JPH04279674A - Composition for coating concrete structure - Google Patents

Composition for coating concrete structure

Info

Publication number
JPH04279674A
JPH04279674A JP3067893A JP6789391A JPH04279674A JP H04279674 A JPH04279674 A JP H04279674A JP 3067893 A JP3067893 A JP 3067893A JP 6789391 A JP6789391 A JP 6789391A JP H04279674 A JPH04279674 A JP H04279674A
Authority
JP
Japan
Prior art keywords
iron
composition
emulsion resin
concrete
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3067893A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
鈴木 哲緒
Kimisato Hamano
浜野 公里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERATSUKUSU KK
Shinto Paint Co Ltd
Original Assignee
TERATSUKUSU KK
Shinto Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TERATSUKUSU KK, Shinto Paint Co Ltd filed Critical TERATSUKUSU KK
Priority to JP3067893A priority Critical patent/JPH04279674A/en
Publication of JPH04279674A publication Critical patent/JPH04279674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Paints Or Removers (AREA)
  • Artificial Fish Reefs (AREA)

Abstract

PURPOSE:To obtain the title composition which prevents the occurrence of holes of concrete structure for man-made gathering-place of fish, wave suppression, check of erosion of rivers and the ocean and preserves alkali from elution, containing an emulsion resin, iron (compound), etc. CONSTITUTION:The objective composition comprising (A) an emulsion resin composed of an acrylic/styrene copolymer, a vinyl acetate/Veova(R) copolymer, urethane (one pack type) or epoxy (one pack type) having <=15 deg.C lowest film- forming temperature and <=20% saponification degree, (B) iron and/or an iron compound such as iron sulfate, iron sulfide, iron oxide, iron nitrate, iron hydroxide, iron carbide, iron carbonate or iron nitride and, in the case of the iron compound showing acidity, (C) a hydrating agent such as calcium hydroxide or cement powder caustic soda.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、魚礁用、消波用、河川
・海洋の侵食防止用に用いられるコンクリート構造物か
らアルカリが溶出するのを防止するために該コンクリー
ト構造物に塗布されるコンクリート構造物塗布用組成物
に関するものである。
[Industrial Application Field] The present invention is applied to concrete structures used for fish reefs, wave dissipation, and prevention of erosion in rivers and oceans in order to prevent alkali from leaching out of the concrete structures. The present invention relates to a composition for coating concrete structures.

【0002】0002

【従来技術】従来、沿岸域の埋立て、干拓、防波堤や突
堤の構築、消波ブロック沈設等の防波工事、河川の保安
、魚礁等には、多くのコンクリート構造物が使用されて
いるが、これらのコンクリート構造物を水中に沈設する
と、アルカリ(PH10〜13)が溶出する。溶出した
アルカリは、水中の微生物、藻類、魚介類の生息,生態
系に悪影響を与える。
[Prior Art] Conventionally, many concrete structures have been used for coastal area reclamation, reclamation, construction of breakwaters and jetties, wave prevention works such as sinking of wave-dissipating blocks, river security, fish reefs, etc. When these concrete structures are submerged in water, alkali (PH10-13) is eluted. The eluted alkali has a negative impact on the habitat of microorganisms, algae, fish and shellfish in the water, and the ecosystem.

【0003】そして従来、このようなコンクリート構造
物の表面に塗布することで、該コンクリート構造物から
溶出するアルカリを防止し、更に水中生物の育成に必要
な鉄分を含有した塗布剤が、例えば特公昭62−201
62号公報や、特公昭63−41527号公報に開示さ
れている。この種の塗布剤は既に魚礁やコンクリート構
造物に塗布されて実用化され、藻場増殖や魚介類の蝟集
効果に実績が出ている。なお鉄分は微生物のコロニーを
造り、藻類胞子の着生、魚介類の蝟集と、生物の生息環
境を活性化させる効果がある。
[0003] Conventionally, coating agents containing iron, which is necessary for the growth of aquatic organisms, have been applied to the surface of such concrete structures to prevent alkali from leaching out of the concrete structures, and have been applied to the surfaces of such concrete structures, for example. Kosho 62-201
It is disclosed in Japanese Patent Publication No. 62 and Japanese Patent Publication No. 41527/1983. This type of coating agent has already been put into practical use by being applied to fish reefs and concrete structures, and has proven effective in promoting seaweed beds and attracting fish and shellfish. Iron content has the effect of creating microbial colonies, attracting algae spores, and collecting fish and shellfish, and activating the habitat of living things.

【0004】0004

【発明が解決しようとする課題】上記既に提案され実用
化されている塗布剤は、水溶性アクリル樹脂に、硫酸第
一鉄、硫酸第二鉄、硫酸マンガン、又は硫酸に酸化鉄粉
や硫酸マンガン等を溶解させたものを混入したものであ
るが、以下のような問題点があった。
[Problems to be Solved by the Invention] The above-mentioned coating agents that have already been proposed and put into practical use include water-soluble acrylic resin, ferrous sulfate, ferric sulfate, manganese sulfate, or sulfuric acid and iron oxide powder or manganese sulfate. However, there were the following problems.

【0005】■アクリル等のエマルション樹脂に、硫酸
第一鉄を直接混合することは、硫酸第一鉄が水中で強い
酸性を示すため、エマルション樹脂が破壊を起こし、塗
布した塗面には素穴が多くなり、アルカリ溶出が阻止で
きない。
■ Directly mixing ferrous sulfate with emulsion resin such as acrylic will cause destruction of the emulsion resin as ferrous sulfate exhibits strong acidity in water, leaving bare holes in the painted surface. increases, and alkali elution cannot be prevented.

【0006】■また硫酸第一鉄はエマルション樹脂の破
壊に伴い、コンクリート表面での接着力が弱くなるため
、微生物蝟集効果が短くなる。
[0006] Furthermore, as ferrous sulfate destroys the emulsion resin, its adhesive strength on the concrete surface becomes weaker, and the microbial attracting effect becomes shorter.

【0007】■また硫酸第一鉄以外の化合物についても
、その配合割合や使用する具体的材料の組合せが適当で
なかったために経時的にコンクリートへの密着度が悪く
なったり、劣化が起こったりするという問題点があった
[0007] In addition, with regard to compounds other than ferrous sulfate, the adhesion to concrete deteriorates over time and deterioration occurs due to inappropriate combinations of compounding ratios and specific materials used. There was a problem.

【0008】本発明は上述の点に鑑みてなされたもので
あり、コンクリート構造物からのアルカリ溶出が効果的
に防止でき、コンクリート構造物の劣化を減少せしめ、
更に微生物蝟集効果が効果的に発揮できるコンクリート
構造物塗布用組成物を提供することにある。
The present invention has been made in view of the above points, and can effectively prevent alkali elution from concrete structures, reduce deterioration of concrete structures,
Another object of the present invention is to provide a composition for coating concrete structures that can effectively exhibit the microbial attracting effect.

【0009】具体的には、■コンクリートに浸透して密
着し、水中において劣化の少ない樹脂を見出し、■鉄成
分を樹脂中に安定に固定させ、■一液型にて使い易くす
る、ことなどを可能にすることであり、これらによって
コンクリートから溶出するアルカリを効果的に止め、鉄
分を存在させ、本来の目的である自然の環境を造り、生
物の生態系を活性化でき、また塗布作業を容易にするこ
とをその目的とする。
[0009]Specifically, 1) finding a resin that penetrates and adheres to concrete and has little deterioration in water, 2) stably fixing the iron component in the resin, and 2) making it easy to use as a one-component type. By doing so, we can effectively stop alkali leaching from concrete, allow iron to exist, create a natural environment that is the original purpose, activate the ecosystem of living things, and also reduce the coating work. Its purpose is to facilitate.

【0010】なお本発明はコンクリートからのアルカリ
溶出を完全に遮断するのではなく、微生物に影響を与え
ず微生物の生態系を乱さないように、コンクリート構造
物表面をPH9.0以下に永続的に維持できるようにし
たものである。
[0010] The present invention does not completely block alkaline elution from concrete, but rather permanently keeps the surface of concrete structures at pH 9.0 or lower so as not to affect microorganisms and disturb the microbial ecosystem. It was made so that it could be maintained.

【0011】[0011]

【課題を解決するための手段】本発明にかかるコンクリ
ート構造物塗布用組成物は、エマルション樹脂と、鉄及
び/又は鉄化合物と、前記鉄化合物が酸性を示す場合は
中和剤とを併せ含有せしめて構成した。また前記鉄成分
には無機体質顔料を混合してもよい。
[Means for Solving the Problems] The composition for coating concrete structures according to the present invention contains an emulsion resin, iron and/or an iron compound, and, if the iron compound is acidic, a neutralizing agent. At least it was configured. Further, an inorganic extender pigment may be mixed with the iron component.

【0012】上記各成分の混合割合は、エマルション樹
脂が100重量部に対して、鉄及び/又は鉄化合物と中
和剤と無機体質顔料の合計量が100〜200重量部で
あることが望ましい。
[0012] The mixing ratio of each of the above components is preferably such that the total amount of iron and/or iron compound, neutralizing agent and inorganic extender pigment is 100 to 200 parts by weight per 100 parts by weight of the emulsion resin.

【0013】鉄化合物等の合計量が100重量部よりも
少ないときは、エマルション樹脂による成膜度が強くな
ってアルカリの遮断効果は良くなるが、塗膜フクレが発
生し易く、該フクレはやがて塗膜の剥離を起こす。逆に
鉄化合物等の合計量が200重量部よりも多いときは、
成膜内に素穴が多く生じ、アルカリの遮断効果が劣り、
アルカリ溶出が多くなる。
[0013] When the total amount of iron compounds, etc. is less than 100 parts by weight, the degree of film formation by the emulsion resin becomes strong and the alkali blocking effect is improved, but blisters are likely to occur in the coating film, and the blisters eventually Causes paint film to peel. Conversely, when the total amount of iron compounds, etc. is more than 200 parts by weight,
Many holes are formed in the film, and the alkali blocking effect is poor.
Alkaline elution increases.

【0014】本発明において用いられる鉄化合物として
は、硫酸鉄(II)(III)、硫化鉄(II)(II
I)、酸化鉄(II)(III)、硝酸鉄(II)(I
II)、水酸化鉄(II)(III)、炭化鉄、炭酸鉄
(II)(III)、窒化鉄、硫酸鉄(III)アンモ
ニウム、フッ化鉄(II)(III)、ハロゲン化鉄(
II)(III)、リン化鉄(II)(III)、リン
酸鉄(II)(III)、ロダン鉄、有機鉄などがある
[0014] The iron compounds used in the present invention include iron (II) sulfate (III), iron (II) sulfide (II), and iron (II) sulfide (II).
I), iron (II) oxide (III), iron (II) nitrate (I
iron(II)(III) hydroxide, iron(II)(III) hydroxide, iron carbide, iron(II)(III) carbonate, iron nitride, ammonium iron(III) sulfate, iron(II)(III) fluoride, iron halide(
Examples include iron(II)(III), iron(II)(III) phosphate, iron(II)(III) phosphate, rhodanic iron, and organic iron.

【0015】酸性を示す鉄化合物の中和剤としては、水
酸化カルシウム(消石灰)、酸化カルシウム(生石灰)
、セメント粉末、セメント硬化物の粉末、苛性ソーダ、
苛性カリ、アンモニア、アミン類、等の低コスト品があ
る。即ち鉄成分として製造が容易な硫酸第一鉄を用いた
場合、そのPH値は2.4を示すため、これを水酸化カ
ルシウム等の中和剤で中和を行ない、PH7〜9の範囲
、つまりエマルション樹脂に加えても安全なPH域に調
整するものである。
[0015] Examples of neutralizing agents for acidic iron compounds include calcium hydroxide (slaked lime) and calcium oxide (quicklime).
, cement powder, cement hardened powder, caustic soda,
There are low-cost products such as caustic potash, ammonia, and amines. That is, when ferrous sulfate, which is easy to produce, is used as the iron component, its pH value is 2.4, so it is neutralized with a neutralizing agent such as calcium hydroxide, and the pH is in the range of 7 to 9. In other words, it adjusts the pH to a safe range even when added to emulsion resins.

【0016】鉄成分に併用する無機体質顔料としては、
無公害で無色又は白色のものが好ましく、天然より産す
る微粉化された、カオリン(Al2O3・2SiO2・
2H2O)、タルク〔Mg3H2・(SiO3)4・3
MgO・4SiO2・H2O〕、硫酸バリウム(BaS
O4)、炭酸バリウム(BaCO3)、炭酸カルシウム
(CaCO3)、ミカゲ石粉、大理石等があり、その他
、亜鉛華、酸化チタン、等の白色顔料も使用可能である
[0016] Inorganic extender pigments used in combination with the iron component include:
Non-polluting, colorless or white kaolin is preferable, and naturally produced finely powdered kaolin (Al2O3・2SiO2・
2H2O), talc [Mg3H2・(SiO3)4.3
MgO・4SiO2・H2O], barium sulfate (BaS
O4), barium carbonate (BaCO3), calcium carbonate (CaCO3), Mikageite powder, marble, etc. In addition, white pigments such as zinc white and titanium oxide can also be used.

【0017】エマルション樹脂としては、主に、セメン
ト混和用,モルタル用に市販されている、最低造膜温度
15℃以下、ケン価度20%以下のもので、アクリル、
アクリル/スチレン共重合物、酢酸ビニル/ベオバ共重
合物、ウレタン(一液型)、エポキシ(一液型)、等が
ある。エマルション樹脂はコンクリートへの水の浸透を
防止するとともにコンクリートからのアルカリの溶出を
防止するものであるが、陸上での貯蔵時、取扱時、作業
時、揮発性有機化合物対策の安全性などの面より、水溶
性エマルション樹脂を選んだ。
[0017] Emulsion resins are mainly commercially available for cement mixing and mortar, with a minimum film-forming temperature of 15°C or less and saponification value of 20% or less, such as acrylic,
Examples include acrylic/styrene copolymer, vinyl acetate/beova copolymer, urethane (one-component type), and epoxy (one-component type). Emulsion resins prevent water from penetrating into concrete and also prevent alkali from leaching out of concrete, but there are concerns regarding safety during storage, handling, and work on land, and measures against volatile organic compounds. Therefore, we selected a water-soluble emulsion resin.

【0018】[0018]

【作用】上記の如く本発明にかかるコンクリート構造物
塗布用組成物は、選択されたエマルション樹脂に対して
特定な割合で鉄成分と、場合によっては中和剤と無機体
質顔料を混合して構成したので、これをコンクリート構
造物に塗布して水中に浸漬しても、フクレ、ハガレ、ワ
レが起こらず、また塗膜内に素穴が生じにくく、コンク
リート構造物からのアルカリ溶出が微量に減じる。これ
によって該コンクリート構造物周辺の微生物の生態系を
乱すことなく、鉄に対する微生物の蝟集効果も高められ
る。この作用は継続的に続く。
[Operation] As described above, the composition for coating concrete structures according to the present invention is composed of a selected emulsion resin mixed with an iron component and, in some cases, a neutralizing agent and an inorganic extender pigment in a specific ratio. Therefore, even if this is applied to a concrete structure and immersed in water, no blistering, peeling, or cracking will occur, and holes will not easily form in the coating, reducing the amount of alkali leached from the concrete structure to a very small amount. . As a result, the effect of attracting microorganisms to iron can be enhanced without disturbing the microbial ecosystem around the concrete structure. This effect continues continuously.

【0019】[0019]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0020】図1は本発明にかかる第1乃至第6実施例
の配合組成及び配合割合(重量%)を示す図である。同
図において中和剤の欄の符号■〜■は、中和剤の種類を
示しその具体的成分は図2に示す。またエマルション樹
脂の欄の符号I〜Vは、エマルション樹脂の種類を示し
その具体的成分は図3に示す。なお図1に示すエマルシ
ョン樹脂中には水分が含まれており、実際のエマルショ
ン樹脂はその内、図3の加熱残分(%)である。
FIG. 1 is a diagram showing the blending composition and blending ratio (% by weight) of the first to sixth embodiments according to the present invention. In the figure, the symbols ■ to ■ in the neutralizing agent column indicate the types of neutralizing agents, and their specific components are shown in FIG. Further, the symbols I to V in the emulsion resin column indicate the types of emulsion resins, and their specific components are shown in FIG. The emulsion resin shown in FIG. 1 contains water, and the actual emulsion resin is the heating residue (%) shown in FIG.

【0021】図1に示すように、実施例1は鉄化合物と
して酸性を示さない酸化鉄(弁柄等)を用いたので中和
剤は用いない。一方実施例2〜6は鉄化合物として酸性
を示す硫酸第一鉄・7水を用いたので中和剤を用いる。
As shown in FIG. 1, in Example 1, non-acidic iron oxide (such as Bengara) was used as the iron compound, so no neutralizing agent was used. On the other hand, in Examples 2 to 6, ferrous sulfate/7 water, which is acidic, was used as the iron compound, so a neutralizing agent was used.

【0022】ここで図1に示すいずれの実施例の場合に
おいても、水分を除いたエマルション樹脂100重量部
に対して、酸化鉄(或いは硫酸第一鉄・7水)と中和剤
と無機体質顔料(カオリン)を併せた重量部は100〜
200重量部の範囲内となるように配合されている。
In any of the examples shown in FIG. 1, iron oxide (or ferrous sulfate/7 water), a neutralizing agent, and an inorganic substance were added to 100 parts by weight of the emulsion resin excluding water. Part by weight including pigment (kaolin) is 100~
It is blended within a range of 200 parts by weight.

【0023】次にこれら各実施例1〜6を構成する成分
の配合方法について順を追って説明する。
Next, the method of blending the components constituting each of Examples 1 to 6 will be explained in order.

【0024】〔1〕酸性を示さない鉄化合物を用いる場
合(実施例1の場合)は、該鉄化合物に水とポリカルボ
ン酸ナトリウム塩を加えて混合した後に、サンドグライ
ンドミルで粒径30μm以下(JIS−K−5400 
4.7.2線条法)になるように分散する。なおここで
ポリカルボン酸ナトリウム塩は分散剤である。
[1] When using an iron compound that does not show acidity (in the case of Example 1), after adding water and polycarboxylic acid sodium salt to the iron compound and mixing, grind the iron compound with a particle size of 30 μm or less using a sand grind mill. (JIS-K-5400
4.7.2 String method). Note that the polycarboxylic acid sodium salt is a dispersant here.

【0025】一方酸性を示す鉄化合物を用いる場合(実
施例2〜6の場合)は、該鉄化合物に中和剤と少量の水
を加え、撹拌機により十分混練し、ガラス電極水素イオ
ン濃度計でPH7〜9になる様に調整した後、無機体質
顔料(カオリン)の微紛状物を加え、更に水とポリカル
ボン酸ナトリウム塩を加えて、サンドグラインドミルで
粒径30μm以下になるように分散する。以上のように
して分散されたものを以下「ミルベース」という。
On the other hand, when using an iron compound exhibiting acidity (in the case of Examples 2 to 6), a neutralizing agent and a small amount of water are added to the iron compound, thoroughly kneaded with a stirrer, and a glass electrode hydrogen ion concentration meter is used. After adjusting the pH to 7 to 9, add fine powder of inorganic extender pigment (kaolin), further add water and sodium polycarboxylic acid salt, and use a sand grind mill to reduce the particle size to 30 μm or less. Spread. The product dispersed as described above is hereinafter referred to as "milbase".

【0026】〔2〕次にエマルション樹脂を予め計量し
、混合タンクに入れ、該エマルション樹脂を撹拌しなが
ら前記ミルベースを加え、混合する。
[2] Next, the emulsion resin is weighed in advance and placed in a mixing tank, and the mill base is added and mixed while stirring the emulsion resin.

【0027】〔3〕以上で本発明にかかるコンクリート
構造物塗布用組成物は完成するが、これら各実施例にお
いては更に該コンクリート構造物塗布用組成物に沈殿防
止剤としてヒドロキシプロピルメチルセルローズを加え
、撹拌混合した。
[3] The composition for coating concrete structures according to the present invention is completed as described above, but in each of these examples, hydroxypropyl methyl cellulose is further added as a suspending agent to the composition for coating concrete structures. , stirred and mixed.

【0028】次に本願発明者は上記各実施例と比較する
ための比較例も製作した。図4は比較例i〜vの配合組
成及び配合割合(重量%)を示す図である。同図におい
て中和剤の具体的成分は前記図2に示す符号■の水酸化
カルシウムであり、またエマルション樹脂の具体的成分
は各欄の符号I,VI,VIIに対応する図3の樹脂で
ある。
Next, the inventors of the present invention also produced comparative examples for comparison with each of the above embodiments. FIG. 4 is a diagram showing the blending composition and blending ratio (wt%) of Comparative Examples i to v. In the same figure, the specific components of the neutralizing agent are calcium hydroxide indicated by the symbol ■ shown in FIG. 2, and the specific components of the emulsion resin are the resins in FIG. be.

【0029】次にこれら各比較例i〜vを構成する成分
の配合方法について説明する。
Next, the method of blending the components constituting each of Comparative Examples i to v will be explained.

【0030】まず容器に硫酸第一鉄を入れ、これに水と
エマルション樹脂を加え混合した。比較例iはこれで完
成する。
First, ferrous sulfate was placed in a container, and water and emulsion resin were added and mixed. Comparative example i is now complete.

【0031】比較例ii〜vの場合は、硫酸第一鉄・7
水に中和剤(水酸化カルシウム)と少量の水を加えて混
練し、PH7〜9に調整した後に、無機体質顔料(カオ
リン)の微粉状物を加え、さらに水とポリカルボン酸ナ
トリウム塩を加え、サンドグラインドミルで粒径30μ
m以下になるように分散する(以下「ミルベース」とい
う)。次にエマルション樹脂を予め計量し、混合タンク
に入れ、該エマルション樹脂を撹拌しながら前記ミルベ
ースを加え、混合する。更にこの混合物にヒドロキシプ
ロピルメチルセルローズを加え、撹拌混合した。比較例
ii〜vはこれで完成する。
In the case of Comparative Examples ii to v, ferrous sulfate 7
After adding a neutralizing agent (calcium hydroxide) and a small amount of water to water and kneading and adjusting the pH to 7 to 9, fine powder of inorganic extender pigment (kaolin) is added, and then water and polycarboxylic acid sodium salt are added. In addition, the particle size is 30μ using a sand grind mill.
m or less (hereinafter referred to as "mil base"). Next, the emulsion resin is weighed in advance and placed in a mixing tank, and the mill base is added and mixed while stirring the emulsion resin. Furthermore, hydroxypropyl methyl cellulose was added to this mixture and mixed with stirring. Comparative Examples ii to v are now completed.

【0032】次に本願発明者は、上記実施例1〜6と比
較例i〜vをコンクリートブロックに塗布し、アルカリ
溶出試験と、藻の増殖程度評価試験を行なった。
Next, the inventor of the present invention applied the above-mentioned Examples 1 to 6 and Comparative Examples iv to v on concrete blocks, and conducted an alkali elution test and an algae growth evaluation test.

【0033】試験に用いるコンクリートブロックは、セ
メント/砂/砂利=1/3/6の比で混合し、アルカリ
測定用としては30×100×100(mm)サイズの
ものを、海水浸漬用(藻の増殖程度の評価用)としては
30×260×260(mm)サイズで中央にロープを
通す穴を明けたものを用い、いずれも7日間乾燥した。
The concrete blocks used in the test are mixed at a ratio of cement/sand/gravel = 1/3/6, and are 30 x 100 x 100 (mm) in size for alkaline measurement, and for seawater immersion (algae). For evaluation of the degree of proliferation of 30 x 260 x 260 (mm) samples with a hole in the center for passing a rope were used, and both were dried for 7 days.

【0034】上記アルカリ測定用と海水浸漬用のコンク
リートブロックのそれぞれに前記実施例1〜6、比較例
i〜vの組成物を、下記の条件で刷毛で3回塗布する。 1回目  20〜30μm乾燥膜厚に塗布,1日間乾燥
2回目                〃     
       ,     〃3回目        
        〃            ,5日間
乾燥
The compositions of Examples 1 to 6 and Comparative Examples iv to V were applied three times with a brush to the concrete blocks for alkali measurement and seawater immersion, respectively, under the following conditions. 1st coat: Apply to a dry film thickness of 20-30 μm, dry for 1 day. 2nd coat:
, 〃3rd time
〃 ,Dried for 5 days

【0035】〔1〕アルカリ溶出測定試験ポリ容器
(深さ60×120×130mm)の底へφ6mmのガ
ラス棒を2本入れ、その上に上記アルカリ測定用のコン
クリートブロックを入れ、水道水430ccを注入し、
5日間放置して水のPH値を測定した。PH値測定後、
水を同一量新しいものに取り替え、5日間放置して水の
PH値を再び測定した。この測定作業を5日毎に繰り返
し、コンクリートからのアルカリの溶出度を経時的に1
2か月間測定した。
[1] Alkali elution measurement test Two glass rods of 6 mm in diameter were placed in the bottom of a plastic container (depth 60 x 120 x 130 mm), the above-mentioned concrete block for alkali measurement was placed on top of the rods, and 430 cc of tap water was added. inject,
The pH value of the water was measured after being left for 5 days. After measuring the pH value,
The same amount of water was replaced with fresh water, and the water was left to stand for 5 days, and the pH value of the water was measured again. This measurement process is repeated every 5 days, and the degree of alkali elution from the concrete is measured by 1 over time.
Measurements were taken for 2 months.

【0036】図5はこの試験の結果を示す図である。同
図に示すように、本発明にかかる実施例1〜6の場合は
、アルカリ溶出度がPH9.0以下の状態を試験開始当
初から12か月間維持している。
FIG. 5 is a diagram showing the results of this test. As shown in the figure, in Examples 1 to 6 according to the present invention, the degree of alkali elution was maintained at pH 9.0 or lower for 12 months from the beginning of the test.

【0037】組成物無塗布(コンクリートブロックのま
ま)のものは、試験開始当初PH13.0から経時的に
低下して、PH11.3〜5を維持する。
[0037] In the case where no composition was applied (the concrete block remained), the pH decreased over time from 13.0 at the beginning of the test, and remained at 11.3 to 5.

【0038】比較例iの場合は、浸漬後5か月で上記無
塗布のものと同等のPH値に変化し、以後は無塗布のも
のと同等の経時変化を示す。
In the case of Comparative Example i, the pH value changes to the same as that of the uncoated specimen 5 months after immersion, and thereafter shows the same change over time as that of the uncoated specimen.

【0039】比較例iiは、上記無塗布,比較例iのも
のよりもPH値は低いが、エマルション樹脂の最低造膜
温度が15℃より高いので(図3の符号VI参照)、塗
膜が硬くなり、鉄成分と樹脂の間に隙間(微細なワレ)
ができ、アルカリ溶出量が経時的に多くなり、12か月
経過後にはPH値は約10.6となる。
Comparative Example ii has a lower pH value than the above-mentioned uncoated Comparative Example i, but since the minimum film forming temperature of the emulsion resin is higher than 15°C (see symbol VI in FIG. 3), the coating film is It becomes hard and there is a gap (fine cracks) between the iron component and the resin.
The amount of alkali elution increases over time, and after 12 months, the pH value becomes approximately 10.6.

【0040】比較例iiiは、上記無塗布,比較例iの
ものよりもPH値は低いが、エマルション樹脂のケン価
度が高い(40%)ので、コンクリートのアルカリに浸
され、樹脂のアルカリ遮断効果が低下して行き、12か
月経過後にはPH値は約10.6となる。
Comparative Example iii has a lower pH value than the uncoated Comparative Example i, but since the saponification value of the emulsion resin is high (40%), it is immersed in the alkali of the concrete and the resin is blocked by the alkali. The effect gradually decreases, and after 12 months, the pH value becomes approximately 10.6.

【0041】比較例ivは、上記無塗布,比較例i,i
i,iii,vのものよりもPH値は低いが、(エマル
ション樹脂)/(鉄化合物+中和剤+無機体質顔料)の
混合比を100/80としたので、即ちエマルション樹
脂の比率が高いので、該樹脂による遮断効果は大きいが
、フクレが目立ち、該フクレ部が穴明きとなってコンク
リートのアルカリが溶出し始め、12か月経過後にはP
H値は約10.2に上昇する。
Comparative Example iv is the above-mentioned non-coating, Comparative Example i, i
Although the pH value is lower than those of i, iii, and v, the mixing ratio of (emulsion resin)/(iron compound + neutralizing agent + inorganic extender pigment) was set to 100/80, that is, the ratio of emulsion resin is high. Therefore, although the blocking effect of the resin is great, the blisters become noticeable, and the blisters become holes, and the alkali in the concrete begins to dissolve, and after 12 months, P
The H value increases to about 10.2.

【0042】比較例vは、上記無塗布,比較例iのもの
よりもPH値は低いが、(エマルション樹脂)/(鉄化
合物+中和剤+無機体質顔料)の混合比を100/25
0としたので、即ちエマルション樹脂の比率が低いので
、素穴が多くなってコンクリートのアルカリが溶出し、
12か月経過後にはPH値は約10.6となる。
Comparative Example v has a lower pH value than the above-mentioned uncoated Comparative Example i, but the mixing ratio of (emulsion resin)/(iron compound + neutralizing agent + inorganic extender pigment) was 100/25.
Since it was set to 0, that is, the ratio of emulsion resin is low, there are many bare holes, and the alkali of the concrete is eluted.
After 12 months, the pH value will be approximately 10.6.

【0043】〔2〕藻の増殖程度評価試験前記実施例1
〜6、比較例i〜vの組成物を塗布した海水浸漬用のコ
ンクリートブロックにロープを結び、透明度5mの海中
の4mの深さに漬け、藻の増殖程度を調べた。
[2] Algae growth evaluation test Example 1
~6. A rope was tied to a concrete block for seawater immersion coated with the compositions of Comparative Examples iv to iv, and the block was immersed at a depth of 4 m in the sea with a transparency of 5 m, and the degree of algae growth was examined.

【0044】図6は該コンクリートブロックを1年間海
水中に漬けたときの藻増殖の状態を示す図である。同図
に示すように、無塗装のコンクリートブロックにはほと
んど藻が付着せず、また比較例i〜vのコンクリートブ
ロックには約50%の藻が付着するのに対して、実施例
1〜6のコンクリートブロックの場合はいずれもその全
体に藻が付着することがわかった。
FIG. 6 is a diagram showing the state of algae growth when the concrete block was immersed in seawater for one year. As shown in the figure, almost no algae adheres to the unpainted concrete blocks, and about 50% of algae adheres to the concrete blocks of Comparative Examples iv to 6, whereas the concrete blocks of Examples 1 to 6 It was found that algae adhered to all concrete blocks.

【0045】なお魚介類の蝟集性は、藻の付着程度と比
例すると言われている。
[0045] It is said that the ability of fish and shellfish to collect is proportional to the degree of adhesion of algae.

【0046】なお上記実施例においては、分散剤(実施
例のポリカルボン酸ナトリウム塩),沈殿防止剤(実施
例のヒドロキシプロピルメチルセルローズ)を配合した
ので、組成物の一液化ができ、使い易くなり、コンクリ
ート構造物に塗布する作業性が向上した。
In the above example, a dispersant (polycarboxylic acid sodium salt in the example) and a suspending agent (hydroxypropyl methyl cellulose in the example) were blended, so the composition could be made into one liquid, making it easier to use. This has improved the workability of applying it to concrete structures.

【0047】[0047]

【発明の効果】以上詳細に説明したように、本発明にか
かるコンクリート構造物塗布用組成物によれば、選択さ
れたエマルション樹脂に対して特定な割合で鉄及び/又
は鉄化合物、場合によっては中和剤,無機体質顔料を併
せ混合して組成物を構成したので、これをコンクリート
構造物に塗布して水中に浸漬しても、フクレ、ハガレ、
ワレが起こらず、コンクリート構造物からのアルカリ溶
出が微量に減じるという優れた効果を生ずる。これによ
って該コンクリート構造物周辺の微生物の生態系を乱す
ことなく、鉄に対する微生物の蝟集効果も高められる。 また上記効果は経時的に持続するので、コンクリート構
造物の劣化防止効果も併せ持つ。
Effects of the Invention As explained above in detail, according to the composition for coating concrete structures according to the present invention, iron and/or iron compounds, in some cases, can be added to the selected emulsion resin in a specific proportion. The composition was made by mixing a neutralizing agent and an inorganic extender pigment, so even if it was applied to a concrete structure and immersed in water, it would not cause blistering or peeling.
It has the excellent effect of not causing cracking and reducing alkali elution from concrete structures to a very small amount. As a result, the effect of attracting microorganisms to iron can be enhanced without disturbing the microbial ecosystem around the concrete structure. Furthermore, since the above-mentioned effect persists over time, it also has the effect of preventing deterioration of concrete structures.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明にかかる第1乃至第6実施例の配合組成
及び配合割合(重量%)を示す図である。
FIG. 1 is a diagram showing the blending composition and blending ratio (% by weight) of the first to sixth examples according to the present invention.

【図2】本発明に用いる中和剤の具体的種類を示す図で
ある。
FIG. 2 is a diagram showing specific types of neutralizing agents used in the present invention.

【図3】本発明に用いるエマルション樹脂の具体的種類
を示す図である。
FIG. 3 is a diagram showing specific types of emulsion resins used in the present invention.

【図4】比較例i〜vの配合組成及び配合割合(重量%
)を示す図である。
[Figure 4] Composite composition and blending ratio (wt%) of Comparative Examples i to v
).

【図5】実施例1〜6と比較例i〜vのアルカリ溶出測
定試験の結果を示す図である。
FIG. 5 is a diagram showing the results of an alkali elution measurement test for Examples 1 to 6 and Comparative Examples i to v.

【図6】実施例1〜6と比較例i〜vの藻の増殖程度評
価試験の結果を示す図である。
FIG. 6 is a diagram showing the results of algae growth evaluation tests for Examples 1 to 6 and Comparative Examples i to v.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】エマルション樹脂と、鉄及び/又は鉄化合
物と、前記鉄化合物が酸性を示す場合は中和剤とを併せ
含有することを特徴とするコンクリート構造物塗布用組
成物。
1. A composition for coating concrete structures, characterized in that it contains an emulsion resin, iron and/or an iron compound, and, if the iron compound is acidic, a neutralizing agent.
【請求項2】請求項1記載のコンクリート構造物塗布用
組成物には、更に無機体質顔料を併せ含有せしめたこと
を特徴とするコンクリート構造物塗布用組成物。
2. A composition for coating concrete structures, characterized in that the composition for coating concrete structures according to claim 1 further contains an inorganic extender pigment.
【請求項3】請求項1又は請求項2記載のエマルション
樹脂は、最低造膜温度15℃以下、ケン価度20%以下
のアクリル、又はアクリル/スチレン共重合物、又は酢
酸ビニル/ベオバ共重合物、又はウレタン(一液型)、
又はエポキシ(一液型)で構成されていることを特徴と
するコンクリート構造物塗布用組成物。
3. The emulsion resin according to claim 1 or 2 is acrylic, or acrylic/styrene copolymer, or vinyl acetate/beova copolymer, which has a minimum film forming temperature of 15° C. or less and saponification value of 20% or less. or urethane (one-component type),
Or a composition for applying to concrete structures characterized by being composed of epoxy (one-component type).
【請求項4】請求項1又は請求項2記載のコンクリート
構造物塗布用組成物に示す各成分の混合割合は、エマル
ション樹脂が100重量部に対して、該エマルション樹
脂以外の前記成分が併せて100〜200重量部である
ことを特徴とするコンクリート構造物塗布用組成物。
4. The mixing ratio of each component in the composition for coating concrete structures according to claim 1 or 2 is such that the emulsion resin is 100 parts by weight, and the components other than the emulsion resin are combined. A composition for coating concrete structures, characterized in that it contains 100 to 200 parts by weight.
【請求項5】請求項1乃至4の内のいずれか1項記載の
コンクリート構造物塗布用組成物を、コンクリート構造
物表面に塗布したことを特徴とするコンクリート構造物
5. A concrete structure, characterized in that the composition for coating a concrete structure according to any one of claims 1 to 4 is applied to the surface of the concrete structure.
【請求項6】請求項5記載のコンクリート構造物を水中
に設置したことを特徴とするコンクリート構造物の使用
方法。
6. A method of using a concrete structure, comprising installing the concrete structure according to claim 5 underwater.
JP3067893A 1991-03-07 1991-03-07 Composition for coating concrete structure Pending JPH04279674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3067893A JPH04279674A (en) 1991-03-07 1991-03-07 Composition for coating concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3067893A JPH04279674A (en) 1991-03-07 1991-03-07 Composition for coating concrete structure

Publications (1)

Publication Number Publication Date
JPH04279674A true JPH04279674A (en) 1992-10-05

Family

ID=13358030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3067893A Pending JPH04279674A (en) 1991-03-07 1991-03-07 Composition for coating concrete structure

Country Status (1)

Country Link
JP (1) JPH04279674A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022939A1 (en) * 2001-09-11 2003-03-20 Hunting Industrial Coatings Limited Surface coating composition
JP2013256400A (en) * 2012-06-12 2013-12-26 Kubota Corp Compounding agent, algae field structure, vegetation structure, and method for producing compounding agent
KR20240122998A (en) * 2023-02-06 2024-08-13 박상현 Oyster shell replacement material with self-cleaning ability and method for preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220162A (en) * 1985-07-17 1987-01-28 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Information recording and/or reading apparatus
JPS62215666A (en) * 1986-03-15 1987-09-22 Oozeki Kagaku Kogyo Kk Protecting material having improved elasticity and chemical resistance
JPS6341527A (en) * 1986-08-07 1988-02-22 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing semiconductor
JPS63189473A (en) * 1987-01-30 1988-08-05 Yoshiyuki Ogushi Surface coating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220162A (en) * 1985-07-17 1987-01-28 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Information recording and/or reading apparatus
JPS62215666A (en) * 1986-03-15 1987-09-22 Oozeki Kagaku Kogyo Kk Protecting material having improved elasticity and chemical resistance
JPS6341527A (en) * 1986-08-07 1988-02-22 Mitsubishi Petrochem Co Ltd Epoxy resin composition for sealing semiconductor
JPS63189473A (en) * 1987-01-30 1988-08-05 Yoshiyuki Ogushi Surface coating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022939A1 (en) * 2001-09-11 2003-03-20 Hunting Industrial Coatings Limited Surface coating composition
JP2013256400A (en) * 2012-06-12 2013-12-26 Kubota Corp Compounding agent, algae field structure, vegetation structure, and method for producing compounding agent
KR20240122998A (en) * 2023-02-06 2024-08-13 박상현 Oyster shell replacement material with self-cleaning ability and method for preparing the same

Similar Documents

Publication Publication Date Title
US4513029A (en) Sea water antifouling method
JP6909894B2 (en) Antifouling paint composition, antifouling coating film, antifouling base material and its manufacturing method
KR20080089869A (en) Antifouling paint composition
US6001157A (en) Additive for antifouling paint
CN104556819B (en) A kind of maritime concrete corrosion inhibitor
JPWO2017094768A1 (en) Antifouling paint composition, antifouling coating film, antifouling substrate, and method for producing the antifouling substrate
JPWO2020022431A1 (en) Antifouling paint composition, antifouling coating film, base material with antifouling coating film, its manufacturing method, and repair method
Zhu et al. Anti-microbial corrosion performance of concrete treated by Cu2O electrodeposition: Influence of different treatment parameters
JPH04279674A (en) Composition for coating concrete structure
DE10353185A1 (en) Biocide-free antifouling coating
CN101121857A (en) Single-component non-toxic stain-resisting paint based on quinones
JPH04306269A (en) Antifouling paint
CN106186973B (en) A kind of antibacterial anticorrosive paint of photocatalysis and its coating processes
JP6183621B2 (en) Manufacturing method for civil engineering materials
CN101831232B (en) Rare earth compound epoxy zinc-rich paint for preventing microorganism attachment and preparation method thereof
JPS626863B2 (en)
JPH06504025A (en) Surface coating compositions and composites
KR20210113060A (en) Paint system with anti-fouling character
JP2808087B2 (en) Deterioration inhibitor and method for preventing deterioration of concrete structure
Miksic et al. Biodegradable and renewable raw materials in a new generation of water-treatment products
CN104743953B (en) Low-cost rebar corrosion inhibitor
JPH09255897A (en) Prevent ion of adhesion of aquatic organism and coating material for preventing adhesion of aquatic organism
JPS6241632B2 (en)
KR100389954B1 (en) Paints for growing a seaweed
JPS6357503A (en) Antifouling agent for aquatic life