JP2003217584A - Manufacturing method of positive electrode active material for lithium secondary battery - Google Patents

Manufacturing method of positive electrode active material for lithium secondary battery

Info

Publication number
JP2003217584A
JP2003217584A JP2002012339A JP2002012339A JP2003217584A JP 2003217584 A JP2003217584 A JP 2003217584A JP 2002012339 A JP2002012339 A JP 2002012339A JP 2002012339 A JP2002012339 A JP 2002012339A JP 2003217584 A JP2003217584 A JP 2003217584A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
compound
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002012339A
Other languages
Japanese (ja)
Other versions
JP3983554B2 (en
Inventor
Yasuo Azuma
保男 東
Keiichi Katayama
恵一 片山
Masashi Higuchi
昌史 樋口
Manabu Kazuhara
学 数原
Megumi Yugawa
めぐみ 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP2002012339A priority Critical patent/JP3983554B2/en
Publication of JP2003217584A publication Critical patent/JP2003217584A/en
Application granted granted Critical
Publication of JP3983554B2 publication Critical patent/JP3983554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compose an olivine system positive electrode in a very short time. <P>SOLUTION: In the manufacture of the general formula LiMPO<SB>4</SB>(provided that, M is at least one kind of metal element selected from transition metals), a mixture of at least a lithium compound, a transition metal M compound, and a phosphorus compound is fired by high-frequency heating. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の正極活物質として用いられる改良されたリチウム含有
遷移金属燐酸化合物に関する。
TECHNICAL FIELD The present invention relates to an improved lithium-containing transition metal phosphate compound used as a positive electrode active material of a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むにつれ、小型、軽量でかつ高エネルギー密度を
有する非水電解液二次電池に対する期待が高まってい
る。非水電解液二次電池用の活物質には、LiCo
,LiNi0.8Co0.2,LiMn
などのリチウムと遷移金属の複合酸化物が知られてい
る。
2. Description of the Related Art In recent years, with the progress of portable and cordless devices, expectations for a non-aqueous electrolyte secondary battery having a small size, a light weight and a high energy density are increasing. The active material for the non-aqueous electrolyte secondary battery includes LiCo
O 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4
A composite oxide of lithium and a transition metal such as is known.

【0003】一般に、非水電解液二次電池に用いられる
正極活物質は、主活物質であるリチウムにコバルト,ニ
ッケル,マンガンをはじめとする遷移金属を固溶させた
複合酸化物からなる。その用いられる遷移金属の種類に
よって、電気容量、可逆性、作動電圧、安全性などの電
極特性が異なり、コバルト、ニッケルを用いる複合酸化
物においてはコストの問題もある。
Generally, a positive electrode active material used in a non-aqueous electrolyte secondary battery is composed of a composite oxide in which a transition metal such as cobalt, nickel and manganese is solid-dissolved in lithium which is a main active material. Electrode characteristics such as electric capacity, reversibility, operating voltage, and safety are different depending on the type of transition metal used, and there is a problem of cost in the complex oxide using cobalt and nickel.

【0004】従来より、高容量、高安全、高充放電サイ
クル耐久性、および低価格という要求を満足する新規正
極材料の開発が活発に行われている。そのなかでも、特
に最近では、高容量、高安全性の正極材料として、オリ
ビン系正極、例えば、LiFePO,LiMn0.6
Fe0.4PO,LiCoPO,LiNiPO
の研究が盛んに行なわれており、これらを正極活物質に
用いて、リチウムを吸蔵、放出することができる炭素材
料等の負極活物質とを組み合わせることによる、高電
圧、高エネルギー密度の非水電解液二次電池の開発が進
められている。
[0004] Conventionally, new positive electrode materials satisfying the requirements of high capacity, high safety, high charge / discharge cycle durability, and low price have been actively developed. Among them, olivine-based positive electrodes such as LiFePO 4 and LiMn 0.6 have recently been used as positive electrode materials having high capacity and high safety.
Fe 0.4 PO 4 , LiCoPO 4 , LiNiPO 4 and the like have been actively researched, and using these as a positive electrode active material, a negative electrode active material such as a carbon material capable of inserting and extracting lithium can be used. Development of high-voltage, high-energy-density non-aqueous electrolyte secondary batteries by combining them is in progress.

【0005】なかでも、LiFePO,LiMn
0.4Fe0.6POは安価な元素を用いているの
で、高容量、高安全かつ低コストの正極材料ができる可
能性があり、LiCoPOは高電圧、高エネルギー密
度、高安全の正極材料として特に注目されている。
Among them, LiFePO 4 , LiMn
Since 0.4 Fe 0.6 PO 4 uses an inexpensive element, there is a possibility that a positive electrode material with high capacity, high safety and low cost can be produced. LiCoPO 4 has high voltage, high energy density and high safety. It has received particular attention as a positive electrode material.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の正極材料を合成するためには、例えば、リチウム化合
物と鉄化合物とマンガン化合物とNHPOとを
混合し、550〜800℃で固相法で不活性ガス中で1
0ないし数10時間焼成する必要があった(A.K.P
adhi et.al., Journal of T
he Electrochemical Societ
y,vol144,1188−1194(1997),
A.Yamada et.al.,Journal o
f TheElectrochemical Soci
ety,vol148,A960−A967(200
1)参照)。
However, in order to synthesize these positive electrode materials, for example, a lithium compound, an iron compound, a manganese compound, and NH 4 H 2 PO 4 are mixed and solidified at 550 to 800 ° C. 1 in the inert gas by the phase method
It was necessary to bake for 0 to several tens of hours (AKP
adhi et. al. , Journal of T
he Electrochemical Societ
y, vol 144, 1188-1194 (1997),
A. Yamada et. al. , Journal o
f The Electrochemical Soci
ety, vol148, A960-A967 (200
See 1)).

【0007】[0007]

【課題を解決するための手段】本発明らは、鋭意検討を
重ねた結果、反応に高周波加熱を用いると、極めて短時
間でオリビン系正極を合成できることを見出し、本発明
を完成するに至った。すなわち、本発明は、一般式Li
MPO(但し、Mは遷移金属から選ばれる少なくとも
1種の金属元素)を製造するにあたり、少なくともリチ
ウム化合物と遷移金属M化合物と燐化合物とを混合し、
高周波加熱により焼成することを特徴としている。
As a result of intensive studies, the present inventors have found that an olivine type positive electrode can be synthesized in an extremely short time when high frequency heating is used for the reaction, and have completed the present invention. . That is, the present invention has the general formula Li
In producing MPO 4 (where M is at least one metal element selected from transition metals), at least a lithium compound, a transition metal M compound and a phosphorus compound are mixed,
It is characterized by firing by high frequency heating.

【0008】また、本発明の他の特徴として、次に述べ
るいくつかの好ましい態様が含まれる。第1には前記遷
移金属Mが少なくともFeを含有することであり、第2
には前記混合物に金属粉末が添加されていることであ
り、第3には高周波加熱による焼成時の酸素分圧が20
%以下であることである。
Further, as another feature of the present invention, some preferred embodiments described below are included. The first is that the transition metal M contains at least Fe, and the second
Is that the metal powder is added to the mixture, and thirdly, the oxygen partial pressure during firing by high frequency heating is 20.
% Or less.

【0009】[0009]

【発明の実施の形態】本発明により製造されるLiMP
において、Mは遷移金属から選ばれる少なくとも1
種の金属元素を意味するが、電池性能の見地より、好ま
しい具体例としては、Fe,Co,Ni,Mnがあげら
れる。なかでもFe,Mnは元素が安価であるので特に
好ましい。
DETAILED DESCRIPTION OF THE INVENTION LiMP produced by the present invention
In O 4 , M is at least 1 selected from transition metals
From the viewpoint of battery performance, Fe, Co, Ni, and Mn are mentioned, which mean the metallic elements of the species. Of these, Fe and Mn are particularly preferable because they are inexpensive elements.

【0010】LiMPOを形成しうる限りにおいて、
元素の組み合わせに特に制限はないが、低価格の元素か
らなり、かつ、電池性能の発現することが固相法合成に
おいて公知である、LiFePOやLiMnFe
1−xPO(特にLiMn .4Fe0.6PO
を製造するにあたり、本発明では、少なくともリチウム
化合物と遷移金属M化合物と燐化合物とを混合し、高周
波加熱により焼成する。LiCoPOは放電電圧が高
いので、高エネルギー密度電池用正極剤として有用であ
る。
As long as LiMPO 4 can be formed,
The combination of elements is not particularly limited, but LiFePO 4 and LiMn x Fe, which are composed of low-cost elements and which are known to exhibit battery performance in solid-phase synthesis, are known.
1-x PO 4 (especially LiMn 0 .4 Fe 0.6 PO 4)
In manufacturing the present invention, in the present invention, at least a lithium compound, a transition metal M compound and a phosphorus compound are mixed and fired by high frequency heating. Since LiCoPO 4 has a high discharge voltage, it is useful as a positive electrode material for high energy density batteries.

【0011】リチウム化合物としては、LiOH・H2
O,LiCO,CHCOOLi等が例示される。
遷移金属化合物としては、酸化物,水酸化物,有機酸
塩,炭酸塩,蓚酸塩等が例示される。燐化合物として
は、NHPO,(NHHPO,Li
PO,Fe(PO・HO等が例示される。
LiPOは燐化合物とリチウム化合物の両者の役割
を有する。Fe(PO・HOは燐化合物と遷
移金属化合物の両者の役割を有する。
As the lithium compound, LiOH.H2
O, Li 2 CO 3, CH 3 COOLi , and the like.
Examples of the transition metal compound include oxides, hydroxides, organic acid salts, carbonates, oxalates and the like. Examples of phosphorus compounds include NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , and Li 3.
Examples include PO 4 , Fe 3 (PO 4 ) 2 · H 2 O and the like.
Li 3 PO 4 has the roles of both a phosphorus compound and a lithium compound. Fe 3 (PO 4 ) 2 · H 2 O has the roles of both a phosphorus compound and a transition metal compound.

【0012】本発明において、リチウム化合物と遷移金
属M化合物と燐化合物とに加えて、金属粉を少量添加す
るとオリビン正極の合成が速やかに進行するので特に好
ましい。これは、金属粉の添加により、高周波が金属粉
に吸収され、高周波加熱が均一に効率良く進むためと考
えられる。金属粉としては、金属鉄粉,金属マンガン
粉,金属コバルト粉等が例示される。金属粉の添加量
は、リチウム原子比として0.1ないし20モル%が好
ましく、特に好ましくは1から10モル%である。
In the present invention, it is particularly preferable to add a small amount of metal powder in addition to the lithium compound, the transition metal M compound and the phosphorus compound because the olivine positive electrode will be rapidly synthesized. This is considered to be because the addition of the metal powder causes the high frequency to be absorbed by the metal powder, and the high frequency heating to proceed uniformly and efficiently. Examples of the metal powder include metal iron powder, metal manganese powder, metal cobalt powder and the like. The amount of the metal powder added is preferably 0.1 to 20 mol%, particularly preferably 1 to 10 mol%, in terms of lithium atom ratio.

【0013】本発明において、反応雰囲気は不活性ガス
を主体とすることが好ましい。反応雰囲気を不活性ガス
雰囲気もしくは還元性雰囲気に保つために、炭素粉末を
添加するとよい場合がある。その炭素粉末としては、活
性炭,カーボンブラック,黒煙等が例示される。炭素粉
末の共存下で高周波加熱を行なうと、系内の酸素ガスと
反応することにより、酸化性ガスの濃度を低減させる効
果がある。
In the present invention, the reaction atmosphere is preferably composed mainly of an inert gas. In order to keep the reaction atmosphere in an inert gas atmosphere or a reducing atmosphere, it is sometimes preferable to add carbon powder. Examples of the carbon powder include activated carbon, carbon black, black smoke and the like. When high-frequency heating is performed in the presence of carbon powder, it reacts with oxygen gas in the system, which has the effect of reducing the concentration of oxidizing gas.

【0014】酸化性ガスの含量が多いと目的外の生成
物、例えばFeやLiFe(PO等が
多くなるので好ましくない。反応雰囲気における酸素濃
度は20モル%以下が好ましく、特に好ましくは2モル
%以下である。
If the content of oxidizing gas is large, undesired products such as Fe 2 O 3 and Li 3 Fe 2 (PO 4 ) 3 will increase, which is not preferable. The oxygen concentration in the reaction atmosphere is preferably 20 mol% or less, particularly preferably 2 mol% or less.

【0015】高周波照射としては、高周波出力装置の発
振周波数と高周波出力とにより表現される。本発明にお
いて、高周波加熱における高周波とは、いわゆる1MH
z〜20MHzで代表される高周波領域から1000M
Hz〜1000KMHzで代表されるマイクロ波領域ま
でを意味する。例えば、発振周波数1MHz〜3000
MHz,高周波出力600Wの場合、加熱に要する照射
時間は数分〜十数分で足りる。高周波出力装置として、
家庭用の電子レンジを問題無く使用できる。
The high frequency irradiation is expressed by the oscillation frequency and the high frequency output of the high frequency output device. In the present invention, high frequency in high frequency heating means so-called 1 MH
1000M from the high frequency range represented by z to 20MHz
It means up to the microwave region represented by Hz to 1000 KMHz. For example, an oscillation frequency of 1 MHz to 3000
In the case of MHz and high-frequency output of 600 W, the irradiation time required for heating is several minutes to several tens of minutes. As a high frequency output device,
You can use a household microwave oven without any problems.

【0016】本発明により得られるLiMPO粉末
に、アセチレンブラック,黒鉛,ケッチエンブラック等
のカーボン系導電材と、結合材とを混合することによ
り、正極合剤が形成される。結合材には、ポリフッ化ビ
ニリデン,ポリテトラフルオロエチレン,ポリアミド,
カルボキシメチルセルロース,アクリル樹脂等が用いら
れる。
A positive electrode mixture is formed by mixing the LiMPO 4 powder obtained by the present invention with a carbon-based conductive material such as acetylene black, graphite or Ketchen black and a binder. The binding material is polyvinylidene fluoride, polytetrafluoroethylene, polyamide,
Carboxymethyl cellulose, acrylic resin, etc. are used.

【0017】本発明により得られるLiMPO粉末と
導電材と結合材ならびに結合材の溶媒または分散媒から
なるスラリーを、アルミニウム箔等の正極集電体に塗工
・乾燥およびプレス圧延して正極活物質層を正極集電体
上に形成したり、あるいはLiMPO粉末と導電材と
結合材ならびに結合材の溶媒または分散媒からなる混練
シートをあらかじめ形成した後、乾燥して正極集電体箔
上に載置することにより、目的とする正極体を得ること
ができる。
A slurry comprising a LiMPO 4 powder obtained by the present invention, a conductive material, a binder, and a solvent or a dispersion medium for the binder is applied to a positive electrode current collector such as an aluminum foil, dried, and press-rolled to make the positive electrode active. On the positive electrode current collector foil, a material layer is formed on the positive electrode current collector, or a kneading sheet composed of LiMPO 4 powder, a conductive material, a binder, and a solvent or dispersion medium of the binder is formed in advance and then dried. The desired positive electrode body can be obtained by placing it on the substrate.

【0018】本発明により製造されたLiMPOを正
極活物質として用いたリチウム電池において、電解質溶
液の溶媒には炭酸エステルが好ましい。炭酸エステルは
環状,鎖状いずれも使用できる。環状炭酸エステルとし
ては、プロピレンカーボネート,エチレンカーボネート
等が例示される。鎖状炭酸エステルとしては、ジメチル
カーボネート,ジエチルカーボネート,エチルメチルカ
ーボネート,メチルプロピルカーボネート,メチルイソ
プロピルカーボネート等が例示される。
In a lithium battery using LiMPO 4 produced according to the present invention as a positive electrode active material, a carbonate ester is preferable as the solvent of the electrolyte solution. The carbonic acid ester may be cyclic or linear. Examples of the cyclic carbonic acid ester include propylene carbonate and ethylene carbonate. Examples of the chain carbonic acid ester include dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, methylisopropyl carbonate and the like.

【0019】上記炭酸エステルを単独でも2種以上を混
合して使用してもよい。また、他の溶媒と混合して使用
してもよい。また、負極活物質の材料によっては、鎖状
炭酸エステルと環状炭酸エステルを併用すると、放電特
性、サイクル耐久性、充放電効率が改良できる場合があ
る。
The above carbonic acid esters may be used alone or in admixture of two or more. Moreover, you may use it, mixing with another solvent. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonic acid ester and a cyclic carbonic acid ester may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.

【0020】また、これらの有機溶媒にフッ化ビニリデ
ン−ヘキサフルオロプロピレン共重合体(例えばアトケ
ム社製カイナー)、フッ化ビニリデン−パーフルオロプ
ロピルビニルエーテル共重合体を添加し、下記の溶質を
加えることによりゲルポリマー電解質としてもよい。
Further, vinylidene fluoride-hexafluoropropylene copolymer (for example, Kainer manufactured by Atchem Co.) and vinylidene fluoride-perfluoropropyl vinyl ether copolymer are added to these organic solvents, and the following solutes are added. It may be a gel polymer electrolyte.

【0021】その溶質としては、ClO−,CF
−,BF−,PF−,AsF−,SbF
−,CFCO−,(CFSON−等をア
ニオンとするリチウム塩のいずれか1種以上を使用する
ことが好ましい。
[0021] As the solute, ClO 4 -, CF 3 S
O 3 −, BF 4 −, PF 6 −, AsF 6 −, SbF
6 -, CF 3 CO 2 - , it is preferable to use the (CF 3 SO 2) 1 or more either 2 N- such a lithium salt having an anion.

【0022】上記の電解質溶液またはポリマー電解質
は、リチウム塩からなる電解質を上記溶媒または溶媒含
有ポリマーに0.2〜2.0mol/Lの濃度で添加す
るのが好ましい。この範囲を逸脱すると、イオン伝導度
が低下し、電解質の電気伝導度が低下する。より好まし
くは0.5〜1.5mol/Lが選定される。セパレー
タには多孔質ポリエチレン、多孔質ポリプロピレンフィ
ルムが使用される。
In the above electrolyte solution or polymer electrolyte, it is preferable to add an electrolyte consisting of a lithium salt to the above solvent or solvent-containing polymer at a concentration of 0.2 to 2.0 mol / L. If it deviates from this range, the ionic conductivity will decrease, and the electric conductivity of the electrolyte will decrease. More preferably, 0.5 to 1.5 mol / L is selected. Porous polyethylene or porous polypropylene film is used for the separator.

【0023】負極活物質には、リチウムイオンを吸蔵、
放出可能な材料が用いられる。負極活物質を形成する材
料は特に限定されないが、例えばリチウム金属,リチウ
ム合金,炭素材料,周期表14,15族の金属を主体と
した酸化物,炭素化合物,炭化ケイ素化合物,酸化ケイ
素化合物,硫化チタン,炭化ホウ素化合物等が挙げられ
る。
The negative electrode active material stores lithium ions,
A releasable material is used. The material forming the negative electrode active material is not particularly limited, and examples thereof include lithium metal, lithium alloys, carbon materials, oxides mainly composed of metals of Groups 14 and 15 of the periodic table, carbon compounds, silicon carbide compounds, silicon oxide compounds, sulfides. Examples include titanium and boron carbide compounds.

【0024】炭素材料としては、様々な熱分解条件で有
機物を熱分解したものや人造黒鉛,天然黒鉛,土壌黒
鉛,膨張黒鉛,鱗片状黒鉛等を使用できる。また、酸化
物としては、酸化スズを主体とする化合物が使用でき
る。負極集電体としては、銅箔,ニッケル箔等が用いら
れる。
As the carbon material, those obtained by thermally decomposing organic matter under various thermal decomposition conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flake graphite and the like can be used. Further, as the oxide, a compound mainly containing tin oxide can be used. Copper foil, nickel foil, or the like is used as the negative electrode current collector.

【0025】正極および負極は、活物質を有機溶媒と混
練してスラリーとし、このスラリーを金属箔集電体に塗
布、乾燥、プレスして得ることが好ましい。本発明によ
り得られた正極活物質を用いるリチウム電池の形状に特
に制約はない。シート状(いわゆるフイルム状),折り
畳み状,巻回型有底円筒形,ボタン形等が適宜用途に応
じて選択される。
The positive electrode and the negative electrode are preferably obtained by kneading the active material with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying and pressing. The shape of the lithium battery using the positive electrode active material obtained by the present invention is not particularly limited. A sheet shape (so-called film shape), a folding shape, a winding type bottomed cylindrical shape, a button shape, etc. are appropriately selected according to the application.

【0026】[0026]

【実施例】次に、本発明の具体的な実施例1,2につい
て説明するが、本発明はこれらの実施例に限定されな
い。
EXAMPLES Next, specific examples 1 and 2 of the present invention will be described, but the present invention is not limited to these examples.

【0027】《実施例1》炭酸リチウムとNH
とFe(CHCHOCOO)と金属鉄粉末と
を、LiとPと乳酸鉄由来のFeと金属鉄由来のFeを
それぞれ原子比で約1:1:1:0.05の比率とし
て、エタノールを滴下しつつ1時間湿式混合した。混合
物を乾燥した後、98MPaで圧粉成形した。その成形
ペレットをアルミナ坩堝に入れ、坩堝内をアルゴンガス
で置換し蓋をした坩堝を、家庭用電子レンジ(発振周波
数2450MHz,高周波出力600W)内に静置し
て、高周波を10分間照射した。その後、坩堝内を再度
アルゴンガスで置換し、さらに高周波を3分間照射し
た。照射後のペレットを粉砕し、Cu−Kα線によりX
線回折を行って得られたスペクトルを図1に示す。この
スペクトルより、LiFePOを主成分とする粉末で
あることが判る。このようにして得た粉末と、アセチレ
ンブラックと、ポリテトラフルオロエチレン粉末とを8
0/16/4の重量比で混合し、トルエンを添加しつつ
混練、乾燥し、厚さ150μmの正極板を作製した。セ
パレータには厚さ25μmの多孔質ポリエチレンを用
い、負極には厚さ300μmの金属リチウム箔を用い、
負極集電体にニッケル箔を使用し、電解液には1M L
iPF/EC+DEC(1:1)を用いてコインセル
2030型を2個アルゴングローブボックス内で組立て
た。一方のコインセルについては、25℃の温度雰囲気
下で、正極活物質1gにつき10mAで4.3Vまで定
電流充電した後、正極活物質1gにつき10mAにて
2.0Vまで定電流放電する充放電サイクル試験を20
回行ない、1回目の充放電後の放電容量と、20回目の
充放電後の放電容量との比率から容量維持率を求めた。
その結果、初期放電容量は100mAh/g,容量維持
率は102%であった。放電カーブの平坦部の電圧は約
3.4Vであった。他方のコインセルについては、60
℃の温度雰囲気下で、正極活物質1gにつき10mAで
4.3Vまで定電流充電した後、正極活物質1gにつき
10mAにて2.0Vまで定電流放電する充放電サイク
ル試験を20回行ない、1回目の充放電後の放電容量
と、20回目の充放電後の放電容量との比率から容量維
持率を求めた。その結果、初期放電容量は115mAh
/g,容量維持率は103%であった。放電カーブの平
坦部の電圧は約3.4Vであった。
Example 1 Lithium carbonate and NH 4 H 2 P
O 4 and Fe (CH 3 CHOCOO) 2 and metallic iron powder are used as Li, P, Fe derived from iron lactate and Fe derived from metallic iron in an atomic ratio of about 1: 1: 1: 0.05, respectively. , And wet-mixed for 1 hour while dropping ethanol. After the mixture was dried, it was compacted at 98 MPa. The molded pellet was placed in an alumina crucible, the crucible was replaced with argon gas, and the lid was placed in a household microwave oven (oscillation frequency 2450 MHz, high-frequency output 600 W) and irradiated with high frequency for 10 minutes. Then, the inside of the crucible was replaced with argon gas again, and the high frequency was further irradiated for 3 minutes. Pellet after irradiation is crushed and X-rayed by Cu-Kα ray
The spectrum obtained by performing line diffraction is shown in FIG. From this spectrum, it can be seen that the powder is mainly composed of LiFePO 4 . The powder thus obtained, acetylene black, and polytetrafluoroethylene powder were mixed with each other.
The mixture was mixed at a weight ratio of 0/16/4, kneaded while adding toluene and dried to prepare a positive electrode plate having a thickness of 150 μm. 25 μm thick porous polyethylene was used for the separator, and 300 μm thick metallic lithium foil was used for the negative electrode.
Nickel foil is used for the negative electrode current collector, and the electrolyte is 1 mL
Two coin cell 2030 types were assembled in an argon glove box using iPF 6 / EC + DEC (1: 1). Regarding one coin cell, in a temperature atmosphere of 25 ° C., a constant-current charge of 10 mA / g of positive electrode active material to 4.3 V was performed, and then a constant-current discharge of 10 mA / g of positive electrode active material to 2.0 V / g was performed. 20 tests
The capacity retention rate was calculated from the ratio of the discharge capacity after the first charge / discharge and the discharge capacity after the 20th charge / discharge.
As a result, the initial discharge capacity was 100 mAh / g and the capacity retention rate was 102%. The voltage of the flat portion of the discharge curve was about 3.4V. For the other coin cell, 60
In a temperature atmosphere of ℃, 1g of the positive electrode active material was charged with a constant current of 10mA to 4.3V, and then 1g of the positive electrode active material was discharged with a constant current to 2.0V at 10mA. The capacity retention rate was obtained from the ratio of the discharge capacity after the 20th charge / discharge and the discharge capacity after the 20th charge / discharge. As a result, the initial discharge capacity was 115 mAh.
/ G, the capacity retention rate was 103%. The voltage of the flat portion of the discharge curve was about 3.4V.

【0028】《実施例2》実施例1において、乳酸鉄の
代わりに酢酸鉄を用い、かつ、金属鉄を添加しなかった
ほかは実施例1と同様な方法でLiFePOを合成し
た。そのX線回折スペクトルを図2に示す。また、この
実施例2で得られたLiFePOによる正極板を用い
て実施例1と同様にして組み立てたコインセルの電池性
能を評価したところ、25℃における初期放電容量は9
5mAh/g,20回充放電後の容量維持率は75%で
あった。放電カーブの平坦部の電圧は約3.4Vであっ
た。また、60℃における初期放電容量は126mAh
/g,20回充放電後の容量維持率は69%であった。
放電カーブの平坦部の電圧は約3.4Vであった。
Example 2 LiFePO 4 was synthesized in the same manner as in Example 1 except that iron acetate was used in place of iron lactate and no metallic iron was added. The X-ray diffraction spectrum is shown in FIG. Further, when the battery performance of the coin cell assembled in the same manner as in Example 1 using the positive electrode plate of LiFePO 4 obtained in this Example 2 was evaluated, the initial discharge capacity at 25 ° C. was 9
The capacity retention rate after charging / discharging 20 times at 5 mAh / g was 75%. The voltage of the flat portion of the discharge curve was about 3.4V. The initial discharge capacity at 60 ° C is 126 mAh.
/ G, the capacity retention rate after 20 times of charge and discharge was 69%.
The voltage of the flat portion of the discharge curve was about 3.4V.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
リチウム二次電池用正極活物質としての一般式LiMP
(但し、Mは遷移金属から選ばれる少なくとも1種
の金属元素)を製造するにあたって、少なくともリチウ
ム化合物と遷移金属M化合物と燐化合物の混合物を高周
波加熱により焼成するようにしたことにより、きわめて
短時間でオリビン系正極を合成することができる。
As described above, according to the present invention,
General formula LiMP as positive electrode active material for lithium secondary battery
In producing O 4 (however, M is at least one metal element selected from transition metals), at least a mixture of a lithium compound, a transition metal M compound and a phosphorus compound is fired by high frequency heating. An olivine-based positive electrode can be synthesized in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で得られた物質のX線回折ス
ペクトル図。
FIG. 1 is an X-ray diffraction spectrum diagram of the substance obtained in Example 1 of the present invention.

【図2】本発明の実施例2で得られた物質のX線回折ス
ペクトル図。
FIG. 2 is an X-ray diffraction spectrum diagram of the substance obtained in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 数原 学 神奈川県茅ヶ崎市茅ヶ崎3丁目2番10号 セイミケミカル株式会社内 (72)発明者 湯川 めぐみ 神奈川県茅ヶ崎市茅ヶ崎3丁目2番10号 セイミケミカル株式会社内 Fターム(参考) 5H029 AJ14 AK03 AL03 AL06 AL07 AL12 AM03 AM05 AM07 CJ02 CJ08 CJ28 DJ16 EJ04 EJ12 HJ15 5H050 AA19 BA16 BA17 CA07 CB02 CB05 CB07 CB08 CB12 EA10 EA24 GA02 GA10 GA27 HA15   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, number science             3-10 Chigasaki, Chigasaki City, Kanagawa Prefecture             Seimi Chemical Co., Ltd. (72) Inventor Megumi Yukawa             3-10 Chigasaki, Chigasaki City, Kanagawa Prefecture             Seimi Chemical Co., Ltd. F term (reference) 5H029 AJ14 AK03 AL03 AL06 AL07                       AL12 AM03 AM05 AM07 CJ02                       CJ08 CJ28 DJ16 EJ04 EJ12                       HJ15                 5H050 AA19 BA16 BA17 CA07 CB02                       CB05 CB07 CB08 CB12 EA10                       EA24 GA02 GA10 GA27 HA15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式LiMPO(但し、Mは遷移金
属から選ばれる少なくとも1種の金属元素)を製造する
にあたり、少なくともリチウム化合物と遷移金属M化合
物と燐化合物とを混合し、高周波加熱により焼成するこ
とを特徴とするリチウム二次電池用正極活物質の製造方
法。
1. In producing a general formula LiMPO 4 (wherein M is at least one metal element selected from transition metals), at least a lithium compound, a transition metal M compound and a phosphorus compound are mixed and heated by high frequency heating. A method for producing a positive electrode active material for a lithium secondary battery, which comprises firing.
【請求項2】 前記遷移金属Mが少なくともFeを含有
することを特徴とする請求項1に記載のリチウム二次電
池用正極活物質の製造方法。
2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the transition metal M contains at least Fe.
【請求項3】 前記混合物に金属粉末が添加されている
ことを特徴とする請求項1または2に記載のリチウム二
次電池用正極活物質の製造方法。
3. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein a metal powder is added to the mixture.
【請求項4】 高周波加熱による焼成時の酸素分圧が2
0%以下であることを特徴とする請求項1,2または3
に記載のリチウム二次電池用正極活物質の製造方法。
4. The oxygen partial pressure during firing by high frequency heating is 2.
It is 0% or less, Claim 1, 2 or 3 characterized by the above-mentioned.
The method for producing a positive electrode active material for a lithium secondary battery according to 1.
JP2002012339A 2002-01-22 2002-01-22 Method for producing positive electrode active material for lithium secondary battery Expired - Fee Related JP3983554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012339A JP3983554B2 (en) 2002-01-22 2002-01-22 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012339A JP3983554B2 (en) 2002-01-22 2002-01-22 Method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003217584A true JP2003217584A (en) 2003-07-31
JP3983554B2 JP3983554B2 (en) 2007-09-26

Family

ID=27649569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012339A Expired - Fee Related JP3983554B2 (en) 2002-01-22 2002-01-22 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3983554B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070862A3 (en) * 2003-02-06 2004-09-16 Enea Ente Nuove Tec Method for synthesizing a cathodic material based on lithium ironphosphate, intrinsically containing carbon
WO2005043654A1 (en) * 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Electrode active material and use thereof
JP2006269178A (en) * 2005-03-23 2006-10-05 Toyota Central Res & Dev Lab Inc Manufacturing method of active material, and lithium secondary battery
US7759006B2 (en) 2004-07-16 2010-07-20 Lg Chem, Ltd. Electrode active material for lithium secondary battery
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
JP2011082131A (en) * 2009-09-09 2011-04-21 Kansai Univ Method for synthesizing cathode material
WO2011100487A2 (en) * 2010-02-12 2011-08-18 Applied Materials, Inc. HYDROTHERMAL SYNTHESIS OF LiFePO4 NANOPARTICLES
WO2011116539A1 (en) * 2010-03-22 2011-09-29 河南联合新能源有限公司 Method for preparing positive electrode material lifepo4/c of lithium ion battery
US8399065B2 (en) 2009-08-24 2013-03-19 Applied Materials, Inc. In-situ deposition of battery active lithium materials by thermal spraying
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070862A3 (en) * 2003-02-06 2004-09-16 Enea Ente Nuove Tec Method for synthesizing a cathodic material based on lithium ironphosphate, intrinsically containing carbon
WO2005043654A1 (en) * 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Electrode active material and use thereof
JP2005158673A (en) * 2003-10-31 2005-06-16 Toyota Motor Corp Electrode active material, manufacturing method therefor and non-aqueous secondary battery
KR100808124B1 (en) * 2003-10-31 2008-02-29 도요다 지도샤 가부시끼가이샤 Electrode active material and use thereof
CN100409469C (en) * 2003-10-31 2008-08-06 丰田自动车株式会社 Electroactive material and use thereof
US7759006B2 (en) 2004-07-16 2010-07-20 Lg Chem, Ltd. Electrode active material for lithium secondary battery
JP2006269178A (en) * 2005-03-23 2006-10-05 Toyota Central Res & Dev Lab Inc Manufacturing method of active material, and lithium secondary battery
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
US9809456B2 (en) 2009-08-07 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for positive electrode active material
JP2016052996A (en) * 2009-08-07 2016-04-14 株式会社半導体エネルギー研究所 Method for preparing transition metal lithium phosphate
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides
US8399065B2 (en) 2009-08-24 2013-03-19 Applied Materials, Inc. In-situ deposition of battery active lithium materials by thermal spraying
US8449950B2 (en) 2009-08-24 2013-05-28 Applied Materials, Inc. In-situ deposition of battery active lithium materials by plasma spraying
JP2011082131A (en) * 2009-09-09 2011-04-21 Kansai Univ Method for synthesizing cathode material
WO2011100487A3 (en) * 2010-02-12 2012-01-05 Applied Materials, Inc. HYDROTHERMAL SYNTHESIS OF LiFePO4 NANOPARTICLES
WO2011100487A2 (en) * 2010-02-12 2011-08-18 Applied Materials, Inc. HYDROTHERMAL SYNTHESIS OF LiFePO4 NANOPARTICLES
WO2011116539A1 (en) * 2010-03-22 2011-09-29 河南联合新能源有限公司 Method for preparing positive electrode material lifepo4/c of lithium ion battery
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof

Also Published As

Publication number Publication date
JP3983554B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US10361451B2 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
JP3869182B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
TW535316B (en) Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte
TW513823B (en) Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte
JP5419445B2 (en) Lithium secondary battery and electrode used therefor
US20100129714A1 (en) Lithium secondary battery
JP2002117833A (en) Nonaqueous electrolyte secondary battery
WO2003069702A1 (en) Particulate positive electrode active material for lithium secondary cell
JP2008052970A (en) Manufacturing method of electrode material, positive electrode material, and battery
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JP2009081072A (en) Method of manufacturing positive electrode plate for nonaqueous electrolytic liquid secondary battery, and nonaqueous electrolytic liquid secondary battery using positive electrode plate
JP5013386B2 (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
JP2005060162A (en) Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same
JP3983554B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP4707950B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
JP2003331840A (en) Positive pole active substance for lithium ion secondary battery and method of manufacturing the active substance, and lithium ion secondary battery
JP2004158348A (en) Anode active substance for non-aqueous electrolyte rechargeable battery
JP2004165018A (en) Active material for lithium cell and its manufacturing method as well as lithium cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees