JP2003243579A - Package for semiconductor element storage and semiconductor device - Google Patents

Package for semiconductor element storage and semiconductor device

Info

Publication number
JP2003243579A
JP2003243579A JP2002037178A JP2002037178A JP2003243579A JP 2003243579 A JP2003243579 A JP 2003243579A JP 2002037178 A JP2002037178 A JP 2002037178A JP 2002037178 A JP2002037178 A JP 2002037178A JP 2003243579 A JP2003243579 A JP 2003243579A
Authority
JP
Japan
Prior art keywords
semiconductor element
metal
carbon composite
copper
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002037178A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Kunimatsu
廉可 國松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002037178A priority Critical patent/JP2003243579A/en
Publication of JP2003243579A publication Critical patent/JP2003243579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To normally and stably operate a semiconductor element for a long time by efficiently radiating the heat of the semiconductor element to the outside and improving transmission characteristics of a high frequency signal by strengthening and stabilizing the ground potential of the semiconductor element. <P>SOLUTION: A substrate 2 having a mount part 2a for mounting a semiconductor element 1 on its upper surface has a metallocarbon complex A formed with a plurality of through conductors 2b impregnating a carbonic base material (m) internally diffusing the aggregate of unidirectional carbon fibers (1) with a metal component (n) containing at least one kind of Ag, Ti, Cr, Zr and W in 0.2-10 wt.% and Cu in 90-99.8 wt.% and filling a through hole passing through upper and lower surfaces with copper in a portion positioned in the mount part 2a, copper layers X formed on the upper and lower surface of the complex and metal plating layers (b) stuck on the surfaces of the copper layers X and the lateral sides of the metallocarbon complex A. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LSIやFET
(Field Effect Transistor:電界効果型トランジスタ
ー)などの半導体素子を収容するための半導体素子収納
用パッケージおよび半導体装置に関する。
TECHNICAL FIELD The present invention relates to an LSI and an FET.
The present invention relates to a semiconductor element housing package and a semiconductor device for housing a semiconductor element such as (Field Effect Transistor).

【0002】[0002]

【従来の技術】従来の半導体素子収納用パッケージ(以
下、半導体パッケージともいう)を図3〜図5にそれぞ
れ平面図、断面図および部分拡大断面図で示す(特開20
00−150746公報参照)。なお、この半導体パッケージは
光半導体パッケージとして用いられる場合、集光レンズ
としての透光性部材や光ファイバ固定部材などが設けら
れるが、それらについては省略して以下に説明する。
2. Description of the Related Art A conventional semiconductor element housing package (hereinafter, also referred to as a semiconductor package) is shown in FIGS.
00-150746)). When this semiconductor package is used as an optical semiconductor package, a translucent member as a condenser lens, an optical fiber fixing member, and the like are provided, but these will be omitted and described below.

【0003】この半導体パッケージは、上面に半導体素
子101が載置される載置部102aを有する略四角形の基体
102と、基体102の上面に載置部102aを囲繞するように
銀ロウ等のロウ材で接合され、側部に貫通孔または切欠
き部から成る入出力端子の取付部103aが設けられた枠
体103と、取付部103aに嵌着された入出力端子105とを
有する。この入出力端子105は、メタライズ層105aが枠
体103の内外を導通するように形成されるとともに、外
部電気回路に接合されるリード端子106が枠体103外側の
メタライズ層105aに銀ロウなどのロウ材でロウ付けさ
れる。また、シールリング104は、ほぼ面一となる枠体1
03上面と入出力端子105の上面に銀ロウなどのロウ材で
接合され、半導体パッケージに蓋体(図示せず)をシー
ム熔接やロウ付けする際の接合媒体として機能する。
This semiconductor package is a substantially rectangular base having a mounting portion 102a on which the semiconductor element 101 is mounted.
A frame provided with an input / output terminal mounting portion 103a, which is formed of a through hole or a cutout portion, and is joined to the upper surface of the base 102 by a brazing material such as silver solder so as to surround the mounting portion 102a. It has a body 103 and an input / output terminal 105 fitted to the mounting portion 103a. The input / output terminal 105 is formed such that the metallized layer 105a is electrically connected to the inside and the outside of the frame 103, and the lead terminal 106 joined to an external electric circuit is formed on the metallized layer 105a outside the frame 103 with silver solder or the like. It is brazed with brazing material. In addition, the seal ring 104 has a frame body 1 that is substantially flush with the frame 1.
03 The upper surface and the upper surface of the input / output terminal 105 are joined with a brazing material such as silver brazing, and function as a joining medium when seaming and brazing a lid (not shown) to the semiconductor package.

【0004】基体102は、その上面から下面にかけて一
方向に配列した一方向性炭素繊維を炭素で結合した一方
向性炭素繊維複合材料から成る。一方向性炭素繊維複合
材料は、横方向(一方向性炭素繊維の方向に垂直な方
向)の弾性率が極めて低く、かつ熱膨張係数が約7×10
-6/℃であり、その上下面にクロム(Cr)−鉄(F
e)合金層から成る第1層と、銅(Cu)から成る第2
層と、Fe−Ni(ニッケル)−Co(コバルト)合金
層から成る第3層との3層構造である金属層が被着され
ている。これにより、横方向の熱膨張係数を10×10-6
13×10-6/℃に調整している。
The substrate 102 is made of a unidirectional carbon fiber composite material in which unidirectional carbon fibers arranged in one direction from the upper surface to the lower surface are bonded with carbon. The unidirectional carbon fiber composite material has an extremely low elastic modulus in the lateral direction (direction perpendicular to the direction of the unidirectional carbon fiber) and a thermal expansion coefficient of about 7 × 10.
-6 / ° C, and chromium (Cr) -iron (F
e) a first layer made of an alloy layer and a second layer made of copper (Cu)
A metal layer having a three-layer structure of a layer and a third layer composed of an Fe-Ni (nickel) -Co (cobalt) alloy layer is deposited. As a result, the coefficient of thermal expansion in the lateral direction is 10 × 10 -6 ~
Adjusted to 13 × 10 -6 / ° C.

【0005】また、基体102の縦方向(一方向性炭素繊
維の方向)の弾性率は、一方向性炭素繊維の方向の弾性
率が非常に高いため高く、また縦方向の熱膨張係数は一
方向性炭素繊維の方向の熱膨張係数(殆ど0〜5×10-6
/℃程度)に近似したものとなる。また基体102は、縦
方向の熱伝導率が約300W/m・K以上と非常に高いの
に対し、横方向の熱伝導率は、それぞれの一方向性炭素
繊維の間に非常に多くの気孔が有るため約30W/m・K
以下と非常に低く、縦方向と横方向とで熱伝導率が大き
く異なっている。
The elastic modulus in the longitudinal direction (direction of the unidirectional carbon fiber) of the substrate 102 is high because the elastic modulus in the direction of the unidirectional carbon fiber is very high, and the coefficient of thermal expansion in the longitudinal direction is one. Coefficient of thermal expansion in the direction of directional carbon fibers (mostly 0-5 × 10 -6
/ ° C). Further, the substrate 102 has a very high thermal conductivity of about 300 W / m · K or more in the vertical direction, whereas the thermal conductivity of the horizontal direction has a large number of pores between the unidirectional carbon fibers. About 30W / mK
It is very low as below, and the thermal conductivity is greatly different in the vertical and horizontal directions.

【0006】このような基体102は、外部電気回路基板
のヒートシンク部にネジ止めされて密着固定されること
により、半導体素子101が作動時に発する熱を効率よく
ヒートシンク部に伝える所謂放熱板としても機能する。
Such a base 102 functions as a so-called heat dissipation plate that efficiently transfers the heat generated during the operation of the semiconductor element 101 to the heat sink by being screwed and fixed in close contact with the heat sink of the external electric circuit board. To do.

【0007】そして、基体102を有する半導体パッケー
ジに半導体素子101を載置固定した後、半導体素子101と
メタライズ層105aとをボンディングワイヤで電気的に
接続し、蓋体により半導体素子101を気密に封止するこ
とにより、製品としての半導体装置となる。なお、半導
体素子101は外部電気回路から入力される電気信号によ
り作動する。
Then, after mounting and fixing the semiconductor element 101 on the semiconductor package having the base body 102, the semiconductor element 101 and the metallized layer 105a are electrically connected by a bonding wire, and the semiconductor element 101 is hermetically sealed by a lid. By stopping, the semiconductor device as a product is obtained. The semiconductor element 101 operates by an electric signal input from an external electric circuit.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、近年、
半導体素子101の発熱量が非常に大きい場合、従来の半
導体パッケージではその熱は基体102上面の載置部102a
からほぼ直下のみにしか伝わらないことから、熱は基体
102と枠体103とからなる空所(内部空間)に畜熱され易
く、その結果、半導体素子101の作動性が劣化したり、
半導体素子101が熱破壊されるといった問題点があっ
た。
However, in recent years,
When the amount of heat generated by the semiconductor element 101 is extremely large, the heat is generated in the conventional semiconductor package by the mounting portion 102a on the upper surface of the base 102.
The heat is transmitted only directly under the
The vacant space (internal space) formed by 102 and the frame body 103 is easily stored with heat, and as a result, the operability of the semiconductor element 101 is deteriorated,
There is a problem that the semiconductor element 101 is thermally destroyed.

【0009】また、第1層のCr−Fe合金層は、その
Fe成分と、一方向性炭素繊維中のカーボン(C)およ
び第2層のCu層との相互拡散により接合されているた
め、これらの拡散層でCr−Fe合金層からカーボンへ
の熱伝達効率が劣化し、Cu層からCr−Fe合金層へ
の熱伝達効率が低下していた。また、Cr−Fe合金層
自体の熱伝導率が15〜20W/m・K程度と非常に低い。
主にこれらの理由で、基体1の縦方向および横方向の熱
伝達効率が低下していた。
Further, the Cr-Fe alloy layer of the first layer is joined by mutual diffusion of the Fe component with the carbon (C) in the unidirectional carbon fiber and the Cu layer of the second layer. In these diffusion layers, the heat transfer efficiency from the Cr—Fe alloy layer to carbon was deteriorated, and the heat transfer efficiency from the Cu layer to the Cr—Fe alloy layer was lowered. Further, the thermal conductivity of the Cr-Fe alloy layer itself is as low as about 15 to 20 W / mK.
Mainly for these reasons, the heat transfer efficiency in the longitudinal direction and the transverse direction of the substrate 1 was lowered.

【0010】従って、本発明は上記問題点に鑑み完成さ
れたものであり、その目的は、IC,LSI等の半導体
集積回路素子やFET等の半導体素子の熱を効率よく半
導体パッケージの外部、例えば外部電気回路基板のヒー
トシンク部に伝え、半導体素子の作動時の温度を適正な
ものとし、半導体素子を長期に亘り正常かつ安定に作動
させることにある。
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to efficiently heat the semiconductor integrated circuit device such as IC and LSI or the semiconductor device such as FET outside the semiconductor package, for example. The purpose is to transmit the heat to the heat sink of the external electric circuit board to make the temperature of the semiconductor element proper during operation, and to operate the semiconductor element normally and stably for a long period of time.

【0011】[0011]

【課題を解決するための手段】本発明の半導体パッケー
ジは、上面に半導体素子を載置する載置部を有する基体
と、該基体の上面に前記載置部を囲繞するように接合さ
れ、側部に貫通孔または切欠き部から成る入出力端子の
取付部が形成された枠体と、前記取付部に嵌着された入
出力端子とを具備した半導体素子収納用パッケージにお
いて、前記基体は、一方向性炭素繊維の集合体が内部に
分散された炭素質母材中に銀,チタン,クロム,ジルコ
ニウムおよびタングステンのうちの少なくとも一種を0.
2〜10重量%ならびに銅を90〜99.8重量%含有する金属
成分が含浸されるとともに前記載置部に位置する部位に
上下面間を貫通する貫通孔に銅が充填されて成る貫通導
体が複数形成されている金属炭素複合体と、該金属炭素
複合体の上下面に形成された銅層と、該銅層の表面およ
び前記金属炭素複合体の側面に被着された金属メッキ層
とを有していることを特徴とする。
A semiconductor package according to the present invention has a base having a mounting portion for mounting a semiconductor element on an upper surface thereof, and an upper surface of the base which is joined so as to surround the mounting portion. In a package for storing a semiconductor element, which comprises a frame body in which a mounting portion for an input / output terminal formed of a through hole or a cutout portion is formed, and an input / output terminal fitted in the mounting portion, the base is At least one of silver, titanium, chromium, zirconium, and tungsten is added to the carbonaceous base material in which the aggregate of unidirectional carbon fibers is dispersed.
There are a plurality of penetrating conductors which are impregnated with a metal component containing 2 to 10% by weight and 90 to 99.8% by weight of copper and copper is filled in through holes penetrating between the upper and lower surfaces in the portion located in the above-mentioned mounting portion. A metal-carbon composite formed, a copper layer formed on the upper and lower surfaces of the metal-carbon composite, and a metal plating layer deposited on the surface of the copper layer and the side surface of the metal-carbon composite. It is characterized by doing.

【0012】本発明は、上記の構成により、金属炭素複
合体が炭素質母材と一方向性炭素繊維の集合体と高温高
圧下で含浸された銅を主成分とする金属成分とから成る
ため、その表面状態が非常に緻密になる。また、貫通導
体の銅と金属炭素複合体の上下面に形成された銅層とが
それらの界面で一体化されることから、半導体素子の接
地を十分なものとできる。これにより、半導体素子を基
体の載置部に信頼性良く長期に亘って取着することがで
き、また半導体素子の接地電位が強化および安定化され
て高周波信号の伝送損失が低減された半導体素子収納用
パッケージとなすことができる。
According to the present invention, according to the above constitution, the metal-carbon composite is composed of the carbonaceous base material, the aggregate of the unidirectional carbon fibers, and the metal component containing copper as a main component, which is impregnated at high temperature and high pressure. , The surface condition becomes very fine. Further, since the copper of the through conductor and the copper layers formed on the upper and lower surfaces of the metal-carbon composite are integrated at their interfaces, the semiconductor element can be grounded sufficiently. Thus, the semiconductor element can be reliably attached to the mounting portion of the base body for a long period of time, and the ground potential of the semiconductor element is strengthened and stabilized to reduce the transmission loss of the high frequency signal. It can be used as a storage package.

【0013】また、金属炭素複合体の上下面の銅層と貫
通導体の銅とがそれらの界面で一体で形成されているこ
とから、半導体素子の熱を銅層および貫通導体の銅を介
してきわめて速やかに外部へ放散させることができ、半
導体素子を長期に亘って正常かつ安定に作動させること
ができる。さらに、金属炭素複合体の表面において含浸
された銅と銅層がそれらの界面で一体となっていること
から、金属メッキ層や金属箔を介することなく金属炭素
複合体に銅層を強固に接合できる。よって、炭素および
Cuとの拡散接合により接合するFe−Ni−Co合金
などのFe系の金属膜をCu層と金属炭素複合体との間
に介在させる必要がなく、製造工程を大幅に削減するこ
とができ、生産効率が向上する。
Further, since the copper layers on the upper and lower surfaces of the metal-carbon composite and the copper of the through conductor are integrally formed at the interface between them, the heat of the semiconductor element is transmitted through the copper layer and the copper of the through conductor. It can be diffused to the outside extremely quickly, and the semiconductor element can be normally and stably operated for a long period of time. Furthermore, since the copper impregnated on the surface of the metal-carbon composite and the copper layer are integrated at their interface, the copper layer is firmly bonded to the metal-carbon composite without interposing a metal plating layer or metal foil. it can. Therefore, it is not necessary to interpose an Fe-based metal film such as an Fe-Ni-Co alloy that is bonded by diffusion bonding with carbon and Cu between the Cu layer and the metal-carbon composite, and the manufacturing process is greatly reduced. It is possible to improve the production efficiency.

【0014】また、銅層の熱膨張による歪みは金属炭素
複合体の熱膨張による歪みに近似するように金属炭素複
合体によって抑え込まれ、金属炭素複合体の熱膨張係数
に近似する熱膨張係数を有する半導体素子を基体の上面
に接合できる。その結果、半導体素子の熱は銅層、貫通
導体中の銅および銅を主成分とする金属成分が含浸され
た金属炭素複合体を介して効率良く外部に放散される。
Further, the strain due to the thermal expansion of the copper layer is suppressed by the metal-carbon composite so as to approximate the strain due to the thermal expansion of the metal-carbon composite, and the thermal expansion coefficient close to the thermal expansion coefficient of the metal-carbon composite. It is possible to bond the semiconductor element having the above to the upper surface of the base. As a result, the heat of the semiconductor element is efficiently dissipated to the outside through the copper layer, the copper in the through conductor, and the metal-carbon composite impregnated with the metal component containing copper as the main component.

【0015】また、金属炭素複合体に含浸された銅は金
属炭素複合体の側面に露出しており、NiやCu等の金
属メッキ層を金属炭素複合体の側面に信頼性よく被着で
きる。即ち、側面に露出した銅により、金属メッキ層と
炭素繊維との界面における接合力の弱さが補強され、ま
た基体の側面が緻密化されるため、炭素繊維と接合する
金属メッキ層の表面欠陥をきわめて小さくできる。その
結果、金属炭素複合体から金属メッキ層が剥がれ難くな
り金属成分の酸化を有効に防止できる。
Further, the copper impregnated in the metal-carbon composite is exposed on the side surface of the metal-carbon composite, and a metal plating layer of Ni, Cu or the like can be deposited on the side surface of the metal-carbon composite with high reliability. That is, the copper exposed on the side surface reinforces the weak bonding force at the interface between the metal plating layer and the carbon fiber, and the side surface of the substrate is densified. Can be made extremely small. As a result, the metal plating layer is less likely to peel off from the metal-carbon composite, and the oxidation of the metal component can be effectively prevented.

【0016】本発明の半導体素子収納用パッケージにお
いて、好ましくは、前記金属炭素複合体の厚さが500〜1
500μmであるとともに前記銅層の厚さが200〜650μm
であり、前記複数の貫通導体は、その断面積の合計が前
記半導体素子の下面の面積の45〜75%であるとともに略
一定の間隔で設けられていることを特徴とする。
In the package for housing a semiconductor device of the present invention, preferably, the metal-carbon composite has a thickness of 500 to 1
500 μm and the thickness of the copper layer is 200-650 μm
The total of the cross-sectional areas of the plurality of through conductors is 45 to 75% of the area of the lower surface of the semiconductor element, and the through conductors are provided at substantially constant intervals.

【0017】本発明の半導体素子収納用パッケージは、
上記の構成により、半導体素子を基体にさらに信頼性よ
くかつ強固に載置固定でき、また半導体素子から基体へ
の熱伝達効率がきわめて良好となるとともに金属炭素複
合体を基体の一部として用いているため基体を軽量化す
ることができる。さらに、銅が充填された貫通導体が上
記の断面積で一様に形成されているため、半導体素子の
接地電位が強化され、半導体素子に入出力する高周波信
号の伝送損失が小さくなるとともに外部の電界の影響を
きわめて小さくできる軽量の半導体素子収納用パッケー
ジを実現できる。加えて、貫通導体に充填された銅は、
金属炭素複合体の上下面の銅層の形成時に同時に形成さ
れることから、欠陥がきわめて少ない状態になってお
り、印刷法などによって主に樹脂と溶剤とからなる金属
インクが充填された場合に比して1.2〜1.5倍以上の熱伝
達効率が得られる。
The package for housing a semiconductor device of the present invention is
With the above structure, the semiconductor element can be mounted and fixed on the base body more reliably and firmly, and the heat transfer efficiency from the semiconductor element to the base body becomes extremely good, and the metal-carbon composite is used as a part of the base body. Therefore, the weight of the base can be reduced. Further, since the through conductor filled with copper is formed uniformly in the above cross-sectional area, the ground potential of the semiconductor element is strengthened, the transmission loss of the high frequency signal input to and output from the semiconductor element is reduced, and the external It is possible to realize a lightweight package for housing a semiconductor element in which the influence of an electric field can be made extremely small. In addition, the copper filled in the through conductor is
Since it is formed at the same time when the copper layers on the upper and lower surfaces of the metal-carbon composite are formed, the number of defects is extremely small, and when the metal ink mainly composed of resin and solvent is filled by a printing method or the like. Heat transfer efficiency of 1.2 to 1.5 times or more is obtained.

【0018】本発明の半導体装置は、本発明の半導体素
子収納用パッケージと、前記載置部に載置固定されると
ともに前記入出力端子に電気的に接続された半導体素子
と、前記枠体の上面に取着された蓋体とを具備したこと
を特徴とする。
The semiconductor device of the present invention includes a package for storing a semiconductor element of the present invention, a semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminals, and the frame body. It has a lid attached to the upper surface.

【0019】本発明の半導体装置は、上記の構成によ
り、基体はCuを主成分とする金属成分が炭素質母材内
に含浸されているとともに上下面にCu層が形成されて
いるため、基体を外部装置にネジ止めする際に発生する
押圧力や圧縮応力が基体の表面に加わった場合、基体が
押圧力や圧縮応力に対して潰れ難くなる。従って、例え
ばマザーボード等の外部電気回路基板にネジ止めした
際、基体が厚さ方向に潰れることにより締め付けが緩く
なって密着固定が不十分となり、外部への熱放散性が劣
化するといった不具合が解消される。また、銅を充填し
た貫通導体が形成されていることで重さが大きく増加す
ることなく接地性を改善することができ、高周波信号の
伝送損失を小さくできる。
According to the semiconductor device of the present invention having the above-mentioned structure, the base is impregnated with the metal component containing Cu as the main component in the carbonaceous base material and the Cu layers are formed on the upper and lower surfaces. When a pressing force or a compressive stress generated when the screw is attached to the external device is applied to the surface of the base, the base is less likely to be crushed by the pressing force or the compressive stress. Therefore, when screwed to an external electric circuit board such as a mother board, the base body is crushed in the thickness direction to loosen the tightening, resulting in inadequate tight fixing, and the problem that heat dissipation to the outside is deteriorated is solved. To be done. Further, since the penetrating conductor filled with copper is formed, the groundability can be improved without significantly increasing the weight, and the transmission loss of the high frequency signal can be reduced.

【0020】[0020]

【発明の実施の形態】本発明の半導体素子収納用パッケ
ージを以下に詳細に説明する。図1,図2は本発明の半
導体パッケージについて実施の形態の一例を示し、図1
は半導体パッケージの断面図、図2は図1の半導体パッ
ケージの基体の部分拡大断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION The semiconductor element housing package of the present invention will be described in detail below. 1 and 2 show an example of an embodiment of a semiconductor package of the present invention.
2 is a sectional view of the semiconductor package, and FIG. 2 is a partially enlarged sectional view of the base of the semiconductor package of FIG.

【0021】図1において、Aは金属炭素複合体、Xは
金属炭素複合体Aの上下面に形成された銅層、2は金属
炭素複合体A,貫通導体2b,銅層Xおよび金属メッキ
層bからなる基体である。また、3は枠体、4はシール
リング、5は入出力端子、7は蓋体である。これら基体
2,枠体3,シールリング4,入出力端子5および蓋体
7とで半導体素子1を内部に収容する容器が基本的に構
成される。
In FIG. 1, A is a metal-carbon composite, X is a copper layer formed on the upper and lower surfaces of the metal-carbon composite A, 2 is a metal-carbon composite A, a through conductor 2b, a copper layer X and a metal plating layer. It is a substrate made of b. Further, 3 is a frame, 4 is a seal ring, 5 is an input / output terminal, and 7 is a lid. The base body 2, the frame body 3, the seal ring 4, the input / output terminal 5 and the lid body 7 basically constitute a container for housing the semiconductor element 1 therein.

【0022】また図2において、lは一方向性炭素繊
維、mは炭素質母材、nは銀(Ag),チタン(T
i),クロム(Cr),ジルコニウム(Zr),タング
ステン(W)のうちの少なくとも一種を0.2〜10重量%
ならびにCuを90〜99.8重量%含有する金属成分、Aは
金属炭素複合体であり、金属成分nが含浸された炭素質
母材m内に一方向性炭素繊維lの集合体が分散されて成
る。そして、金属炭素複合体Aの上下面および銅が充填
された貫通導体2bの上下端部に、銅層Xが貫通導体2
bの上下端部の銅と一体となるように形成され、銅層X
の表面および金属炭素複合体Aの側面に金属メッキ層b
が被着されることにより、基体2が構成される。
In FIG. 2, l is unidirectional carbon fiber, m is carbonaceous base material, n is silver (Ag), titanium (T
i), chromium (Cr), zirconium (Zr), and tungsten (W), at least one of which is 0.2 to 10% by weight.
And a metal component A containing 90 to 99.8% by weight of Cu, A is a metal-carbon composite, and an aggregate of unidirectional carbon fibers 1 is dispersed in a carbonaceous base material m impregnated with the metal component n. . Then, the copper layer X is formed on the upper and lower surfaces of the metal-carbon composite A and on the upper and lower ends of the through conductor 2b filled with copper.
b is formed so as to be integrated with the copper on the upper and lower ends of the copper layer X
On the surface of the metal and the side surface of the metal-carbon composite A.
The substrate 2 is formed by depositing the.

【0023】一方向性炭素繊維l,炭素質母材mおよび
金属成分nから構成される金属炭素複合体Aは、例えば
以下の工程[1]〜[5]のようにして作製される。
The metal-carbon composite A composed of the unidirectional carbon fiber 1, the carbonaceous base material m and the metal component n is produced, for example, by the following steps [1] to [5].

【0024】[1]一方向性炭素繊維lの束を炭素で結合
したブロックを小さな一方向性の炭素繊維1からなる小
さな集合体に破砕し、破砕された一方向性炭素繊維lの
集合体を集めて固体のピッチあるいはコークス等の微粉
末を分散させたフェノール樹脂等の熱硬化性樹脂の溶液
中に浸す。なお、ブロックを破砕して得られる小塊の大
きさは、立方体のものに換算して一辺が約0.1〜1mm
程度である。
[1] A block in which a bundle of unidirectional carbon fibers 1 is bonded with carbon is crushed into small aggregates of small unidirectional carbon fibers 1, and the aggregates of crushed unidirectional carbon fibers 1 are crushed. Are collected and immersed in a solution of a thermosetting resin such as a phenol resin in which fine powder such as solid pitch or coke is dispersed. In addition, the size of the small block obtained by crushing the block is about 0.1 to 1 mm on a side converted to a cube.
It is a degree.

【0025】[2]これを乾燥させて所定の圧力を加える
とともに加熱して熱硬化性樹脂部分を硬化させる。
[2] This is dried and a predetermined pressure is applied and heated to cure the thermosetting resin portion.

【0026】[3]不活性雰囲気中、高温で焼成すること
でフェノール樹脂とピッチあるいはコークスの微粉末を
炭化させて炭素質母材mとする。炭素質母材mは、それ
自体が200〜300W/m・Kの大きな熱伝導率を有し、半
導体素子1の熱の伝熱経路としても機能する。
[3] Phenol resin and pitch or coke fine powder are carbonized by firing at a high temperature in an inert atmosphere to obtain a carbonaceous base material m. The carbonaceous base material m itself has a large thermal conductivity of 200 to 300 W / m · K and also functions as a heat transfer path for heat of the semiconductor element 1.

【0027】[4]一方、溶融したCuの中にAg,T
i,Cr,Zr,Wから選ばれた少なくとも一種を添加
して成るとともに、Ag,Ti,Cr,Zr,Wから選
ばれた少なくとも一種を0.2〜10重量%ならびにCuを9
0〜99.8重量%含有する金属成分n(液状体)を、炭素
質母材m内に高温高圧のもとで含浸させたブロックとな
す。含浸された金属成分nは塊状または薄板状であり、
炭素質母材m内に分散されることとなる。このブロック
を板状に切り出して金属炭素複合体Aとなる板を作製
し、この板の寸法は、例えば厚さが500〜1500μm程
度、平面視における縦×横の寸法が100mm角程度であ
る。
[4] On the other hand, Ag, T
At least one selected from i, Cr, Zr, and W is added, and 0.2 to 10% by weight of at least one selected from Ag, Ti, Cr, Zr, and W and 9% of Cu are added.
A block was obtained by impregnating a carbonaceous base material m with a metal component n (liquid) containing 0 to 99.8% by weight under high temperature and high pressure. The impregnated metal component n is a lump or a thin plate,
It will be dispersed in the carbonaceous base material m. This block is cut out into a plate shape to prepare a plate that becomes the metal-carbon composite A. The plate has a thickness of, for example, about 500 to 1500 μm, and a length × width in a plan view of about 100 mm square.

【0028】[5]この板の中央部に複数の貫通孔をドリ
ルによる穴開け加工で形成し、略四角形等の所望の形状
に加工して金属炭素複合体Aを作製する。
[5] A plurality of through holes are formed in the central portion of this plate by drilling, and processed into a desired shape such as a substantially quadrangle to produce a metal-carbon composite A.

【0029】この金属炭素複合体Aの上下面に厚さ300
〜500μm程度の銅板を積層し、高温高圧のもとでの銅
を貫通孔に含浸させて充填することによって、銅層Xお
よび貫通導体2bが形成された基体2が作製される。こ
れにより、貫通導体2bの上下端部は銅層Xと一体化さ
れる。また、銅層Xの表面および金属炭素複合体Aの側
面にはNiメッキ層,Cuメッキ層等の金属メッキ層b
が形成される。
The metal carbon composite A has a thickness of 300 on the upper and lower surfaces.
By stacking copper plates having a thickness of about 500 μm and impregnating the through holes with copper under high temperature and high pressure, the base 2 having the copper layer X and the through conductors 2b formed therein is manufactured. As a result, the upper and lower ends of the penetrating conductor 2b are integrated with the copper layer X. Further, on the surface of the copper layer X and the side surface of the metal-carbon composite A, a metal plating layer b such as a Ni plating layer or a Cu plating layer is provided.
Is formed.

【0030】この構成により、半導体素子1の熱の大部
分は、基体2の上面側の銅層Xおよび銅が充填された貫
通導体2bを介して下面側の銅層Xに伝えられ、次に速
やかに外部電気回路基板のヒートシンク部に伝達され外
部に放散される。また、銅層Xを横方向に伝わった熱
は、金属炭素複合体Aの内部の炭素質母材mや一方向性
炭素繊維lの集合体および金属成分nを介してランダム
な方向に伝達され、基体2の下面および側面の金属メッ
キ層bを介して速やかに外部電気回路基板のヒートシン
ク部に伝えられ外部に放散される。
With this structure, most of the heat of the semiconductor element 1 is transferred to the copper layer X on the lower surface side through the copper layer X on the upper surface side of the substrate 2 and the through conductor 2b filled with copper. It is immediately transmitted to the heat sink of the external electric circuit board and is diffused to the outside. Further, the heat laterally transmitted through the copper layer X is transmitted in random directions through the carbonaceous base material m inside the metal-carbon composite A, the aggregate of the unidirectional carbon fibers 1 and the metal component n. , Is quickly transmitted to the heat sink portion of the external electric circuit board through the metal plating layers b on the lower and side surfaces of the base body 2 and is diffused to the outside.

【0031】貫通導体2bは半導体素子1を接地する際
に接地電位を強化するものであり、また熱を良好に伝達
する伝熱媒体としても機能する。そして、複数の貫通導
体2bは、好ましくはそれらの断面積の合計が半導体素
子1の下面の面積の45〜75%であるとともに略一定の間
隔で設けられる。複数の貫通導体2bの断面積の合計が
半導体素子1の下面の面積の45%未満であり、かつ複数
の貫通導体2の互いの間隔が一定でない場合、半導体素
子1の接地電位が安定せず高周波信号の伝送損失が発生
し易いとともに、半導体素子1の放熱性が低下し易くな
る。複数の貫通導体2bの断面積の合計が半導体素子1
の下面の面積の75%を超えており、かつ複数の貫通導体
2bの互いの間隔が一定でない場合、横方向の熱膨張率
が大きくなる。その結果、貫通導体2bの銅が横方向に
熱膨張して周囲の金属炭素複合体Aにクラックを発生さ
せる場合がある。より好ましくは、複数の貫通導体2b
の断面積の合計が半導体素子1下面の面積の50〜70%で
あるのがよい。
The penetrating conductor 2b strengthens the ground potential when the semiconductor element 1 is grounded, and also functions as a heat transfer medium that transfers heat satisfactorily. The plurality of penetrating conductors 2b preferably have a total cross-sectional area of 45 to 75% of the area of the lower surface of the semiconductor element 1 and are provided at substantially constant intervals. When the total cross-sectional area of the plurality of through conductors 2b is less than 45% of the area of the lower surface of the semiconductor element 1 and the distance between the plurality of through conductors 2 is not constant, the ground potential of the semiconductor element 1 is not stable. High-frequency signal transmission loss is likely to occur, and the heat dissipation of the semiconductor element 1 is likely to deteriorate. The total cross-sectional area of the plurality of through conductors 2b is the semiconductor element 1
If it exceeds 75% of the area of the lower surface of the and the distance between the plurality of through conductors 2b is not constant, the coefficient of thermal expansion in the lateral direction becomes large. As a result, the copper of the penetrating conductor 2b may thermally expand in the lateral direction to cause cracks in the surrounding metal-carbon composite A. More preferably, the plurality of through conductors 2b
It is preferable that the total cross-sectional area of the above is 50 to 70% of the area of the lower surface of the semiconductor element 1.

【0032】具体的には、例えば断面形状が直径(φ)
0.5mmの円形である複数の貫通導体2bを、隣接する
もの同士の間隔を0.2mmとして、半導体素子1下面の
全面に対して一様に分布するように設けた場合、貫通導
体2bの断面積の合計は半導体素子1下面の面積の45%
程度となる。また、貫通導体2bの断面形状が直径2m
mの円形であり、隣接するもの同士の間隔を0.2mmと
して、半導体素子1下面の全面に対して一様に分布する
ように設けた場合、貫通導体2bの断面積の合計は半導
体素子1下面の面積の75%程度となる。
Specifically, for example, the cross-sectional shape is the diameter (φ).
When a plurality of 0.5 mm circular through conductors 2b are provided so as to be evenly distributed over the entire lower surface of the semiconductor element 1 with a space between adjacent ones of 0.2 mm, a cross-sectional area of the through conductor 2b Is 45% of the area of the bottom surface of semiconductor device 1.
It will be about. The cross-sectional shape of the through conductor 2b has a diameter of 2 m.
When they are provided so as to be evenly distributed over the entire lower surface of the semiconductor element 1 with a distance of 0.2 mm between adjacent ones, the total cross-sectional area of the through conductors 2b is the lower surface of the semiconductor element 1. The area is about 75%.

【0033】また貫通導体2bは、金属炭素複合体Aの
半導体素子1直下の部位に設けるのが良いが、基体1の
上面で枠体3に囲まれた部位の略全面に設けてもよい。
その場合、貫通導体2bは半導体素子1の接地電位をさ
らに強化および安定化するとともに伝熱媒体として有効
に作用する。このように、貫通導体2bを形成すること
により、基体1の重量を大きく増やすことなく接地性お
よび伝熱性が向上する。
The penetrating conductor 2b is preferably provided on the portion of the metal-carbon composite A immediately below the semiconductor element 1, but may be provided on substantially the entire surface of the upper surface of the substrate 1 surrounded by the frame 3.
In that case, the through conductor 2b further strengthens and stabilizes the ground potential of the semiconductor element 1 and effectively acts as a heat transfer medium. By forming the penetrating conductor 2b in this manner, the grounding property and the heat transfer property are improved without significantly increasing the weight of the base 1.

【0034】また貫通導体2bの銅は、充填される際に
貫通導体2bの貫通孔の内面から外部に侵入する場合も
ある。この場合、貫通導体2bの断面積(体積)が増大
して接地性がさらに向上する。
Further, the copper of the through conductor 2b may enter the outside from the inner surface of the through hole of the through conductor 2b when being filled. In this case, the cross-sectional area (volume) of the through conductor 2b is increased, and the groundability is further improved.

【0035】また、基体2は金属成分nによってその剛
性が高くなっている。その結果、銅層Xの熱膨張による
歪みは金属炭素複合体Aの熱膨張による歪みに近似する
ように抑え込まれており、金属炭素複合体Aの熱膨張係
数に近似した熱膨張を有する半導体素子1を、銅層Xの
上面に接合できる。その結果、半導体素子1の熱は銅層
Xを介して効率良く外部に放散される。
The rigidity of the base 2 is increased by the metal component n. As a result, the strain due to the thermal expansion of the copper layer X is suppressed so as to approximate the strain due to the thermal expansion of the metal-carbon composite A, and the semiconductor having the thermal expansion close to the thermal expansion coefficient of the metal-carbon composite A. The element 1 can be bonded to the upper surface of the copper layer X. As a result, the heat of the semiconductor element 1 is efficiently dissipated to the outside through the copper layer X.

【0036】具体的には、金属炭素複合体A(熱膨張係
数:7×10-6〜10×10-6/℃)の上下面に接合された銅
層X(熱膨張係数:19×10-6/℃)は、金属炭素複合体
Aとの接合が金属炭素複合体Aの表面に露出する金属成
分nによって強固となっているため、熱膨張による歪み
が抑制され、金属炭素複合体Aの熱歪みにほぼ近似した
ものとなる。また、金属炭素複合体Aは、銅層Xの好ま
しい厚さが200〜650μmと比較的薄いため、銅層Xによ
る熱歪みの影響を受け難い。従って、基体2は全体的に
金属炭素複合体Aの熱膨張係数にほぼ近似することとな
り、その熱膨張係数に近似した半導体素子1を強固に接
合できる。
Specifically, the metal-carbon composite A (coefficient of thermal expansion: 7 × 10 −6 to 10 × 10 −6 / ° C.) is bonded to the upper and lower surfaces of the copper layer X (coefficient of thermal expansion: 19 × 10). -6 / ° C.), since the bond with the metal-carbon composite A is strengthened by the metal component n exposed on the surface of the metal-carbon composite A, distortion due to thermal expansion is suppressed, and the metal-carbon composite A It is close to the thermal strain of. Further, in the metal-carbon composite A, since the preferable thickness of the copper layer X is relatively thin at 200 to 650 μm, it is difficult to be affected by the thermal strain due to the copper layer X. Therefore, the substrate 2 as a whole approximates to the thermal expansion coefficient of the metal-carbon composite A, and the semiconductor element 1 close to the thermal expansion coefficient can be firmly bonded.

【0037】本発明の金属炭素複合体Aは、その厚さは
500〜1500μmが良く、500μm未満では高い剛性を有す
るものを作製するのが困難となる。1500μmを超える
と、基体2に近接配置されている他の半導体装置や外部
電気回路基板に高周波信号を伝送する際に、金属炭素複
合体Aの厚さが厚いため、高周波信号がまわり込むこと
に起因してインダクタンスが大きくなり、インサーショ
ンロス(挿入損失)が大きくなる。また、基体2の熱膨
張による熱歪みを金属炭素複合体A、即ち半導体素子1
の熱膨張による熱歪みに近似させ難くなる。その結果、
半導体素子1が基体2から剥がれたりして、半導体素子
1の熱を効率良く外部に放散させ難くなる。
The thickness of the metal-carbon composite A of the present invention is
It is preferably 500 to 1500 μm, and if it is less than 500 μm, it becomes difficult to produce a product having high rigidity. If the thickness exceeds 1500 μm, the metal-carbon composite A has a large thickness when transmitting a high-frequency signal to another semiconductor device or an external electric circuit board arranged in the vicinity of the base 2, so that the high-frequency signal may wrap around. As a result, the inductance becomes large and the insertion loss (insertion loss) becomes large. In addition, the thermal strain due to the thermal expansion of the substrate 2 causes the metal-carbon composite A, that is, the semiconductor element 1.
It becomes difficult to approximate the thermal strain due to the thermal expansion of. as a result,
If the semiconductor element 1 is peeled off from the base body 2, it becomes difficult to efficiently dissipate the heat of the semiconductor element 1 to the outside.

【0038】また、銅層Xの厚さは200〜650μmが良
く、200μm未満では半導体素子1の熱を効率良く横方
向(載置部2aの面に平行方向)に伝える機能が劣化す
る。即ち、銅層Xは半導体素子1の熱を効率良く横方向
に伝える機能を有するが、その機能が低下することとな
る。650μmを超えると、銅層Xの熱膨張による熱歪み
が金属炭素複合体Aに及ぼす影響が大きくなり、基体2
全体の熱膨張による熱歪みが大きくなる。その結果、半
導体素子1が基体2から剥がれたりして半導体素子1の
熱を効率良く外部に放散させ難くなる。
Further, the thickness of the copper layer X is preferably 200 to 650 μm, and if it is less than 200 μm, the function of efficiently transmitting heat of the semiconductor element 1 in the lateral direction (parallel to the surface of the mounting portion 2a) is deteriorated. That is, the copper layer X has a function of efficiently transmitting the heat of the semiconductor element 1 in the lateral direction, but the function is deteriorated. When it exceeds 650 μm, the thermal strain due to the thermal expansion of the copper layer X has a great influence on the metal-carbon composite A, and the base 2
The thermal strain due to the overall thermal expansion increases. As a result, the semiconductor element 1 is peeled off from the base 2 and it becomes difficult to efficiently dissipate the heat of the semiconductor element 1 to the outside.

【0039】また、金属炭素複合体Aは金属成分nが含
浸されていることにより、炭素質母材mの密着性が非常
に良好となる。その結果、半導体素子1の熱の一部は基
体2の内部を効率よく伝達し外部電気回路基板のヒート
シンク部に確実に伝達される。
Since the metal-carbon composite A is impregnated with the metal component n, the adhesion of the carbonaceous base material m becomes very good. As a result, a part of the heat of the semiconductor element 1 is efficiently transferred inside the base body 2 and is reliably transferred to the heat sink portion of the external electric circuit board.

【0040】なお、金属成分nがAgとCuから成る場
合、金属成分nと炭素質母材mとは、それらの間の濡れ
性が高いため密着性が非常に高くなる。また、金属成分
nがTi,Cr,Zr,Wのうちの少なくとも一種とC
uとからなる場合、金属成分nと炭素質母材mとは、そ
れらの間でTi,Cr,Zr,Wの炭素化合物が生成さ
れるため密着性が非常に高くなる。Ag,Ti,Cr,
Zr,Wのうちの少なくとも一種が0.2重量%未満の場
合、濡れ性が低下したり、またこれらの金属の炭素化合
物の生成が促進されないため、密着性が低下する。特
に、Ti,Cr,Zr,Wの場合には、金属成分n中に
融解され難くなり、熱伝導性の低いTi,Cr,Zr,
WがCu中および/またはCu表面に分散されることと
なり、半導体素子1の熱は基体2の内部を効率よく伝達
し難くなる。
When the metal component n is composed of Ag and Cu, the metal component n and the carbonaceous base material m have high wettability between them, and thus the adhesion is very high. In addition, the metal component n is at least one of Ti, Cr, Zr, and W and C
When it is composed of u, the metal component n and the carbonaceous base material m have very high adhesion because carbon compounds of Ti, Cr, Zr, and W are generated between them. Ag, Ti, Cr,
When at least one of Zr and W is less than 0.2% by weight, the wettability is lowered, and the formation of carbon compounds of these metals is not promoted, so that the adhesion is lowered. Particularly, in the case of Ti, Cr, Zr, and W, it is difficult to melt in the metal component n, and Ti, Cr, Zr, and
Since W is dispersed in Cu and / or on the Cu surface, it becomes difficult to efficiently transfer the heat of the semiconductor element 1 inside the base 2.

【0041】金属炭素複合体Aに対する金属成分nの含
有量は10〜20重量%がよい。10重量%未満では、横方向
で所望の熱伝導率が得られず、20重量%を超えると、基
体2と半導体素子1との熱膨張係数差が大きくなり、半
導体素子1と基体2との接合部にクラックが発生し易く
なる。基体2と半導体素子1との熱膨張係数差を考慮す
ると、より好ましくは15〜20重量%がよい。また、金属
成分nの含有量を10〜20重量%と好適な範囲とすること
により、金属炭素複合体Aの表面に現われる金属成分n
の表面積の割合は、金属炭素複合体Aの表面積に対して
約6〜10%となり、これにより金属メッキ層bの被着強
度が向上する。
The content of the metal component n in the metal-carbon composite A is preferably 10 to 20% by weight. If it is less than 10% by weight, the desired thermal conductivity cannot be obtained in the lateral direction, and if it exceeds 20% by weight, the difference in the coefficient of thermal expansion between the substrate 2 and the semiconductor element 1 becomes large, and the semiconductor element 1 and the substrate 2 have a large difference. Cracks are likely to occur at the joint. Considering the difference in thermal expansion coefficient between the substrate 2 and the semiconductor element 1, it is more preferably 15 to 20% by weight. Further, by setting the content of the metal component n within a suitable range of 10 to 20% by weight, the metal component n appearing on the surface of the metal-carbon composite A is shown.
The surface area ratio is about 6 to 10% with respect to the surface area of the metal-carbon composite A, which improves the adhesion strength of the metal plating layer b.

【0042】また、熱膨張係数について、金属成分nを
炭素質母材m中に10〜20重量%程度の好適な含有量で含
浸させれば、金属炭素複合体Aの熱膨張係数が半導体素
子1と大幅に異なる程度に上昇することはない。また、
金属成分nのうち特にAgの場合は熱伝導率が非常に高
いため、半導体素子1の熱を伝えるのに有利である。ま
た、金属炭素複合体Aの弾性率は従来に比し高くなるた
め、金属成分nが基体2の両端部をネジで外部電気回路
基板に締め付けた際の補強材として機能し、基体2の破
損を有効に防止する。
Regarding the coefficient of thermal expansion, when the metal component n is impregnated in the carbonaceous base material m at a suitable content of about 10 to 20% by weight, the coefficient of thermal expansion of the metal-carbon composite A becomes a semiconductor element. It does not rise to a degree that is significantly different from 1. Also,
Among the metal components n, particularly Ag is very high in thermal conductivity, and is advantageous for transmitting heat of the semiconductor element 1. Further, since the elastic modulus of the metal-carbon composite A is higher than that of the conventional one, the metal component n functions as a reinforcing material when both ends of the base 2 are fastened to the external electric circuit board by screws, and the base 2 is damaged. Effectively prevent.

【0043】また、金属成分nの融点は非常に高いた
め、半導体パッケージを融点が780℃程度以上の銀ロウ
等のロウ材で組立てても金属成分nが溶融することはな
く、常に炭素質母材m内を安定にしておくことができ
る。なお、ロウ付け時に溶融するような金属成分nの場
合は基体2の端面から流れ出すことがあり、半導体パッ
ケージとしては不適である。
Further, since the melting point of the metal component n is very high, the metal component n does not melt even when the semiconductor package is assembled with a brazing material such as silver solder having a melting point of about 780 ° C. or higher, and the carbonaceous matrix is always used. The inside of the material m can be kept stable. In the case of a metal component n that melts during brazing, it may flow out from the end surface of the base body 2 and is not suitable as a semiconductor package.

【0044】銅層Xの表面および金属炭素複合体Aの側
面に被着される金属メッキ層bは、Niメッキ層やCu
メッキ層からなる。基体2の上下面における金属メッキ
層bは、基体2上に枠体3を容易に接合させることを可
能とする。一方、基体2の側面における金属メッキ層b
は、側面に露出する金属成分nの酸化腐食を有効に防止
する。金属メッキ層bの厚さは1〜30μmがよく、1μ
m未満の場合、その厚さのバラツキにより金属メッキ層
bが殆ど被着されない部位が発生することがある。この
場合、表面が酸化され易くなったり、枠体3の接合強度
が劣化するなどの不具合を招来する。30μmを超える
と、Niメッキ層の場合は熱伝達効率が低くなって半導
体素子1の熱が速やかに放散されなくなり、Cuメッキ
層の場合は金属炭素複合体Aの側面との熱膨張差により
密着性が低下する。
The metal plating layer b deposited on the surface of the copper layer X and the side surface of the metal-carbon composite A is a Ni plating layer or Cu.
It consists of a plating layer. The metal plating layers b on the upper and lower surfaces of the base body 2 enable the frame body 3 to be easily joined to the base body 2. On the other hand, the metal plating layer b on the side surface of the substrate 2
Effectively prevents the oxidative corrosion of the metal component n exposed on the side surface. The thickness of the metal plating layer b is preferably 1 to 30 μm and 1 μm
If the thickness is less than m, the metal plating layer b may be scarcely deposited due to the variation in the thickness. In this case, the surface is likely to be oxidized, and the joint strength of the frame 3 is deteriorated. When it exceeds 30 μm, the heat transfer efficiency is low in the case of the Ni plating layer and the heat of the semiconductor element 1 is not quickly dissipated, and in the case of the Cu plating layer, it adheres due to the difference in thermal expansion with the side surface of the metal-carbon composite A. Sex decreases.

【0045】また、金属メッキ層bは、半導体パッケー
ジ内部の気密性をヘリウム(He)を使用して検査する
際、Heが一方向性炭素繊維lの気孔中にトラップされ
るのを有効に防止し、気密性検査に対して適確であると
の判定が得られる。
Further, the metal plating layer b effectively prevents He from being trapped in the pores of the unidirectional carbon fiber 1 when the airtightness inside the semiconductor package is inspected by using helium (He). However, it can be determined that the airtightness test is appropriate.

【0046】基体2の上面には、側部に貫通孔または切
欠き部から成る入出力端子5の取付部3aを有する枠体
3が、載置部2aを囲繞するようにAgロウ等のロウ材
で接合される。この枠体3は、高周波信号が入出力され
る半導体素子1の周辺部を電磁的に遮蔽するため、Fe
−Ni−Co合金等の金属から成るのがよいが、酸化ア
ルミニウム(Al23)セラミックス,窒化アルミニウ
ム(AlN)セラミックス等のセラミックスで形成して
もよい。例えば、Fe−Ni−Co合金からなる場合、
この合金のインゴットに圧延加工やプレス加工等の金属
加工を施すことにより所定形状に作製される。また、そ
の表面には酸化腐食を有効に防止するために、0.5〜9
μmのNi層や0.5〜5μmのAu層等の金属層をメッ
キ法により被着させておくとよい。
On the upper surface of the base body 2, a frame body 3 having a mounting portion 3a of the input / output terminal 5 formed of a through hole or a cutout portion on the side is provided with a solder such as Ag solder so as to surround the mounting portion 2a. Joined with materials. Since the frame 3 electromagnetically shields the peripheral portion of the semiconductor element 1 where a high frequency signal is input / output,
It is preferably made of a metal such as —Ni—Co alloy, but may be made of ceramics such as aluminum oxide (Al 2 O 3 ) ceramics and aluminum nitride (AlN) ceramics. For example, in the case of Fe-Ni-Co alloy,
The alloy ingot is formed into a predetermined shape by subjecting the alloy ingot to metal processing such as rolling and pressing. In addition, in order to effectively prevent oxidative corrosion on its surface, 0.5-9
It is advisable to deposit a metal layer such as a Ni layer having a thickness of 0.5 μm or an Au layer having a thickness of 0.5 to 5 μm by a plating method.

【0047】枠体3の取付部3aには、その内周面に入
出力端子5がAgロウ等のロウ材を介して嵌着接合され
る。入出力端子5は、絶縁性のセラミック基板に導電性
のメタライズ層5aが被着された平板部と、メタライズ
層5aを間に挟んで平板部の上面に接合された立壁部と
から成り、半導体パッケージ内部の気密性を保持すると
ともに半導体パッケージと外部電気回路との高周波信号
の入出力を行うものである。なお、セラミック基板の材
料は、誘電率や熱膨張係数等の特性に応じて、Al23
セラミックスやAlNセラミックス等のセラミックス材
料から選択すれば良い。
The input / output terminal 5 is fitted and joined to the inner peripheral surface of the mounting portion 3a of the frame body 3 via a brazing material such as Ag solder. The input / output terminal 5 includes a flat plate portion in which a conductive metallization layer 5a is adhered to an insulating ceramic substrate, and a standing wall portion joined to the upper surface of the flat plate portion with the metallization layer 5a interposed therebetween. The airtightness inside the package is maintained and a high frequency signal is input and output between the semiconductor package and an external electric circuit. The material of the ceramic substrate is Al 2 O 3 depending on the characteristics such as dielectric constant and coefficient of thermal expansion.
It may be selected from ceramic materials such as ceramics and AlN ceramics.

【0048】この入出力端子5は、セラミック基板と成
る原料粉末に適当なバインダー、溶剤等を添加混合して
スラリーと成し、このスラリーをドクターブレード法や
カレンダーロール法等の成形方法によってセラミックグ
リーンシートとし、次にセラミックグリーンシートに適
当な打ち抜き加工を施すとともに、メタライズ層5aと
なるW,モリブデン(Mo),マンガン(Mn)等の粉
末に有機溶剤、溶媒を添加混合して得た金属ペースト
を、従来周知のスクリーン印刷法により所望のパターン
形状に印刷塗布し、約1600℃の高温で同時焼成して作製
される。
The input / output terminal 5 is made into a slurry by adding and mixing an appropriate binder, a solvent and the like to a raw material powder to be a ceramic substrate, and the slurry is made into a ceramic green by a forming method such as a doctor blade method or a calendar roll method. A metal paste obtained by forming a sheet, then subjecting the ceramic green sheet to an appropriate punching process, and adding and mixing an organic solvent and a solvent to the powder of W, molybdenum (Mo), manganese (Mn), etc., which becomes the metallized layer 5a. Is printed and applied in a desired pattern shape by a conventionally known screen printing method, and is simultaneously fired at a high temperature of about 1600 ° C.

【0049】また、メタライズ層5aの上面には、入出
力端子5との接合を強固にするために熱膨張係数が入出
力端子5のセラミック基板に近似した部材から成るリー
ド端子(図示せず)がAgロウ等のロウ材で接合され
る。例えば、入出力端子5のセラミック基板がAl23
セラミックスから成る場合、リード端子はFe−Ni−
Co合金やFe−Ni合金から成る。
On the upper surface of the metallized layer 5a, a lead terminal (not shown) made of a member having a coefficient of thermal expansion similar to that of the ceramic substrate of the input / output terminal 5 in order to strengthen the connection with the input / output terminal 5. Are joined with a brazing material such as Ag brazing. For example, the ceramic substrate of the input / output terminal 5 is Al 2 O 3
When made of ceramics, the lead terminals are Fe-Ni-
It is made of Co alloy or Fe-Ni alloy.

【0050】この入出力端子5が嵌着接合された枠体3
の上面には、蓋体7をシーム熔接やAu−Sn(錫)ロ
ウで接合するための接合媒体として機能する、Fe−N
i−Co合金,Fe−Ni合金等の金属から成るシール
リング4が、Agロウ等のロウ材で接合される。シール
リング4は、例えばFe−Ni−Co合金から成る場
合、この合金のインゴットに圧延加工やプレス加工等の
金属加工を施すことにより所定形状に作製される。ま
た、その表面には酸化腐食を有効に防止するために、0.
5〜9μmのNi層や0.5〜5μmのAu層等の金属層を
メッキ法により被着させておくと良い。このシールリン
グ4の上面には、Fe−Ni−Co合金,Fe−Ni合
金等から成る金属製の蓋体7、またはAl23セラミッ
クス,AlNセラミックス等から成るセラミックス製の
蓋体7が接合され、蓋体7により半導体素子1を半導体
パッケージ内部に気密に封止する。
The frame 3 to which the input / output terminals 5 are fitted and joined
Fe-N, which functions as a joining medium for joining the lid 7 by seam welding or Au-Sn (tin) brazing, on the upper surface of
A seal ring 4 made of a metal such as an i-Co alloy or a Fe-Ni alloy is joined with a brazing material such as Ag brazing. When the seal ring 4 is made of, for example, a Fe—Ni—Co alloy, it is formed into a predetermined shape by subjecting an ingot of this alloy to metal processing such as rolling and pressing. Moreover, in order to effectively prevent oxidative corrosion on its surface, 0.
It is advisable to deposit a metal layer such as a Ni layer of 5 to 9 μm or an Au layer of 0.5 to 5 μm by a plating method. On the upper surface of the seal ring 4, a metallic lid 7 made of Fe-Ni-Co alloy, Fe-Ni alloy or the like, or a ceramic lid 7 made of Al 2 O 3 ceramics, AlN ceramics or the like is joined. Then, the lid 7 hermetically seals the semiconductor element 1 inside the semiconductor package.

【0051】このように、本発明の半導体パッケージ
は、上面に半導体素子1を載置する載置部2aを有する
基体2と、基体2の上面に載置部2aを囲繞するように
接合され、側部に貫通孔または切欠き部から成る入出力
端子5の取付部3aが形成された枠体3と、取付部3a
に嵌着された入出力端子5とを具備している。そして、
基体2は、一方向性炭素繊維lの集合体が内部に分散さ
れた炭素質母材m中にAg,Ti,Cr,Zr,Wのう
ちの少なくとも一種を0.2〜10重量%ならびにCuを90
〜99.8重量%含有する金属成分nが含浸されるとともに
載置部に位置する部位に上下面間を貫通する複数の貫通
孔に銅が充填されて成る複数の貫通導体2bが形成され
ている金属炭素複合体Aと、金属炭素複合体Aの上下面
に形成された銅層Xと、銅層Xの表面および金属炭素複
合体Aの側面に被着された金属メッキ層bとを有してい
る。
As described above, the semiconductor package of the present invention is joined to the base 2 having the mounting portion 2a for mounting the semiconductor element 1 on the upper surface thereof and the upper surface of the base 2 so as to surround the mounting portion 2a. A frame body 3 in which a mounting portion 3a of the input / output terminal 5 formed of a through hole or a cutout portion is formed on a side portion, and the mounting portion 3a.
And an input / output terminal 5 fitted in And
The base body 2 contains 0.2 to 10% by weight of at least one of Ag, Ti, Cr, Zr, and W and 90% of Cu in a carbonaceous base material m in which an aggregate of unidirectional carbon fibers 1 is dispersed.
A metal having a plurality of through conductors 2b formed by impregnating the metal component n containing 99.8% by weight with copper into a plurality of through holes penetrating between the upper and lower surfaces at a position located in the mounting portion. A carbon composite A, a copper layer X formed on the upper and lower surfaces of the metal carbon composite A, and a metal plating layer b deposited on the surface of the copper layer X and the side surfaces of the metal carbon composite A. There is.

【0052】また、本発明の半導体装置は、上記本発明
の半導体パッケージと、載置部2aに載置固定され入出
力端子5に電気的に接続された半導体素子1と、枠体3
の上面に接合された蓋体7とを具備する。この半導体装
置は、具体的には、載置部2aに半導体素子1をガラ
ス,樹脂,ロウ材等の接着剤で載置固定し、半導体素子
1の電極をボンディングワイヤを介して所定のメタライ
ズ層5aに電気的に接続し、しかる後、シールリング4
の上面に蓋体7をガラス,樹脂,ロウ材,シーム溶接等
により接合することで、基体2,枠体3,シールリング
4,入出力端子5および蓋体7から成る半導体装置の内
部に半導体素子1を収納して成る。この半導体装置は外
部電気回路から供給される高周波信号により半導体素子
1を作動させる。
The semiconductor device of the present invention includes the semiconductor package of the present invention, the semiconductor element 1 mounted and fixed on the mounting portion 2a and electrically connected to the input / output terminal 5, and the frame 3.
And a lid 7 bonded to the upper surface of the. Specifically, in this semiconductor device, the semiconductor element 1 is mounted and fixed on the mounting portion 2a with an adhesive such as glass, resin, or brazing material, and the electrode of the semiconductor element 1 is bonded to a predetermined metallization layer via a bonding wire. 5a electrically connected and then the seal ring 4
The lid 7 is joined to the upper surface of the substrate by glass, resin, brazing material, seam welding, or the like, so that the semiconductor is provided inside the semiconductor device including the substrate 2, the frame 3, the seal ring 4, the input / output terminals 5 and the lid 7. It is formed by housing the element 1. This semiconductor device operates the semiconductor element 1 by a high frequency signal supplied from an external electric circuit.

【0053】なお、本発明は上記実施の形態に限定され
ず、本発明の要旨を逸脱しない範囲内で種々の変更を行
うことは何等支障ない。例えば、半導体パッケージとし
て、枠体3の側部に光ファイバ接続用の筒状の固定部材
を設けることにより光信号を入出力できるようにし、光
半導体素子に光信号を入出力することにより、光半導体
素子を作動させる光半導体パッケージとしても良い。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention. For example, as a semiconductor package, a cylindrical fixing member for connecting an optical fiber is provided on a side portion of the frame body 3 so that an optical signal can be input / output, and an optical signal can be input / output to / from an optical semiconductor element. It may be an optical semiconductor package for operating a semiconductor device.

【0054】[0054]

【実施例】本発明の半導体素子収納用パッケージの実施
例を以下に説明する。
EXAMPLE An example of a package for housing a semiconductor device according to the present invention will be described below.

【0055】(実施例1)図1,図2の半導体パッケー
ジを以下の工程[1],[2]のようにして作製した。
Example 1 The semiconductor package shown in FIGS. 1 and 2 was manufactured by the following steps [1] and [2].

【0056】[1]縦約13mm×横約30mmの略長方形
の基体2の上面の外周部に載置部2aを囲むように、縦
約13mm×横約21mmのFe−Ni−Co合金から成る
平面視形状が略長方形の枠体3を銀ロウで接合した。な
お、枠体3の表面には厚さ3μmのNiメッキ層,厚さ
1.5μmのAuメッキ層を順次被着しており、枠体3の
側部の上端部には切欠き部から成る入出力端子5の取付
部3aを形成した。
[1] A Fe-Ni-Co alloy of about 13 mm in length and about 21 mm in width is formed so as to surround the mounting portion 2a on the outer peripheral portion of the upper surface of the substantially rectangular base 2 having a length of about 13 mm and a width of about 30 mm. The frame 3 having a substantially rectangular shape in plan view was joined with silver solder. On the surface of the frame body 3, a Ni plating layer with a thickness of 3 μm,
A 1.5 μm Au plating layer was sequentially deposited, and a mounting portion 3a of the input / output terminal 5 composed of a notch portion was formed on the upper end portion of the side portion of the frame body 3.

【0057】[2]枠体3の取付部3aに、アルミナセ
ラミックスから成る入出力端子5を銀ロウで嵌着接合し
た。入出力端子5には、枠体3内外を導通するように形
成されたMo−Mnのメタライズ層5a上に厚さ3μm
のNiメッキ層,厚さ1.5μmのAuメッキ層を順次被
着した。メタライズ層5aの枠体3外側にはFe−Ni
−Co合金から成るリード端子をAgロウ材で接合し
た。
[2] The input / output terminal 5 made of alumina ceramics was fitted and joined to the mounting portion 3a of the frame body 3 with silver solder. The input / output terminal 5 has a thickness of 3 μm on the Mo—Mn metallization layer 5 a formed so as to conduct the inside and outside of the frame body 3.
The Ni plating layer and the Au plating layer having a thickness of 1.5 μm were sequentially deposited. Fe-Ni is formed outside the frame body 3 of the metallized layer 5a.
A lead terminal made of —Co alloy was joined with an Ag brazing material.

【0058】上記工程[1]において、前述した基体2
の作製工程により、一方向性炭素繊維lの集合体が内部
に分散された炭素質母材m中にAgを0.1,0.2,1,
2,3,5,7,9,10,11,13(重量%)、残りの成
分としてCuを含有する金属成分nが含浸されるととも
に載置部2aに位置する部位に貫通孔に銅が充填されて
成る貫通導体が複数形成されている金属炭素複合体A
と、その上下面に形成された銅層Xと、銅層Xの表面お
よび金属炭素複合体Aの側面に被着された金属メッキ層
bとを有する11種(各5個)の基体2を作製した。ま
た、金属炭素複合体Aに対する金属成分nの含有量は17
重量%とした。それらについて基体2の横方向および縦
方向の熱伝導率、横方向および縦方向の熱膨張係数、使
用開始して100時間後の半導体素子1の剥がれ、基体2
のクラック等の有無を測定した結果を表1に示す。
In the above step [1], the substrate 2 described above is used.
By the production process of, Ag is added to the carbonaceous base material m in which the aggregate of unidirectional carbon fibers 1 is dispersed in an amount of 0.1, 0.2, 1,
2,3,5,7,9,10,11,13 (wt%), and the metal component n containing Cu as the remaining component is impregnated, and copper is placed in the through hole at the portion located on the mounting portion 2a. Metal-carbon composite A in which a plurality of filled through conductors are formed
And 11 kinds (5 pieces each) of the base 2 having the copper layers X formed on the upper and lower surfaces thereof and the metal plating layers b deposited on the surfaces of the copper layers X and the side surfaces of the metal-carbon composite A. It was made. The content of the metal component n in the metal-carbon composite A is 17
It was set to% by weight. Regarding them, the horizontal and vertical thermal conductivity of the base 2, the horizontal and vertical thermal expansion coefficients, the peeling of the semiconductor element 1 100 hours after the start of use, the base 2
Table 1 shows the results of measuring the presence or absence of cracks and the like.

【0059】[0059]

【表1】 [Table 1]

【0060】表1より、Agの含有量が0.2重量%未満
では、基体2にクラックの発生が見られ、10重量%を超
えると半導体素子1の剥れが観察された。
From Table 1, when the content of Ag was less than 0.2% by weight, cracking was observed in the substrate 2, and when it exceeded 10% by weight, peeling of the semiconductor element 1 was observed.

【0061】(実施例2)上記実施例1と同様にして作
製した半導体パッケージであって、金属成分n中のAg
を1重量%、Cuを99重量%とし、金属炭素複合体Aの
厚さを300,400,500,600,800,1000,1200,1400,1
500,1600,1700(μm)の種々の値とした11種(各5
個)の基体2を用いて半導体パッケージを55個作製し、
それらについて基体2の剛性、5GHzの高周波信号を
入出力させたときの挿入損失、使用開始して100時間後
の半導体素子1の剥がれ、基体2のクラック等の有無を
測定した結果を表2に示す。
(Example 2) A semiconductor package manufactured in the same manner as in Example 1 above, wherein Ag in the metal component n is used.
Is 1% by weight and Cu is 99% by weight, and the thickness of the metal-carbon composite A is 300, 400, 500, 600, 800, 1000, 1200, 1400, 1
11 kinds (5 for each) with various values of 500, 1600, 1700 (μm)
55 semiconductor packages are manufactured by using the base 2 of
Table 2 shows the results of measuring the rigidity of the substrate 2, the insertion loss when a high-frequency signal of 5 GHz was input and output, the peeling of the semiconductor element 1 100 hours after the start of use, and the presence or absence of cracks in the substrate 2. Show.

【0062】[0062]

【表2】 [Table 2]

【0063】表2より、基体2のクラックは厚さが500
μm未満になると発生することが明らかになった。これ
は、基体2の厚さが小さい為に熱応力に耐えることがで
きない為である。伝送損失はいずれの厚さにおいても分
岐点とされる15dBを超えることが無く、良好な状態で
あった。
From Table 2, the cracks of the substrate 2 have a thickness of 500.
It has become clear that it occurs when the thickness is less than μm. This is because the thickness of the base 2 is too small to withstand thermal stress. The transmission loss did not exceed 15 dB, which is the branch point, in any thickness, and was in a good state.

【0064】(実施例3)上記実施例1と同様にして作
製した半導体パッケージであって、金属成分n中のAg
を1重量%およびCuを99重量%、金属炭素複合体Aの
厚さを1000μmとし、Cu層Xの厚さを100,200,30
0,400,500,600,650,700,800(μm)の種々の値
とした9種(各5個)の基体2を用いて半導体パッケー
ジを45個作製した。それらについて基体2の横方向およ
び縦方向の熱伝導率、横方向および縦方向の熱膨張係
数、使用開始して100時間後の半導体素子1の剥がれ、
基体2のクラック等の有無を測定した結果を表3に示
す。
(Third Embodiment) A semiconductor package manufactured in the same manner as in the first embodiment, in which Ag in the metal component n is used.
1% by weight and Cu 99% by weight, the thickness of the metal-carbon composite A is 1000 μm, and the thickness of the Cu layer X is 100, 200, 30.
Forty-five semiconductor packages were produced using nine kinds (five pieces each) of the base body 2 having various values of 0, 400, 500, 600, 650, 700, 800 (μm). Regarding them, the thermal conductivity in the horizontal and vertical directions of the substrate 2, the coefficient of thermal expansion in the horizontal and vertical directions, the peeling of the semiconductor element 1 100 hours after the start of use,
Table 3 shows the results of measuring the presence or absence of cracks or the like on the substrate 2.

【0065】[0065]

【表3】 [Table 3]

【0066】表3より、Cu層Xの厚さが200μm未満
の場合には基体2にクラックが発生し、また650μmを
超えると半導体素子1の剥れ、基体2のクラックがとも
に発生することが判明した。
From Table 3, it can be seen that when the thickness of the Cu layer X is less than 200 μm, cracks occur in the substrate 2, and when it exceeds 650 μm, the semiconductor element 1 peels off and cracks occur in the substrate 2. found.

【0067】(実施例4)上記実施例1と同様にして作
製した半導体パッケージであって、金属成分n中のAg
を1重量%およびCuを99重量%、金属炭素複合体Aの
厚さを1000μm、Cu層Xの厚さを300μmとし、Ni
メッキ層から成る金属メッキ層bの厚さを0.5,0.8,
1,2,5,8,10,15,20,25,28,30,32,35(μ
m)の種々の値とした14種(各5個)の基体2を用いて
半導体パッケージを70個作製した。それらについて基体
2の表面の酸化状態、横方向の熱伝導率を測定した結果
を表4に示す。
(Embodiment 4) A semiconductor package manufactured in the same manner as in Embodiment 1 except that Ag in the metal component n is used.
1% by weight and Cu 99% by weight, the thickness of the metal-carbon composite A is 1000 μm, the thickness of the Cu layer X is 300 μm, and Ni is
The thickness of the metal plating layer b composed of the plating layer is 0.5, 0.8,
1, 2, 5, 8, 10, 15, 20, 25, 28, 30, 32, 35 (μ
Seventy semiconductor packages were produced using 14 kinds (five pieces each) of the substrate 2 having various values of m). Table 4 shows the results of measuring the oxidation state of the surface of the substrate 2 and the thermal conductivity in the lateral direction for these.

【0068】[0068]

【表4】 [Table 4]

【0069】表4より、金属メッキ層bの厚さが1μm
未満では表面に変色が見られた。この変色はメッキ厚さ
が小さいために下地の銅層が表面に現われる部位があ
り、銅層の表面が酸化した状態となっているからであ
る。また、金属メッキ層bの厚さが30μmを超えると、
横方向の熱伝導率が300W/m・K以下と小さくなっ
た。
From Table 4, the thickness of the metal plating layer b is 1 μm.
If it is less than 1, discoloration is observed on the surface. This discoloration is because there is a portion where the underlying copper layer appears on the surface due to the small plating thickness, and the surface of the copper layer is in an oxidized state. When the thickness of the metal plating layer b exceeds 30 μm,
The thermal conductivity in the lateral direction was reduced to 300 W / mK or less.

【0070】(実施例5)上記実施例1と同様にして作
製した半導体パッケージであって、金属成分n中のAg
を1重量%およびCuを99重量%、金属炭素複合体Aの
厚さを1000μm、Cu層Xの厚さを300μm、Niメッ
キ層から成る金属メッキ層bの厚さを20μmとし、載置
部2aに位置する部位に複数の貫通導体2bの断面積の
合計が半導体素子1下面に対して30,40,45,50,60,
70,75,80,90(%)の種々の値とした9種の(各5
個)の基体2を用いて半導体パッケージを45個作製し
た。この場合、貫通導体2b同士の間隔は0.2mmで一
定とした。それらについて基体2の横方向および縦方向
の熱伝導率、横方向および縦方向の熱膨張係数、高周波
信号の挿入損失を測定した結果を表5に示す。
(Embodiment 5) A semiconductor package manufactured in the same manner as in Embodiment 1 except that Ag in the metal component n is used.
1% by weight and 99% by weight of Cu, the thickness of the metal-carbon composite A is 1000 μm, the thickness of the Cu layer X is 300 μm, and the thickness of the metal plating layer b consisting of the Ni plating layer is 20 μm. The total cross-sectional area of the plurality of through conductors 2b at the portion located at 2a is 30, 40, 45, 50, 60 with respect to the lower surface of the semiconductor element 1.
Nine kinds (5 each) with various values of 70, 75, 80, 90 (%)
Forty-five semiconductor packages were manufactured using the base body 2). In this case, the distance between the through conductors 2b was fixed at 0.2 mm. Table 5 shows the results of measuring the thermal conductivity of the substrate 2 in the horizontal and vertical directions, the coefficient of thermal expansion in the horizontal and vertical directions, and the insertion loss of the high-frequency signal.

【0071】[0071]

【表5】 [Table 5]

【0072】表5より、貫通導体2bの断面積の合計が
半導体素子1の下面に対して45%未満では熱伝導率は若
干小さくなる程度であるが、伝送損失が15dBとなり、
高周波の伝送に対して許容範囲内ではあるもののやや大
きな損失が発生していた。
From Table 5, when the total cross-sectional area of the through conductor 2b is less than 45% with respect to the lower surface of the semiconductor element 1, the thermal conductivity is slightly small, but the transmission loss becomes 15 dB.
Although it was within the permissible range for high-frequency transmission, a somewhat large loss occurred.

【0073】なお、金属成分nのAgの代わりにTi,
Cr,Zr,Wを用いた場合にも上記実施例と同様の結
果が得られた。
In place of Ag of the metal component n, Ti,
Even when Cr, Zr, and W were used, the same results as in the above example were obtained.

【0074】[0074]

【発明の効果】本発明の半導体素子収納用パッケージ
は、上面に半導体素子を載置する載置部を有する基体
は、一方向性炭素繊維の集合体が内部に分散された炭素
質母材中にAg,Ti,Cr,ZrおよびWのうちの少
なくとも一種を0.2〜10重量%ならびにCuを90〜99.8
重量%含有する金属成分が含浸されるとともに載置部に
位置する部位に上下面間を貫通する貫通孔に銅が充填さ
れて成る貫通導体が複数形成されている金属炭素複合体
と、金属炭素複合体の上下面に形成された銅層と、銅層
の表面および金属炭素複合体の側面に被着された金属メ
ッキ層とを有していることにより、IC,LSI等の半
導体集積回路素子やFET等の半導体素子の熱を効率よ
く半導体素子収納用パッケージの外部に伝えるととも
に、貫通導体により半導体素子の接地電位を強化および
安定化することができ、よって半導体素子の作動時の温
度を適正なものできる。また、接地性が向上することか
ら、半導体素子に入出力する高周波信号の伝送損失を小
さくできる。従って、半導体素子を長期に亘り正常かつ
安定に作動させ得る。
In the package for housing a semiconductor element of the present invention, the base having the mounting portion for mounting the semiconductor element on the upper surface is a carbonaceous base material in which an aggregate of unidirectional carbon fibers is dispersed. 0.2 to 10% by weight of at least one of Ag, Ti, Cr, Zr and W and 90 to 99.8% of Cu.
A metal-carbon composite which is impregnated with a metal component contained by weight% and has a plurality of through conductors formed by filling copper in through holes penetrating between upper and lower surfaces at a position located in the mounting portion, and a metal carbon By having a copper layer formed on the upper and lower surfaces of the composite and a metal plating layer deposited on the surface of the copper layer and the side surface of the metal-carbon composite, a semiconductor integrated circuit device such as an IC or LSI The heat of semiconductor elements such as FETs and FETs can be efficiently transmitted to the outside of the package for housing the semiconductor elements, and the ground potential of the semiconductor elements can be strengthened and stabilized by the through conductors. You can do anything. Further, since the groundability is improved, the transmission loss of the high frequency signal input to and output from the semiconductor element can be reduced. Therefore, the semiconductor element can be operated normally and stably for a long period of time.

【0075】本発明の半導体素子収納用パッケージは、
好ましくは金属炭素複合体の厚さが500〜1500μmであ
るとともに銅層の厚さが200〜650μmであり、複数の貫
通導体は、その断面積の合計が半導体素子の下面の面積
の45〜75%であるとともに略一定の間隔で設けられてい
ることにより、金属炭素複合体にクラック等が発生せ
ず、また半導体素子の熱をより良好に放散させ得るとと
もに、接地性がさらに向上する。
The semiconductor element housing package of the present invention is
Preferably, the metal-carbon composite has a thickness of 500 to 1500 μm and the copper layer has a thickness of 200 to 650 μm, and the plurality of through conductors have a total cross-sectional area of 45 to 75 of the area of the lower surface of the semiconductor element. % And are provided at substantially constant intervals, cracks and the like do not occur in the metal-carbon composite, heat of the semiconductor element can be dissipated better, and groundability is further improved.

【0076】本発明の半導体装置は、本発明の半導体パ
ッケージと、載置部に載置固定され入出力端子に電気的
に接続された半導体素子と、枠体の上面に接合された蓋
体とを具備したことにより、上記本発明の半導体パッケ
ージを用いた信頼性の高い半導体装置となる。
The semiconductor device of the present invention includes the semiconductor package of the present invention, a semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminals, and a lid body joined to the upper surface of the frame body. By including the above, a highly reliable semiconductor device using the semiconductor package of the present invention can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体素子収納用パッケージについて
実施の形態の例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for housing a semiconductor element of the present invention.

【図2】図1の半導体素子収納用パッケージにおける基
体の部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of a base body in the semiconductor element housing package of FIG.

【図3】従来の半導体素子収納用パッケージの平面図で
ある。
FIG. 3 is a plan view of a conventional semiconductor element housing package.

【図4】図3の半導体素子収納用パッケージの断面図で
ある。
FIG. 4 is a cross-sectional view of the semiconductor device housing package of FIG.

【図5】図3の半導体素子収納用パッケージにおける基
体の部分拡大断面図である。
5 is a partial enlarged cross-sectional view of a base body in the semiconductor element housing package of FIG.

【符号の説明】[Explanation of symbols]

1:半導体素子 2:基体 2a:載置部 2b:貫通導体 3:枠体 3a:取付部 5:入出力端子 A:金属炭素複合体 l:一方向性炭素繊維 m:炭素質母材 n:金属成分 X:銅層 b:金属メッキ層 1: Semiconductor element 2: Base 2a: Placement part 2b: Through conductor 3: frame 3a: Mounting part 5: Input / output terminal A: Metal-carbon composite l: Unidirectional carbon fiber m: Carbonaceous base material n: Metal component X: Copper layer b: Metal plating layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上面に半導体素子を載置する載置部を有
する基体と、該基体の上面に前記載置部を囲繞するよう
に接合され、側部に貫通孔または切欠き部から成る入出
力端子の取付部が形成された枠体と、前記取付部に嵌着
された入出力端子とを具備した半導体素子収納用パッケ
ージにおいて、前記基体は、一方向性炭素繊維の集合体
が内部に分散された炭素質母材中に銀,チタン,クロ
ム,ジルコニウムおよびタングステンのうちの少なくと
も一種を0.2〜10重量%ならびに銅を90〜99.8重量%含
有する金属成分が含浸されるとともに前記載置部に位置
する部位に上下面間を貫通する貫通孔に銅が充填されて
成る貫通導体が複数形成されている金属炭素複合体と、
該金属炭素複合体の上下面に形成された銅層と、該銅層
の表面および前記金属炭素複合体の側面に被着された金
属メッキ層とを有していることを特徴とする半導体素子
収納用パッケージ。
1. A base body having a mounting portion for mounting a semiconductor element on an upper surface thereof, and an upper surface of the base body joined to surround the mounting portion and having a through hole or a cutout portion on a side portion. In a package for storing a semiconductor element, which comprises a frame body having a mounting portion for an output terminal formed therein and an input / output terminal fitted in the mounting portion, the base body has an assembly of unidirectional carbon fibers inside. The dispersed carbonaceous base material is impregnated with a metal component containing 0.2 to 10% by weight of at least one of silver, titanium, chromium, zirconium and tungsten and 90 to 99.8% by weight of copper, and the above-mentioned mounting part A metal-carbon composite having a plurality of through conductors formed by filling copper in through holes penetrating between the upper and lower surfaces at a position located at,
A semiconductor device comprising a copper layer formed on the upper and lower surfaces of the metal-carbon composite, and a metal plating layer deposited on the surface of the copper layer and the side surface of the metal-carbon composite. Storage package.
【請求項2】 前記金属炭素複合体の厚さが500〜1500
μmであるとともに前記銅層の厚さが200〜650μmであ
り、前記複数の貫通導体は、その断面積の合計が前記半
導体素子の下面の面積の45〜75%であるとともに略一定
の間隔で設けられていることを特徴とする半導体素子収
納用パッケージ。
2. The metal-carbon composite has a thickness of 500 to 1500.
μm, the thickness of the copper layer is 200 to 650 μm, the total cross-sectional area of the plurality of through conductors is 45 to 75% of the area of the lower surface of the semiconductor element, and the through conductors are arranged at substantially regular intervals. A package for housing a semiconductor element, which is provided.
【請求項3】 請求項1または請求項2記載の半導体素
子収納用パッケージと、前記載置部に載置固定されると
ともに前記入出力端子に電気的に接続された半導体素子
と、前記枠体の上面に取着された蓋体とを具備したこと
を特徴とする半導体装置。
3. The package for accommodating a semiconductor element according to claim 1, a semiconductor element mounted and fixed on the mounting portion and electrically connected to the input / output terminal, and the frame body. And a lid attached to the upper surface of the semiconductor device.
JP2002037178A 2002-02-14 2002-02-14 Package for semiconductor element storage and semiconductor device Pending JP2003243579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037178A JP2003243579A (en) 2002-02-14 2002-02-14 Package for semiconductor element storage and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037178A JP2003243579A (en) 2002-02-14 2002-02-14 Package for semiconductor element storage and semiconductor device

Publications (1)

Publication Number Publication Date
JP2003243579A true JP2003243579A (en) 2003-08-29

Family

ID=27778866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037178A Pending JP2003243579A (en) 2002-02-14 2002-02-14 Package for semiconductor element storage and semiconductor device

Country Status (1)

Country Link
JP (1) JP2003243579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679145B2 (en) * 2004-08-31 2010-03-16 Intel Corporation Transistor performance enhancement using engineered strains

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679145B2 (en) * 2004-08-31 2010-03-16 Intel Corporation Transistor performance enhancement using engineered strains

Similar Documents

Publication Publication Date Title
JP2006303400A (en) Package for containing electronic component, electronic device and its packaging structure
JP2007059875A (en) Heat dissipation member, and package for electronic part housing using this and electronic apparatus
JP2001313345A (en) Package for accommodating semiconductor device
JP3659336B2 (en) Package for storing semiconductor elements
JP2003243579A (en) Package for semiconductor element storage and semiconductor device
JP2000183253A (en) Package for housing semiconductor element
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
JP4454164B2 (en) Package for storing semiconductor elements
JP4336016B2 (en) Package for storing semiconductor elements
JP3987649B2 (en) Package for storing semiconductor elements
JP3659306B2 (en) Package for storing semiconductor elements
JP2003133467A (en) Package for containing semiconductor element and semiconductor device
JP2003188301A (en) Package for housing semiconductor element and semiconductor device
JP2000340716A (en) Wiring substrate
JP2003218440A (en) Package for housing optical semiconductor element and optical semiconductor device
JP2003069127A (en) Package for accommodating optical semiconductor element and optical semiconductor device
JP3457898B2 (en) Optical semiconductor element storage package
JP3527902B2 (en) Semiconductor element storage package and semiconductor device
JP3659300B2 (en) Package for storing semiconductor elements
JP4360568B2 (en) Package for storing semiconductor elements
JP2003046042A (en) Semiconductor element for storing package and semiconductor device
JP2002246497A (en) Package for accommodating semiconductor device
JP4000093B2 (en) Input / output terminal, manufacturing method of input / output terminal, package for storing semiconductor element using input / output terminal, and semiconductor device
JP4377748B2 (en) Electronic component storage package and electronic device
JP3659301B2 (en) Package for storing semiconductor elements