JP2003218440A - Package for housing optical semiconductor element and optical semiconductor device - Google Patents

Package for housing optical semiconductor element and optical semiconductor device

Info

Publication number
JP2003218440A
JP2003218440A JP2002017672A JP2002017672A JP2003218440A JP 2003218440 A JP2003218440 A JP 2003218440A JP 2002017672 A JP2002017672 A JP 2002017672A JP 2002017672 A JP2002017672 A JP 2002017672A JP 2003218440 A JP2003218440 A JP 2003218440A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
layer
metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002017672A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kawabata
和弘 川畑
Koichi Uchimoto
晃一 内本
Nobuyuki Tanaka
信幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002017672A priority Critical patent/JP2003218440A/en
Publication of JP2003218440A publication Critical patent/JP2003218440A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat radiating property of an optical semiconductor element mounted on the upper surface of a metallic substrate through a mounting substrate. <P>SOLUTION: The thickness of the metallic substrate is adjusted to 0.1-0.5 mm. In addition, the mounting substrate has a metal-carbon complex A obtained by impregnating a metallic component n containing at least one kind selected from among Ag, Ti, Cr, Zr, and W in an amount of 0.2-10 wt.% and Cu in an amount of 90-99.8 wt.% into a carbonaceous base material m in which aggregates of unidirectional carbon fibers 1 are scattered, a stainless steel layer X and a Cu layer Y respectively laminated upon the upper and lower surfaces of the complex A, and a plated metallic layer b formed to coat the surface of the Cu layer Y. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザ(L
D),フォトダイオード(PD)等の光半導体素子を収
容するための光半導体素子収納用パッケージおよび光半
導体装置に関する。
TECHNICAL FIELD The present invention relates to a semiconductor laser (L
D), an optical semiconductor device housing package for housing an optical semiconductor device such as a photodiode (PD), and an optical semiconductor device.

【0002】[0002]

【従来の技術】従来の光半導体素子収納用パッケージ
(以下、光半導体パッケージともいう)を図4,図5に
それぞれ斜視図,断面図で示す(特開2001−144361公報
参照)。この光半導体パッケージは、上面に光半導体素
子15が異方性高熱伝導板16(面方向の熱伝導率が250W
/m・K以上)を介して載置される載置部11aを有する
とともに、厚さが0.1〜0.5mmの基体11と、基体11の上
面に載置部11aを囲繞するように接合され、光ファイバ
を保持する筒状の光ファイバ固定部材13を有する金属製
の枠体12と、光ファイバ固定部材13に設けられたウイン
ドウ14とを具備している。
2. Description of the Related Art A conventional package for storing an optical semiconductor element (hereinafter, also referred to as an optical semiconductor package) is shown in FIGS. 4 and 5 in a perspective view and a sectional view, respectively (see Japanese Patent Laid-Open No. 2001-144361). In this optical semiconductor package, the optical semiconductor element 15 has an anisotropic high thermal conductivity plate 16 (having a thermal conductivity of 250 W in the plane direction) on the upper surface.
/ M · K or more), and has a base 11 having a thickness of 0.1 to 0.5 mm, and is joined to the upper surface of the base 11 so as to surround the base 11a. A metal frame 12 having a tubular optical fiber fixing member 13 for holding an optical fiber, and a window 14 provided in the optical fiber fixing member 13 are provided.

【0003】基体11の厚さは、光半導体パッケージの気
密性がヘリウム(He)ガスのリーク量で1×10-8at
m・cc/sec以下に保持され、かつロウ付け時の熱
応力や基体11をベース板(外部電気回路基板)にネジ止
めするときの機械的応力で変形しない範囲で薄くしてい
る。従って、光半導体パッケージの低背化による小型化
を可能としている。
The thickness of the substrate 11 is such that the hermeticity of the optical semiconductor package is 1 × 10 −8 at as a leak amount of helium (He) gas.
The thickness is kept within a range of m · cc / sec or less, and is made thin within a range in which it is not deformed by thermal stress at the time of brazing or mechanical stress at the time of screwing the base 11 to the base plate (external electric circuit board). Therefore, the optical semiconductor package can be downsized by reducing its height.

【0004】また、異方性高熱伝導板16は、面方向で50
0W/m・K、厚さ方向で80W/m・Kの熱伝導率を有
する炭素(C)−黒鉛(C)繊維複合板、または面方向
で300W/m・K、厚さ方向で100W/m・Kの熱伝導率
を有する銅(Cu)−黒鉛繊維複合板から成り、さらに
基体11の厚さを薄くしたことにより、光半導体素子15の
熱を効率良く、外部電気回路基板に伝達できる。また、
異方性高熱伝導板16の面方向の熱膨張係数はいずれも5
×10-6〜10×10-6/℃であり、基体11の熱膨張係数に近
似していることから、基体11と異方性高熱伝導板16との
熱歪みは小さく、従ってそれらの接合を強固にできる。
Further, the anisotropic high thermal conductive plate 16 has 50 in the plane direction.
Carbon (C) -graphite (C) fiber composite plate having a thermal conductivity of 0 W / m · K and 80 W / m · K in the thickness direction, or 300 W / m · K in the plane direction and 100 W / in the thickness direction It is made of a copper (Cu) -graphite fiber composite plate having a thermal conductivity of m · K, and the thickness of the base 11 is made thin so that the heat of the optical semiconductor element 15 can be efficiently transferred to the external electric circuit board. . Also,
The coefficient of thermal expansion in the plane direction of the anisotropic high thermal conductive plate 16 is 5 in each case.
× a 10 -6 ~10 × 10 -6 / ℃ , since it is close to the thermal expansion coefficient of the base 11, the thermal distortion of the substrate 11 and the anisotropic high thermal conduction plate 16 small, thus joining them Can be strengthened.

【0005】また、基体11の厚さが薄いため、異方性高
熱伝導板16は基体11の反り変形を防止する適度な補強板
としても機能する。即ち、異方性高熱伝導板16は、光半
導体素子15が搭載される部位を含み、かつ枠体12に囲繞
された基体11の上面の面積の50%以上の部位に接合され
ていることから補強効果を有する。さらには、枠体12の
基体11と接する部分をリブ構造とすることによっても補
強し得る。
Further, since the base 11 is thin, the anisotropic high thermal conductive plate 16 also functions as an appropriate reinforcing plate for preventing the warp deformation of the base 11. That is, the anisotropic high thermal conductive plate 16 includes a portion on which the optical semiconductor element 15 is mounted, and is bonded to 50% or more of the area of the upper surface of the base 11 surrounded by the frame body 12. Has a reinforcing effect. Further, the portion of the frame body 12 in contact with the base body 11 can be reinforced by forming a rib structure.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来例において、異方性高熱伝導板16は基体11の上面の面
方向の熱伝導率は小さくはないため、光半導体素子15の
熱を面方向に効率良く伝達できるが、厚さ方向の熱伝導
率は80〜100W/m・K程度と小さいため、光半導体素
子15の熱量が大きくなると厚さ方向への熱の伝達効率が
低下する。そのため、基体11から外部電気回路基板への
熱の伝達が損なわれ、異方性高熱伝導板16に内在した熱
により光半導体素子15も高温となり、光半導体素子15が
誤作動を起こしたり熱破壊する等の問題点を有してい
た。
However, in the above conventional example, since the anisotropic high thermal conductive plate 16 does not have a small thermal conductivity in the surface direction of the upper surface of the substrate 11, the heat of the optical semiconductor element 15 is transferred in the surface direction. However, since the heat conductivity in the thickness direction is as small as about 80 to 100 W / m · K, the heat transfer efficiency in the thickness direction decreases as the amount of heat of the optical semiconductor element 15 increases. Therefore, the transfer of heat from the base 11 to the external electric circuit board is impaired, and the heat contained in the anisotropic high thermal conductive plate 16 causes the optical semiconductor element 15 to reach a high temperature, causing malfunction or thermal destruction of the optical semiconductor element 15. There was a problem such as doing.

【0007】また、異方性高熱伝導板16に内在した熱に
より基体11と異方性高熱伝導板16との温度差が大きくな
るため、たとえ異方性高熱伝導板16を補強板として機能
させようとしたり、枠体12の基体11と接する部分をリブ
構造としても、異方性高熱伝導板16自体が反り変形を起
こし、また基体11の厚さが薄いことから、基体11も同様
に反り変形を起こす。そのため、光半導体素子15と光フ
ァイバとの光軸がずれてそれらの光結合効率が低下し、
光半導体素子15の作動性が低下するという問題点を有し
ていた。
Further, since the temperature difference between the base 11 and the anisotropic high thermal conductive plate 16 becomes large due to the heat contained in the anisotropic high thermal conductive plate 16, even if the anisotropic high thermal conductive plate 16 functions as a reinforcing plate. Alternatively, even if the portion of the frame body 12 in contact with the base body 11 has a rib structure, the anisotropic high thermal conductive plate 16 itself warps and deforms, and since the base body 11 is thin, the base body 11 also warps. Cause deformation. Therefore, the optical axes of the optical semiconductor element 15 and the optical fiber are deviated, and the optical coupling efficiency thereof is lowered,
There is a problem that the operability of the optical semiconductor element 15 is lowered.

【0008】また、光半導体パッケージ内部の気密性検
査は、内部にHeガスを充填させてリーク量を測定する
ことにより行われるが、異方性高熱伝導板16は一般的に
気孔率が高い。そのため、Heガスが異方性高熱伝導板
16にトラップされる場合がある。即ち、Heガスが炭素
と黒鉛繊維との間や、黒鉛繊維間にトラップされる場合
がある。その結果、たとえ気密性の良好な光半導体パッ
ケージであっても、あたかも気密性の不良な不良品とし
て誤って判定されてしまう場合があるという問題点を有
していた。
Further, the airtightness test inside the optical semiconductor package is performed by filling the inside with He gas and measuring the leak amount, but the anisotropic high thermal conductive plate 16 generally has a high porosity. Therefore, He gas is an anisotropic high thermal conductive plate.
May be trapped in 16. That is, He gas may be trapped between the carbon and the graphite fiber or between the graphite fibers. As a result, there is a problem that even an optical semiconductor package having good airtightness may be erroneously determined as a defective product having poor airtightness.

【0009】このような問題点を解決するために、異方
性高熱伝導板16として、熱伝導率が面方向のみならず厚
さ方向も250W/m・K程度であり、かつ表面に気孔の
無い緻密な銅−タングステン(W)合金等から成るもの
を使用することが考えられるが、比重が大きいため光半
導体パッケージ自体が重くなる。そのため、近時の光半
導体パッケージの軽量化といった動向から外れることと
なる。
In order to solve such a problem, the anisotropic high thermal conductive plate 16 has a thermal conductivity of about 250 W / m · K not only in the plane direction but also in the thickness direction and has pores on the surface. It is conceivable to use a dense copper-tungsten (W) alloy or the like, but since the specific gravity is large, the optical semiconductor package itself becomes heavy. Therefore, it will be out of the trend of recent weight reduction of optical semiconductor packages.

【0010】なお、異方性高熱伝導板16は光半導体素子
15を支持する基板、所謂搭載用基板としても機能する。
The anisotropic high thermal conductive plate 16 is an optical semiconductor device.
It also functions as a substrate that supports 15, that is, a so-called mounting substrate.

【0011】従って、本発明は上記問題点に鑑み完成さ
れたものであり、その目的は、熱伝導率が面方向(横方
向)のみならず厚さ方向(上下方向)でも高く、かつ表
面に気孔の無い緻密な搭載用基板を用いることにより、
光半導体素子の作動性が良好で、かつ光半導体パッケー
ジ内部の気密性検査に対して適格であり、さらに小型軽
量の光半導体パッケージを提供することにある。
Therefore, the present invention has been completed in view of the above problems, and an object thereof is to have a high thermal conductivity not only in the plane direction (lateral direction) but also in the thickness direction (vertical direction) and at the surface. By using a dense mounting board with no pores,
It is an object of the present invention to provide an optical semiconductor package which has a good operability of the optical semiconductor element, is suitable for the airtightness test inside the optical semiconductor package, and is small and lightweight.

【0012】[0012]

【課題を解決するための手段】本発明の光半導体素子収
納用パッケージは、上面に光半導体素子が搭載用基板を
介して載置される載置部を有する略長方形の金属製の基
体と、該基体の上面に前記載置部を囲繞するように接合
され、一側部に貫通孔から成る光ファイバ固定部材取付
部、他の側部に切欠きまたは貫通穴から成る入出力端子
取付部が形成された枠体と、前記光ファイバ固定部材取
付部に嵌着されるかまたは前記貫通孔の枠体外側開口の
周に一端が接合された筒状の光ファイバ固定部材と、前
記入出力端子取付部に嵌着された入出力端子とを具備し
た光半導体素子収納用パッケージにおいて、前記基体の
厚さは0.1〜0.5mmであり、前記搭載用基板は、一方向
性炭素繊維の集合体が内部に分散された炭素質母材中に
銀,チタン,クロム,ジルコニウムおよびタングステン
のうちの少なくとも一種を0.2〜10重量%ならびに銅を9
0〜99.8重量%含有する金属成分が含浸された金属炭素
複合体と、該金属炭素複合体の上下面に順次積層された
ステンレススチール層および銅層と、前記銅層の表面に
被着された金属メッキ層とを有していることを特徴とす
る。
A package for storing an optical semiconductor element according to the present invention is a substantially rectangular metal base having a mounting portion on the top surface of which an optical semiconductor element is mounted via a mounting substrate. An optical fiber fixing member mounting portion, which is joined to the upper surface of the base body so as to surround the mounting portion, has a through hole on one side, and an input / output terminal mounting portion having a notch or a through hole on the other side. The formed frame body, a tubular optical fiber fixing member which is fitted to the optical fiber fixing member mounting portion or one end of which is joined to the circumference of the frame body outside opening of the through hole, and the input / output terminal In a package for accommodating an optical semiconductor element having an input / output terminal fitted in a mounting portion, the thickness of the base is 0.1 to 0.5 mm, and the mounting substrate is an assembly of unidirectional carbon fibers. Silver, titanium, and chromium in the carbonaceous base material dispersed inside At least one of 0.2 to 10 wt% and copper of zirconium and tungsten 9
A metal-carbon composite impregnated with a metal component containing 0 to 99.8% by weight, a stainless steel layer and a copper layer sequentially stacked on the upper and lower surfaces of the metal-carbon composite, and a copper layer deposited on the surface of the copper layer And a metal plating layer.

【0013】本発明の光半導体素子収納用パッケージ
は、上記の構成により、光半導体素子が搭載される搭載
用基板は、熱伝導率が面方向のみならず厚さ方向でも高
く、かつ表面に気孔の無い緻密なものとなることから、
光半導体素子の作動性を良好とでき、また光半導体パッ
ケージ内部の気密性も安定的に保持されたものとなる。
With the package for storing an optical semiconductor element of the present invention, the mounting substrate on which the optical semiconductor element is mounted has a high thermal conductivity not only in the plane direction but also in the thickness direction and has pores on the surface. Since it will be a precise thing without
The operability of the optical semiconductor element can be improved, and the airtightness inside the optical semiconductor package can be stably maintained.

【0014】本発明の光半導体素子収納用パッケージに
おいて、好ましくは、ステンレススチール層の厚さが5
〜50μmであり、かつ銅層の厚さが100〜300μmである
ことを特徴とする。
In the package for accommodating an optical semiconductor device of the present invention, the thickness of the stainless steel layer is preferably 5
˜50 μm, and the thickness of the copper layer is 100 to 300 μm.

【0015】本発明の光半導体素子収納用パッケージ
は、上記の構成により、光半導体素子の作動時に発する
熱の伝達性をより良好とできる。
With the above structure, the package for accommodating an optical semiconductor element of the present invention can further improve the transferability of heat generated when the optical semiconductor element operates.

【0016】本発明の光半導体装置は、本発明の光半導
体パッケージと、載置部に載置固定されるとともに入出
力端子に電気的に接続された光半導体素子と、枠体の上
面に接合された蓋体とを具備したことを特徴とする。
The optical semiconductor device of the present invention includes an optical semiconductor package of the present invention, an optical semiconductor element mounted and fixed on a mounting portion and electrically connected to input / output terminals, and bonded to the upper surface of a frame. It is characterized by including the lid body.

【0017】本発明の光半導体装置は、上記の構成によ
り、上記本発明の光半導体パッケージを用いた信頼性の
高い光半導体装置を提供できる。
The optical semiconductor device of the present invention can provide a highly reliable optical semiconductor device using the optical semiconductor package of the present invention having the above-mentioned configuration.

【0018】[0018]

【発明の実施の形態】本発明の光半導体素子収納用パッ
ケージを以下に詳細に説明する。図1,図2は本発明の
光半導体パッケージについて実施の形態の一例を示すも
のであり、図1は光半導体パッケージの斜視図、図2は
光半導体パッケージの断面図、図3は光半導体パッケー
ジの搭載用基板の部分拡大断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION The package for storing an optical semiconductor element of the present invention will be described in detail below. 1 and 2 show an example of an embodiment of an optical semiconductor package of the present invention. FIG. 1 is a perspective view of the optical semiconductor package, FIG. 2 is a sectional view of the optical semiconductor package, and FIG. 3 is an optical semiconductor package. FIG. 3 is a partially enlarged cross-sectional view of the mounting board of FIG.

【0019】図1,図2において、1は基体、2は枠
体、3は光ファイバ固定部材(以下、固定部材とい
う)、4はウインドウ、5は光半導体素子、6は搭載用
基板、7は入出力端子である。基体1,枠体2,固定部
材3,ウインドウ4,入出力端子7とで、光半導体素子
5,搭載用基板6を内部に収容する容器が主に構成され
る。
1 and 2, 1 is a base, 2 is a frame, 3 is an optical fiber fixing member (hereinafter referred to as a fixing member), 4 is a window, 5 is an optical semiconductor element, 6 is a mounting substrate, and 7 is a mounting substrate. Are input / output terminals. The base body 1, the frame body 2, the fixing member 3, the window 4, and the input / output terminal 7 mainly constitute a container that houses the optical semiconductor element 5 and the mounting substrate 6.

【0020】本発明の基体1は、Cu−W合金,Fe−
Ni合金,Fe−Ni−Co合金等の金属から成り、そ
の上面の載置部1aに光半導体素子5が搭載用基板6を
介して載置固定される所謂支持基板として機能する。ま
た、基体1は、光半導体素子5の熱を効率良く外部電気
回路基板(図示せず)に伝達する所謂放熱板としても機
能する。さらに、基体1の対向する端部にはネジ穴1b
が形成されており、ネジ穴1bにネジを通して外部電気
回路基板にネジ止めすることにより固定される。
The substrate 1 of the present invention is made of Cu-W alloy, Fe-
It is made of a metal such as Ni alloy or Fe-Ni-Co alloy, and functions as a so-called support substrate on which the optical semiconductor element 5 is mounted and fixed on the mounting portion 1a on the upper surface thereof via the mounting substrate 6. The base 1 also functions as a so-called heat dissipation plate that efficiently transfers the heat of the optical semiconductor element 5 to an external electric circuit board (not shown). Further, screw holes 1b are provided at the opposite ends of the base 1.
Is formed, and is fixed by screwing the screw through the screw hole 1b and fixing it to the external electric circuit board.

【0021】本発明において、基体1の上面には放熱板
としても機能する搭載用基板6が固定されるため、光半
導体素子5の作動時に発する熱は効率良く外部電気回路
基板に伝達される。また、基体1の厚さをある程度薄く
することにより、熱伝達効率をさらに良好にできる。ま
た、基体1の厚さを薄くすることにより光半導体パッケ
ージを低背化することができ、近時の動向に適したもの
となる。
In the present invention, the mounting substrate 6, which also functions as a heat dissipation plate, is fixed to the upper surface of the base 1, so that the heat generated during the operation of the optical semiconductor element 5 is efficiently transferred to the external electric circuit substrate. Further, the heat transfer efficiency can be further improved by reducing the thickness of the base body 1 to some extent. Further, by reducing the thickness of the base body 1, it is possible to reduce the height of the optical semiconductor package, which is suitable for recent trends.

【0022】基体1の厚さは0.1〜0.5mmとする。0.1
mm未満の場合、基体1の剛性が著しく低下し、基体1
と枠体2とのロウ付け時や、外部電気回路基板へのネジ
止め時に基体1に反りが発生し易い。そのため、光半導
体素子5と光ファイバ(図示せず)との光軸がずれ、そ
れらの光結合効率が低下し光半導体素子5の作動性が低
下する。0.5mmを超えると、基体1のプレス加工時に
バリ等が発生し易くなり、加工性が損なわれるととも
に、基体1に比し熱伝導率の非常に高い搭載用基板6か
ら基体1に伝達された熱を効率良く外部電気回路基板に
伝え難くなる。上記のような厚さによる効果を奏するよ
うな基体1の外形寸法は40mm角程度以下の長方形が好
適である。40mm角を超えると、光半導体パッケージが
大型化するとともに基体1に大きな反りや撓み、波打つ
ような変形が生じ易くなる。より好適には10mm角〜40
mm角がよい。具体的には20mm×40mm程度以下の長
方形であり、さらに好適には(10〜14mm)×(28〜32m
m)程度である。
The substrate 1 has a thickness of 0.1 to 0.5 mm. 0.1
If it is less than mm, the rigidity of the substrate 1 is significantly reduced, and the substrate 1
The base body 1 is likely to be warped when brazing the frame body 2 to the frame body 2 or when screwing to the external electric circuit board. Therefore, the optical axes of the optical semiconductor element 5 and the optical fiber (not shown) are deviated, the optical coupling efficiency between them is lowered, and the operability of the optical semiconductor element 5 is lowered. If it exceeds 0.5 mm, burrs and the like are likely to occur during press working of the base body 1, processability is impaired, and heat is transferred from the mounting substrate 6 having a very high thermal conductivity as compared with the base body 1 to the base body 1. It becomes difficult to efficiently transfer heat to the external electric circuit board. It is preferable that the outer dimensions of the base body 1 exhibiting the effect of the thickness as described above be a rectangle of about 40 mm square or less. If it exceeds 40 mm square, the optical semiconductor package becomes large in size, and the substrate 1 is likely to be largely warped, bent, or wavy. More preferably 10 mm square to 40
mm square is good. Specifically, it is a rectangle of about 20 mm x 40 mm or less, and more preferably (10 to 14 mm) x (28 to 32 m).
m).

【0023】基体1は、その材料のインゴットに圧延加
工やプレス加工等の従来周知の金属加工を施すことによ
り所定形状に作製される。また、その表面には耐蝕性に
優れる金属、具体的には厚さ0.5〜9μmのNi層と厚
さ0.5〜9μmの金(Au)層を順次メッキ法により被着
させておくのが良く、基体1が酸化腐食するのを有効に
防止できる。
The base body 1 is produced in a predetermined shape by subjecting the ingot of the material to a conventionally known metal working such as rolling or pressing. Further, it is preferable that a metal having excellent corrosion resistance, specifically, a Ni layer having a thickness of 0.5 to 9 μm and a gold (Au) layer having a thickness of 0.5 to 9 μm are sequentially deposited on the surface by a plating method, It is possible to effectively prevent the base body 1 from being oxidized and corroded.

【0024】基体1の上面の載置部1aを囲繞するよう
に接合(ロウ付け)される枠体2は、一側部に貫通孔か
ら成る光ファイバ固定部材取付部(以下、固定部材取付
部ともいう)3aを、他の側部に切欠きまたは貫通穴か
ら成る入出力端子取付部7aを有し、Fe−Ni合金や
Fe−Ni−Co合金等の金属から成る。
The frame 2 to be joined (brazed) so as to surround the mounting portion 1a on the upper surface of the base 1 has an optical fiber fixing member attaching portion (hereinafter, fixing member attaching portion) having a through hole on one side. 3a) having an input / output terminal mounting portion 7a formed by a notch or a through hole on the other side and made of a metal such as Fe—Ni alloy or Fe—Ni—Co alloy.

【0025】固定部材取付部3aには、光ファイバが接
着されたホルダー(図示せず)を固定するための筒状の
固定部材3が嵌着され、銀(Ag)ロウ等のロウ材で接
合される。または、固定部材取付部3aの枠体2外面側
開口の周辺部に固定部材3の一端が銀(Ag)ロウ等の
ロウ材で接合される。この固定部材3はFe−Ni合金
やFe−Ni−Co合金等の金属から成り、例えばFe
−Ni−Co合金から成る場合、この合金のインゴット
に圧延加工やプレス加工等の金属加工を施すことにより
所定形状に作製される。また、その表面には酸化腐食を
有効に防止するために、厚さ0.5〜9μmのNi層と厚
さ0.5〜9μmのAu層をメッキ法により順次被着するの
が良い。
A cylindrical fixing member 3 for fixing a holder (not shown) to which an optical fiber is adhered is fitted to the fixing member attaching portion 3a, and is joined with a brazing material such as silver (Ag) wax. To be done. Alternatively, one end of the fixing member 3 is joined to the peripheral portion of the opening on the outer surface side of the frame body 2 of the fixing member attaching portion 3a with a brazing material such as silver (Ag) brazing. The fixing member 3 is made of a metal such as Fe-Ni alloy or Fe-Ni-Co alloy, and is made of, for example, Fe.
When it is made of a —Ni—Co alloy, it is formed into a predetermined shape by subjecting an ingot of this alloy to metal working such as rolling and pressing. Further, in order to effectively prevent oxidative corrosion, it is preferable that a Ni layer having a thickness of 0.5 to 9 μm and an Au layer having a thickness of 0.5 to 9 μm be sequentially deposited on the surface by a plating method.

【0026】なお、固定部材3の内周面には、集光レン
ズとして機能するとともに光半導体パッケージの内部を
塞ぐ非晶質ガラス等から成るウインドウ4が、その接合
部の表面に形成されたメタライズ層を介して、200〜400
℃の融点を有するAu−錫(Sn)合金等の低融点ロウ
材で接合される。
A window 4 made of amorphous glass or the like, which functions as a condenser lens and closes the inside of the optical semiconductor package, is formed on the inner peripheral surface of the fixing member 3 on the surface of the joint portion. 200-400 through layers
It is joined with a low melting point brazing material such as Au-tin (Sn) alloy having a melting point of ° C.

【0027】ウインドウ4は、熱膨張係数が4×10-6
12×10-6/℃(室温〜400℃)のサファイア(単結晶ア
ルミナ)や非晶質ガラス等から成り、球状,半球状,凸
レンズ状,ロッドレンズ状等の形状とされる。そして、
光ファイバを伝わってきた外部のレーザ光等の光を光半
導体素子5に入力させる、または光半導体素子5で出力
したレーザ光等の光を光ファイバに入力させるための集
光用部材として用いられる。ウインドウ4が、例えば結
晶軸の存在しない非晶質ガラスの場合、酸化珪素(Si
2),酸化鉛(PbO)を主成分とする鉛系、または
ホウ酸やケイ砂を主成分とするホウケイ酸系のものを用
いる。このウインドウ4は、その熱膨張係数が基体1の
それと異なっていても、固定部材3が熱膨張差による応
力を吸収し緩和するので、結晶軸が応力のためにある方
向に揃って光の屈折率の変化を起こすようなことは発生
し難い。従って、このようなウインドウ4を用いること
により、光半導体素子5と光ファイバとの間の光の結合
効率を高くできる。
The window 4 has a coefficient of thermal expansion of 4 × 10 −6 or more.
It is made of sapphire (single crystal alumina) of 12 × 10 -6 / ° C. (room temperature to 400 ° C.), amorphous glass, etc., and has a spherical shape, a hemispherical shape, a convex lens shape, a rod lens shape, or the like. And
Used as a condensing member for inputting light such as external laser light transmitted through the optical fiber to the optical semiconductor element 5 or inputting light such as laser light output from the optical semiconductor element 5 to the optical fiber. . When the window 4 is, for example, amorphous glass having no crystal axis, silicon oxide (Si
O 2 ), a lead-based material containing lead oxide (PbO) as a main component, or a borosilicate-based material containing boric acid or silica sand as a main component is used. Even if the coefficient of thermal expansion of this window 4 is different from that of the substrate 1, the fixing member 3 absorbs and relaxes the stress due to the difference in thermal expansion, so that the crystal axis is aligned in a certain direction due to the stress to refract light. It is unlikely that the rate will change. Therefore, by using such a window 4, it is possible to increase the light coupling efficiency between the optical semiconductor element 5 and the optical fiber.

【0028】また、入出力端子取付部7aには、光半導
体パッケージの高周波信号の入出力部であり光半導体パ
ッケージ内部を塞ぐ機能を有する入出力端子7がAgロ
ウ等のロウ材で接合される。この入出力端子7は、アル
ミナ(Al23)セラミックスや窒化アルミニウム(A
lN)セラミックス等の絶縁体と、光半導体パッケージ
内外を導通するように絶縁体の表面に形成された、配線
導体としてのメタライズ層7bとから構成される。ま
た、メタライズ層7bの枠体2内側には、光半導体素子
5の電極がボンディングワイヤで電気的に接続される。
The input / output terminal mounting portion 7a is joined with an input / output terminal 7 for inputting / outputting a high frequency signal of the optical semiconductor package and having a function of closing the inside of the optical semiconductor package with a brazing material such as Ag solder. . The input / output terminal 7 is made of alumina (Al 2 O 3 ) ceramics or aluminum nitride (A
1N) an insulator such as ceramics, and a metallized layer 7b as a wiring conductor formed on the surface of the insulator so as to conduct the inside and outside of the optical semiconductor package. Further, the electrode of the optical semiconductor element 5 is electrically connected to the inside of the frame 2 of the metallized layer 7b by a bonding wire.

【0029】この入出力端子3は、絶縁体となる原料粉
末に適当な有機バインダや溶剤等を添加混合しペースト
状と成し、このペーストをドクターブレード法やカレン
ダーロール法により形成されたセラミックグリーンシー
トに、メタライズ層7bとなる、W,モリブデン(M
o),マンガン(Mn)等の粉末に有機溶剤,溶媒を添
加混合して得た金属ペーストを、予め従来周知のスクリ
ーン印刷法により所望の形状に印刷塗布し、約1600℃の
高温で焼結することにより作製される。
The input / output terminal 3 is made into a paste by adding and mixing an appropriate organic binder, a solvent, etc. to a raw material powder to be an insulator, and this paste is made into a ceramic green by a doctor blade method or a calendar roll method. On the sheet, W, molybdenum (M
o), powder of manganese (Mn), etc., mixed with an organic solvent and a solvent to obtain a metal paste, which is previously printed and applied in a desired shape by a conventionally known screen printing method, and sintered at a high temperature of about 1600 ° C. It is produced by

【0030】なお、入出力端子3の絶縁体は、枠体2と
メタライズ層7bとを電気的に絶縁する機能を有し、そ
の材料は誘電率や熱膨張係数等の特性に応じて適宜選定
される。例えばAl23セラミックス等から成る。
The insulator of the input / output terminal 3 has a function of electrically insulating the frame body 2 and the metallized layer 7b, and the material thereof is appropriately selected according to the characteristics such as dielectric constant and thermal expansion coefficient. To be done. For example, it is made of Al 2 O 3 ceramics or the like.

【0031】また、メタライズ層7bの枠体2外側の部
位の上面には、リード端子8がAgロウ等のロウ材を介
して接合される。このリード端子8は入出力端子7との
接合を強固なものとするために、入出力端子7の熱膨張
係数に近似する部材が用いられる。例えばリード端子8
は、入出力端子7の絶縁体がAl23セラミックスから
成る場合、Fe−Ni合金やFe−Ni−Co合金等か
ら成るのが良い。
Further, the lead terminal 8 is bonded to the upper surface of the metallized layer 7b outside the frame body 2 through a brazing material such as Ag solder. The lead terminal 8 is made of a material having a coefficient of thermal expansion close to that of the input / output terminal 7 in order to strengthen the connection with the input / output terminal 7. For example, lead terminal 8
When the insulator of the input / output terminal 7 is made of Al 2 O 3 ceramics, it is preferable to be made of Fe—Ni alloy, Fe—Ni—Co alloy, or the like.

【0032】本発明の搭載用基板6は、基体1の上面に
光半導体素子5を支持する支持基板、および光半導体素
子5の熱を効率良く基体1に伝達する放熱板として機能
する。搭載用基板6は放熱板としても機能するため、基
体1の厚さを薄くしても光半導体素子5の熱を効率良く
外部電気回路基板に伝え得る。具体的には、搭載用基板
6の熱伝導率は、光半導体素子5の載置部1aの面に垂
直な方向および平行な方向のいずれにおいても350〜400
W/m・K程度の熱伝導率が得られる。
The mounting substrate 6 of the present invention functions as a support substrate for supporting the optical semiconductor element 5 on the upper surface of the base body 1 and as a heat dissipation plate for efficiently transmitting the heat of the optical semiconductor element 5 to the base body 1. Since the mounting board 6 also functions as a heat dissipation plate, the heat of the optical semiconductor element 5 can be efficiently transferred to the external electric circuit board even if the thickness of the substrate 1 is reduced. Specifically, the thermal conductivity of the mounting substrate 6 is 350 to 400 both in the direction perpendicular to the surface of the mounting portion 1a of the optical semiconductor element 5 and in the direction parallel thereto.
A thermal conductivity of about W / m · K can be obtained.

【0033】搭載用基板6を図3に部分拡大断面図で示
す。lは一方向性炭素繊維、mは炭素質母材、nは銀
(Ag),チタン(Ti),クロム(Cr),ジルコニ
ウム(Zr),タングステン(W)のうちの少なくとも
一種を0.2〜10重量%ならびにCuを90〜99.8重量%含
有する金属成分、Aは金属炭素複合体であり、金属成分
nが含浸された炭素質母材m内に一方向性炭素繊維lの
集合体が分散されて成る。また、Xはステンレススチー
ル層、YはCu層、bはNiメッキ層,Cuメッキ層等
からなる金属メッキ層であり、金属炭素複合体Aの上下
面にステンレススチール層XとCu層Yとが順次積層さ
れ、Cu層Yの表面に金属メッキ層bが被着されること
により、搭載用基板6が構成される。
The mounting substrate 6 is shown in FIG. 3 in a partially enlarged sectional view. l is a unidirectional carbon fiber, m is a carbonaceous base material, n is at least one of silver (Ag), titanium (Ti), chromium (Cr), zirconium (Zr), and tungsten (W) in an amount of 0.2 to 10 A metal component containing 90 wt% and 90 to 99.8 wt% Cu, A is a metal-carbon composite, and an aggregate of unidirectional carbon fibers 1 is dispersed in a carbonaceous base material m impregnated with the metal component n. Consists of Further, X is a stainless steel layer, Y is a Cu layer, b is a metal plating layer composed of a Ni plating layer, a Cu plating layer, etc., and a stainless steel layer X and a Cu layer Y are formed on the upper and lower surfaces of the metal-carbon composite A. The mounting substrate 6 is formed by sequentially stacking and depositing the metal plating layer b on the surface of the Cu layer Y.

【0034】金属炭素複合体Aは例えば以下の工程
[1]〜[5]のようにして作製される。
The metal-carbon composite A is produced, for example, by the following steps [1] to [5].

【0035】[1]一方向性炭素繊維lの束を炭素で結
合したブロックを小さな一方向性の炭素繊維lからなる
小さな集合体に破砕し、破砕された一方向性炭素繊維l
の集合体を集めて固体のピッチあるいはコークス等の微
粉末を分散させたフェノール樹脂等の熱硬化性樹脂の溶
液中に浸す。なお、ブロックを破砕して得られる小塊の
大きさは、立方体のものに換算して一辺が約0.1〜1m
mである。
[1] A block obtained by binding a bundle of unidirectional carbon fibers 1 with carbon is crushed into small aggregates of small unidirectional carbon fibers l, and the crushed unidirectional carbon fibers l are crushed.
The aggregates are collected and immersed in a solution of thermosetting resin such as phenol resin in which fine powder such as solid pitch or coke is dispersed. In addition, the size of the small block obtained by crushing the block is about 0.1 to 1 m on a side converted to a cube.
m.

【0036】[2]これを乾燥させて所定の圧力を加え
るとともに加熱して熱硬化性樹脂部分を硬化させる。
[2] This is dried and a predetermined pressure is applied and heated to cure the thermosetting resin portion.

【0037】[3]不活性雰囲気中、高温で焼成するこ
とでフェノール樹脂とピッチあるいはコークスの微粉末
を炭化させて炭素質母材mとする。炭素質母材mは、そ
れ自体が200〜300W/m・Kの大きな熱伝導率を有し、
光半導体素子5が発する熱の伝達経路としても機能す
る。
[3] Phenol resin and fine powder of pitch or coke are carbonized by firing at high temperature in an inert atmosphere to obtain a carbonaceous base material m. The carbonaceous base material m itself has a large thermal conductivity of 200 to 300 W / m · K,
It also functions as a heat transfer path for heat generated by the optical semiconductor element 5.

【0038】[4]一方、溶融したCuの中にAg,T
i,Cr,Zr,Wから選ばれた少なくとも一種を0.2
〜10重量%ならびにCuを90〜99.8重量%含有する金属
成分n(液状態)を、炭素質母材m内に高温高圧(約13
00℃、約100MPa)のもとで含浸させたブロックとな
す。含浸された金属成分nは塊状または薄板状であり、
炭素質母材m内に分散されることとなる。このブロック
を板状に切り出して金属炭素複合体Aとなる板を作製す
る。
[4] On the other hand, Ag, T in molten Cu
At least one selected from i, Cr, Zr, W is 0.2
-10% by weight and 90 to 99.8% by weight of Cu are contained in the carbonaceous matrix m at high temperature and pressure (about 13%).
The block is impregnated at 00 ° C and about 100 MPa. The impregnated metal component n is a lump or a thin plate,
It will be dispersed in the carbonaceous base material m. This block is cut into a plate shape to prepare a plate that becomes the metal-carbon composite A.

【0039】[5]この板を所望の形状に加工して金属
炭素複合体Aを作製する。
[5] This plate is processed into a desired shape to produce a metal-carbon composite A.

【0040】本発明の搭載用基板6は、金属炭素複合体
Aの上下面に接合するようにステンレススチール層Xお
よびCu層Yとが高温,高圧のもとでの拡散接合によっ
て接合されている。金属炭素複合体Aとステンレススチ
ール層XとはC成分とFe成分とが相互拡散することに
より非常に強固に接合されている。また、Cu層Yの表
面にはNiメッキ層,Cuメッキ層等の金属メッキ層b
が形成される。この金属メッキ層bは基体1,光半導体
素子5との半田等との接合を強固なものとするととも
に、光半導体素子5の熱を効率良く伝達する機能を有す
る。
In the mounting substrate 6 of the present invention, the stainless steel layer X and the Cu layer Y are bonded by diffusion bonding under high temperature and high pressure so that they are bonded to the upper and lower surfaces of the metal-carbon composite A. . The metal-carbon composite A and the stainless steel layer X are bonded very strongly by mutual diffusion of the C component and the Fe component. Further, on the surface of the Cu layer Y, a metal plating layer b such as a Ni plating layer or a Cu plating layer is provided.
Is formed. The metal plating layer b has a function of strengthening the joint between the substrate 1 and the optical semiconductor element 5 with solder or the like, and also has a function of efficiently transmitting heat of the optical semiconductor element 5.

【0041】このような構成とすることにより、光半導
体素子5の熱は、Cu層Yおよびステンレススチール層
Xを介して金属炭素複合体Aの内部の炭素質母材mや一
方向性炭素繊維lおよび金属成分nを介してランダムな
方向に伝達され、さらに厚さが0.1〜0.5mmの基体1に
伝達される。そして、その熱は基体1から外部電気回路
基板へと伝えられる。
With this structure, the heat of the optical semiconductor element 5 is applied to the carbonaceous matrix m and the unidirectional carbon fiber inside the metal-carbon composite A through the Cu layer Y and the stainless steel layer X. It is transmitted in random directions via 1 and the metal component n, and further transmitted to the substrate 1 having a thickness of 0.1 to 0.5 mm. Then, the heat is transferred from the base 1 to the external electric circuit board.

【0042】なお、金属炭素複合体A(熱膨張係数:7
×10-6〜10×10-6/℃)の上面に接合されたステンレス
スチール層X(熱膨張係数:11×10-6〜14×10-6/℃)
は、金属炭素複合体Aとの接合が非常に強固であるた
め、熱膨張による歪みが抑制され、金属炭素複合体Aの
熱歪みにほぼ近似したものとなる。また、金属炭素複合
体Aは、ステンレススチール層X表面に拡散接合される
Cu層Yの好ましい厚さが100〜300μmと比較的薄いた
め、Cu層Yによる熱歪みの影響を受け難い。従って、
搭載用基板6は全体的に金属炭素複合体Aの熱膨張係数
にほぼ近似することとなり、その熱膨張係数に近似した
光半導体素子5を強固に接合できる。
The metal-carbon composite A (coefficient of thermal expansion: 7)
Stainless steel layer X (coefficient of thermal expansion: 11 × 10 -6 to 14 × 10 -6 / ° C) bonded to the upper surface of × 10 -6 to 10 × 10 -6 / ° C.
Since the bonding with the metal-carbon composite A is extremely strong, the strain due to thermal expansion is suppressed, and it becomes close to the thermal strain of the metal-carbon composite A. Further, in the metal-carbon composite A, since the preferable thickness of the Cu layer Y diffusion-bonded to the surface of the stainless steel layer X is relatively thin, 100 to 300 μm, the Cu layer Y is unlikely to be affected by thermal strain. Therefore,
The mounting substrate 6 as a whole is approximately close to the thermal expansion coefficient of the metal-carbon composite A, and the optical semiconductor element 5 close to the thermal expansion coefficient can be firmly bonded.

【0043】また、ステンレススチール層Xの厚さは5
〜50μmが良く、5μm未満では高い剛性を有するステ
ンレススチール層Xの作製が非常に困難であり、50μm
を超えると、熱伝導率の比較的低いステンレススチール
層Xの厚さが厚くなることにより、光半導体素子5の熱
を効率良く外部に放散し難い。また、この場合、金属炭
素複合体Aがステンレススチール層Xの熱膨張による熱
歪みを抑制するのが困難になり、搭載用基板6全体の熱
歪みを金属炭素複合体A、即ち光半導体素子5の熱膨張
による熱歪みに近似させ難い。その結果、光半導体素子
5が搭載用基板6から剥がれる等して、光半導体素子5
の熱を効率良く外部に放散させ難くなる。
The thickness of the stainless steel layer X is 5
~ 50μm is good. If it is less than 5μm, it is very difficult to produce the stainless steel layer X having high rigidity.
When it exceeds, the thickness of the stainless steel layer X having a relatively low thermal conductivity becomes large, and thus it is difficult to efficiently dissipate the heat of the optical semiconductor element 5 to the outside. Further, in this case, it becomes difficult for the metal-carbon composite A to suppress the thermal strain due to the thermal expansion of the stainless steel layer X, and the thermal strain of the entire mounting substrate 6 is reduced to the metal-carbon composite A, that is, the optical semiconductor element 5. It is difficult to approximate the thermal strain due to thermal expansion of. As a result, the optical semiconductor element 5 is peeled off from the mounting substrate 6, and the optical semiconductor element 5 is removed.
It becomes difficult to dissipate the heat of the outside efficiently.

【0044】また、Cu層Yの厚さは100〜300μmが良
く、100μm未満では光半導体素子5の熱を効率良く横
方向(載置部2aの面に平行方向)に伝えるのが困難に
なる。このCu層Yは光半導体素子5の熱を効率良く横
方向に伝えるものである。300μmを超えると、厚さが
0.1〜0.5mmの基体1に金属メッキ層bを介して直接的
に接合されているため、Cu層Yと基体1との間の熱膨
張係数差によって基体1に熱歪みが生じたり、搭載用基
板6が基体1から剥がれる場合がある。
The thickness of the Cu layer Y is preferably 100 to 300 μm, and if it is less than 100 μm, it becomes difficult to efficiently transfer the heat of the optical semiconductor element 5 in the lateral direction (parallel to the surface of the mounting portion 2a). . The Cu layer Y efficiently transfers heat of the optical semiconductor element 5 in the lateral direction. If it exceeds 300 μm, the thickness
Since it is directly bonded to the base body 1 having a thickness of 0.1 to 0.5 mm via the metal plating layer b, thermal strain may occur in the base body 1 due to the difference in thermal expansion coefficient between the Cu layer Y and the base body 1, The substrate 6 may peel off from the base 1.

【0045】また、金属炭素複合体Aは金属成分nが含
浸されていることにより、炭素質母材mの密着性が非常
に良好となる。そのため、光半導体素子5の熱は搭載用
基板6内部を効率良く伝達し、基体1を介して外部電気
回路基板に確実に伝達される。
Further, since the metal-carbon composite A is impregnated with the metal component n, the adhesion of the carbonaceous base material m becomes very good. Therefore, the heat of the optical semiconductor element 5 is efficiently transferred inside the mounting substrate 6 and is reliably transferred to the external electric circuit board via the base 1.

【0046】金属成分nがAgとCuから成る場合、金
属成分nと炭素質母材mとは、それらの間の濡れ性が高
いため密着性が非常に高くなる。また、金属成分nがT
i,Cr,Zr,Wのうちの少なくとも一種とCuとか
らなる場合、金属成分nと炭素質母材mとは、それらの
間でTi,Cr,Zr,Wの炭素化合物が生成されるた
め密着性が非常に高くなる。Ag,Ti,Cr,Zr,
Wのうちの少なくとも一種が0.2重量%未満の場合、濡
れ性が低下したり、またこれらの金属の炭素化合物の生
成が促進されないため、密着性が低下する。特に、T
i,Cr,Zr,Wの場合、Cu中に融解され難くな
り、熱伝導性の低いTi,Cr,Zr,WがCu中およ
び/またはCu表面に分散されて、光半導体素子5の熱
は搭載用基板6の内部を効率良く伝達し難くなる。
When the metal component n is composed of Ag and Cu, the metal component n and the carbonaceous base material m have high wettability between them, and thus the adhesion is very high. Further, the metal component n is T
When at least one of i, Cr, Zr, and W and Cu is formed, the metal component n and the carbonaceous base material m form a carbon compound of Ti, Cr, Zr, and W between them. The adhesion is very high. Ag, Ti, Cr, Zr,
When at least one of W is less than 0.2% by weight, the wettability is lowered, and the formation of carbon compounds of these metals is not promoted, so that the adhesion is lowered. In particular, T
In the case of i, Cr, Zr, and W, it is difficult to melt in Cu, and Ti, Cr, Zr, and W having low thermal conductivity are dispersed in Cu and / or on the Cu surface, and the heat of the optical semiconductor element 5 is reduced. It becomes difficult to efficiently transmit the inside of the mounting substrate 6.

【0047】金属炭素複合体A中の金属成分nの含有量
は10〜20重量%が良い。10重量%未満では横方向で所望
の熱伝導率が得られず、20重量%を超えると搭載用基板
6と光半導体素子5との熱膨張係数差が大きくなる。光
半導体素子5と搭載用基板6との熱膨張係数差を考慮す
ると、より好ましくは15〜20重量%が良い。また、金属
成分nの含有量を10〜20重量%とすることにより、金属
炭素複合体Aの表面に現れる金属成分nの表面積の割合
は、金属炭素複合体Aの表面積に対して約6〜10%とな
り、これにより金属メッキ層bの被着強度が向上する。
The content of the metal component n in the metal-carbon composite A is preferably 10 to 20% by weight. If it is less than 10% by weight, the desired thermal conductivity cannot be obtained in the lateral direction, and if it exceeds 20% by weight, the difference in thermal expansion coefficient between the mounting substrate 6 and the optical semiconductor element 5 becomes large. Considering the difference in thermal expansion coefficient between the optical semiconductor element 5 and the mounting substrate 6, 15 to 20% by weight is more preferable. Further, by setting the content of the metal component n to 10 to 20% by weight, the ratio of the surface area of the metal component n appearing on the surface of the metal-carbon composite A is about 6 to the surface area of the metal-carbon composite A. 10%, which improves the adhesion strength of the metal plating layer b.

【0048】また、熱膨張係数について、金属成分nを
炭素質母材m内に10〜20重量%程度の好適な含有量で含
浸させれば、金属炭素複合体Aの熱膨張係数が光半導体
素子5と大幅に異なる程度に上昇しない。また、金属成
分nのうち特にAgの場合は熱伝導率が非常に高いた
め、光半導体素子5の熱を伝えるのに有利である。
Regarding the coefficient of thermal expansion, when the metal component n is impregnated in the carbonaceous base material m at a suitable content of about 10 to 20% by weight, the coefficient of thermal expansion of the metal-carbon composite A becomes an optical semiconductor. It does not rise to the extent that it is significantly different from the element 5. In addition, particularly in the case of Ag among the metal components n, the thermal conductivity is very high, which is advantageous for transmitting heat of the optical semiconductor element 5.

【0049】また、金属成分nの融点は非常に高いた
め、光半導体パッケージを融点が780℃程度以上のAg
ロウ等のロウ材で組み立てても金属成分nが溶融するこ
とはなく、常に炭素質母材m内を安定にしておくことが
できる。なお、ロウ付け時に溶融するような金属成分n
の場合は搭載用基板6の端面から流れ出すことがあり、
光半導体パッケージとしては不適である。
Since the melting point of the metal component n is very high, the optical semiconductor package has a melting point of about 780.degree.
Even when assembled with a brazing material such as brazing, the metal component n does not melt, and the inside of the carbonaceous base material m can always be kept stable. The metal component n that melts during brazing
In the case of, it may flow out from the end surface of the mounting substrate 6,
It is not suitable as an optical semiconductor package.

【0050】Cu層Yの表面に被着される金属メッキ層
bは、Niメッキ層やCuメッキ層からなる。金属メッ
キ層bの厚さは1〜30μmが良く、1μm未満の場合、
その厚さのバラツキにより金属メッキ層bが殆ど被着さ
れない部位が発生することがある。30μmを超えると、
Niメッキ層の場合は熱伝達効率が低くなって光半導体
素子5の熱が速やかに放散されなくなり、Cuメッキ層
の場合は搭載用基板6全体の熱膨張係数が基体1の熱膨
張係数と異なってくる場合があり、基体1と搭載用基板
6との接合強度が劣化し、光半導体素子5の熱を効率良
く基体1に伝達し難くなる。
The metal plating layer b deposited on the surface of the Cu layer Y comprises a Ni plating layer or a Cu plating layer. The thickness of the metal plating layer b is preferably 1 to 30 μm, and when it is less than 1 μm,
Due to the variation in the thickness, there may be a portion where the metal plating layer b is hardly deposited. If it exceeds 30 μm,
In the case of the Ni plating layer, the heat transfer efficiency is low and the heat of the optical semiconductor element 5 is not quickly dissipated. In the case of the Cu plating layer, the thermal expansion coefficient of the entire mounting substrate 6 is different from the thermal expansion coefficient of the substrate 1. In some cases, the bonding strength between the base 1 and the mounting substrate 6 deteriorates, and it becomes difficult to efficiently transfer the heat of the optical semiconductor element 5 to the base 1.

【0051】また、金属層aは、光半導体パッケージ内
部の気密性をHeを使用して検査する際、Heが一方向
性炭素繊維lの気孔中にトラップされるのを有効に防止
し、気密性検査に対して適確な判定が得られる。
Further, the metal layer a effectively prevents He from being trapped in the pores of the unidirectional carbon fiber l when the airtightness of the inside of the optical semiconductor package is inspected using He, so that the airtightness is improved. An accurate judgment can be obtained for the sex test.

【0052】このように、搭載用基板6は非常に軽量な
金属炭素複合体Aの表面に薄い金属層を接合させた構造
であるため、Cu−W合金等に比し比重が非常に小さ
い。即ち、非常に軽量であるため、近時の光半導体パッ
ケージの軽量化に適している。
As described above, since the mounting substrate 6 has a structure in which a thin metal layer is bonded to the surface of the metal carbon composite A which is extremely lightweight, its specific gravity is much smaller than that of Cu-W alloy or the like. That is, since it is extremely lightweight, it is suitable for the recent weight reduction of optical semiconductor packages.

【0053】搭載用基板6の形状について、その主面形
状が光半導体素子5の主面形状(長方形や正方形)に相
似していることが好ましい。この場合、熱が光半導体素
子5の周囲に等方的に放熱される。また、基体1をネジ
止めする際に基体1の反りを有効に防止する補強板とし
ての観点から、ネジ止め時の応力のバランスをとるため
には、載置部1aの形状に相似していることが好まし
い。
The shape of the main surface of the mounting substrate 6 is preferably similar to the main surface shape (rectangle or square) of the optical semiconductor element 5. In this case, heat is radiated isotropically around the optical semiconductor element 5. Further, from the viewpoint of a reinforcing plate that effectively prevents warpage of the base body 1 when screwing the base body 1, in order to balance the stress at the time of screwing, it is similar to the shape of the mounting portion 1a. It is preferable.

【0054】このような搭載用基板6を囲繞して基体1
上面に接合された枠体2の上面に、Fe−Ni−Co合
金,Fe−Ni合金等の金属、またはAl23セラミッ
クス,AlNセラミックス等のセラミックスから成る蓋
体9がAu−Snロウ等の低融点ロウ材で接合され、光
半導体素子5を気密に封止する。
A substrate 1 is surrounded by such a mounting substrate 6.
On the upper surface of the frame body 2 joined to the upper surface, a lid 9 made of a metal such as Fe—Ni—Co alloy, Fe—Ni alloy, or ceramics such as Al 2 O 3 ceramics or AlN ceramics is Au—Sn solder or the like. And the optical semiconductor element 5 are hermetically sealed.

【0055】このように、本発明の光半導体パッケージ
は、上面に光半導体素子5が搭載用基板6を介して載置
される載置部1aを有する略長方形の金属製の基体1
と、基体1の上面に載置部1aを囲繞するように接合さ
れ、一側部に貫通孔から成る固定部材取付部3a、他の
側部に切欠きまたは貫通穴から成る入出力端子取付部7
aが形成された枠体2と、固定部材取付部3aに嵌着さ
れるかまたは貫通孔の枠体2外側開口の周に一端が接合
された筒状の固定部材3と、入出力端子取付部7aに嵌
着された入出力端子7とを具備する。そして、基体1は
厚さが0.1〜0.5mmであり、搭載用基板6は、一方向性
炭素繊維lの集合体が内部に分散された炭素質母材m中
にAg,Ti,Cr,ZrおよびWのうちの少なくとも
一種を0.2〜10重量%ならびにCuを90〜99.8重量%含
有する金属成分nが含浸された金属炭素複合体Aと、金
属炭素複合体Aの上下面に順次積層されたステンレスス
チール層XおよびCu層Yと、Cu層Yの表面に被着さ
れた金属メッキ層bとを有する。
As described above, the optical semiconductor package of the present invention has a substantially rectangular metal base 1 having the mounting portion 1a on which the optical semiconductor element 5 is mounted via the mounting substrate 6.
And a fixing member mounting portion 3a that is joined to the upper surface of the base body 1 so as to surround the mounting portion 1a and has a through hole on one side, and an input / output terminal mounting portion that has a notch or a through hole on the other side. 7
a frame body 2 in which a is formed, a tubular fixing member 3 which is fitted to the fixing member attaching portion 3a or one end of which is joined to the periphery of the outer opening of the frame body 2 of the through hole, and the input / output terminal attaching And an input / output terminal 7 fitted to the portion 7a. The substrate 1 has a thickness of 0.1 to 0.5 mm, and the mounting substrate 6 is made of Ag, Ti, Cr, Zr in the carbonaceous base material m in which the aggregate of the unidirectional carbon fibers 1 is dispersed. And a metal-carbon composite A impregnated with a metal component n containing 0.2 to 10% by weight of at least one of W and W and 90 to 99.8% by weight of Cu, and the metal-carbon composite A were sequentially laminated on the upper and lower surfaces. It has a stainless steel layer X and a Cu layer Y, and a metal plating layer b deposited on the surface of the Cu layer Y.

【0056】また、本発明の光半導体パッケージと、載
置部1aに載置固定されるとともに入出力端子7に電気
的に接続された光半導体素子5と、枠体2の上面に接合
された蓋体9とを具備することにより、製品としての光
半導体装置となる。なお、固定部材3に端部が挿着され
る光ファイバは、一般に光半導体装置の使用時に設けら
れるが、単品としての光半導体装置に付加されていても
良く、または光半導体装置が外部電気回路基板等に固定
されて使用される際に取り付けても良い。
The optical semiconductor package of the present invention, the optical semiconductor element 5 mounted and fixed on the mounting portion 1a and electrically connected to the input / output terminal 7, and the upper surface of the frame 2 are joined together. By including the lid body 9, an optical semiconductor device as a product is obtained. The optical fiber whose end is inserted into the fixing member 3 is generally provided when the optical semiconductor device is used, but it may be added to the optical semiconductor device as a single product, or the optical semiconductor device may be an external electric circuit. It may be attached when it is fixedly used on a substrate or the like.

【0057】光半導体装置は、具体的には、載置部1a
の搭載用基板6上に光半導体素子5をガラス,樹脂,ロ
ウ材等の接着剤を介して接着固定するとともに光半導体
素子5の電極をボンディングワイヤを介して所定のメタ
ライズ層7bに電気的に接続し、しかる後、枠体2上面
に蓋体5を低融点ロウ材等により接合することにより、
基体1,枠体2,固定部材3,ウインドウ4,搭載用基
板6,入出力端子7から成る光半導体パッケージ内部に
光半導体素子5を収納した製品としての光半導体装置と
なる。この光半導体装置は、例えば外部電気回路基板か
ら供給される高周波信号により光半導体素子5を光励起
させ、励起したレーザ光等の光をウインドウ4を通して
光ファイバに授受させるとともに光ファイバ内を伝送さ
せることにより、大容量の情報を高速に伝送できる光電
変換装置として機能し、光通信分野等に用いられる。
Specifically, the optical semiconductor device has a mounting portion 1a.
The optical semiconductor element 5 is adhered and fixed on the mounting substrate 6 by means of an adhesive such as glass, resin or brazing material, and the electrode of the optical semiconductor element 5 is electrically connected to a predetermined metallized layer 7b through a bonding wire. After connecting, and thereafter, by joining the lid body 5 to the upper surface of the frame body 2 with a low melting point brazing material or the like,
The optical semiconductor device is a product in which the optical semiconductor element 5 is housed inside the optical semiconductor package including the base 1, the frame 2, the fixing member 3, the window 4, the mounting substrate 6, and the input / output terminal 7. In this optical semiconductor device, for example, the optical semiconductor element 5 is optically excited by a high-frequency signal supplied from an external electric circuit board, and the excited laser light or the like is transmitted to and received from the optical fiber through the window 4 and is transmitted in the optical fiber. Thus, it functions as a photoelectric conversion device capable of transmitting a large amount of information at high speed, and is used in the field of optical communication and the like.

【0058】[0058]

【実施例】本発明の光半導体パッケージの実施例を以下
に説明する。
EXAMPLES Examples of the optical semiconductor package of the present invention will be described below.

【0059】(実施例1)図1〜図3の光半導体パッケ
ージを以下の工程[1]〜[4]のようにして作製し
た。
Example 1 The optical semiconductor package shown in FIGS. 1 to 3 was manufactured by the following steps [1] to [4].

【0060】[1]縦約13mm×横約30mm×厚さ2.5
mmのCu−W合金から成る略長方形の基体1の上側主
面の外周部に載置部1aを囲むように、縦約13mm×横
約21mmのFe−Ni−Co合金から成る平面視形状が
略長方形の枠体2を銀ロウで接合した。なお、基体1の
短辺側の両端部にはネジ穴1bが形成されており、また
基体1および枠体2の表面には厚さ3μmのNiメッキ
層,厚さ1.5μmのAuメッキ層が順次被着されてお
り、さらに枠体2の側部で対向する側部に入出力端子取
付部7a、それらの側部に隣接する一側部に貫通孔から
成る固定部材取付部3aが形成されている。
[1] Vertical length of about 13 mm x width of about 30 mm x thickness of 2.5
mm of Cu-W alloy is formed in a plan view shape of Fe-Ni-Co alloy of about 13 mm in length and about 21 mm in width so as to surround the mounting portion 1a on the outer peripheral portion of the upper main surface of the substantially rectangular base 1. The substantially rectangular frame 2 was joined with silver solder. In addition, screw holes 1b are formed at both ends on the short side of the substrate 1, and a Ni plating layer having a thickness of 3 μm and an Au plating layer having a thickness of 1.5 μm are formed on the surfaces of the substrate 1 and the frame body 2. I / O terminal mounting portions 7a are formed on the side portions of the frame body 2 facing each other, and a fixing member mounting portion 3a formed of a through hole is formed on one side portion adjacent to these side portions. ing.

【0061】[2]枠体2の対向する側部の入出力端子
取付部7aに、それぞれアルミナセラミックスから成る
入出力端子7を銀ロウで嵌着接合した。入出力端子7に
は、枠体2内外を導通するように形成されたMo−Mn
のメタライズ層7b上に厚さ3μmのNiメッキ層,厚
さ1.5μmのAuメッキ層を順次被着した。メタライズ
層7bの枠体2外側にはFe−Ni−Co合金から成る
リード端子8をAgロウ材で接合した。
[2] I / O terminals 7 made of alumina ceramics were fitted and joined to the I / O terminal mounting portions 7a on the opposite sides of the frame body 2 by silver brazing. The input / output terminal 7 is formed of Mo-Mn formed so as to conduct the inside and outside of the frame body 2.
A Ni plating layer having a thickness of 3 μm and an Au plating layer having a thickness of 1.5 μm were sequentially deposited on the metallized layer 7b. A lead terminal 8 made of an Fe—Ni—Co alloy was joined to the outside of the metallized layer 7b of the frame 2 with an Ag brazing material.

【0062】[3]枠体2の一側部の貫通孔から成る固
定部材取付部3aに、厚さ3μmのNiメッキ層,厚さ
1.5μmのAuメッキ層を順次被着したFe−Ni−C
o合金からなる円筒状の固定部材3を銀ロウで接合し、
固定部材3の内側に鉛系ガラスから成る円板状のウイン
ドウ4を、Wメタライズ層を介してAu−Sn合金ロウ
材で接合した。
[3] A Ni plating layer with a thickness of 3 μm and a thickness of 3 μm on the fixing member mounting portion 3a consisting of a through hole on one side of the frame body 2.
Fe-Ni-C with 1.5 μm Au plating layer deposited in sequence
The cylindrical fixing member 3 made of o alloy is joined with silver solder,
A disk-shaped window 4 made of lead-based glass was joined to the inside of the fixing member 3 with an Au—Sn alloy brazing material via a W metallization layer.

【0063】[4]基体1の載置部1aに接合される搭
載用基板6は、厚さ約1.5mm×縦約5mm×横約6m
mの略直方体であり、一方向性炭素繊維lの集合体が内
部に分散された炭素質母材m中にAgを1重量%,Cu
を99重量%含有する金属成分nが含浸された金属炭素
複合体Aと、その上下面に厚さ5μm,10μm,30μ
m,50μm,70μmのステンレススチール層Xおよび厚
さ20μm,50μm,100μm,150μm,200μm,300μ
m,400μmのCu層Yが順次積層された金属層aと、
Cu層Yの表面に被着されたCuメッキ層bとを有する
ものとした。これらの搭載用基板6について、横方向の
熱膨張係数,熱伝導率と、上下方向の熱膨張係数,熱伝
導率を測定した結果を表1に示す。また、これらの搭載
用基板6を種々の厚さ(0.1mm,0.3mm,0.5mm,
0.6mm,0.7mm)の基体1の上面に錫(Sn)−鉛
(Pb)半田で接着し、LDである光半導体素子5を搭
載用基板6上にAu−Siロウ材で載置接合するととも
にボンディングワイヤで入出力端子7のメタライズ層7
bに接続し、光半導体素子5を駆動した光半導体パッケ
ージのそれぞれについて、光半導体素子5の作動性を評
価した結果を表1に示す。表1において、○印は光半導
体素子5に何等異常が発生しなかったことを示し、△印
は熱によって光半導体素子5のレーザ光の発振状態が不
安定になったことを示し、×印は熱によって光半導体素
子5が誤作動を起こしたりレーザ光の発振が停止する
か、光半導体素子5が搭載用基板6から剥がれたことを
示す。
[4] The mounting substrate 6 joined to the mounting portion 1a of the base 1 has a thickness of about 1.5 mm × length of about 5 mm × width of about 6 m.
m is a substantially rectangular parallelepiped, and 1% by weight of Ag and Cu are contained in the carbonaceous base material m in which the aggregate of the unidirectional carbon fibers 1 is dispersed.
Of the metal-carbon composite A impregnated with the metal component n containing 99% by weight, and the thickness of 5 μm, 10 μm, 30 μ on the upper and lower surfaces thereof.
m, 50 μm, 70 μm stainless steel layer X and thickness 20 μm, 50 μm, 100 μm, 150 μm, 200 μm, 300 μ
a metal layer a in which Cu layers Y of m and 400 μm are sequentially laminated,
It has a Cu plating layer b deposited on the surface of the Cu layer Y. Table 1 shows the results of measuring the thermal expansion coefficient and thermal conductivity in the lateral direction and the thermal expansion coefficient and thermal conductivity in the vertical direction for these mounting substrates 6. In addition, these mounting substrates 6 can be formed into various thicknesses (0.1 mm, 0.3 mm, 0.5 mm,
0.6 mm, 0.7 mm) is bonded to the upper surface of the base body 1 with tin (Sn) -lead (Pb) solder, and the optical semiconductor element 5 which is an LD is mounted and bonded on the mounting substrate 6 with an Au-Si brazing material. Together with the bonding wire, the metallized layer 7 of the input / output terminal 7
Table 1 shows the results of evaluation of the operability of the optical semiconductor element 5 with respect to each of the optical semiconductor packages which are connected to b and drive the optical semiconductor element 5. In Table 1, ◯ indicates that no abnormality has occurred in the optical semiconductor element 5, Δ indicates that the laser light oscillation state of the optical semiconductor element 5 has become unstable due to heat, and x indicates. Indicates that the optical semiconductor element 5 malfunctions due to heat, the oscillation of the laser light is stopped, or the optical semiconductor element 5 is peeled off from the mounting substrate 6.

【0064】[0064]

【表1】 [Table 1]

【0065】表1より、ステンレススチール層Xの厚さ
が70μmの場合、Cu層Yの厚さがいかなる場合であっ
ても熱膨張係数は11×10-6/℃以上即ち7×10-6〜10×
10-6/℃の範囲外になり、金属炭素複合体Aとの熱膨張
差が生じ易い。従って、ステンレススチール層Xの厚さ
は50μm以下が良いことが判った。また、ステンレスス
チール層Xは作製上5μm以上であることが良いことが
判った。
From Table 1, when the thickness of the stainless steel layer X is 70 μm, the coefficient of thermal expansion is 11 × 10 −6 / ° C. or more, that is, 7 × 10 −6, regardless of the thickness of the Cu layer Y. ~ 10 ×
It is out of the range of 10 −6 / ° C., and a difference in thermal expansion with the metal-carbon composite A is likely to occur. Therefore, it was found that the thickness of the stainless steel layer X is preferably 50 μm or less. Further, it was found that the stainless steel layer X should preferably have a thickness of 5 μm or more in terms of production.

【0066】また、ステンレススチール層Xの厚さが50
μm以下の場合、Cu層Yの厚さが20μm,50μmでは、
横方向の熱伝導率が上下方向の熱伝導率に対して低く、
横方向では光半導体素子5の熱を外部に放散させ難いこ
とが判った。一方、Cu層Yの厚さが300μmを超える場
合、熱膨張係数が7×10-6〜10×10-6/℃の範囲外で大
きくなり、金属炭素複合体Aとの熱膨張差が生じ易いも
のとなった。従って、Cu層Yの厚さは100〜300μmが
良いことが判った。
The thickness of the stainless steel layer X is 50
When the thickness of the Cu layer Y is 20 μm or 50 μm,
The horizontal thermal conductivity is lower than the vertical thermal conductivity,
It was found that it is difficult to dissipate the heat of the optical semiconductor element 5 to the outside in the lateral direction. On the other hand, when the thickness of the Cu layer Y exceeds 300 μm, the coefficient of thermal expansion becomes large outside the range of 7 × 10 −6 to 10 × 10 −6 / ° C., and a difference in thermal expansion with the metal-carbon composite A occurs. It became easier. Therefore, it was found that the thickness of the Cu layer Y is preferably 100 to 300 μm.

【0067】そして、ステンレススチール層XとCu層
Yとが上記範囲内の際、基体1の厚さは0.1〜0.5mmの
場合に光半導体素子5の作動性が良好であることが判っ
た。
When the stainless steel layer X and the Cu layer Y were within the above ranges, it was found that the operability of the optical semiconductor element 5 was good when the thickness of the substrate 1 was 0.1 to 0.5 mm.

【0068】(実施例2)また、金属成分nをTiとC
uとし、それらを種々の含有量とした以外は、ステンレ
ススチール層Xの厚さを30μm、Cu層Yの厚さを150μ
mとした場合の搭載用基板6の横方向の熱膨張係数,熱
伝導率と、上下方向の熱膨張係数,熱伝導率を測定した
結果を表2に示す。また、これらの搭載用基板6を種々
の厚さ(0.1mm,0.3mm,0.5mm,0.6mm,0.7m
m)の基体1の上面にSn−Pb半田で接着し、LDで
ある光半導体素子5を搭載用基板6上にAu−Siロウ
材で載置接合するとともにボンディングワイヤで入出力
端子7のメタライズ層7bに接続し、光半導体素子5を
駆動した光半導体パッケージのそれぞれについて、光半
導体素子5の作動性を評価した結果を表2に示す。
(Example 2) Further, the metal components n are Ti and C.
The thickness of the stainless steel layer X is 30 μm, and the thickness of the Cu layer Y is 150 μ, except for u and various contents.
Table 2 shows the results of measurement of the thermal expansion coefficient and thermal conductivity in the lateral direction of the mounting substrate 6 and the thermal expansion coefficient and thermal conductivity in the vertical direction when m is set. In addition, these mounting substrates 6 have various thicknesses (0.1 mm, 0.3 mm, 0.5 mm, 0.6 mm, 0.7 m).
m) is bonded to the upper surface of the base body 1 with Sn-Pb solder, the optical semiconductor element 5 which is an LD is mounted on the mounting substrate 6 with Au-Si brazing material, and the input / output terminals 7 are metallized with bonding wires. Table 2 shows the results of evaluating the operability of the optical semiconductor element 5 with respect to each of the optical semiconductor packages connected to the layer 7b and driving the optical semiconductor element 5.

【0069】[0069]

【表2】 [Table 2]

【0070】表2より、Tiの含有量が0.05,0.1,0.1
5,15,20重量%の場合は、横方向,上下方向ともに熱
伝導率が低い。即ち、Tiの含有量が0.2〜10重量%の
範囲から外れる場合、光半導体素子5の熱を放散し難く
なることが判った。
From Table 2, the Ti contents are 0.05, 0.1 and 0.1.
In the case of 5, 15 and 20% by weight, the thermal conductivity is low in both the horizontal and vertical directions. That is, it was found that when the Ti content is out of the range of 0.2 to 10% by weight, it becomes difficult to dissipate the heat of the optical semiconductor element 5.

【0071】そして、ステンレススチール層Xの厚さを
30μm、Cu層Yの厚さを150μmで、かつTiが0.2〜10
重量%の範囲内とした場合には、基体1の厚さは0.1〜
0.5mmの場合に光半導体素子5の作動性が良好である
ことが判った。
Then, the thickness of the stainless steel layer X is
30 μm, Cu layer Y thickness is 150 μm, and Ti is 0.2-10
When the weight ratio is within the range, the thickness of the substrate 1 is 0.1 to
It was found that the operability of the optical semiconductor element 5 was good when it was 0.5 mm.

【0072】なお、Tiの代わりにCr,ZrまたはW
を用いた場合にも、上記と同様の結果が得られた。
In place of Ti, Cr, Zr or W
The same results as above were obtained when using.

【0073】(実施例3)また、ステンレススチール層
Xの厚さを30μm、Cu層Yの厚さを150μmとし、Ag
を0.2,0.5,1,10重量%、残りの成分としてCuを含
有する金属成分nが含浸された金属炭素複合体Aとした
以外は上記実施例1と同様に構成した場合の搭載用基板
6の横方向の熱膨張係数,熱伝導率と、上下方向の熱膨
張係数,熱伝導率を測定した結果を表3に示す。また、
これらの搭載用基板6を種々の厚さ(0.1mm,0.3m
m,0.5mm,0.6mm,0.7mm)の基体1の上面にS
n−Pb半田で接着し、LDである光半導体素子5を搭
載用基板6上にAu−Siロウ材で載置接合するととも
にボンディングワイヤで入出力端子7のメタライズ層7
bに接続し、光半導体素子5を駆動した光半導体パッケ
ージのそれぞれについて、光半導体素子5の作動性を評
価した結果を表3に示す。
(Example 3) Further, the thickness of the stainless steel layer X is 30 μm and the thickness of the Cu layer Y is 150 μm.
Is a metal-carbon composite A impregnated with 0.2, 0.5, 1, 10% by weight and a metal component n containing Cu as the remaining component, and the mounting substrate 6 is configured in the same manner as in Example 1 above. Table 3 shows the results of measuring the coefficient of thermal expansion and thermal conductivity in the horizontal direction and the coefficient of thermal expansion and thermal conductivity in the vertical direction. Also,
These mounting boards 6 can be made into various thicknesses (0.1 mm, 0.3 m
m, 0.5 mm, 0.6 mm, 0.7 mm) S on the upper surface of the substrate 1
The optical semiconductor element 5, which is an LD, is bonded by n-Pb solder, and the optical semiconductor element 5, which is an LD, is mounted and bonded on the mounting substrate 6 with an Au-Si brazing material, and the metallized layer 7 of the input / output terminal 7 is bonded with a bonding wire.
Table 3 shows the results of evaluation of the operability of the optical semiconductor element 5 with respect to each of the optical semiconductor packages which were connected to b and driven the optical semiconductor element 5.

【0074】[0074]

【表3】 [Table 3]

【0075】表3より、Ti,Cr,Zr,Wのいずれ
かを添加した場合よりも、Agを添加した場合のほうが
添加量に伴い熱伝導率が増加することが判った。また、
熱伝導率が非常に高くても基体1の厚さによっては光半
導体素子5の作動性が損なわれる場合があることが判っ
た。即ち、基体1の厚さが0.5mmを超えると作動性が
劣化した。
From Table 3, it was found that the thermal conductivity increases with the addition amount of Ag as compared with the case of adding any one of Ti, Cr, Zr and W. Also,
It was found that the operability of the optical semiconductor element 5 may be impaired depending on the thickness of the substrate 1 even if the thermal conductivity is very high. That is, when the thickness of the substrate 1 exceeds 0.5 mm, the operability deteriorates.

【0076】なお、本発明は上記実施の形態および実施
例に限定されず、本発明の要旨を逸脱しない範囲内で種
々の変更を行うことは何等支障ない。例えば、光半導体
装置は、内部または外部に、例えば固定部材3の光半導
体パッケージ内側または外側に、あるいは光半導体パッ
ケージ外側の光ファイバの途中に、戻り光防止用の光ア
イソレータを設けても良い。この場合、光半導体素子5
と光ファイバとの光の結合効率がさらに良好になる。
The present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the scope of the present invention. For example, the optical semiconductor device may be provided with an optical isolator for preventing return light inside or outside, for example inside or outside the optical semiconductor package of the fixing member 3, or in the middle of the optical fiber outside the optical semiconductor package. In this case, the optical semiconductor element 5
The optical coupling efficiency between the optical fiber and the optical fiber is further improved.

【0077】[0077]

【発明の効果】本発明の光半導体素子収納用パッケージ
は、上面に光半導体素子が搭載用基板を介して載置され
る載置部を有する略長方形の金属製の基体の厚さは0.1
〜0.5mmであり、搭載用基板は、一方向性炭素繊維の
集合体が内部に分散された炭素質母材中にAg,Ti,
Cr,ZrおよびWのうちの少なくとも一種を0.2〜10
重量%ならびにCuを90〜99.8重量%含有する金属成分
が含浸された金属炭素複合体と、金属炭素複合体の上下
面に順次積層されたステンレススチール層および銅層
と、銅層の表面に被着された金属メッキ層とを有してい
ることにより、光半導体素子が搭載される搭載用基板が
熱伝導率が面方向のみならず厚さ方向でも高く、かつ表
面に気孔の無い緻密なものとなることから、光半導体素
子の作動性を良好とでき、また光半導体パッケージ内部
の気密性も安定的に保持されたものとなる。
In the package for accommodating an optical semiconductor element of the present invention, the thickness of the substantially rectangular metal base having the mounting portion on the top surface of which the optical semiconductor element is mounted via the mounting substrate is 0.1.
Is 0.5 mm, and the mounting substrate is made of Ag, Ti, a carbonaceous base material in which an aggregate of unidirectional carbon fibers is dispersed.
0.2-10 at least one of Cr, Zr and W
%, And a metal-carbon composite impregnated with a metal component containing 90 to 99.8% by weight of Cu, a stainless steel layer and a copper layer sequentially laminated on the upper and lower surfaces of the metal-carbon composite, and the surface of the copper layer. The mounting substrate on which the optical semiconductor element is mounted has a high thermal conductivity not only in the plane direction but also in the thickness direction, and is dense and has no pores on the surface because it has the deposited metal plating layer. Therefore, the operability of the optical semiconductor element can be improved, and the airtightness inside the optical semiconductor package can be stably maintained.

【0078】本発明の光半導体素子収納用パッケージ
は、好ましくはステンレススチール層の厚さが5〜50μ
mであり、かつCu層の厚さが100〜300μmであること
により、光半導体素子の熱を良好に放散できる。
The package for accommodating an optical semiconductor device of the present invention preferably has a thickness of the stainless steel layer of 5 to 50 μm.
m and the thickness of the Cu layer is 100 to 300 μm, the heat of the optical semiconductor element can be satisfactorily dissipated.

【0079】本発明の光半導体装置は、本発明の光半導
体パッケージと、載置部に載置固定され入出力端子に電
気的に接続された光半導体素子と、枠体の上面に接合さ
れた蓋体とを具備したことにより、上記本発明の光半導
体パッケージを用いた信頼性の高いものとなる。
The optical semiconductor device of the present invention is formed by joining the optical semiconductor package of the present invention, the optical semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminal to the upper surface of the frame body. By including the lid, the optical semiconductor package of the present invention can be highly reliable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光半導体素子収納用パッケージについ
て実施の形態の一例を示す斜視図である。
FIG. 1 is a perspective view showing an example of an embodiment of a package for housing an optical semiconductor element of the present invention.

【図2】図1の光半導体素子収納用パッケージの断面図
である。
2 is a cross-sectional view of the package for storing an optical semiconductor element of FIG.

【図3】図1の光半導体素子収納用パッケージにおける
搭載用基板の部分拡大断面図である。
3 is a partial enlarged cross-sectional view of a mounting substrate in the package for storing an optical semiconductor element of FIG.

【図4】従来の光半導体素子収納用パッケージの斜視図
である。
FIG. 4 is a perspective view of a conventional package for storing an optical semiconductor element.

【図5】図4の光半導体素子収納用パッケージの断面図
である。
5 is a cross-sectional view of the package for storing an optical semiconductor element of FIG.

【符号の説明】[Explanation of symbols]

1:基体 1a:載置部 2:枠体 3:光ファイバ固定部材 3a:光ファイバ固定部材取付部 5:光半導体素子 6:搭載用基板 7:入出力端子 7a:入出力端子取付部 A:金属炭素複合体 a:金属層 b:金属メッキ層 l:一方向性炭素繊維 m:炭素質母材 n:金属成分 X:ステンレススチール層 Y:銅層 1: Base 1a: Placement part 2: Frame body 3: Optical fiber fixing member 3a: Optical fiber fixing member attachment part 5: Optical semiconductor element 6: Mounting board 7: Input / output terminal 7a: Input / output terminal mounting part A: Metal-carbon composite a: Metal layer b: Metal plating layer l: Unidirectional carbon fiber m: Carbonaceous base material n: Metal component X: Stainless steel layer Y: Copper layer

フロントページの続き Fターム(参考) 5F073 AB28 FA07 FA14 FA15 FA16 FA18 FA28 FA29 Continued front page    F term (reference) 5F073 AB28 FA07 FA14 FA15 FA16                       FA18 FA28 FA29

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上面に光半導体素子が搭載用基板を介し
て載置される載置部を有する略長方形の金属製の基体
と、該基体の上面に前記載置部を囲繞するように接合さ
れ、一側部に貫通孔から成る光ファイバ固定部材取付
部、他の側部に切欠きまたは貫通穴から成る入出力端子
取付部が形成された枠体と、前記光ファイバ固定部材取
付部の前記貫通孔に嵌着されるかまたは前記貫通孔の枠
体外側開口の周に一端が接合された筒状の光ファイバ固
定部材と、前記入出力端子取付部に嵌着された入出力端
子とを具備した光半導体素子収納用パッケージにおい
て、前記基体の厚さは0.1〜0.5mmであり、前記搭載用
基板は、一方向性炭素繊維の集合体が内部に分散された
炭素質母材中に銀,チタン,クロム,ジルコニウムおよ
びタングステンのうちの少なくとも一種を0.2〜10重量
%ならびに銅を90〜99.8重量%含有する金属成分が含浸
された金属炭素複合体と、該金属炭素複合体の上下面に
順次積層されたステンレススチール層および銅層と、前
記銅層の表面に被着された金属メッキ層とを有している
ことを特徴とする光半導体素子収納用パッケージ。
1. A substantially rectangular metal base body having a mounting portion on which an optical semiconductor element is mounted via a mounting substrate, and a top surface of the base body joined to the mounting portion so as to surround the mounting portion. A frame body having an optical fiber fixing member attachment portion formed of a through hole on one side and an input / output terminal attachment portion formed of a notch or a through hole on the other side, and the optical fiber fixing member attachment portion. A tubular optical fiber fixing member that is fitted into the through hole or one end of which is joined to the circumference of the frame body outside opening of the through hole, and an input / output terminal fitted to the input / output terminal mounting portion. In the package for storing an optical semiconductor element comprising, the thickness of the base is 0.1 to 0.5 mm, the mounting substrate is a carbonaceous base material in which an aggregate of unidirectional carbon fibers is dispersed. Fewer of silver, titanium, chromium, zirconium and tungsten A metal-carbon composite impregnated with a metal component containing 0.2 to 10% by weight of at least one kind and 90 to 99.8% by weight of copper, and a stainless steel layer and a copper layer sequentially laminated on the upper and lower surfaces of the metal-carbon composite And a metal plating layer deposited on the surface of the copper layer.
【請求項2】 前記ステンレススチール層の厚さが5〜5
0μmであり、かつ前記銅層の厚さが100〜300μmであ
ることを特徴とする請求項1記載の光半導体素子収納用
パッケージ。
2. The stainless steel layer has a thickness of 5-5.
The package for storing optical semiconductor elements according to claim 1, wherein the thickness of the copper layer is 0 μm and the thickness of the copper layer is 100 to 300 μm.
【請求項3】 請求項1または請求項2記載の光半導体
素子収納用パッケージと、前記載置部に載置固定される
とともに前記入出力端子に電気的に接続された光半導体
素子と、前記枠体の上面に接合された蓋体とを具備した
ことを特徴とする光半導体装置。
3. The package for storing an optical semiconductor element according to claim 1 or 2, an optical semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminal, An optical semiconductor device comprising: a lid joined to an upper surface of a frame.
JP2002017672A 2002-01-25 2002-01-25 Package for housing optical semiconductor element and optical semiconductor device Pending JP2003218440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017672A JP2003218440A (en) 2002-01-25 2002-01-25 Package for housing optical semiconductor element and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017672A JP2003218440A (en) 2002-01-25 2002-01-25 Package for housing optical semiconductor element and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2003218440A true JP2003218440A (en) 2003-07-31

Family

ID=27653285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017672A Pending JP2003218440A (en) 2002-01-25 2002-01-25 Package for housing optical semiconductor element and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2003218440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103685A (en) * 2005-10-05 2007-04-19 Nec Schott Components Corp Laser diode stem
JP2010080562A (en) * 2008-09-25 2010-04-08 Sumitomo Metal Electronics Devices Inc Package for housing electronic component
JP2011076946A (en) * 2009-09-30 2011-04-14 Kyocera Corp Light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103685A (en) * 2005-10-05 2007-04-19 Nec Schott Components Corp Laser diode stem
JP2010080562A (en) * 2008-09-25 2010-04-08 Sumitomo Metal Electronics Devices Inc Package for housing electronic component
JP2011076946A (en) * 2009-09-30 2011-04-14 Kyocera Corp Light emitting device

Similar Documents

Publication Publication Date Title
US20040183172A1 (en) Package for housing semiconductor chip, and semiconductor device
JP2001313345A (en) Package for accommodating semiconductor device
JP2003218440A (en) Package for housing optical semiconductor element and optical semiconductor device
JP3659336B2 (en) Package for storing semiconductor elements
JP2003069127A (en) Package for accommodating optical semiconductor element and optical semiconductor device
JP2000183253A (en) Package for housing semiconductor element
JP4454164B2 (en) Package for storing semiconductor elements
JP2003152146A (en) Photo-semiconductor element receiving package and photo-semiconductor device
JP2004063915A (en) Package for optical semiconductor element
JP3457898B2 (en) Optical semiconductor element storage package
JP2002314186A (en) Package for storing optical semiconductor element and optical semiconductor device
JP2000183236A (en) Package for housing semiconductor element
JP2003133467A (en) Package for containing semiconductor element and semiconductor device
JP2003060279A (en) Package for accommodating optical semiconductor device and the optical semiconductor device
JP2003249695A (en) Thermoelectric conversion module
JP3652255B2 (en) Package for storing semiconductor elements
JP3615697B2 (en) Package for storing semiconductor elements
JP2002353382A (en) Package for optical semiconductor device storing and optical semiconductor device
JP2002198454A (en) Package for accommodating semiconductor device
JP3457901B2 (en) Optical semiconductor element storage package
JP3652257B2 (en) Package for storing semiconductor elements
JP3659300B2 (en) Package for storing semiconductor elements
JP2000183215A (en) Package for housing semiconductor element
JP2003243579A (en) Package for semiconductor element storage and semiconductor device
JP2003318303A (en) Input and output terminal, package for containing semiconductor device, and semiconductor device