JP5941344B2 - Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent - Google Patents

Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent Download PDF

Info

Publication number
JP5941344B2
JP5941344B2 JP2012132612A JP2012132612A JP5941344B2 JP 5941344 B2 JP5941344 B2 JP 5941344B2 JP 2012132612 A JP2012132612 A JP 2012132612A JP 2012132612 A JP2012132612 A JP 2012132612A JP 5941344 B2 JP5941344 B2 JP 5941344B2
Authority
JP
Japan
Prior art keywords
iron
compounding agent
slag
phosphorus
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012132612A
Other languages
Japanese (ja)
Other versions
JP2013256400A (en
Inventor
佐藤 淳
佐藤  淳
正治 岡田
正治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012132612A priority Critical patent/JP5941344B2/en
Publication of JP2013256400A publication Critical patent/JP2013256400A/en
Application granted granted Critical
Publication of JP5941344B2 publication Critical patent/JP5941344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)
  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)

Description

本発明は、配合剤、藻場構造物、植生構造物、及び配合剤の製造方法に関する。   The present invention relates to a compounding agent, a seaweed bed structure, a vegetation structure, and a method for producing the compounding agent.

リン肥料や工業用リン酸の製造のために必要となるリン鉱石を100%海外に依存している我が国では、廃棄物からのリン資源の回収が重要な課題になっている。特に下水汚泥に濃縮されるリンは、輸入リン鉱石の30%以上を占めていることもあり、下水汚泥からリンを含む肥料を製造するための各種の試みがなされている。   Recovering phosphorus resources from waste has become an important issue in Japan, which is 100% dependent on foreign countries for phosphorus ore, which is necessary for the production of phosphorus fertilizer and industrial phosphoric acid. In particular, phosphorus concentrated in sewage sludge may account for 30% or more of imported phosphorus ore, and various attempts have been made to produce fertilizers containing phosphorus from sewage sludge.

例えば、特許文献1には、原料焼却灰の全リン酸濃度を測定し、該全リン酸濃度が予め定めた目標製品の濃度よりも低い場合には溶融処理前に高リン含有廃棄物の添加割合を求めて、原料中に添加した後に、溶融して、その後急冷してリン肥料を製造する方法が開示されている。   For example, in Patent Document 1, the total phosphoric acid concentration of raw material incineration ash is measured, and when the total phosphoric acid concentration is lower than a predetermined target product concentration, the addition of high phosphorus-containing waste before melting treatment A method is disclosed in which a proportion is obtained, added to the raw material, melted, and then rapidly cooled to produce phosphorus fertilizer.

本願出願人も、リン含有汚泥またはリン含有焼却灰に骨格調整剤を添加して溶融することにより、リンのク溶率を調整する肥料の製造方法を提案している(特願2011‐101489号)。   The present applicant has also proposed a method for producing a fertilizer that adjusts the dissolution rate of phosphorus by adding a skeletal modifier to phosphorus-containing sludge or phosphorus-containing incinerated ash and melting it (Japanese Patent Application No. 2011-101289). ).

特開2006‐1819号公報JP 2006-1819 A

しかし、下水汚泥等の被溶融物にリンと鉄が例えばリン酸鉄のような形態で含まれていると、溶融処理によって一部のリンが鉄と反応し、鉄(Fe)とリン化鉄(FeP)を含む固溶体となって金属成分としてスラグに混入することが判ってきた。固溶体とは、二種類以上の金属等が互いに溶け合って全体が均一の固相となったものをいう。 However, if phosphorus and iron are included in the material to be melted such as sewage sludge, for example, in the form of iron phosphate, some phosphorus reacts with iron by the melting treatment, and iron (Fe) and iron phosphide It has been found that a solid solution containing (Fe 2 P) is mixed into the slag as a metal component. The solid solution is a solid solution in which two or more kinds of metals are melted together to form a uniform solid phase as a whole.

当該金属成分が酸化すると茶色に変色するため、金属成分の混入率が高いスラグをセメント材料やコンクリート骨材等に再利用するのは困難である。また、このようなスラグを燐酸肥料の原料として用いると、土壌に溶出したリン成分が鉄に再吸着されるため、リン肥料としての効能が阻害されるという問題もあった。   When the metal component is oxidized, the color is changed to brown. Therefore, it is difficult to reuse slag having a high mixing rate of the metal component for cement material, concrete aggregate, or the like. Further, when such slag is used as a raw material for phosphoric acid fertilizer, the phosphorus component eluted in the soil is re-adsorbed by iron, so that there is a problem that the effectiveness as the phosphorous fertilizer is hindered.

そこで、スラグからこのような金属成分を分離除去すれば、スラグを骨材や肥料として有効利用することが可能になる。しかし、スラグから分離された金属成分は、ウェイト材として少量利用される他には有効な用途が見出されていないため、現状では金属成分は埋立地に廃棄処分せざるを得ず、経済性の観点、資源再生の観点からその用途を開発することが望まれている。   Therefore, if such a metal component is separated and removed from the slag, the slag can be effectively used as an aggregate or fertilizer. However, since the metal component separated from the slag has not been found to be useful other than being used in a small amount as a weight material, at present, the metal component must be disposed of in a landfill. It is desired to develop its use from the viewpoint of resource recovery.

例えば、製鉄原料としての活用も考えられるが、このような金属成分が一定の性状で常に一定量生成されるという状況でないため、逆に鉄の品質変動を招く虞があり、製鉄工場で受け入れられる状況にはない。また、金属成分中のリン化鉄はエネルギーレベルが低く非常に安定していることから、リン成分を活用するためには、そのプロセスに大量の還元剤が必要になる等、非常にコストが嵩むという問題もある。   For example, it can be used as a raw material for iron making, but since it is not a situation where such metal components are always produced in a certain amount and with a certain property, there is a possibility that the quality of the iron may fluctuate. Not in the situation. In addition, since iron phosphide in the metal component has a low energy level and is very stable, in order to utilize the phosphorus component, a large amount of reducing agent is required for the process and the cost is very high. There is also a problem.

本発明の目的は、上述した問題点に鑑み、スラグから分離したリン化鉄を有効に活用できる配合剤、藻場構造物、植生構造物、及び配合剤の製造方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a compounding agent capable of effectively utilizing iron phosphide separated from slag, a seaweed bed structure, a vegetation structure, and a method for producing the compounding agent.

上述の目的を達成するため、本発明による配合剤の第一特徴構成は、特許請求の範囲の請求項1に記載した通り、藻類または水生植物の根付けまたは育成のために必要な鉄成分及びリン成分の供給源として用いられ、破砕スラグから回収され、鉄とリン化鉄を含有する固溶体を含む点にある。 In order to achieve the above-mentioned object, the first characteristic constitution of the compounding agent according to the present invention is the iron component and phosphorus necessary for rooting or growing algae or aquatic plants as described in claim 1. It is used as a component source, is recovered from crushed slag, and includes a solid solution containing iron and iron phosphide .

鉄とリン化鉄を含有する固溶体を含む配合剤が水中のような流動性の良い環境下に施肥されると、土壌とは異なりリン化鉄から溶出したリン成分が鉄成分に吸着される前に流動するため、リン肥料としての効能が阻害されることが無く、また鉄成分も藻類等の重要な栄養源として供給できるようになる。 When a compound containing a solid solution containing iron and iron phosphide is fertilized in a fluid environment such as water, the phosphorus component eluted from iron phosphide is not adsorbed to the iron component unlike soil. Therefore, the effect as a phosphorus fertilizer is not hindered, and the iron component can be supplied as an important nutrient source such as algae.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記リン化鉄が下水またはし尿由来である点にあり、本来的にリン成分や鉄成分が多量に含まれている下水またはし尿は、配合剤の原料として極めて有効に活用できる。   As described in claim 2, the second characteristic configuration is that, in addition to the first characteristic configuration described above, the iron phosphide is derived from sewage or human waste. Sewage or human waste containing a large amount of can be used very effectively as a raw material for the compounding agent.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記リン化鉄がリン酸塩及び鉄系凝集剤を含む被溶融物を溶融処理した破砕スラグから分離して得られる点にあり、リン酸塩及び鉄系凝集剤を含む被溶融物を溶融したスラグにはリン化鉄が生成混入され易く、配合剤の効率のよい供給源となる。 In the third feature configuration, as described in claim 3, in addition to the first or second feature configuration described above, the iron phosphide is a melt containing a phosphate and an iron-based flocculant. Efficient supply of compounding agent because iron phosphide is easily generated and mixed in the slag obtained by melting the material to be melted containing phosphate and iron-based coagulant. The source.

本発明による藻場構造物の特徴構成は、同請求項に記載した通り、上述の第一から第の何れかの特徴構成を備えた配合剤が構造体に肥効調整可能に担持されている点にある。 The characteristic configuration of the seaweed bed structure according to the present invention is, as described in claim 4 , the compounding agent having any one of the first to third characteristic configurations described above is carried on the structure so that the fertilization effect can be adjusted. There is in point.

このような藻場構造物であれば、植物のみならず微生物にとってバランスのよい肥料成分が適切な時期に適切な量で溶出するようになるので、藻類または水生植物等が効率的に根付けまたは育成するようになる。尚、藻場構造物は、沿岸の浅瀬に生育する沈水性の海草や海藻の群落に配置されるコンクリートブロックのような構造体以外に、消波や護岸等の機能を備えたブロックを含む概念である。   With such an algae place structure, fertilizer components that are well balanced not only for plants but also for microorganisms will be eluted in an appropriate amount at an appropriate time, so that algae or aquatic plants can be efficiently rooted or cultivated. Will come to do. In addition, the seaweed bed structure is a concept that includes blocks with functions such as wave-dissipation and revetment, in addition to structures such as submerged seaweeds that grow in coastal shallows and concrete blocks that are placed in seaweed communities. It is.

本発明による植生構造物の特徴構成は、同請求項に記載した通り、上述の第一から第の何れかの特徴構成を備えた配合剤が構造体に肥効調整可能に担持されている点にある。 The characteristic configuration of the vegetation structure according to the present invention is, as described in claim 5 , wherein the compounding agent having any one of the first to third characteristic configurations described above is supported on the structure so that the fertilization effect can be adjusted. There is in point.

このような植生構造物であれば、植物にとってバランスのよい肥料成分が適切な時期に適切な量で溶出するようになるので、藻類または水生植物が効率的に根付けまたは育成するようになる。尚、植生構造物は、水中プランタや河川の法面用ブロック、河川の底部敷設ブロック等を含む概念である。   With such a vegetation structure, fertilizer components that are well-balanced for the plant are eluted in an appropriate amount at an appropriate time, so that algae or aquatic plants can be efficiently rooted or grown. The vegetation structure is a concept including an underwater planter, a river slope block, a river bottom laying block, and the like.

本発明による配合剤の製造方法の第一の特徴構成は、同請求項に記載した通り、リン成分及び鉄成分を含む被溶融物を溶融する溶融処理ステップと、前記溶融処理ステップで溶融されたスラグを冷却処理して固化する冷却処理ステップと、前記冷却処理ステップで固化されたスラグを破砕した破砕スラグから鉄とリン化鉄を含有する固溶体を分離する分離ステップと、を含み、前記分離ステップで分離された固溶体を、藻類または水生植物の根付けまたは育成のために必要な鉄成分及びリン成分の供給源として用いる点にある。 The first characteristic configuration of the method for producing a compounding agent according to the present invention is, as described in claim 6 , a melting treatment step for melting a material to be melted containing a phosphorus component and an iron component, and melting in the melting treatment step. A separation step of separating the solid solution containing iron and iron phosphide from the crushed slag obtained by crushing the slag solidified in the cooling treatment step, The solid solution separated in the step is used as a source of iron components and phosphorus components necessary for rooting or growing algae or aquatic plants.

同第二の特徴構成は、同請求項7に記載した通り、上述の第一の特徴構成に加えて、前記溶融処理ステップで溶融されるリン成分及び鉄成分を含む被溶融物は、生物処理によりリンが取り込まれ、鉄系凝集剤が添加された後に固液分離された下水汚泥であり、前記分離ステップは、前記冷却処理ステップで固化されたスラグを整粒機構で所定の粒径に破砕し、磁力選別、篩選別または比重選別の何れかによりスラグから前記固溶体を分離するように構成されている点にある。In the second characteristic configuration, as described in claim 7, in addition to the first characteristic configuration described above, a material to be melted containing a phosphorus component and an iron component melted in the melting treatment step is biologically processed. Is sewage sludge that has been subjected to solid-liquid separation after phosphorus is taken in by the addition of iron-based flocculant, and the separation step crushes the slag solidified in the cooling treatment step into a predetermined particle size by a granulating mechanism. However, the solid solution is separated from the slag by any one of magnetic sorting, sieve sorting or specific gravity sorting.

以上説明した通り、本発明によれば、スラグから分離したリン化鉄を有効に活用できる配合剤、藻場構造物、植生構造物、及び配合剤の製造方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a compounding agent that can effectively use iron phosphide separated from slag, a seaweed bed structure, a vegetation structure, and a method for producing the compounding agent. It was.

肥料の製造装置のブロック構成図Block diagram of fertilizer manufacturing equipment 肥料の製造方法の説明図Illustration of fertilizer manufacturing method

以下、本発明による配合剤、藻場構造物、植生構造物、及び配合剤の製造方法を説明する。
図1には、当該配合剤の製造方法が実施される配合剤の製造プラント10が示されている。
Hereinafter, the compounding agent, seaweed bed structure, vegetation structure, and method for producing the compounding agent according to the present invention will be described.
FIG. 1 shows a compounding agent production plant 10 in which the compounding agent production method is carried out.

製造プラント10は、水処理設備11と、脱水装置12と、乾燥装置13と、溶融設備14と、整粒装置17と、選別装置18等を備えている。   The production plant 10 includes a water treatment facility 11, a dehydrating device 12, a drying device 13, a melting facility 14, a granulating device 17, a sorting device 18, and the like.

水処理設備11は、外部から流入する下水を活性汚泥法や膜分離活性汚泥法等を用いて嫌気性及び/または好気性条件下で生物処理する単一または複数の生物処理槽を備えている。生物処理槽では、活性汚泥により下水中の有機物が分解除去されて浄化される。   The water treatment facility 11 includes a single or a plurality of biological treatment tanks for biologically treating sewage flowing from outside under anaerobic and / or aerobic conditions using an activated sludge method, a membrane separation activated sludge method, or the like. . In the biological treatment tank, organic substances in sewage are decomposed and removed by activated sludge and purified.

前段の生物処理槽で下水が好気処理される過程で活性汚泥に、下水に含まれる鉄分とともにリンが取り込まれ、後段の生物処理槽でポリ鉄や塩鉄のような鉄系凝集剤が添加されてリン成分が鉄系凝集剤とともに凝集汚泥として沈殿し、この沈殿した汚泥がポンプPで抜き取られる。   In the process of aerobic treatment of sewage in the former biological treatment tank, phosphorus is incorporated into the activated sludge together with iron contained in the sewage, and iron-based flocculants such as polyiron and salt iron are added in the latter biological treatment tank Then, the phosphorus component is precipitated as agglomerated sludge together with the iron-based aggregating agent, and the precipitated sludge is extracted by the pump P.

リン成分と鉄成分を含む下水汚泥はスクリュープレスやフィルタプレス等の脱水装置12に送られ、脱水装置12で脱水されて含水率が80%程度の脱水ケーキとなり、さらに乾燥装置13で含水率が20〜40%程度に乾燥処理される。   The sewage sludge containing the phosphorus component and the iron component is sent to a dehydrating device 12 such as a screw press or a filter press, and dehydrated by the dehydrating device 12 to become a dehydrated cake having a water content of about 80%. It is dried to about 20-40%.

乾燥装置13で所定の水分量に調整された脱水ケーキが溶融設備14で溶融処理される。当該溶融設備14は、内筒と外筒の間に供給された下水汚泥が、内筒と外筒が相対回転する切出し装置によって内筒内の炉室に供給され、天井部に設置された燃焼バーナで表面から溶融され、溶融スラグが床の中央部に形成された出滓口から下方へ滴下する回転式表面溶融炉で構成されている。   The dehydrated cake adjusted to a predetermined moisture content by the drying device 13 is melted by the melting equipment 14. In the melting facility 14, the sewage sludge supplied between the inner cylinder and the outer cylinder is supplied to the furnace chamber in the inner cylinder by a cutting device in which the inner cylinder and the outer cylinder rotate relative to each other, and the combustion installed in the ceiling portion It is composed of a rotary surface melting furnace that is melted from the surface by a burner and in which molten slag is dropped downward from a spout formed in the center of the floor.

出滓口の下方には冷却用の水槽15が配置され、水槽15に滴下したスラグが急冷されて水砕スラグとなり、ベルト式搬送機構16により整粒装置17に搬出される。   A cooling water tank 15 is disposed below the outlet, and the slag dripped into the water tank 15 is rapidly cooled to form a granulated slag, which is carried out to the granulating device 17 by the belt-type transport mechanism 16.

スラグには、溶融過程で鉄(Fe)とリン(P)の一部が結合したリン化鉄(FeP)が生成され、鉄(Fe)とリン化鉄(FeP)を主に微量の不純物を含めて全体が均一の固相となったリン化鉄を含有する固溶体(以下、単に「固溶体」と記す。)が混入しており、整粒機構17で2〜3mmの粒度に破砕され、整粒されたスラグが選別機構18へ搬送されて、スラグから固溶体が分離される。選別装置18として固溶体を含む磁性金属類を吸着する磁力選別装置が用いられている。尚、選別装置18として、破砕の際に鉄分を含み硬いため小さく破砕されない固溶体とそれより粒径が小さなスラグを選別する篩選別装置や、固溶体とそれより比重が小さなスラグを選別する比重選別装置を用いてもよい。 In the slag, iron phosphide (Fe 2 P) in which part of iron (Fe) and phosphorus (P) is combined is generated in the melting process, and iron (Fe) and iron phosphide (Fe 2 P) are mainly used. A solid solution containing iron phosphide (hereinafter simply referred to as “solid solution”) containing a small amount of impurities and having a uniform solid phase as a whole is mixed, and the particle size adjustment mechanism 17 reduces the particle size to 2 to 3 mm. The slag that has been crushed and sized is conveyed to the sorting mechanism 18, and the solid solution is separated from the slag. As the sorting device 18, a magnetic sorting device that adsorbs magnetic metals including a solid solution is used. As the sorting device 18, a sieve sorting device for sorting a solid solution containing iron and being hard and not crushed and a slag having a smaller particle size, or a specific gravity sorting device for sorting a solid solution and a slag having a smaller specific gravity. May be used.

尚、溶融処理ステップが実行される溶融設備14は回転式表面溶融炉が好適であるが、旋回式溶融炉やコークスベッド炉であってもよく、運転は難しくなるが、その他の形式の溶融炉でも可能である。   The melting equipment 14 in which the melting process step is performed is preferably a rotary surface melting furnace, but may be a swivel melting furnace or a coke bed furnace, which makes operation difficult, but other types of melting furnaces. But it is possible.

即ち、図2に示すように、上述の溶融設備14で、リン成分及び鉄成分を含む被溶融物を溶融する溶融処理ステップが実行され、水槽15で、溶融処理ステップで溶融されたスラグを冷却処理して固化する冷却処理ステップが実行され、選別装置18で、冷却処理ステップで固化されたスラグから固溶体を含む金属成分を分離する分離ステップが実行される。尚、冷却処理ステップは水冷で説明したが、空冷など他の冷却方式であってもよい。   That is, as shown in FIG. 2, a melting treatment step for melting a material to be melted containing a phosphorus component and an iron component is executed in the above-described melting equipment 14, and the slag melted in the melting treatment step is cooled in a water tank 15. A cooling process step for processing and solidifying is performed, and a separation step for separating a metal component including a solid solution from the slag solidified in the cooling process step is performed in the sorting device 18. Although the cooling process step has been described with water cooling, other cooling methods such as air cooling may be used.

分離ステップで分離された固溶体は、藻類または水生植物の根付けまたは育成のために必要な鉄成分及びリン成分の供給源として用いる配合剤となり、ケイ素、銅、亜鉛、マンガン等の他の栄養素と適宜配合することにより肥料として用いられる。   The solid solution separated in the separation step becomes a compounding agent used as a source of iron and phosphorus components necessary for rooting or growing algae or aquatic plants, and with other nutrients such as silicon, copper, zinc and manganese as appropriate. Used as a fertilizer by blending.

固溶体を含む配合剤は、水中のような流動性、拡散性の良い環境下に施肥されると、土壌とは異なり、リン成分と鉄成分はその場に留まることなく拡散するので濃度が高くなり、養分過剰による障害をおこすこともなく、固溶体から溶出したリン成分と鉄成分が互いに吸着不溶化される前に流動するため、リン肥料としての効能が阻害されることが無く、また鉄成分も藻類等の重要な栄養源として供給できるようになる。   Unlike fertilizers, the concentration of a compound containing a solid solution increases when the fertilizer is applied in an environment with good fluidity and diffusibility, such as water, because the phosphorus and iron components diffuse without staying in place. Because the phosphorus and iron components eluted from the solid solution flow before they are adsorbed and insolubilized without causing damage due to excessive nutrients, the effectiveness as a phosphorus fertilizer is not hindered, and the iron components are also algae It can be supplied as an important nutrient source.

従って、土壌では肥料として有効に機能しない虞がある固溶体であっても、海の沿岸の浅瀬の藻場に生育する沈水性の海草や海藻、河川湖沼護岸に生育する水生植物等、流動性のよい環境下で有用な栄養素として活用できる。   Therefore, even if it is a solid solution that may not function effectively as fertilizer in the soil, it can be used for fluidity, such as submerged seaweed and seaweed that grow in shallow seaweed beds on the coast of the sea, and aquatic plants that grow on riverbanks. It can be used as a useful nutrient in a good environment.

このような配合肥料は、藻場等に直接施肥してもよいし、藻場構造物や植生構造物として藻場や河岸等に配設されてもよい。藻場構造物は、当該配合剤を含む肥料が溶出可能な状態で担持された消波ブロックのようなコンクリートブロック構造体で構成することができる。   Such a blended fertilizer may be applied directly to a seaweed bed or the like, or may be disposed on a seaweed bed, riverbank, etc. as a seaweed bed structure or a vegetation structure. The seaweed bed structure can be composed of a concrete block structure such as a wave-dissipating block supported in a state where the fertilizer containing the compounding agent can be eluted.

また、当該配合剤を担持させた多孔質の粒状担体をコンクリートブロック内部に一体に形成してもよいし、コンクリートブロック表層に一体に形成してもよい。当該配合剤を合成樹脂性の布帛で形成された袋状容器に充填し、ロープ等で緊締した構造体で構成することも可能である。当該配合剤をさらに細かく粉砕し、塗料に混ぜてコンクリートブロックの表面に塗布することも可能である。構造体への配合肥料の担持方法によって肥効調整、つまり溶出速度の調整が可能になる。また、固溶体の粒度調整によっても溶出速度の調整が可能になり、粒度を細かくすると溶出速度が速くなり、粒度を大きくすると溶出速度が遅くなる。   Moreover, the porous granular support | carrier which carry | supported the said compounding agent may be formed integrally in the concrete block, and may be formed integrally in the concrete block surface layer. It is also possible to form a structure in which the compounding agent is filled in a bag-like container formed of a synthetic resinous cloth and fastened with a rope or the like. The compounding agent can be further finely pulverized, mixed with a paint, and applied to the surface of the concrete block. It is possible to adjust the fertilization effect, that is, to adjust the elution rate, by the method of loading the blended fertilizer on the structure. The elution rate can also be adjusted by adjusting the particle size of the solid solution. When the particle size is made finer, the elution rate becomes faster, and when the particle size is made larger, the elution rate becomes slower.

植生構造物として、河川の法面用のコンクリートブロックやセラミックスブロック、河川の底部敷設コンクリートブロック等として具現化できる。この場合も、当該配合剤を担持させた多孔質の粒状担体をコンクリートブロック内部に一体に形成してもよいし、コンクリートブロック表層に一体に形成してもよい。当該配合剤を合成樹脂性の布帛で形成された袋状容器に充填し、ロープ等で緊締した構造体で構成することも可能である。構造体への配合肥料の担持方法によって肥効調整、つまり溶出速度の調整が可能になる。   As vegetation structures, concrete blocks and ceramic blocks for river slopes, concrete blocks laid on the bottom of rivers, etc. can be realized. Also in this case, the porous granular carrier carrying the compounding agent may be integrally formed inside the concrete block, or may be integrally formed on the concrete block surface layer. It is also possible to form a structure in which the compounding agent is filled in a bag-like container formed of a synthetic resinous cloth and fastened with a rope or the like. It is possible to adjust the fertilization effect, that is, to adjust the elution rate, by the method of loading the blended fertilizer on the structure.

何れの場合でも、植物にとってバランスのよい肥料成分が適切な時期に適切な量で溶出するようになるので、藻類または水生植物が効率的に根付けまたは育成するようになる。当該配合剤を含む肥料をセメントやセラミックスに混入して成形した水中プランタとして藻場構造物や植生構造物を具現化することも可能である。   In any case, since fertilizer components that are well-balanced for the plant are eluted in an appropriate amount at an appropriate time, algae or aquatic plants are efficiently rooted or grown. It is also possible to embody a seaweed bed structure or a vegetation structure as an underwater planter formed by mixing a fertilizer containing the compounding agent with cement or ceramics.

尚、固溶体が分離されたスラグは、陸生植物用のリン配合剤として、或いはコンクリートやアスファルト等の骨材やセメント材料として用いることができる。   The slag from which the solid solution has been separated can be used as a phosphorus compounding agent for terrestrial plants, or as an aggregate or cement material such as concrete or asphalt.

上述した実施形態では、溶融設備14で下水汚泥を直接溶融処理する例を説明したが、予め汚泥焼却炉で焼却処理した後の汚泥焼却灰及び飛灰を溶融設備14で溶融処理してもよい。   In the above-described embodiment, the example in which the sewage sludge is directly melted by the melting equipment 14 has been described. However, the sludge incineration ash and fly ash that have been incinerated in advance in the sludge incinerator may be melted by the melting equipment 14. .

上述した実施形態では、固溶体が下水汚泥を溶融して得られる例を説明したが、固溶体はし尿汚泥を溶融処理することによっても得ることができる。つまり、固溶体は下水またはし尿由来である。尚、し尿には畜産由来のものも含まれる。   In the embodiment described above, an example in which the solid solution is obtained by melting sewage sludge has been described, but the solid solution can also be obtained by melting the urine sludge. That is, the solid solution is derived from sewage or human waste. The human waste includes those derived from livestock.

上以上説明した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、藻場構造物や植生構造物の具体的な構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the embodiments described above is an example of the present invention, and the present invention is not limited by the description, and the specific configuration of the seaweed bed structure or the vegetation structure has the effects of the present invention. Needless to say, the design can be changed as appropriate within the range of performance.

10:製造プラント
11:水処理設備
12:脱水装置
13:乾燥装置
14:溶融設備
15:水槽
16:搬送機構
17:整粒装置
18:選別機構
10: Production plant 11: Water treatment facility 12: Dehydration device 13: Drying device 14: Melting facility 15: Water tank 16: Conveying mechanism 17: Granulating device 18: Sorting mechanism

Claims (7)

藻類または水生植物の根付けまたは育成のために必要な鉄成分及びリン成分の供給源として用いられ、破砕スラグから回収され、鉄とリン化鉄を含有する固溶体を含む配合剤。 A compounding agent that is used as a source of iron and phosphorus components necessary for rooting or growing algae or aquatic plants, and that is recovered from crushed slag and contains a solid solution containing iron and iron phosphide . リン化鉄が下水またはし尿由来である請求項1記載の配合剤。   The compounding agent according to claim 1, wherein the iron phosphide is derived from sewage or human waste. 前記リン化鉄がリン酸塩及び鉄系凝集剤を含む被溶融物を溶融処理した破砕スラグから分離して得られる請求項1または2記載の配合剤。 The compounding agent of Claim 1 or 2 obtained by isolate | separating the to-be-melted material in which the said iron phosphide contains a phosphate and an iron type coagulant | floc from the crushed slag which carried out the melt process . 請求項1からの何れかに記載の配合剤が構造体に肥効調整可能に担持されている藻場構造物。 A seaweed bed structure in which the compounding agent according to any one of claims 1 to 3 is supported on the structure so as to be capable of adjusting fertilization. 請求項1からの何れかに記載の配合剤が構造体に肥効調整可能に担持されている植生構造物。 A vegetation structure in which the compounding agent according to any one of claims 1 to 3 is supported on the structure so as to be capable of adjusting fertilization. リン成分及び鉄成分を含む被溶融物を溶融する溶融処理ステップと、
前記溶融処理ステップで溶融されたスラグを冷却処理して固化する冷却処理ステップと、
前記冷却処理ステップで固化されたスラグを破砕した破砕スラグから鉄とリン化鉄を含有する固溶体を分離する分離ステップと、
を含み、
前記分離ステップで分離された固溶体を、藻類または水生植物の根付けまたは育成のために必要な鉄分及びリン成分の供給源として用いる配合剤の製造方法。
A melt treatment step for melting a melt containing a phosphorus component and an iron component;
A cooling process step of cooling and solidifying the slag melted in the melting process step;
A separation step of separating a solid solution containing iron and iron phosphide from crushed slag obtained by crushing the slag solidified in the cooling treatment step;
Including
Said separated in separation step the solid solution, a manufacturing method of a compounding agent used as a source of iron Ingredients and phosphorus components required for rooting or growth of algae or aquatic plants.
前記溶融処理ステップで溶融されるリン成分及び鉄成分を含む被溶融物は、生物処理によりリンが取り込まれ、鉄系凝集剤が添加された後に固液分離された下水汚泥であり、The material to be melted containing the phosphorus component and the iron component melted in the melt treatment step is sewage sludge in which phosphorus is taken in by biological treatment and solid-liquid separated after the iron-based flocculant is added,
前記分離ステップは、前記冷却処理ステップで固化されたスラグを整粒機構で所定の粒径に破砕し、磁力選別、篩選別または比重選別の何れかによりスラグから前記固溶体を分離するように構成されている請求項6記載の配合剤の製造方法。The separation step is configured to crush the slag solidified in the cooling treatment step into a predetermined particle size by a sizing mechanism, and to separate the solid solution from the slag by any one of magnetic sorting, sieve sorting, or specific gravity sorting. The manufacturing method of the compounding agent of Claim 6.
JP2012132612A 2012-06-12 2012-06-12 Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent Active JP5941344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132612A JP5941344B2 (en) 2012-06-12 2012-06-12 Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132612A JP5941344B2 (en) 2012-06-12 2012-06-12 Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent

Publications (2)

Publication Number Publication Date
JP2013256400A JP2013256400A (en) 2013-12-26
JP5941344B2 true JP5941344B2 (en) 2016-06-29

Family

ID=49953174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132612A Active JP5941344B2 (en) 2012-06-12 2012-06-12 Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent

Country Status (1)

Country Link
JP (1) JP5941344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963985B1 (en) * 2016-01-15 2016-08-03 日本重化学工業株式会社 Method for producing molten slag for phosphate fertilizer and method for producing phosphate fertilizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279674A (en) * 1991-03-07 1992-10-05 Teratsukusu:Kk Composition for coating concrete structure
JP3236205B2 (en) * 1995-12-08 2001-12-10 日立造船株式会社 Artificial reef
JP4033585B2 (en) * 1999-07-01 2008-01-16 大阪瓦斯株式会社 Sludge melting method
JP2001198546A (en) * 2000-01-19 2001-07-24 Sanki Eng Co Ltd Process for recovering phosphorus from sewage sludge or sewage sludge incineration ash
AT509593B1 (en) * 2010-11-15 2011-10-15 Sgl Carbon Se METHOD FOR REPROCESSING ORGANIC WASTE MATERIALS

Also Published As

Publication number Publication date
JP2013256400A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
Le et al. Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process
WO2013002250A1 (en) Phosphate fertilizer, and method for producing phosphate fertilizer
US11834382B2 (en) Pedosphere-improving granulate, method for producing same, and use thereof
WO2013175632A1 (en) Method for producing phosphorous fertilizer
US20190284106A1 (en) Production of a phosphate containing fertilizer
Kwon et al. Development of vermicast from sludge and powdered oyster shell
JPH04104736A (en) Fly ash-containing culture medium material for plant
KR100388346B1 (en) A fertilizer from the waste of agricultural, marine and stock raising products and sludge and its preparing method
Ramasamy et al. Carbide sludge management in acetylene producing plants by using vacuum filtration
CN110663623A (en) Comprehensive utilization method of coal mine high-salt mine water for desert paddy field and mariculture water supply
CN105316070A (en) Sludge solid fuel and preparation method of same
JP5941344B2 (en) Compounding agent, seaweed bed structure, vegetation structure, and method for producing compounding agent
JP5305047B2 (en) Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method
JP2013247860A (en) Recycled soil
JP2011235253A (en) Inorganic neutral flocculant derived from reclaimed gypsum, and system for cleaning polluted water using the same
JP5954777B2 (en) Method for producing phosphate fertilizer
CN110591716A (en) Stabilization repair material suitable for heavy metal pollution of tailing waste stone and preparation method
JP2010047645A (en) Water-retaining solidifying and conditioning agent for soil
JP4069056B2 (en) Tidal flat, shallow water environment restoration material
JP2004329023A (en) Paddy-rice raising-seedling culture soil
JP4269087B2 (en) Method for producing activated material for removing nitrate nitrogen
KR101114520B1 (en) Porous block for treatment of water
JP3739099B2 (en) Processed sludge and sludge treatment method
JP2005342624A (en) Method for producing bottom sediment purification material composed of shell
JP2969499B2 (en) Method for producing seedling culture soil using dewatered sludge as raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160520

R150 Certificate of patent or registration of utility model

Ref document number: 5941344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150