Example 1 to remove phosphate phosphorus is higher than that of the inorganic foam of Example 2 because the particle size of the shell powder used in the inorganic foam of Example 1 is This is because the shell residue (calcium content) is dispersed and present in a large amount in the substrate because it is as large as 0.1 to 1000 μm, and phosphate phosphate in water is removed by converting it to calcium phosphate. I'm guessing. As described above, according to the present embodiment, the purification effect is excellent in the effect of removing ammoniacal nitrogen and phosphorous phosphate, and no elution of harmful substances is observed, and the mechanical strength is high and the water is less likely to be collapsed by external force such as water flow. It was clarified that the optimum inorganic foam as a material can be obtained.

【0060】(飼育水槽を用いた浄水処理材としての評
価)次に、飼育水槽内で生物を実際に飼育して浄水処理
材としての評価を行った。図7は飼育水槽を用いた試験
装置を示す模式図である。図中、20は飼育水槽を用い
た試験装置、21は縦90cm、横40cm、高さ60
cmの直方体状の飼育水槽、22は実施例1の無機系発
泡体が平均粒径40mmに破砕されて飼育水槽21の底
部に約10cmの厚みで敷設された無機系発泡体(浄水
処理材)からなる浄水処理材層、23は浄水処理材層2
2の上に配設された金網、24は金網23の上に立設さ
れた金網やメッシュ等の通水性を有する仕切板、25は
平均粒径2mmに形成されたガラス粒が仕切体24で仕
切られた金網23の上に約7cmの厚さで敷設されたガ
ラス粒層、26は仕切体24で仕切られたガラス粒層2
5に隣接して金網23の上に赤玉土(平均粒径3mm)
と鹿沼土(平均粒径3mm)と上記の無機系発泡体(粉
砕して平均粒径3mmにしたもの)とを容積比で4:
4:2に混合しガラス粒層25の敷設厚みよりも高く堆
積された土粒部、27は浄水処理材層22内に配設され
た水中ポンプ、28は水中ポンプ27に接続され金網2
3,土粒部26を貫通して配設され水中ポンプ27から
吸い上げた水をガラス粒層25の上方から注水する注水
管、29は水道水を一昼夜汲み置きして塩素を除去した
後に飼育水槽21内に貯留された約50Lの水である。
水中ポンプ27は10L/分の流量で飼育水槽21内に
貯留された水29を循環し、図示しない空気ポンプが6
L/分の空気を浄水処理材層22内,ガラス粒層25内
に供給している。
(Evaluation as a water purification treatment material using a breeding water tank) Next, an organism was actually bred in the breeding water tank and evaluated as a water purification treatment material. FIG. 7 is a schematic diagram showing a test device using a breeding aquarium. In the figure, 20 is a test device using a breeding aquarium, 21 is 90 cm in length, 40 cm in width, and 60 in height.
cm is a rectangular parallelepiped breeding water tank, 22 is an inorganic foam (water purification treatment material) in which the inorganic foam of Example 1 is crushed to an average particle size of 40 mm and laid at the bottom of the breeding water tank 21 to a thickness of about 10 cm. Water treatment material layer consisting of, 23 is water treatment material layer 2
2 is a wire mesh, 24 is a partition plate having water permeability such as a wire mesh or a mesh that is erected on the wire mesh 23, and 25 is a partition body 24 made of glass particles having an average particle diameter of 2 mm. A glass particle layer laid with a thickness of about 7 cm on a partitioned wire net 23, and 26 is a glass particle layer 2 partitioned by a partition body 24.
Adjacent to No. 5, on the wire net 23 on the red ball clay (average particle size 3 mm)
And Kanuma soil (average particle size 3 mm) and the above inorganic foam (crushed to an average particle size 3 mm) in a volume ratio of 4:
A soil particle portion mixed with 4: 2 and deposited to a thickness higher than the laying thickness of the glass particle layer 25, 27 is an underwater pump arranged in the water purification treatment material layer 22, 28 is a wire mesh connected to the underwater pump 27.
3, a water injection pipe that penetrates through the soil particle portion 26 and injects the water sucked up from the submersible pump 27 from above the glass particle layer 25, 29 is tap water that has been pumped all day and night to remove chlorine, and then a breeding aquarium It is about 50 L of water stored in 21.
The submersible pump 27 circulates the water 29 stored in the breeding aquarium 21 at a flow rate of 10 L / min.
L / min of air is supplied into the water purification treatment material layer 22 and the glass particle layer 25.

【0061】以上のように構成された飼育水槽を用いた
試験装置で蛍の飼育を行った。9月の初旬、飼育水槽内
に約50Lの汲み置きした水を貯留し水中ポンプを駆動
して約5日間水を循環した後、ガラス粒層内に蛍の幼虫
30匹、餌のカワニナ60匹を放つとともに、リンゴの
皮をカワニナの餌としてガラス粒層の表面に配置した。
蛍の幼虫は、ガラス粒層内でカワニナを食べながら成長
するとともに脱皮を繰り返し、翌年3月に土粒部へ上陸
し蛹化し、6月に羽化し成虫となった。この間、蒸発分
の水の補充とカワニナの餌となるリンゴの皮の交換をし
ただけで、水の交換,飼育水槽の清掃等のメンテナンス
は全く不要であった。飼育水槽の内面や水中に植物プラ
ンクトンやアオコ等の発生、餌の食べ滓等の浮遊物質が
みられず、飼育水槽や水が全く汚れなかったためであ
る。このことは、無機系発泡体は多孔体なので、餌の食
べ滓等の浮遊物質を補足して除去するとともに、無機系
発泡体の表面に微生物群が定着し易く、定着した微生物
群によって有害なアンモニアを硝酸塩にする硝化や硝酸
塩を窒素ガスにする反硝化が行われ、水中のアンモニア
や硝酸塩の濃度を低く維持することができたからである
と推察している。また、無機系発泡体は貝殻粉体を用い
て発泡されてカルシウム成分等を有しているので、水溶
性の窒素やリン等を吸着等して水中から除去することが
でき、窒素やリン等を餌にする植物プランクトンやアオ
コ等の増殖を防止し水質が劣化するのを防止できたと推
察している。また、無機系発泡体は貝殻粉体を用いて発
泡されておりカルシウム成分やマグネシウム成分等を有
しているので、これらの有用なミネラル分が水中に溶出
しカワニナ等の貝類等の生育を促進させたと推察してい
る。以上のように本実施例によれば、生物を実際に飼育
した場合にも、水中の浮遊物質、水溶性の窒素やリン等
を除去することができ浄水性能に優れた浄水処理材が得
られることが明らかになった。
The fireflies were bred with the test apparatus using the breeding aquarium constructed as described above. In the beginning of September, about 50 L of the pumped water was stored in the breeding aquarium, and the submersible pump was driven to circulate the water for about 5 days. Then, 30 larvae of fireflies and 60 kawarinas were fed in the glass grain layer. And the apple skin was placed on the surface of the glass grain layer as bait for the kawana.
The larvae of fireflies grew while eating Kawana in the glass grain layer and repeatedly molt, landed in the soil grain part in March of the following year, pupated, and emerged in June to become adults. During this period, water was simply replenished and the apple skin, which was the food for the kawana, was replaced, and maintenance such as water replacement and cleaning of the breeding aquarium was completely unnecessary. This is because generation of phytoplankton, water-bloom, etc., and floating substances such as food slag were not observed on the inner surface of the breeding aquarium or in the water, and the breeding aquarium and water were not contaminated at all. This is because since the inorganic foam is a porous body, it is possible to supplement and remove suspended solids such as food slags, and it is easy for microbial groups to easily settle on the surface of the inorganic foam, which may be harmful to the microbial groups that have settled. It is speculated that this is because the nitrification of ammonia into nitrate and the anti-nitrification of nitrate into nitrogen gas were performed, and the concentrations of ammonia and nitrate in water could be kept low. In addition, since the inorganic foam is foamed using shell powder and has a calcium component, etc., it can be removed from water by adsorbing water-soluble nitrogen, phosphorus, etc. It is presumed that it was possible to prevent the growth of phytoplankton and water-bloom, etc., which feed on sorghum, and to prevent the deterioration of water quality. In addition, since the inorganic foam is foamed using shell powder and has calcium and magnesium components, etc., these useful minerals are dissolved in water and promote the growth of shellfish such as kawaina. I guess it was made. As described above, according to the present example, even when the organism is actually bred, suspended solids in water, water-soluble nitrogen and phosphorus, etc. can be removed, and a water purification material having excellent water purification performance can be obtained. It became clear.

【0062】(実施例3)実施例1と同様にして形成し
た粒径が850μm以下の無機系粉体100重量部に粒
径が3000μm以下に形成された貝殻粉体を11重量
部添加混合した混合粉体を作成し、メッシュベルト上に
約14mmの厚さで堆積した。次いで、実施例1と同様
に設定された加熱炉で加熱し溶融発泡させ、実施例3の
無機系発泡体を得た。実施例3の無機系発泡体の比重を
測定したところ、1.1であった。これを水に浸漬する
と沈むことが確認された。破断面を観察したところ、内
径0.2〜3mmの気泡が分布していることが確認され
た。
Example 3 To 100 parts by weight of an inorganic powder having a particle size of 850 μm or less formed in the same manner as in Example 1, 11 parts by weight of a shell powder having a particle size of 3000 μm or less was added and mixed. A mixed powder was prepared and deposited on a mesh belt in a thickness of about 14 mm. Then, it was heated and melt-foamed in a heating furnace set in the same manner as in Example 1 to obtain an inorganic foam of Example 3. When the specific gravity of the inorganic foam of Example 3 was measured, it was 1.1. It was confirmed that this would sink when immersed in water. Observation of the fracture surface confirmed that air bubbles having an inner diameter of 0.2 to 3 mm were distributed.

【0063】(実施例4)実施例1と同様にして形成し
た粒径が850μm以下の無機系粉体100重量部に粒
径が0.1〜20μmに形成された大理石等の切削粉等
の石粉を4重量部添加混合したものを作成し、メッシュ
ベルト上に堆積し厚み約7mmの高比重粉体層を形成し
た。次に、実施例1と同様にして混合粉体を作成し、メ
ッシュベルト上に堆積された高比重粉体層の上に厚み約
7mmの低比重粉体層を積層した。(積層工程)次い
で、加熱工程において、実施例1で説明した加熱発泡工
程と同様に設定された加熱炉を用いて、高比重粉体層と
低比重粉体層を溶融して無機系基体層と一体化された低
比重発泡体層を形成し、無機系基体層の厚み約10m
m、低比重発泡体層の厚み約30mm、幅約1.0m、
長さ約1.2mの板状の実施例4の無機系発泡体を得
た。得られた無機系発泡体を縦横の長さが約10cmの
大きさになるように破砕し、これを深さ約2mの水槽内
に落下したところ、比重の大きな無機系基体層が下側に
なり水中を沈降し、低比重発泡体層を上向きにして無機
系基体層が水槽の底部に着地した。以上のように本実施
例によれば、低比重発泡体層を上向きにして無機系基体
層を湖底等に安定に着地させることができるので、表面
積の大きな低比重発泡体層に水流が当たり易くなるとと
もに低比重発泡体層に藻が付着したり微生物群が定着し
易く、低比重発泡体層で有機物の分解や水の浄化等を効
率よく行うことができるため、浄水処理材や漁礁等とし
て最適な無機系発泡体が得られることが明らかになっ
た。
(Example 4) 100 parts by weight of an inorganic powder having a particle size of 850 μm or less formed in the same manner as in Example 1 such as a cutting powder of marble or the like having a particle size of 0.1 to 20 μm 4 parts by weight of stone powder was added and mixed, and the mixture was deposited on a mesh belt to form a high specific gravity powder layer having a thickness of about 7 mm. Next, a mixed powder was prepared in the same manner as in Example 1, and a low specific gravity powder layer having a thickness of about 7 mm was laminated on the high specific gravity powder layer deposited on the mesh belt. (Lamination Step) Next, in the heating step, the high specific gravity powder layer and the low specific gravity powder layer are melted by using the heating furnace set up in the same manner as the heating and foaming step described in Example 1 to melt the inorganic base layer. The low specific gravity foam layer integrated with the above is formed, and the thickness of the inorganic base layer is about 10 m.
m, low specific gravity foam layer thickness of about 30 mm, width of about 1.0 m,
A plate-like inorganic foam of Example 4 having a length of about 1.2 m was obtained. The obtained inorganic foam was crushed so that the length and width became about 10 cm, and it was dropped into a water tank having a depth of about 2 m. Then, it was allowed to settle in the water, and the low specific gravity foam layer faced upward, and the inorganic base layer landed on the bottom of the water tank. As described above, according to this example, since the inorganic base layer can be stably landed on the bottom of the lake with the low-specific-gravity foam layer facing upward, the low-specific-gravity foam layer having a large surface area is easily exposed to the water flow. As a result, algae adhere to the low-density foam layer and microbial groups easily settle in it, and the low-density foam layer can efficiently decompose organic substances and purify water. It has been revealed that an optimum inorganic foam can be obtained.

【0064】なお、無機系粉体、貝殻粉体の含有量や粒
径等を、所定の範囲内で変えて同様の評価を行ってみた
が、いずれも本実施例と同様に、所定の比重に形成する
ことができるととも水質浄化性に優れていることが確認
された。
The same evaluation was performed by changing the contents and particle sizes of the inorganic powder and the shell powder within a predetermined range. It was confirmed that the water can be formed in the same manner and is excellent in water purification.

【0065】[0065]

【発明の効果】以上のように、本発明の無機系発泡体組
成物及び無機系発泡体並びに無機系発泡体の製造方法に
よれば、以下のような有利な効果が得られる。請求項1
に記載の発明によれば、 (1)無機系廃材や貝殻という廃棄物を用いているの
で、廃棄物の再資源化を図ることができ省資源性に優れ
た無機系発泡体組成物を提供することができる。 (2)貝殻は硬度が低く粉砕し易いので貝殻粉体が容易
に得られ、粉砕設備負荷や工数等を小さくすることがで
きる無機系発泡体組成物を提供することができる。 (3)加熱することで、貝殻が含有する炭酸カルシウム
が分解して炭酸ガスを発生し溶融した無機系粉体を発泡
させて気泡を形成するとともに、貝殻が含有するフミン
酸が燃焼して焼失し微細孔を形成し表面積の大きな無機
系発泡体が安定して得られる無機系発泡体組成物を提供
することができる。 (4)貝殻の種類によっては赤貝等のように繊維質を有
し、所定の溶融温度で溶融発泡して形成された気泡の周
囲に該繊維質が位置して補強剤として機能し、気泡が破
裂するのを防止する無機系発泡体組成物を提供すること
ができる。 (5)貝殻はカルシウムイオンだけでなくマグネシウム
イオンも有し、これらが、無機系粉体が溶融した溶融体
の粘性を小さくして冷却時に発生する残留ひずみを少な
くするので冷却時に割れ難くなり、板状等の長尺の無機
系発泡体を形成し易く成形性に優れた無機系発泡体組成
物を提供することができる。 (6)貝殻粉体が加熱によって分解して生成される酸化
カルシウムが、水分や二酸化炭素を吸収するので吸湿性
等に優れた無機系発泡体を製造することができる無機系
発泡体組成物を提供することができる。 (7)酸化カルシウムが水分を吸収して生成される水酸
化カルシウムが溶出し易いので、土壌改質剤として用い
ることができる無機系発泡体を製造することができる無
機系発泡体組成物を提供することができる。 (8)加熱されて形成された無機系発泡体を浄水処理材
等として水中に浸漬すると、無機系発泡体の破壊面や貝
殻残渣からカルシウム、マグネシウム等が水中に溶出す
る。これにより、水に溶解しているリン酸が、溶出した
カルシウムとの反応や無機系発泡体内のカルシウム分に
吸着されてリン酸カルシウム(不溶性)になり水質の改
善を行うことができる。また、溶出したマグネシウムが
貝類や藻類等の成育を促進することができる無機系発泡
体組成物を提供することができる。
As described above, according to the inorganic foam composition, the inorganic foam and the method for producing the inorganic foam of the present invention, the following advantageous effects can be obtained. Claim 1
According to the invention described in (1), since wastes such as inorganic waste materials and shells are used, it is possible to recycle the wastes and provide an inorganic foam composition excellent in resource saving. can do. (2) Since the shell has a low hardness and is easy to be crushed, a shell powder can be easily obtained, and an inorganic foam composition can be provided which can reduce the load on the crushing equipment and the number of steps. (3) By heating, the calcium carbonate contained in the shell decomposes to generate carbon dioxide gas, and the molten inorganic powder is foamed to form bubbles, and the humic acid contained in the shell burns and burns out. Thus, it is possible to provide an inorganic foam composition in which fine pores are formed and an inorganic foam having a large surface area can be stably obtained. (4) Depending on the type of shell, it has a fibrous material such as red shell and the like, and the fibrous material is positioned around the bubbles formed by melting and foaming at a predetermined melting temperature to function as a reinforcing agent. An inorganic foam composition that prevents bursting can be provided. (5) The shell has not only calcium ions but also magnesium ions, and these reduce the viscosity of the melt in which the inorganic powder is melted and reduce the residual strain generated during cooling, which makes it difficult to break during cooling. It is possible to provide an inorganic foam composition that is easy to form a long inorganic foam such as a plate and has excellent moldability. (6) An inorganic foam composition capable of producing an inorganic foam excellent in hygroscopicity and the like because calcium oxide produced by decomposition of shell powder by heating absorbs water and carbon dioxide. Can be provided. (7) Provided is an inorganic foam composition capable of producing an inorganic foam that can be used as a soil modifier, since calcium hydroxide produced by absorbing water by calcium oxide is easily eluted. can do. (8) When the inorganic foam formed by heating is immersed in water as a water purification treatment material or the like, calcium, magnesium, etc. are eluted into water from the fractured surface of the inorganic foam and the shell residue. As a result, the phosphoric acid dissolved in water reacts with the eluted calcium or is adsorbed by the calcium component in the inorganic foam to become calcium phosphate (insoluble), which can improve the water quality. Further, it is possible to provide an inorganic foam composition in which eluted magnesium can promote the growth of shellfish, algae and the like.

【0066】請求項2に記載の発明によれば、請求項1
の効果に加え、 (1)貝殻粉体が所定量配合されているので、加熱して
無機系粉体を溶融すると最適量の炭酸ガスが発生し気泡
が形成され、発泡倍率の大きな無機系発泡体が得られる
無機系発泡体組成物を提供することができる。 (2)貝殻粉体の密度が小さいので容量が多く、無機系
粉体に均一に混合させることができる無機系発泡体組成
物を提供することができる。
According to the invention described in claim 2, claim 1
In addition to the effects of (1), a certain amount of shell powder is blended, so when heated to melt the inorganic powder, an optimum amount of carbon dioxide gas is generated to form bubbles, and the inorganic foam has a large expansion ratio. It is possible to provide an inorganic foam composition from which a body is obtained. (2) Since the density of the shell powder is small, the capacity is large, and it is possible to provide an inorganic foam composition that can be uniformly mixed with the inorganic powder.

【0067】請求項3に記載の発明によれば、請求項1
又は2の効果に加え、 (1)無機系粉体の粒径が所定の範囲に調整されている
ので、無機系粉体の溶融温度が安定するとともに気泡の
大きさも安定し気泡の粒径分布が小さく、機械的強度を
高めることができるとともに無機系発泡体の品質の安定
性に優れた無機系発泡体組成物を提供することができ
る。
According to the invention of claim 3, claim 1
In addition to the effect of (2), (1) Since the particle size of the inorganic powder is adjusted within a predetermined range, the melting temperature of the inorganic powder is stable, the size of the bubbles is also stable, and the particle size distribution of the bubbles is stable. It is possible to provide an inorganic foam composition which is small in size, has high mechanical strength, and is excellent in stability of quality of the inorganic foam.

【0068】請求項4に記載の発明によれば、請求項1
乃至3の内いずれか1の効果に加え、 (1)貝殻粉体の粒径が0.1〜3000μmなので、
凝集し難く無機系粉体に点在するように分散させること
ができ、加熱して溶融発泡することで気泡を点在するよ
うに均一に分布させることができる無機系発泡体組成物
を提供することができる。 (2)この結果、比較的径の大きな独立した気泡を形成
することができ、比重が1より大きな無機系発泡体を形
成することができる。これにより、湖沼等の底や水槽や
花瓶等の底に安定に着地させて水質の浄化を行う浄水処
理材として用いることができる無機系発泡体を製造でき
る無機系発泡体組成物を提供することができる。
According to the invention of claim 4, claim 1
In addition to the effect of any one of 3 to 3, (1) since the particle size of the shell powder is 0.1 to 3000 μm,
Provided is an inorganic foam composition which is hard to aggregate and can be dispersed so as to be scattered in an inorganic powder, and can be uniformly distributed so as to be scattered by being heated and melt-foamed. be able to. (2) As a result, it is possible to form independent bubbles having a relatively large diameter, and it is possible to form an inorganic foam having a specific gravity of more than 1. Thereby, it is possible to provide an inorganic foam composition capable of producing an inorganic foam that can be used as a water purification treatment material that purifies water quality by stably landing on the bottom of a lake or the like or the bottom of an aquarium or a vase. You can

【0069】請求項5に記載の発明によれば、請求項1
乃至3の内いずれか1の効果に加え、 (1)貝殻粉体の粒径が無機系粉体の粒径と略同一の
0.1〜1000μmなので、無機系粉体に均一に分散
させることができ、加熱して溶融発泡することで気泡を
均一に分布させることができる無機系発泡体組成物を提
供することができる。 (2)この結果、貝殻粉体の粒子が小さく均一に分散し
ているので、多数の独立した気泡と、それらが多数繋が
った連続気泡を形成することができ、比重が1より小さ
な無機系発泡体を形成することができる。これにより、
湖沼等の水面や水中に浮遊する浄水性能を有する浮島や
浄水処理材として用いることができる無機系発泡体を製
造できる無機系発泡体組成物を提供することができる。 (3)気泡の粒径を小さく形成することができるので、
浄水処理材として用いた場合には、水中の浮遊物質等を
捕捉することができ浄水性能に優れた無機系発泡体を製
造できる無機系発泡体組成物を提供することができる。
According to the invention of claim 5, claim 1
In addition to the effect of any one of 1 to 3, (1) the particle size of the shell powder is 0.1 to 1000 μm, which is almost the same as the particle size of the inorganic powder, so that it should be dispersed uniformly in the inorganic powder. It is possible to provide an inorganic foam composition capable of uniformly distributing cells by heating and melting and foaming. (2) As a result, since the particles of the shell powder are small and uniformly dispersed, it is possible to form a large number of independent bubbles and continuous bubbles formed by connecting them, and an inorganic foam having a specific gravity of less than 1. Can form a body. This allows
It is possible to provide an inorganic foam composition capable of producing an inorganic foam that can be used as a floating island having water purification performance that floats on the surface of water such as lakes and marshes, or as a water purification treatment material. (3) Since the particle size of the bubbles can be made small,
When used as a water purification treatment material, it is possible to provide an inorganic foam composition capable of capturing floating substances in water and producing an inorganic foam excellent in water purification performance.

【0070】請求項6に記載の発明によれば、請求項1
乃至3の内いずれか1の効果に加え、 (1)貝殻粉体の密度が小さく、かつ粒径が小さいので
粒子の個数が多く、無機系粉体の表面に貝殻粉体をまぶ
した状態となり、微細な気泡を均一に分散して形成させ
ることができる無機系発泡体組成物を提供することがで
きる。 (2)この結果、微細な気泡が多数繋がった連続気泡を
形成することができ、表面積が大きく比重が1より大き
な無機系発泡体を形成することができる。これにより、
湖沼等の底や水槽や花瓶等の底、河川の岸等に安定に着
地させて水質の浄化を行う浄水処理材として用いること
ができる無機系発泡体を製造できる無機系発泡体組成物
を提供することができる。
According to the invention of claim 6, claim 1
In addition to any one of effects 1 to 3, (1) the density of the shell powder is small and the particle size is small, so that the number of particles is large and the surface of the inorganic powder is sprinkled with the shell powder. In addition, it is possible to provide an inorganic foam composition capable of uniformly forming fine bubbles. (2) As a result, it is possible to form continuous cells in which a large number of fine cells are connected, and it is possible to form an inorganic foam having a large surface area and a specific gravity of more than 1. This allows
Provide an inorganic foam composition capable of producing an inorganic foam that can be used as a water purification treatment material that purifies water quality by stably landing on the bottom of lakes, tanks, vases, etc. can do.

【0071】請求項7に記載の発明によれば、請求項1
乃至6の内いずれか1の効果に加え、 (1)ガラス質廃材は、1000℃以下の低温で軟化す
るものが多いので加熱炉等の設備負荷が小さく、また溶
融体の粘性が高いので気泡を形成し易く比重の制御を容
易に行うことができ、さらに機械的強度が高く耐久性に
優れる。また、板状等の長尺の無機系発泡体を形成し易
く成形性に優れた無機系発泡体組成物を提供することが
できる。 (2)ガラス質廃材が溶融固化した後は、カドミウム,
シアン等の有害物質を溶出しないので、河川や湖等の浄
水処理材として最適な無機系発泡体が得られる無機系発
泡体組成物を提供することができる。
According to the invention of claim 7, claim 1
In addition to the effect of any one of 1 to 6, (1) since many glassy waste materials are softened at a low temperature of 1000 ° C. or less, the load of equipment such as a heating furnace is small, and the viscosity of the melt is high, so Is easily formed, the specific gravity can be easily controlled, and the mechanical strength is high and the durability is excellent. Further, it is possible to provide an inorganic foam composition which is easy to form a long inorganic foam such as a plate and has excellent moldability. (2) After the glassy waste material is melted and solidified, cadmium,
Since no harmful substances such as cyanide are eluted, it is possible to provide an inorganic foam composition capable of obtaining an optimum inorganic foam as a water purification treatment material for rivers and lakes.

【0072】請求項8に記載の発明によれば、 (1)低比重発泡体層と一体化された無機系基体層を有
しているので、機械的強度が比較的乏しい低比重発泡体
層を補強することができ機械的強度を高めることができ
耐久性に優れた無機系発泡体を提供することができる。 (2)無機系基体層の比重が低比重発泡体層の比重より
大きいため、無機系基体層の比重を1以上に形成するこ
とにより無機系発泡体を湖,沼,海等の水中に沈めた場
合には、低比重発泡体層を上向きにして無機系基体層を
湖底等に設置することができる。このため、表面積の大
きな低比重発泡体層に水流が当たり易くなるとともに低
比重発泡体層に藻が付着したり微生物群が定着し易く、
低比重発泡体層で有機物の分解や水の浄化等を効率よく
行うことができる無機系発泡体を提供することができ
る。 (3)湖沼等の水中に投下したときには比重の高い無機
系基体層を下にして沈降し着地し水中での定置性に優
れ、湖沼等の底に安定に定着し湖沼等の浄化を行うこと
ができる無機系発泡体を提供することができる。
According to the eighth aspect of the present invention, (1) the low specific gravity foam layer has relatively low mechanical strength because it has the inorganic base layer integrated with the low specific gravity foam layer. It is possible to provide an inorganic foam that can be reinforced with high mechanical strength and excellent durability. (2) Since the specific gravity of the inorganic base layer is higher than that of the low specific gravity foam layer, the inorganic base layer is formed to have a specific gravity of 1 or more so that the inorganic foam is submerged in water such as a lake, a swamp, or the sea. In that case, the inorganic base layer can be placed on the lake bottom or the like with the low specific gravity foam layer facing upward. Therefore, it becomes easy for the water flow to hit the low specific gravity foam layer having a large surface area, and algae easily adhere to the low specific gravity foam layer or microbial groups are easily fixed,
It is possible to provide an inorganic foam capable of efficiently decomposing organic substances and purifying water in a low specific gravity foam layer. (3) When it is dropped into water such as lakes and marshes, it is settled and settled with the inorganic base layer having a high specific gravity facing down, and it has excellent emplacement properties in water, and it is stably fixed at the bottom of lakes and marshes and purified. It is possible to provide an inorganic foam capable of

【0073】請求項9に記載の発明によれば、 (1)混合された無機系発泡体組成物を所定の温度範囲
で加熱して溶融発泡させるので、無機系粉体を十分に軟
化させて貝殻粉体を完全に包み込み、貝殻粉体の分解に
よって発生した炭酸ガスで確実に発泡させることができ
安定性に優れた無機系発泡体の製造方法を提供すること
ができる。 (2)貝殻粉体が均一に混合しているので溶融助剤とし
て働き全体の溶融温度を低下させるとともに、破壊の起
点となり易い溶融斑の発生を防ぎ機械的強度を安定させ
る無機系発泡体の製造方法を提供することができる。 (3)加熱温度が750〜1100℃好ましくは900
〜1000℃と比較的低いので、加熱炉等の設備負荷が
少なく、また省エネルギー性に優れた無機系発泡体の製
造方法を提供することができる。
According to the invention of claim 9, (1) the mixed inorganic foam composition is heated in a predetermined temperature range to melt and foam, so that the inorganic powder is sufficiently softened. It is possible to provide a method for producing an inorganic foam which is capable of completely enclosing the shell powder and surely foaming it with carbon dioxide gas generated by the decomposition of the shell powder and having excellent stability. (2) Since the shell powder is uniformly mixed, it acts as a melting aid to lower the melting temperature of the whole, and to prevent the occurrence of melting spots, which easily become the starting point of fracture, and to stabilize the mechanical strength of the inorganic foam. A manufacturing method can be provided. (3) The heating temperature is 750 to 1100 ° C., preferably 900
Since the temperature is relatively low at ˜1000 ° C., it is possible to provide a method for producing an inorganic foam that has a small facility load such as a heating furnace and is excellent in energy saving.

【0074】請求項10に記載の発明によれば、 (1)積層工程において異なる組成を有する低比重粉体
層と高比重粉体層を積層した後に加熱工程において溶融
し一体化するので、比重が1以上の無機系基体層と比重
が1未満の低比重発泡体層が一体化された無機系発泡体
を容易に形成することができ生産性に優れた無機系発泡
体の製造方法を提供することができる。
According to the invention described in claim 10, (1) since the low specific gravity powder layer and the high specific gravity powder layer having different compositions are laminated in the laminating step and then melted and integrated in the heating step, Provided is a method for producing an inorganic foam having excellent productivity, which can easily form an inorganic foam in which an inorganic base layer having a specific gravity of 1 or more and a low specific gravity foam layer having a specific gravity of less than 1 are integrated. can do.

【0075】[0075]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態1における無機系発泡体の斜視図FIG. 1 is a perspective view of an inorganic foam according to the first embodiment.

【図2】実施の形態2における無機系発泡体の斜視図FIG. 2 is a perspective view of an inorganic foam according to the second embodiment.

【図3】実施の形態2における無機系発泡体の製造装置
の要部模式図
FIG. 3 is a schematic diagram of a main part of an apparatus for manufacturing an inorganic foam according to a second embodiment.

【図4】浄水処理材の評価試験装置の模式図FIG. 4 is a schematic diagram of an evaluation test apparatus for water purification treatment materials.

【図5】実験開始からの経過時間とアンモニア性窒素の
比濃度との関係を示す図
FIG. 5 is a diagram showing the relationship between the elapsed time from the start of the experiment and the specific concentration of ammoniacal nitrogen.

【図6】実験開始からの経過時間とリン酸態リンの比濃
度との関係を示す図
FIG. 6 is a diagram showing the relationship between the elapsed time from the start of the experiment and the specific concentration of phosphate phosphorus.

【図7】飼育水槽を用いた試験装置を示す模式図FIG. 7 is a schematic diagram showing a test device using a breeding aquarium.

【符号の説明】[Explanation of symbols]

1,1´ 無機系発泡体 1a 基体 1b 貝殻残渣 1c 気泡 2 無機系基体層 3 低比重発泡体層 3a 境界面 4 加熱炉 5 メッシュベルト 6 第1ホッパ 6a 高比重粉体層 7 第2ホッパ 7a 低比重粉体層 10 浄水処理材の評価試験装置 11 カラム 12 無機系発泡体 13 ビーカー 14 水溶液 15,16 液体循環路 17 ポンプ 20 試験装置 21 飼育水槽 22 浄水処理材層 23 金網 24 仕切板 25 ガラス粒層 26 土粒部 27 水中ポンプ 28 注水管 29 水 1,1 'Inorganic foam 1a base 1b Shell residue 1c bubbles 2 Inorganic base layer 3 Low specific gravity foam layer 3a boundary surface 4 heating furnace 5 mesh belt 6 First hopper 6a High specific gravity powder layer 7 Second hopper 7a Low specific gravity powder layer 10 Evaluation equipment for water purification treatment 11 columns 12 Inorganic foam 13 beakers 14 Aqueous solution 15, 16 Liquid circulation path 17 pumps 20 test equipment 21 Breeding aquarium 22 Water treatment layer 23 wire mesh 24 partition boards 25 glass grain layer 26 soil particles 27 Submersible Pump 28 Water injection pipe 29 water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山根 敏樹 鳥取県八頭郡郡家町宮谷200−2 こおげ 建設株式会社内 (72)発明者 久冨木 志郎 山口県宇部市常盤台1−3−1−211 (72)発明者 渡辺 広明 愛媛県新居浜市久保田町3−9−20 株式 会社エコシティ内 (72)発明者 森 直樹 高知県高知市円行寺25番地 株式会社地研 内 Fターム(参考) 4D004 AA04 AA16 AA18 AA36 BA02 BA10 CA04 CA08 CA14 CA15 CA29 CB01 CB13 DA03 DA06 4D038 AA02 AB29 AB31 AB45 AB48   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiki Yamane             200-2 Miyaya, Gunya-cho, Yazu-gun, Tottori Prefecture             Construction Co., Ltd. (72) Inventor Shiro Hisatomi             1-3-1-21 Tokiwadai, Ube City, Yamaguchi Prefecture (72) Inventor Hiroaki Watanabe             Equity prefecture Niihama city Kubotacho 3-9-20 shares             Within the company Eco City (72) Inventor Naoki Mori             25, Engyoji Temple, Kochi City, Kochi Prefecture             Within F-term (reference) 4D004 AA04 AA16 AA18 AA36 BA02                       BA10 CA04 CA08 CA14 CA15                       CA29 CB01 CB13 DA03 DA06                 4D038 AA02 AB29 AB31 AB45 AB48

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 無機系廃材を粉砕して得られる無機系粉
体と、貝殻を粉砕して得られる貝殻粉体と、を含有して
いることを特徴とする無機系発泡体組成物。
1. An inorganic foam composition comprising an inorganic powder obtained by crushing an inorganic waste material and a shell powder obtained by crushing a shell.
【請求項2】 前記無機系粉体100重量部に対し、貝
殻粉体1〜25重量部好ましくは8〜20重量部より好
ましくは10〜15重量部を含有していることを特徴と
する請求項1に記載の無機系発泡体組成物。
2. The shell powder is contained in an amount of 1 to 25 parts by weight, preferably 8 to 20 parts by weight, more preferably 10 to 15 parts by weight, based on 100 parts by weight of the inorganic powder. Item 2. The inorganic foam composition according to item 1.
【請求項3】 前記無機系粉体の粒径が、0.01〜3
000μm好ましくは0.1〜1000μmより好まし
くは0.5〜500μmであることを特徴とする請求項
1又は2に記載の無機系発泡体組成物。
3. The particle size of the inorganic powder is 0.01 to 3
The inorganic foam composition according to claim 1 or 2, which has a thickness of 000 µm, preferably 0.1 to 1000 µm, and more preferably 0.5 to 500 µm.
【請求項4】 前記貝殻粉体の粒径が、0.1〜300
0μmであることを特徴とする請求項1乃至3の内いず
れか1に記載の無機系発泡体組成物。
4. The particle size of the shell powder is 0.1 to 300.
It is 0 micrometer, The inorganic type foam composition of any one of Claim 1 thru | or 3 characterized by the above-mentioned.
【請求項5】 前記貝殻粉体の粒径が、0.1〜100
0μmであることを特徴とする請求項1乃至3の内いず
れか1に記載の無機系発泡体組成物。
5. The shell powder has a particle size of 0.1 to 100.
It is 0 micrometer, The inorganic type foam composition of any one of Claim 1 thru | or 3 characterized by the above-mentioned.
【請求項6】 前記貝殻粉体の粒径が、0.01〜50
μm好ましくは0.1〜10μmであることを特徴とす
る請求項1乃至3の内いずれか1に記載の無機系発泡体
組成物。
6. The particle size of the shell powder is 0.01 to 50.
The inorganic foam composition according to any one of claims 1 to 3, wherein the thickness is preferably 0.1 to 10 µm.
【請求項7】 前記無機系廃材が、ガラス質廃材を含有
していることを特徴とする請求項1乃至6の内いずれか
1に記載の無機系発泡体組成物。
7. The inorganic foam composition according to claim 1, wherein the inorganic waste material contains a glassy waste material.
【請求項8】 無機系廃材を粉砕して得られた無機系粉
体が加熱され溶融した無機系基体層と、前記無機系廃材
を粉砕して得られた前記無機系粉体と貝殻粉体との均一
混合物が加熱され前記無機系基体層と一体化され比重が
前記無機系基体層より小さく形成された低比重発泡体層
と、を備えていることを特徴とする無機系発泡体。
8. An inorganic substrate layer obtained by heating and melting an inorganic powder obtained by pulverizing an inorganic waste material, and the inorganic powder and shell powder obtained by pulverizing the inorganic waste material. And a low specific gravity foam layer having a specific gravity smaller than that of the inorganic base layer, which is integrated with the inorganic base layer by heating.
【請求項9】 請求項1乃至7の内いずれか1に記載の
無機系発泡体組成物を各々混合する混合工程と、前記混
合工程で得られた混合粉体を750〜1100℃好まし
くは900〜1000℃に加熱して溶融発泡させる加熱
発泡工程と、を備えていることを特徴とする無機系発泡
体の製造方法。
9. A mixing step of mixing the inorganic foam composition according to any one of claims 1 to 7, and a mixed powder obtained in the mixing step at 750 to 1100 ° C., preferably 900. And a heating and foaming step of melting and foaming by heating to 1000 ° C, the method for producing an inorganic foam.
【請求項10】 a.無機系廃材を粉砕して得られた無
機系粉体100重量部に対し石粉0〜10重量部を含有
する、又は、b.請求項4に記載の無機系発泡体組成物
を含有する高比重粉体層と、請求項5に記載の無機系発
泡体組成物を含有する低比重粉体層と、を積層する積層
工程と、 前記積層工程で得られた積層物を750〜1100℃好
ましくは900〜1000℃に加熱し前記高比重粉体層
と前記低比重粉体層を溶融させて各々無機系基体層と低
比重発泡体層を形成するとともに前記無機系基体層と前
記低比重発泡体層とを一体化する加熱工程と、 を備えていることを特徴とする無機系発泡体の製造方
法。
10. A. Including 0 to 10 parts by weight of stone powder to 100 parts by weight of inorganic powder obtained by pulverizing an inorganic waste material, or b. A lamination step of laminating a high specific gravity powder layer containing the inorganic foam composition according to claim 4 and a low specific gravity powder layer containing the inorganic foam composition according to claim 5. The laminated product obtained in the laminating step is heated to 750 to 1100 ° C., preferably 900 to 1000 ° C. to melt the high specific gravity powder layer and the low specific gravity powder layer to form an inorganic base layer and a low specific gravity foam, respectively. A heating step of forming a body layer and integrating the inorganic base layer and the low specific gravity foam layer with each other;
JP2002332849A 2001-11-15 2002-11-15 Inorganic foam and method for producing inorganic foam Expired - Lifetime JP3898116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332849A JP3898116B2 (en) 2001-11-15 2002-11-15 Inorganic foam and method for producing inorganic foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001350335 2001-11-15
JP2001-350335 2001-11-15
JP2002332849A JP3898116B2 (en) 2001-11-15 2002-11-15 Inorganic foam and method for producing inorganic foam

Publications (2)

Publication Number Publication Date
JP2003221285A true JP2003221285A (en) 2003-08-05
JP3898116B2 JP3898116B2 (en) 2007-03-28

Family

ID=27759083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332849A Expired - Lifetime JP3898116B2 (en) 2001-11-15 2002-11-15 Inorganic foam and method for producing inorganic foam

Country Status (1)

Country Link
JP (1) JP3898116B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173558A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water
JP2013246081A (en) * 2012-05-28 2013-12-09 Few Technology Co Ltd Method for processing burned ash containing radioactive material and processed solid matter
JP2018100342A (en) * 2016-12-20 2018-06-28 東洋ゴム工業株式会社 Tire rubber composition, tire and method for producing the same
KR20210025866A (en) * 2019-08-28 2021-03-10 고등기술연구원연구조합 Apparatus for manufacturing wastes structure and method therefor
CN113732023A (en) * 2021-09-09 2021-12-03 河北雄安容西混凝土有限公司 Treatment facility that bituminous concrete was useless admittedly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173558A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water
JP2013246081A (en) * 2012-05-28 2013-12-09 Few Technology Co Ltd Method for processing burned ash containing radioactive material and processed solid matter
JP2018100342A (en) * 2016-12-20 2018-06-28 東洋ゴム工業株式会社 Tire rubber composition, tire and method for producing the same
WO2018116622A1 (en) * 2016-12-20 2018-06-28 東洋ゴム工業株式会社 Rubber composition for tire, tire, and production methods therefor
CN109804013A (en) * 2016-12-20 2019-05-24 通伊欧轮胎株式会社 Rubber composition for tire, tire and their preparation method
KR20210025866A (en) * 2019-08-28 2021-03-10 고등기술연구원연구조합 Apparatus for manufacturing wastes structure and method therefor
KR102293815B1 (en) * 2019-08-28 2021-08-25 고등기술연구원연구조합 Apparatus for manufacturing wastes structure and method therefor
CN113732023A (en) * 2021-09-09 2021-12-03 河北雄安容西混凝土有限公司 Treatment facility that bituminous concrete was useless admittedly

Also Published As

Publication number Publication date
JP3898116B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP2007516922A (en) Porous granular material for fluid treatment, cementitious composition and method for producing them
JP2008308396A (en) Water-containing composition, utilization and treatment method, and non-polluting water-resistant treated object
Flood et al. Glass Fines: A review of cleaning and up-cycling possibilities
JP2010275155A (en) Concrete composition, concrete structure and block for fish reef or spawning reef
WO2000018694A1 (en) Denitrifying composition for removing nitrate nitrogen and process for producing the same
JP2000157094A (en) Stone material for sinking and disposing in water and its production
KR101721209B1 (en) A cerami pellet for water purification
JP2003221285A (en) Inorganic foam composition and inorganic foam, and method for manufacturing inorganic foam
JP4269086B2 (en) Nitrate nitrogen denitrification composition and method for producing the same
JP2004123425A (en) Inorganic foam, its composition and manufacturing process
JPH08157276A (en) Porous ceramics from lake and pond bottom mud and treatment of lake and pond bottom mud
JP2000308864A (en) Solid material obtained using carbonized scrap wood
CN102531485A (en) Biological aerated filter packing prepared from silt of Yellow River and preparation method for biological aerated filter packing
JP3766839B2 (en) Firefly breeding equipment
JP2000117020A (en) Contact purifying material and its production
JP2005013016A (en) Seaweed-bed culture material
JPS594493A (en) Medium for cleaning up sewage by contact oxidation
TWI364408B (en) A method for sintering aggregates from wasted sludge
JP2005000122A (en) Organism-supporting material and method for producing the same
JP2003071493A (en) Composition for removing nitrate nitrogen, etc., and production method therefor
JP2001162288A (en) Dephosphorizing material
JP5941344B2 (en) Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent
JP2003252674A (en) Far-infrared radiator and production of the same
JP2000191358A (en) Artificial stone
JP2004267034A (en) Organism carrier and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3898116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term