JP2003217047A - Flame detector - Google Patents

Flame detector

Info

Publication number
JP2003217047A
JP2003217047A JP2002013306A JP2002013306A JP2003217047A JP 2003217047 A JP2003217047 A JP 2003217047A JP 2002013306 A JP2002013306 A JP 2002013306A JP 2002013306 A JP2002013306 A JP 2002013306A JP 2003217047 A JP2003217047 A JP 2003217047A
Authority
JP
Japan
Prior art keywords
flame
detecting
moving average
normalized correlation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002013306A
Other languages
Japanese (ja)
Other versions
JP3932527B2 (en
Inventor
Takatoshi Yamagishi
貴俊 山岸
Kazuhisa Nakano
主久 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2002013306A priority Critical patent/JP3932527B2/en
Publication of JP2003217047A publication Critical patent/JP2003217047A/en
Application granted granted Critical
Publication of JP3932527B2 publication Critical patent/JP3932527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame detector capable of highly accurately detecting a flame by eliminating a source of misinformation and filtering out noise. <P>SOLUTION: The flame detector detecting a generated flame in the event of fire by detecting a light of a wavelength specific to the flame is provided with a plurality of light detecting means detecting a plurality of lights of different wavelengths one another specific to the flame and outputting a detection signal according to each wavelength, a calculating means calculating a normalized correlation value between each of waveforms for each detection signal detected by the plurality of the light detecting means and a ratio of a moving average between each of waveforms for each detection signal, and a flame generation deciding means deciding as the flame is generated when the normalized correlation value and the ratio value of the moving average calculated by the calculating means respectively fall within prescribed ranges. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は炎検出装置に係り、
さらに詳しくは炎に特有な波長の光(例えば、赤外線、
紫外線等)を検出して火災時に発生する炎を検出する炎
検出装置に関するものである。
TECHNICAL FIELD The present invention relates to a flame detecting device,
More specifically, light with a wavelength peculiar to a flame (for example, infrared rays,
The present invention relates to a flame detection device that detects a flame generated during a fire by detecting (e.g., ultraviolet rays).

【0002】[0002]

【従来の技術】この種の従来の炎検出装置として、例え
ば特公平6−61119号公報の発明(発明A)と特開
2000−57456号公報(発明B)の2つの発明が
知られている。上記発明Aにおける相互相関火災検知器
は、第1の検出器と第2の検出器とを具備し、これらの
2つの検出器からの出力の相互相関関数信号(相関値)
と出力比とを火災判断に用いるようになっている。この
発明Aの相互相関回路では、相互相関関数信号として上
記2つの信号波形の同時刻のデータの乗算値の総和が用
いられている。また、上記の発明Bの炎検出装置におい
ては、検知素子の出力信号は、前置フィルタと増幅部と
を介してマイクロプロセッサにより32Hzのサンプリ
ング周波数でサンプリングされるようになっている。
2. Description of the Related Art Two conventional inventions of this kind are known, for example, the invention of Japanese Patent Publication No. 6-611119 (Invention A) and the invention of Japanese Patent Application Laid-Open No. 2000-57456 (Invention B). . The cross-correlation fire detector according to Invention A includes a first detector and a second detector, and cross-correlation function signals (correlation value) of outputs from these two detectors.
And the output ratio are used for fire judgment. In the cross-correlation circuit of Invention A, the sum of the multiplication values of the data of the two signal waveforms at the same time is used as the cross-correlation function signal. Further, in the flame detecting device of the above-mentioned invention B, the output signal of the detecting element is sampled at the sampling frequency of 32 Hz by the microprocessor via the prefilter and the amplifying section.

【0003】[0003]

【発明が解決しようとする課題】上記の発明Aは2つの
検出器の出力信号を利用していて回路構成が簡単になる
ものの、相互相関関数信号が正規化されておらず採り得
る最大値が判らないので、相互相関関数信号が大きけれ
ば2つの波形が似ていることが判っても、それがどれほ
ど似ているかはわからないことになる。このため、さら
に波形を微分する微分回路や2階微分回路を設けて、こ
の出力から波形の位相を見て火災を判断している。一
方、発明Bの炎検出装置は上述したように、マイクロプ
ロセッサのサンプリング周波数として32Hzを使用し
ている。
The above-mentioned invention A utilizes the output signals of the two detectors and simplifies the circuit structure, but the cross-correlation function signal is not normalized and the maximum possible value is Since it is unknown, even if it is known that the two waveforms are similar if the cross-correlation function signal is large, it is not possible to know how similar they are. Therefore, a differentiating circuit and a second-order differentiating circuit for differentiating the waveform are further provided to judge the fire by observing the phase of the waveform from the output. On the other hand, the flame detection device of the invention B uses 32 Hz as the sampling frequency of the microprocessor as described above.

【0004】したがって、発明Bにおいては標本化定理
により、マイクロプロセッサ内に16Hz以上の周波数
成分が入力されると折り返し雑音が発生してしまう。ま
た、前置フィルタと増幅部とは通常一体となっており、
ここにノイズが混入すると必ず増幅される。従って、前
置フィルタと増幅部とに混入した商用電源周波数(50
Hz、60Hz)のノイズが増幅された状態でマイクロ
プロセッサ内で折り返し雑音となり、炎判断に用いる炎
のゆらぎ周波数付近に折り返し雑音となった商用電源周
波数ノイズが重畳してしまう。このように従来の発明
A,Bの装置は、いずれも上記のような問題点があっ
た。
Therefore, in Invention B, due to the sampling theorem, aliasing noise occurs when a frequency component of 16 Hz or more is input into the microprocessor. In addition, the pre-filter and the amplifier are usually integrated,
When noise is mixed in here, it is always amplified. Therefore, the commercial power frequency (50
(60 Hz, 60 Hz) noise becomes aliasing noise in the microprocessor, and commercial energy frequency noise that becomes aliasing noise is superimposed near the fluctuation frequency of the flame used for flame determination. As described above, the devices of the conventional inventions A and B have the above-mentioned problems.

【0005】本発明は上述のような従来装置の問題点を
解消する為になされたもので、複数の光検出手段により
検出される検出信号の波形相互間の類似度合いを示す
「正規化相関値」と波形相互間の振幅比を示す「移動平
均の比率値」の特性を利用して、検出部に取り込まれた
光の誤報源を排除して高精度に炎を検出することが可能
な炎検出装置を実現することを目的とするものである。
また、商用電源周波数ノイズを排除して高精度に炎を検
出することが可能な炎検出装置を実現することを目的と
するものである。
The present invention has been made in order to solve the above-mentioned problems of the conventional device, and it is a "normalized correlation value" indicating the degree of similarity between the waveforms of the detection signals detected by the plurality of photodetection means. And the ratio value of the moving average that indicates the amplitude ratio between the waveforms, a flame that can detect flames with high accuracy by eliminating false sources of light captured by the detection unit. It is intended to realize a detection device.
Another object of the present invention is to realize a flame detection device that can detect flames with high accuracy by eliminating commercial power supply frequency noise.

【0006】[0006]

【課題を解決するための手段】本発明は、炎に特有な波
長の光を検出して火災時に発生する炎を検出する炎検出
装置において、炎に特有な異なる波長の光を複数検出し
て各波長に応じた検出信号を出力する複数の光検出手段
と、複数の光検出手段により検出される各検出信号の波
形相互間の正規化相関値および各検出信号の波形相互間
の移動平均の比率値を算出する算出手段と、算出手段に
より算出された正規化相関値および移動平均の比率値が
それぞれ所定の範囲内のときに炎が発生したと判断する
炎発生判別手段と、を備えた炎検出装置を構成したもの
である。また、上記において、炎発生判別手段は、一定
の時間内において所定の割合以上、正規化相関値と移動
平均の比率値が所定の範囲内である場合に炎であると判
断する炎検出装置を構成したものである。また、上記に
おいて、複数の光検出手段は3つ以上であり、正規化相
関値と移動平均の比率値とを軸とする平面座標を形成
し、各検出信号の波形相互間の正規化相関値および移動
平均の比率値と、による各座標点を平面座標上にプロッ
トし、算出手段は、各座標点間の距離を算出し、炎発生
判別手段は、距離が一定の範囲内のときに炎が発生した
と判断する炎検出装置を構成したものである。また、上
記において、炎発生判別手段は、一定の時間内において
所定の割合以上、正規化相関値と移動平均の比率値およ
び距離が所定の範囲内および一定の範囲内である場合に
炎であると判断する炎検出装置を構成したものである。
また、上記において、炎発生判別手段は、正規化相関値
と移動平均の比率値の重心と標準偏差とを用いて炎判断
を行う炎検出装置を構成したものである。また、上記に
おいて、複数の光検出手段は、炎に特有な4.4μm帯
の波長の赤外線を検出する第1の光検出手段を含む炎検
出装置を構成したものである。また、本発明は、炎に特
有な波長の光を検出して火災時に発生する炎を検出する
炎検出装置において、炎に特有な波長の光を検出して検
出信号を出力する光検出手段と、光検出手段により検出
される検出信号を120Hzを超えるサンプリング周波
数でサンプリングするサンプリング手段と、を備えた炎
検出装置を構成したものである。さらに、上記におい
て、サンプリング周波数は2のべき乗である炎検出装置
を構成したものである。
SUMMARY OF THE INVENTION The present invention is a flame detecting device for detecting light having a wavelength peculiar to a flame to detect a flame generated during a fire by detecting a plurality of lights having different wavelengths peculiar to the flame. A plurality of light detecting means for outputting a detection signal corresponding to each wavelength, a normalized correlation value between the waveforms of the respective detection signals detected by the plurality of light detecting means, and a moving average of the waveforms of the respective detection signals. And a flame generation determination means for determining that a flame has occurred when the normalized correlation value and the moving average ratio value calculated by the calculation means are within a predetermined range. The flame detecting device is configured. Further, in the above, the flame occurrence determination means is a flame detection device that determines that it is a flame when the ratio value of the normalized correlation value and the moving average is within a predetermined range in a predetermined time or more. It is composed. Further, in the above description, the number of the plurality of light detecting means is three or more, forming the plane coordinates around the normalized correlation value and the ratio value of the moving average, and the normalized correlation values between the waveforms of the respective detection signals. And the ratio value of the moving average, and each coordinate point is plotted on a plane coordinate, the calculation means calculates the distance between the coordinate points, and the flame occurrence determination means determines the flame when the distance is within a certain range. The flame detection device is configured to determine that the occurrence of the above has occurred. Further, in the above, the flame occurrence determination means is a flame when the normalized correlation value and the ratio value of the moving average and the distance are within a predetermined range and within a certain range within a certain period of time. This is a flame detection device configured to judge that.
Further, in the above description, the flame occurrence determination means constitutes a flame detection device that performs flame determination using the center of gravity of the normalized correlation value and the ratio value of the moving average and the standard deviation. Further, in the above description, the plurality of light detecting means constitutes a flame detecting device including a first light detecting means for detecting infrared rays having a wavelength in the 4.4 μm band, which is peculiar to a flame. Further, the present invention is a flame detection device for detecting light having a wavelength peculiar to a flame to detect a flame generated at the time of a fire, and a light detecting means for detecting light having a wavelength peculiar to the flame and outputting a detection signal. And a sampling means for sampling the detection signal detected by the light detection means at a sampling frequency higher than 120 Hz. Further, in the above, the flame detection device is configured so that the sampling frequency is a power of 2.

【0007】[0007]

【発明の実施の形態】一般に、火災時に発生する炎には
図4の実線の曲線Wfで示すように、CO2ガスの共鳴
放射による4.4μm帯付近に変曲点(ピーク値)を有
する炎特有な波長の赤外線が放射されることが知られて
いる。3波長式炎検出装置は同図の3つの点線帯で示す
ように、4.4μm帯を中心にした3.9μm帯と5.
0μm帯とを検出対象としており、各波長帯の光(赤外
線)をそれぞれ検出する光検出手段を備えている。ま
た、2波長式には4.4μm帯と3.9μm帯または
5.0μm帯の赤外線を検出する検出方式が採用されて
いる。なお、図4の横軸と縦軸は波長と相対強度で、曲
線Wsは太陽光、曲線WmhとWmlはそれぞれ高温物体と
低温物体の黒体放射における発光スペクトル分布を示し
ており、そのピーク値は黒体の温度により決定される。
BEST MODE FOR CARRYING OUT THE INVENTION Generally, a flame generated during a fire has an inflection point (peak value) near a 4.4 μm band due to resonance radiation of CO 2 gas as shown by a solid curve Wf in FIG. It is known that infrared rays with a wavelength peculiar to a flame are emitted. The three-wavelength flame detection device, as shown by the three dotted lines in the figure, has a 3.9 μm band centered on the 4.4 μm band and a 5.
The detection target is the 0 μm band, and a light detection unit for detecting light (infrared rays) in each wavelength band is provided. In addition, a detection method for detecting infrared rays in the 4.4 μm band and the 3.9 μm band or the 5.0 μm band is adopted in the two-wavelength system. The horizontal axis and the vertical axis in FIG. 4 are wavelength and relative intensity, the curve Ws shows the sunlight, and the curves Wmh and Wml show the emission spectrum distributions of the high temperature object and the low temperature object in the black body radiation, respectively, and their peak values. Is determined by the temperature of the blackbody.

【0008】一方、火災時の炎のように同一放射源から
放射された赤外線の場合において、4.4μm帯の光を
検出する光検出手段の検出信号と4.4μm帯以外の光
を検出する検出手段の検出信号との2つの信号波形間の
類似度は高い。また、曲線Wfにも示されたように、炎
から放射された赤外線の場合に4.4μm帯の赤外線の
相対強度は大きく、4.4μm帯以外の赤外線の相対強
度は小さい。つまり、4.4μm帯の光検出手段により
検出される検出信号の出力は大きく、4.4μm帯以外
から検出される検出信号の出力は小さい。したがって、
4.4μm帯以外の波形の出力振幅の4.4μmの波形
に対する出力振幅の比率値(4.4μm帯以外から検出
された波形の出力振幅/4.4μm帯から検出された波
形の出力振幅)は小さく、所定の範囲内に限定されてい
る。
On the other hand, in the case of infrared rays radiated from the same radiation source like a flame at the time of fire, the detection signal of the light detecting means for detecting the light in the 4.4 μm band and the light other than the 4.4 μm band are detected. The similarity between the two signal waveforms and the detection signal of the detection means is high. Further, as shown by the curve Wf, in the case of infrared rays emitted from the flame, the relative intensity of infrared rays in the 4.4 μm band is large, and the relative intensity of infrared rays other than the 4.4 μm band is small. That is, the output of the detection signal detected by the photodetector in the 4.4 μm band is large, and the output of the detection signal detected in the region other than the 4.4 μm band is small. Therefore,
Ratio of the output amplitude of the waveform other than the 4.4 μm band to the waveform of 4.4 μm (the output amplitude of the waveform detected from other than the 4.4 μm band / the output amplitude of the waveform detected from the 4.4 μm band) Is small and limited to a predetermined range.

【0009】これに対して、曲線Wsや曲線Wmh,Wml
が示すように、炎以外の熱源やノイズ源等から放射され
た赤外線の比率値の範囲は炎とは全く異なる。そのた
め、4.4μm帯および4.4μm帯以外の光検出手段
により検出される各検出信号の波形相互間の類似の度合
い(正規化相関値γと呼ぶ)と、各検出信号の波形相互
間の振幅比(移動平均の比率値βと呼ぶ)とを炎の判断
に用いて、熱源やノイズ源の誤報源を排除した高精度の
炎検出が可能になる。正規化相関値γは1〜−1の範囲
の値に正規化されているので波形相互間の類似度が判断
し易く、その値が1に近づくにつれて波形相互間の相関
が高くなる。本発明は炎に特有な異なる波長の光を複数
検出して、上記した各検出信号の波形相互間の類似度合
いを示す正規化相関値γおよび各検出信号の波形相互間
の振幅比を示す移動平均の比率値βを利用して火災時に
発生する炎を高精度に判別することのできる炎検出装置
を実現しようとするものである。炎の場合は、正規化相
関値γおよび移動平均の比率値βがそれぞれ所定の範囲
内であるので、これにより火災時に発生する炎を高精度
に判別することができる。
On the other hand, the curves Ws, Wmh, Wml
As shown by, the range of the ratio value of the infrared rays radiated from a heat source other than the flame or a noise source is completely different from that of the flame. Therefore, the degree of similarity (referred to as a normalized correlation value γ) between the waveforms of the respective detection signals detected by the photodetection means other than the 4.4 μm band and the 4.4 μm band, and the waveforms of the respective detection signals. By using the amplitude ratio (referred to as a moving average ratio value β) for flame determination, it is possible to perform highly accurate flame detection by eliminating false sources of heat and noise. Since the normalized correlation value γ is normalized to a value in the range of 1 to -1, it is easy to judge the similarity between the waveforms, and the correlation between the waveforms increases as the value approaches 1. The present invention detects a plurality of lights having different wavelengths peculiar to flames, and shifts the normalized correlation value γ indicating the degree of similarity between the waveforms of the detection signals and the amplitude ratio between the waveforms of the detection signals. It is an object of the present invention to realize a flame detection device capable of highly accurately discriminating a flame generated during a fire by using the average ratio value β. In the case of flame, the normalized correlation value γ and the ratio value β of the moving average are within the respective predetermined ranges, so that the flame generated during a fire can be discriminated with high accuracy.

【0010】そして、後述するように、4.4μm帯の
光検出手段と2つ以上の4.4μm帯以外の互いに異な
る波長を選択して検出する光検出手段(例えば、3.9
μm帯と5.0μm帯)とがある場合、4.4μm帯の
光検出手段と3.9μm帯の光検出手段とによる正規化
相関値γと移動平均の比率値βとを算出し、4.4μm
帯の光検出手段と5.0μm帯の光検出手段とによる正
規化相関値γと移動平均の比率値βとを算出し、正規化
相関値γと移動平均の比率値βとを軸とする平面座標を
形成した上で、それぞれの正規化相関値γと移動平均の
比率値βとによる各座標点を平面座標上にプロットし、
各座標点間の距離を算出すると、炎の場合は一定の範囲
内であるので、この特性を炎判断に応用して高精度の炎
の検出が可能な炎検出装置を実現した。
Then, as will be described later, photodetection means for the 4.4 μm band and photodetection means for selecting and detecting wavelengths different from each other other than the two or more 4.4 μm bands (for example, 3.9).
.mu.m band and 5.0 .mu.m band), the normalized correlation value .gamma. and the moving average ratio value .beta. by the 4.4 .mu.m band photodetecting means and the 3.9 .mu.m band photodetecting means are calculated, and .4 μm
The normalized correlation value γ and the moving average ratio value β are calculated by the band light detecting means and the 5.0 μm band light detecting means, and the normalized correlation value γ and the moving average ratio value β are used as axes. After forming the plane coordinates, plotting each coordinate point by the respective normalized correlation value γ and the ratio value β of the moving average on the plane coordinates,
When the distance between coordinate points is calculated, it is within a certain range in the case of a flame, so this characteristic was applied to flame determination to realize a flame detection device capable of highly accurate flame detection.

【0011】なお、炎発生判別手段が、一定の時間内に
おいて所定の割合以上、前記正規化相関値γと前記移動
平均の比率値βおよび前記距離が所定の範囲内および前
記一定の範囲内である場合に炎であると判断するとより
高精度の炎検出が可能になる。また、炎発生判別手段
が、前記正規化相関値γと前記移動平均の比率値βの重
心と標準偏差とを用いて炎判断を行うと、さらに高精度
の炎検出が可能になる。
It should be noted that the flame occurrence discriminating means is configured such that the normalized correlation value γ, the moving average ratio value β, and the distance are within a predetermined range and within a predetermined range within a predetermined time. If it is determined that the flame is present in some cases, more highly accurate flame detection becomes possible. Further, when the flame occurrence determination means performs flame determination using the center of gravity of the normalized correlation value γ and the ratio value β of the moving average and the standard deviation, it is possible to detect the flame with higher accuracy.

【0012】実施の形態1 図1は本発明の実施の形態1の構成を示すブロック図、
図2は実施の形態1の動作を示すフロー図である。実施
の形態1では、本発明を3波長式の炎検出装置として説
明がなされている。図1において、1は炎検出装置であ
る。21〜23はA,B,Cの各検出部、31〜33は
各検出部21〜23の出力を増幅するアンプ、41〜4
3はアンプ31〜33の出力ののうち後述する特定な周
波数成分を除去するアンチエイリアスフィルタ(anti-a
lias-filter )、5はA/D変換器である。また、6は
判断部、7は火災信号発生回路、8は汎用乗算器であ
る。汎用乗算器8は、乗算に特化して高速に演算する回
路で構成されている。汎用乗算器8にはデジタルシグナ
ルプロセッサ(DSP)のような積和演算器を用いても
良く、数値演算プロセッサを用いて構成することもでき
る。なお、検出部21〜23は、炎に特有な異なる波長
の光を複数検出して各波長に応じた検出信号を出力する
複数の光検出手段の例である。汎用乗算器8は、複数の
光検出手段により検出される各検出信号の波形相互間の
類似度合いを示す正規化相関値および各検出信号の波形
相互間の振幅比を示す移動平均の比率値を算出する算出
手段の例である。判断部6は、算出手段により算出され
た正規化相関値および移動平均の比率値がそれぞれ所定
の範囲内のときに炎が発生したと判断する炎発生判別手
段の例である。
Embodiment 1 FIG. 1 is a block diagram showing the configuration of Embodiment 1 of the present invention,
FIG. 2 is a flowchart showing the operation of the first embodiment. In the first embodiment, the present invention is described as a three-wavelength flame detection device. In FIG. 1, reference numeral 1 is a flame detection device. 21 to 23 are A, B, and C detection units, and 31 to 33 are amplifiers 41 to 4 that amplify the outputs of the detection units 21 to 23.
3 is an anti-aliasing filter (anti-a) that removes a specific frequency component, which will be described later, from the outputs of the amplifiers 31 to 33.
lias-filter) and 5 are A / D converters. Further, 6 is a judgment unit, 7 is a fire signal generation circuit, and 8 is a general-purpose multiplier. The general-purpose multiplier 8 is composed of a circuit specialized for multiplication and operating at high speed. The general-purpose multiplier 8 may be a product-sum calculator such as a digital signal processor (DSP), or may be a numerical calculator. The detection units 21 to 23 are examples of a plurality of light detection units that detect a plurality of lights having different wavelengths peculiar to a flame and output a detection signal corresponding to each wavelength. The general-purpose multiplier 8 calculates a normalized correlation value indicating the degree of similarity between the waveforms of the detection signals detected by the plurality of photodetecting means and a moving average ratio value indicating the amplitude ratio between the waveforms of the detection signals. It is an example of calculation means for calculating. The determination unit 6 is an example of a flame generation determination unit that determines that a flame has occurred when the normalized correlation value and the moving average ratio value calculated by the calculation unit are within predetermined ranges.

【0013】ここで、図2のフロー図の説明に先立って
説明が重複するが一部の動作説明を加えて、本発明で用
いられる移動平均αAn,αBn,αCnや正規化相関値γ
ABn,γACn の算出式等について次に説明する。A〜
Cの各検出部21〜23は特定な波長帯、例えばそれぞ
れ4.4μm、3.9μm、5.0μm帯の赤外線に感
度を持つ。アンプ31〜33は、検出部21〜23の検
出信号にバイアス電圧を加えてプラス出力とし、さら
に、検出信号のうち電気的に炎のちらつき周波数帯であ
る4Hz以上の信号成分を選択し増幅する。アンチエイ
リアスフィルタ41〜43は、サンプリングの前処理と
して、アンプ31〜33からの増幅信号のうちサンプリ
ング周波数(この場合は、128Hz)の1/2以上の
周波数成分を除去したアナログ信号を出力する。しか
し、アンチエイリアスフィルタはアナログ回路であり高
次のフィルタを高精度かつ安価に作成することは難し
い。アンチエイリアスフィルタには、3次〜4次程度の
ローパスフィルタを用いるため、商用電源周波数ノイズ
(50Hz、60Hz)が僅かに混在している。
Here, although the explanation is repeated prior to the explanation of the flow chart of FIG. 2, a part of the explanation of the operation is added and the moving averages α An , α Bn , α Cn and the normalized correlation values used in the present invention are added. γ
The formulas for calculating ABn and γ ACn are explained below. A ~
Each of the detection units 21 to 23 of C has sensitivity to infrared rays in a specific wavelength band, for example, 4.4 μm, 3.9 μm, and 5.0 μm bands. The amplifiers 31 to 33 add a bias voltage to the detection signals of the detection units 21 to 23 to make it a positive output, and further select and amplify a signal component of 4 Hz or more, which is an electric flame flicker frequency band, among the detection signals. . As anti-aliasing filters 41 to 43, as pre-processing for sampling, the analog signals from which the frequency components of 1/2 or more of the sampling frequency (128 Hz in this case) of the amplified signals from amplifiers 31 to 33 are removed are output. However, since the anti-aliasing filter is an analog circuit, it is difficult to make a high-order filter with high accuracy and at low cost. Since a low-pass filter of about 3rd to 4th order is used for the antialiasing filter, commercial power supply frequency noise (50 Hz, 60 Hz) is slightly mixed.

【0014】A/D変換器5は、アンチエイリアスフィ
ルタ41〜43を通過したアナログ信号を120Hzを
超え、また、2のべき乗である128Hzのサンプリン
グ周波数でサンプリングして、デジタル信号に変換す
る。判断部6は、図示しないプログラム、デジタルフィ
ルタ、A/D変換器5からのデジタル信号等を一時格納
しておくRAM、後述する炎判断値等を格納しているR
OM、およびこれらを制御するMPUを有する。プログ
ラムにより、120Hzを超えるサンプリング周波数で
デジタル信号が判断部6内に取り込まれ、RAMに一時
格納される。この場合は、判断部6が演算し易いよう
に、サンプリング周波数は2n(n=7)である128
Hzに設定してある。また判断部6は、後述するデジタ
ルフィルタにより、RAMに格納されたデジタル信号の
うち電気的に炎のちらつき周波数帯である4〜30Hz
の信号成分のみを抽出して、この抽出信号をRAMに一
時格納する。ここで、サンプリング周波数は60Hzの
2倍以上に設定してあるため、アンチエイリアスフィル
タからのアナログ信号中に混在した商用電源周波数ノイ
ズ(50Hz、60Hz)は折り返し雑音にはならずに
デジタルフィルタで除去できる。また、この抽出信号に
はバイアス電圧が含まれているため、この抽出信号から
バイアス電圧を除算した計算用信号を算出して、判断部
6のRAMに一時格納する。例えば、過去N回サンプリ
ング分の抽出信号の平均値を抽出信号数N個で割算して
バイアス電圧を算出し、この抽出信号から除算して、計
算用信号を算出する。
The A / D converter 5 converts the analog signal passed through the anti-aliasing filters 41 to 43 into a digital signal by sampling it at a sampling frequency of 120 Hz which is a power of 2 and exceeds 120 Hz. The judgment unit 6 stores a program (not shown), a digital filter, a RAM for temporarily storing digital signals from the A / D converter 5 and the like, and an R for storing a flame judgment value described later and the like.
It has an OM and an MPU that controls them. By the program, the digital signal is taken into the judging unit 6 at the sampling frequency exceeding 120 Hz and temporarily stored in the RAM. In this case, the sampling frequency is 2n (n = 7) 128 so that the determination unit 6 can easily perform the calculation.
It is set to Hz. In addition, the determination unit 6 uses a digital filter described later to electrically generate a flame flicker frequency band of 4 to 30 Hz in the digital signal stored in the RAM.
Is extracted, and the extracted signal is temporarily stored in the RAM. Here, since the sampling frequency is set to be twice as high as 60 Hz or more, the commercial power supply frequency noise (50 Hz, 60 Hz) mixed in the analog signal from the anti-aliasing filter does not become aliasing noise and can be removed by the digital filter. . Since the extracted signal includes the bias voltage, the calculation signal obtained by dividing the extracted signal by the bias voltage is calculated and temporarily stored in the RAM of the determination unit 6. For example, the bias voltage is calculated by dividing the average value of the extracted signals for the past N samplings by the number N of extracted signals, and is divided from this extracted signal to calculate the calculation signal.

【0015】汎用乗算器8はデジタルフィルタの演算に
用いられ、また判断部6のRAMに一時格納された所定
数の計算用信号を用いて、正規化相関値γ、移動平均の
比率値βを算出し、さらに正規化相関値γ、移動平均の
比率値βから後述する2点間の距離L1等を算出し、判
断部6のRAMに一時格納する。そして判断部6は、R
AMに格納された正規化相関値γ、移動平均の比率値
β、および2点間の距離L1等を、ROMに格納された
炎判断値等と比較して炎判断を行う。火災信号発生回路
7は、判断部6による炎の判断結果に基づき、火災信号
を出力する。
The general-purpose multiplier 8 is used for the calculation of the digital filter, and the normalized correlation value γ and the moving average ratio value β are calculated by using a predetermined number of calculation signals temporarily stored in the RAM of the judging section 6. The distance L1 between two points, which will be described later, is calculated from the normalized correlation value γ and the moving average ratio value β, and is temporarily stored in the RAM of the determination unit 6. Then, the judgment unit 6
The flame judgment is performed by comparing the normalized correlation value γ, the moving average ratio value β, the distance L1 between the two points, and the like stored in the AM with the flame judgment value and the like stored in the ROM. The fire signal generation circuit 7 outputs a fire signal based on the flame judgment result by the judgment unit 6.

【0016】さらに、判断部6および汎用乗算器8の機
能について以下に詳しく説明する。前述したデジタルフ
ィルタは、商用電源周波数等のノイズの除去と炎のゆら
ぎを検出する為のバンドパスフィルタであり、トランス
バーサルフィルタ(trans-versal-filter )等により実
現される。他の構成を用いても良いがトランスバーサル
フィルタは直線位相特性であり、少ない波形歪みで済む
ので、より効果が期待できる。上記のトランスバーサル
フィルタは、次式で与えられる。 y(t)=w0x(t)+w1x(t−Δt)+w2x(t−2
Δt)……wN-1x(t−(N-1)Δt) ただし、wi :重み係数i=0〜N−1 x(t) :時刻tにおけるデジタル信号 Δt :サンプリング間隔 y(t) :出力結果(抽出信号)
Further, the functions of the judging section 6 and the general-purpose multiplier 8 will be described in detail below. The digital filter described above is a bandpass filter for removing noise such as commercial power supply frequency and detecting flame fluctuations, and is realized by a trans-versal-filter or the like. Although other configurations may be used, the transversal filter has a linear phase characteristic and requires less waveform distortion. The above transversal filter is given by: y (t) = w 0 x (t) + w 1 x (t−Δt) + w 2 x (t−2
Δt) ... w N-1 x (t- (N-1) Δt) where wi: weighting coefficient i = 0 to N-1 x (t): digital signal at time t Δt: sampling interval y (t) : Output result (extracted signal)

【0017】上記方法で得られた抽出信号を用いて算出
された計算信号に基づいて、各波長帯の検出部21〜2
3の出力振幅として、一定間隔内(所定数)の計算信号
の絶対値の移動平均αAn,αBn,αCn、異なる波長同士
の正規化相関値γABn,γACnをそれぞれ求める。また、
絶対値の移動平均αAnに対する絶対値の移動平均αBn
αCnの比率値βABn(=αBn,/αAn),βACn(=αCn
/αAn)も算出する。上記の演算にはすべて汎用乗算器
8を用いので効率の良い演算が達成できる。
Based on the calculation signal calculated using the extracted signal obtained by the above method, the detection units 21 to 2 for each wavelength band
As the output amplitude of 3, the moving averages α An , α Bn , α Cn of the absolute values of the calculation signals within a constant interval (predetermined number), and the normalized correlation values γ ABn , γ ACn of different wavelengths are obtained , respectively. Also,
Absolute moving average α Bn with respect to the moving average α An ,
Ratio values of α Cn β ABn (= α Bn , / α An ), β ACn (= α Cn
/ Α An ) is also calculated. Since the general-purpose multiplier 8 is used for all the above calculations, efficient calculations can be achieved.

【0018】炎についてはγABn,γACn,βABn(=α
Bn/αAn),βACn(=αCn/αAn)は、統計的に所定
の範囲内に集中する。この所定の範囲は、所定数の正規
化相関値γABn,γACn、比率値βABn,βACnの重心と標
準偏差σにより、図3に示すように円形状の範囲として
表すことができる。さらに、上記4変数を(βABn,γA
Bn),(βACn,γACn)の座標として2点間の距離L1
を求めると、一定の範囲内に集中する傾向がある(炎の
場合)。従って、例えば炎と判断される条件(炎判断
値)を正規化相関値γABn,γACnは0.8〜0.9、比
率値βABn,βACnは0.1〜0.5、2点間の距離L1
は0.2〜0.3として、上記条件が成立することで炎
を検出したと判断部6で判断する。また、一定期間内に
上記条件が成立した割合を算出し、それがある所定の割
合以上である場合に炎を検出したと判断部6で判断する
とより高精度となる。上記の方法は、汎用乗算器8を何
通りにも使い回すことで効率良く構成でき、しかも高精
度の火災検出が可能である。
For flames, γ ABn , γ ACn , β ABn (= α
Bn / α An ) and β ACn (= α Cn / α An ) are statistically concentrated within a predetermined range. This predetermined range can be represented as a circular range as shown in FIG. 3 by a predetermined number of normalized correlation values γ ABn , γ ACn , and the center of gravity and standard deviation σ of the ratio values β ABn , β ACn . Furthermore, the above four variables are (β ABn , γ A
Bn ), (β ACn , γ ACn ), the distance L1 between the two points
When asked for, there is a tendency to concentrate within a certain range (for flames). Therefore, for example, the conditions (flame judgment value) judged as flame are normalized correlation values γ ABn and γ ACn of 0.8 to 0.9, and ratio values β ABn and β ACn of 0.1 to 0.5 and 2. Distance between points L1
Is set to 0.2 to 0.3, and the determination unit 6 determines that the flame is detected when the above condition is satisfied. In addition, the rate at which the above conditions are satisfied within a certain period is calculated, and if the determination section 6 determines that a flame has been detected when the rate is equal to or higher than a predetermined rate, the accuracy becomes higher. The above method can be efficiently configured by repeatedly using the general-purpose multiplier 8 many times, and moreover, highly accurate fire detection is possible.

【0019】前述した正規化相関値、移動平均の比率値
等は、以下に示す式で算出される。時刻tnにおける3
つの検出部21〜23の計算用信号をAn ,Bn ,Cn
とすると、移動平均αAn,αBn,αCnは、それぞれ次の
(1),(2),(3)式で与えられる。
The above-described normalized correlation value, moving average ratio value, etc. are calculated by the following equations. 3 at time t n
An, Bn, and Cn are used as the calculation signals of the two detectors 21 to 23.
Then, moving averages α An , α Bn , and α Cn are given by the following equations (1), (2), and (3), respectively.

【0020】[0020]

【数1】 [Equation 1]

【0021】また、計算用信号An ,Bn ,Cn に対応
する標準偏差をσAn,σBn,σCnとすると、:計算用信
号An とBn ,Cn に対応する正規化相関値γABnとγ
ACnは、次の(6)式と(7)式で表される。
If the standard deviations corresponding to the calculation signals An, Bn, Cn are σ An , σ Bn , σ Cn : Normalized correlation values γ ABn and γ corresponding to the calculation signals An, Bn, Cn.
ACn is expressed by the following equations (6) and (7).

【0022】[0022]

【数2】 [Equation 2]

【0023】こうして判断部6のRAMに順次格納され
た比率値βABn,βACn、正規化相関値γABn,γACnを用
いて、それぞれの標準偏差を次の(8)〜(11)式で
示し、それぞれの重心、重心間の距離L2、2点間の距
離L1を次の(12)〜(14)式で示される。
Using the ratio values β ABn and β ACn and the normalized correlation values γ ABn and γ ACn sequentially stored in the RAM of the judging unit 6 in this way, respective standard deviations are expressed by the following equations (8) to (11). And the distance L2 between the centers of gravity, the distance L2 between the centers of gravity, and the distance L1 between the two points are expressed by the following equations (12) to (14).

【0024】[0024]

【数3】 [Equation 3]

【0025】引き続いて、図2のフロー図を参照して実
施の形態1の動作を箇条書きして説明すれば、次の通り
である。こうして判断部6のRAMに順次格納された比
率値βABn,βACn、正規化相関値γABn,γACnを用い
て、それぞれの標準偏差を次の(8)〜(11)式で示
し、それぞれの重心、重心間の距離L2、2点間の距離
L1を次の(12)〜(14)式で示される。
Subsequently, the operation of the first embodiment will be itemized and described with reference to the flowchart of FIG. 2 as follows. Thus, using the ratio values β ABn and β ACn and the normalized correlation values γ ABn and γ ACn sequentially stored in the RAM of the determination unit 6, the respective standard deviations are shown by the following equations (8) to (11), The respective centers of gravity, the distance L2 between the centers of gravity, and the distance L1 between the points are shown by the following equations (12) to (14).

【0026】(S1) 検出部21〜23からA〜Cの
各波長帯毎の赤外線量が電気信号に変換されて、取り込
まれる。検出するA〜Cの各波長帯は、例えば4.4μ
mと3.9μmおよび5.0μmである。この検出信号
はアンプ31〜33により、バイアス電圧を加えてプラ
ス出力とされ、さらに、電気的に炎のちらつき周波数帯
である4Hz以上の信号成分を選択し増幅される。この
増幅信号はアンチエイリアスフィルタ41〜43によ
り、サンプリング周波数(この場合は、128Hz)の
1/2以上の周波数成分を除去したアナログ信号とされ
る。この段階では、アンチエイリアスフィルタはアナロ
グ回路であり、アナログ信号中には若干の商用電源周波
数ノイズ(50Hz、60Hz)が混在している。この
アナログ信号はA/D変換器5により、デジタル信号に
変換される。このとき、120Hzを超え、また、2の
べき乗のサンプリング周波数、例えば128HzでA/
D変換を行う。このサンプリングされたデジタル信号
は、判断部6のRAMに順次格納されて所定の期間だけ
保管される。例えば、過去64サンプリング分のデジタ
ル信号だけを格納し、所定の期間を超えたものは順次破
棄される。
(S1) The amount of infrared rays in each of the wavelength bands A to C is converted into an electric signal from the detectors 21 to 23 and taken in. Each wavelength band of A to C to be detected is, for example, 4.4 μm.
m and 3.9 μm and 5.0 μm. This detection signal is output as a positive output by applying a bias voltage by the amplifiers 31 to 33, and further, a signal component of 4 Hz or higher, which is the flicker frequency band of the flame, is electrically selected and amplified. The amplified signal is converted into an analog signal by removing the frequency components of 1/2 or more of the sampling frequency (128 Hz in this case) by the anti-aliasing filters 41 to 43. At this stage, the anti-aliasing filter is an analog circuit, and some commercial power supply frequency noise (50 Hz, 60 Hz) is mixed in the analog signal. This analog signal is converted into a digital signal by the A / D converter 5. At this time, when the sampling frequency exceeds 120 Hz and is a power of 2, for example, 128 Hz, A /
Perform D conversion. The sampled digital signals are sequentially stored in the RAM of the determination unit 6 and stored for a predetermined period. For example, only digital signals for the past 64 samplings are stored, and those exceeding a predetermined period are sequentially discarded.

【0027】(S2) 判断部6のRAMに格納された
デジタル信号は判断部6および汎用乗算器8で構成され
るデジタルフィルタにより、所定の周波数成分、例えば
電気的に炎のちらつき周波数帯である4〜30Hzの信
号成分のみを抽出される。この抽出信号は判断部6のR
AMに順次格納されて所定の期間だけ保管される。例え
ば、過去64サンプリング分の抽出信号だけを格納し、
所定の期間を超えたものは順次破棄される。ここで、サ
ンプリング周波数は60Hzの2倍以上に設定してある
ため、アンチエイリアスフィルタからのアナログ信号中
に混在した商用電源周波数ノイズ(50Hz、60H
z)は折り返し雑音にはならずにデジタルフィルタで除
去できる。また、この抽出信号にはバイアス電圧が含ま
れているため、この抽出信号からバイアス電圧を除算し
た計算用信号を算出して、判断部6のRAMに格納す
る。例えば、過去N回サンプリング分の抽出信号の平均
値を抽出信号数N個で割算してバイアス電圧を算出し、
この抽出信号から除算して、計算用信号を算出する。こ
の計算用信号は判断部6のRAMに順次格納されて所定
の期間だけ保管される。例えば、過去64サンプリング
分の計算用信号だけを格納し、所定の期間を超えたもの
は順次破棄される。
(S2) The digital signal stored in the RAM of the judging unit 6 is a predetermined frequency component, for example, an electric flame flicker frequency band, by the digital filter composed of the judging unit 6 and the general-purpose multiplier 8. Only the 4 to 30 Hz signal component is extracted. This extracted signal is the R of the judgment unit 6.
The data is sequentially stored in the AM and stored for a predetermined period. For example, only the extracted signals for the past 64 samplings are stored,
Those that exceed the predetermined period are sequentially discarded. Here, since the sampling frequency is set to be twice as high as 60 Hz or more, the commercial power frequency noise (50 Hz, 60 H) mixed in the analog signal from the anti-aliasing filter is mixed.
z) can be removed by a digital filter without becoming aliasing noise. Since the extracted signal includes the bias voltage, the calculation signal obtained by dividing the extracted signal by the bias voltage is calculated and stored in the RAM of the determination unit 6. For example, the bias voltage is calculated by dividing the average value of the extracted signals for the past N times of sampling by the number N of extracted signals,
A signal for calculation is calculated by dividing the extracted signal. The calculation signal is sequentially stored in the RAM of the determination unit 6 and stored for a predetermined period. For example, only the calculation signals for the past 64 samplings are stored, and those exceeding a predetermined period are sequentially discarded.

【0028】(S3) 汎用乗算器8は、判断部6のR
AMに格納された計算用信号An ,Bn ,Cn により
[数1]の(1)〜(3)式を用いて、移動平均αAn
αBn,α Cnを算出する。この移動平均値は判断部6のR
AMに順次格納されて所定の期間だけ保管される。例え
ば、過去64サンプリング分の移動平均値だけを格納
し、所定の期間を超えたものは順次破棄される。なお、
移動平均αAn,αBn,αCnは、計算用信号An ,Bn ,
Cn の振幅として信号出力の絶対値を時間軸上で移動平
均した値である。
(S3) The general-purpose multiplier 8 uses the R
By the calculation signals An, Bn, Cn stored in the AM
Using equations (1) to (3) of [Equation 1], the moving average αAn
αBn, Α CnTo calculate. This moving average value is R of the judgment unit 6.
The data is sequentially stored in the AM and stored for a predetermined period. example
For example, only the moving average value of the past 64 samplings is stored.
However, those exceeding the predetermined period are sequentially discarded. In addition,
Moving average αAn, ΑBn, ΑCnAre calculation signals An, Bn,
The absolute value of the signal output is moved on the time axis as the amplitude of Cn.
It is an averaged value.

【0029】(S4) 汎用乗算器8は、判断部6のR
AMに格納された計算用信号An ,Bn ,Cn により
[数2]の(6)〜(7)式を用いて、異なる波長間の
正規化相関値γABn,γACnを算出する。この正規化相関
値は判断部6のRAMに順次格納されて所定の期間だけ
保管される。例えば、過去64サンプリング分の正規化
相関値だけを格納し、所定の期間を超えたものは順次破
棄される。
(S4) The general-purpose multiplier 8 uses the R
Normalized correlation values [gamma] ABn , [gamma] ACn between different wavelengths are calculated using the calculation signals An, Bn, Cn stored in AM using the equations (6) to (7) of [Equation 2]. This normalized correlation value is sequentially stored in the RAM of the determination unit 6 and stored for a predetermined period. For example, only the normalized correlation values for the past 64 samplings are stored, and those exceeding a predetermined period are sequentially discarded.

【0030】(S5) 汎用乗算器8は、判断部6のR
AMに格納された移動平均αAn,αBn,αCnにより[数
1]の(4)〜(5)式を用いて、移動平均αAnに対す
る移動平均αBn,αCnの比率値βABn,βACnを算出す
る。この移動平均の比率値は判断部6のRAMに順次格
納されて所定の期間だけ保管される。例えば、過去64
サンプリング分の比率値だけを格納し、所定の期間を超
えたものは順次破棄される。
(S5) The general-purpose multiplier 8 uses the R
Using the moving averages α An , α Bn , and α Cn stored in AM, using equations (4) to (5) of [Equation 1], the ratio value β ABn of moving averages α Bn and α Cn to moving average α An , Β ACn is calculated. The moving average ratio value is sequentially stored in the RAM of the determination unit 6 and stored for a predetermined period. For example, the past 64
Only the ratio value for the sampling is stored, and those exceeding a predetermined period are sequentially discarded.

【0031】(S6) 判断部6のRAMに格納された
一定時間内(所定数)の移動平均αAnの重心(平均)
を算出し、判断部6のRAMにこの重心値が格納され、
判断部6のROMに格納された炎判断値(一定のあるレ
ベル以上)である場合に(S7)以降の処理を行う。一
定のあるレベルよりも小さい場合は(S1)以降の処理
を繰り返す。
(S6) The center of gravity (average) of the moving average αAn within a fixed time (predetermined number) stored in the RAM of the judging unit 6
Is calculated, and the barycenter value is stored in the RAM of the determination unit 6,
If the flame judgment value (above a certain level) stored in the ROM of the judgment unit 6 is reached, the processing after (S7) is performed. If the level is lower than a certain level, the process after (S1) is repeated.

【0032】(S7) 判断部6のRAMに格納された
一定時間内(所定数)の移動平均の比率値βABn,βACn
の重心(平均)を算出し、判断部6のRAMにこの重心
値が格納され、この重心値が判断部6のROMに格納さ
れた炎判断値(ある範囲内、例えば0.1〜0.5の範
囲内)である場合に(S8)へ進む。ある範囲外である
場合は(S1)以降の処理を繰り返す。
(S7) Ratio values β ABn , β ACn of moving averages within a fixed time (predetermined number) stored in the RAM of the judging unit 6
The center of gravity (average) is calculated, the center of gravity value is stored in the RAM of the determination unit 6, and this center of gravity value is stored in the ROM of the determination unit 6 and the flame determination value (within a certain range, for example, 0.1 to 0. If it is within the range of 5, the process proceeds to (S8). If it is out of the certain range, the processes after (S1) are repeated.

【0033】(S8) 汎用乗算器8は、判断部6のR
AMに格納された比率値βABn,βAC nにより[数3]
の(8)〜(9)式を用いて、一定時間内(所定数)の
比率値βABn,βACnの標準偏差σを算出し、判断部6の
RAMにこの標準偏差値が格納され、判断部6のROM
に格納された炎判断値(ある範囲内、例えば0.1〜
0.2の範囲内)である場合に(S9)へ進む。ある範
囲外である場合は(S1)以降の処理を繰り返す。
(S8) The general-purpose multiplier 8 uses the R
[Equation 3] according to the ratio values β ABn and β A C n stored in AM
Using equations (8) to (9), the standard deviation σ of the ratio values β ABn and β ACn within a fixed time (predetermined number) is calculated, and the standard deviation value is stored in the RAM of the judgment unit 6, ROM of judgment unit 6
Flame judgment value stored in (within a certain range, for example, 0.1 to
If it is within the range of 0.2), the process proceeds to (S9). If it is out of the certain range, the processes after (S1) are repeated.

【0034】(S9) 判断部6のRAMに格納された
一定時間内(所定数)の正規化相関値γABn,γACnの重
心(平均)を算出し、判断部6のRAMにこの重心値が
格納され、判断部6のROMに格納された炎判断値(あ
る範囲内、例えば0.8〜0.9の範囲内)である場合
に(S10)へ進む。ある範囲外である場合は(S1)
以降の処理を繰り返す。
(S9) The center of gravity (average) of the normalized correlation values γ ABn , γ ACn within a fixed time (predetermined number) stored in the RAM of the judgment unit 6 is calculated, and this center of gravity value is stored in the RAM of the judgment unit 6. Is stored and the flame determination value stored in the ROM of the determination unit 6 is within a certain range (for example, within a range of 0.8 to 0.9), the process proceeds to (S10). If it is outside a certain range (S1)
The subsequent processing is repeated.

【0035】(S10) 汎用乗算器8は、判断部6の
RAMに格納された正規化相関値γAB n,γACnにより
[数3]の(10)〜(11)式を用いて、一定時間内
(所定数)の正規化相関値γABn,γACnの標準偏差σを
算出し、判断部6のRAMにこの標準偏差値が格納さ
れ、判断部6のROMに格納された炎判断値(ある範囲
内、例えば0.1〜0.2の範囲内)である場合に(S
11)へ進む。ある範囲外である場合は(S1)以降の
処理を繰り返す。
(S10) The general-purpose multiplier 8 uses the normalized correlation values γ AB n and γ ACn stored in the RAM of the determination unit 6 to obtain a constant value using the equations (10) to (11) of [ Equation 3]. The standard deviation σ of the normalized correlation values γ ABn and γ ACn within the time (predetermined number) is calculated, the standard deviation value is stored in the RAM of the judgment unit 6, and the flame judgment value stored in the ROM of the judgment unit 6 (S within a certain range, for example, within a range of 0.1 to 0.2) (S
Proceed to 11). If it is out of the certain range, the processes after (S1) are repeated.

【0036】(S11) 汎用乗算器8は、(S7)と
(S9)にて算出され判断部6のRAMに格納された比
率値βABn,βACn、正規化相関値γABn,γACnの重心
(平均)により[数3]の(13)式を用いて、「重心
間の距離L2」を算出し、判断部6のRAMにこの「重
心間の距離L2」が格納され、判断部6のROMに格納
された炎判断値(一定の範囲内、例えば0.2〜0.3
の範囲内)である場合に(S12)へ進む。一定の範囲
外である場合は(S1)以降の処理を繰り返す。図3に
示すように、「重心間の距離L2」は、比率値βと正規
化相関値γをそれぞれ二次元平面上の直交する座標に見
立て、4.4μm帯検出部Aと3.9μm帯検出部Bと
の比率値βABnの重心、正規化相関値γABnの重心による
座標点を上記平面座標上にプロットし、また4.4μm
帯検出部Aと5.0μm帯検出部Cとの比率値βACn
重心、正規化相関値γACnの重心による座標点を上記平
面座標上にプロットして、この座標点間の距離を算出し
たものである。
(S11) The general-purpose multiplier 8 calculates the ratio values β ABn , β ACn and the normalized correlation values γ ABn , γ ACn calculated in (S7) and (S9) and stored in the RAM of the judging unit 6. Based on the center of gravity (average), the “distance L2 between the centers of gravity” is calculated using the equation (13) of [Equation 3], and the “distance L2 between the centers of gravity” is stored in the RAM of the determination unit 6, and the determination unit 6 Flame judgment value stored in ROM of (within a certain range, for example 0.2 to 0.3
If it is within the range), the process proceeds to (S12). If it is outside the certain range, the processing after (S1) is repeated. As shown in FIG. 3, the “distance L2 between the centers of gravity” is calculated by assuming that the ratio value β and the normalized correlation value γ are orthogonal coordinates on the two-dimensional plane, respectively, and the 4.4 μm band detection unit A and the 3.9 μm band are used. Coordinate points based on the center of gravity of the ratio value β ABn with the detection unit B and the center of gravity of the normalized correlation value γ ABn are plotted on the above-mentioned plane coordinates, and also 4.4 μm
Coordinate points based on the center of gravity of the ratio value β ACn between the band detection unit A and the 5.0 μm band detection unit C and the center of gravity of the normalized correlation value γ ACn are plotted on the plane coordinates, and the distance between these coordinate points is calculated. It was done.

【0037】(S12) (S6)〜(S11)の全て
の炎判断値を満たしたことにより、火災を検出したとし
て、火災信号発生回路7により、火災信号を図示しない
火災受信機へ送信する。なお、前述した図2に示すフロ
ーチャートでは高精度に火災検出を行うため、移動平均
αAn、正規化相関値γABn,γACn、比率値βABn,βACn
の重心と標準偏差σとを用いて炎判断を行っている。ま
た、「重心間の距離L2」を用いて炎判断を行ってい
る。しかしながら、より簡易に火災検出を行うため、
(S8)と(S10)を除き、(S6)では移動平均α
Anの重心に代えて移動平均αAn、(S7)では比率値
βABn,βACnの重心に代えて比率値βABn,βACn、(S
9)では正規化相関値γABn,γACnの重心に代えて正規
化相関値γABn,γACn、(S11)では「重心間の距離
L2」に代えて「2点間の距離L1」を用いて、(S
6)、(S7)、(S9)、(S11)における各炎判
断値を満たしたことにより、火災を検出したとしてもよ
い。また、その場合において、一定の時間内において所
定の割合以上、例えばRAMに格納されたそれぞれの過
去10データ中8データ以上が、(S6)、(S7)、
(S9)、(S11)における各炎判断値を満たしたこ
とにより、火災を検出したとしてもよい。本実施の形態
では、3波長式の炎検出装置として説明したが、2波長
式への応用も可能である。例えば、検出部の検出波長帯
は4.4μmと3.9μmとし、図2のフローチャート
における(S11)を除いた(S6)〜(S10)にお
ける該当する炎判断値をそれぞれ満たした場合に、火災
を検出したとすることができる。また、本実施の形態で
は、検出部は炎に特有な波長の光として赤外線をとらえ
るものとして説明したが、この他、紫外線や可視光線を
検出して炎検出装置を構成することも可能である。
(S12) It is determined that a fire is detected by satisfying all the flame judgment values of (S6) to (S11), and the fire signal generation circuit 7 transmits a fire signal to a fire receiver (not shown). In the flow chart shown in FIG. 2, the moving average α An , the normalized correlation values γ ABn and γ ACn , and the ratio values β ABn and β ACn are used to detect the fire with high accuracy.
The flame judgment is performed using the center of gravity of and the standard deviation σ. In addition, the flame determination is performed using the “distance L2 between the centers of gravity”. However, in order to detect fire more easily,
Except for (S8) and (S10), the moving average α is obtained in (S6).
Moving average alpha An place the center of gravity of the An, (S7) the ratio value beta ABn, ratio value in place of the center of gravity of the β ACn β ABn, β ACn, (S
In 9), the normalized correlation values γ ABn , γ ACn are replaced by the normalized correlation values γ ABn , γ ACn , and in (S11), the “distance L2 between the centers of gravity” is replaced by the “distance L2 between two points”. Use (S
6), (S7), (S9), it may be determined that a fire is detected by satisfying each flame judgment value in (S11). Further, in that case, a predetermined ratio or more within a certain time, for example, 8 or more of the past 10 data stored in the RAM, are (S6), (S7),
A fire may be detected by satisfying each flame judgment value in (S9) and (S11). Although the present embodiment has been described as a three-wavelength type flame detection device, it can also be applied to a two-wavelength type flame detection device. For example, when the detection wavelength bands of the detection unit are set to 4.4 μm and 3.9 μm and the corresponding flame judgment values in (S6) to (S10) excluding (S11) in the flowchart of FIG. Can be detected. Further, in the present embodiment, the detection unit has been described as capturing infrared light as light having a wavelength peculiar to the flame, but in addition to this, it is also possible to configure a flame detection device by detecting ultraviolet light or visible light. .

【0038】実施の形態2 光検出手段により検出される検出信号には、商用電源周
波数ノイズが混入することがある。一般に、検出信号を
サンプリングする場合にサンプリング周波数をAHzと
すると、標本化定理によりA/2Hz以上の周波数成分
が入力されると折り返し雑音が発生する。そのため、商
用電源周波数である60Hzを折り返し雑音とせずに正
しくサンプリングするためには、標本化定理により12
0Hzを越えるサンプリング周波数でサンプリングしな
ければならない。本発明の場合は、実施の形態1で示し
たように、商用電源周波数ノイズ(50Hz、60H
z)が折り返し雑音とならないように、サンプリング周
波数は120Hz(60Hzの2倍)を超える周波数に
設定し、かつ、判断部6が演算し易いように、サンプリ
ング周波数は2のべき乗に設定する。例えば、128H
zのサンプリング周波数に設定する。これにより、炎判
断に用いる炎のゆらぎ周波数付近に商用電源周波数ノイ
ズが折り返し雑音とならないので、デジタルフィルタで
このノイズを除去することができ、高精度の炎検出が可
能である。なお、A/D変換器5は光検出手段により検
出される検出信号を120Hzを越えるサンプリング周
波数でサンプリングするサンプリング手段の例である。
Second Embodiment Commercial power frequency noise may be mixed in the detection signal detected by the light detecting means. Generally, when the sampling frequency is AHz when the detection signal is sampled, aliasing noise occurs when a frequency component of A / 2 Hz or more is input according to the sampling theorem. Therefore, in order to correctly sample the commercial power supply frequency of 60 Hz without making it a folding noise, the sampling theorem
It must be sampled at a sampling frequency above 0 Hz. In the case of the present invention, as shown in the first embodiment, commercial power supply frequency noise (50 Hz, 60 H)
The sampling frequency is set to a frequency exceeding 120 Hz (twice of 60 Hz) so that z) does not become aliasing noise, and the sampling frequency is set to a power of 2 so that the determination unit 6 can easily perform the calculation. For example, 128H
Set to the sampling frequency of z. As a result, the commercial power supply frequency noise does not become aliasing noise in the vicinity of the flame fluctuation frequency used for flame determination, so this noise can be removed by a digital filter, and flame detection with high accuracy is possible. The A / D converter 5 is an example of sampling means for sampling the detection signal detected by the light detecting means at a sampling frequency exceeding 120 Hz.

【0039】[0039]

【発明の効果】本発明は、炎に特有な波長の光を検出し
て火災時に発生する炎を検出する炎検出装置において、
炎に特有な異なる波長の光を複数検出して各波長に応じ
た検出信号を出力する複数の光検出手段と、複数の光検
出手段により検出される各検出信号の波形相互間の類似
度合いを示す正規化相関値および各検出信号の波形相互
間の振幅比を示す移動平均の比率値を算出する算出手段
と、算出手段により算出された正規化相関値および移動
平均の比率値がそれぞれ所定の範囲内のときに炎が発生
したと判断する炎発生判別手段と、を備えた炎検出装置
を構成した。
Industrial Applicability The present invention provides a flame detecting device for detecting a flame generated during a fire by detecting light having a wavelength peculiar to the flame.
The degree of similarity between the waveforms of the detection signals detected by the plurality of light detection means and the plurality of light detection means for detecting a plurality of lights having different wavelengths peculiar to the flame and outputting the detection signals corresponding to the respective wavelengths is shown. The calculating means for calculating the normalized correlation value and the moving average ratio value indicating the amplitude ratio between the waveforms of the respective detection signals, and the normalized correlation value and the moving average ratio value calculated by the calculating means are respectively predetermined values. The flame detection device is provided with a flame generation determination means for determining that a flame has occurred when within the range.

【0040】また、上記において、炎発生判別手段は、
一定の時間内において所定の割合以上、正規化相関値と
移動平均の比率値が所定の範囲内である場合に炎である
と判断する炎検出装置を構成した。
Further, in the above, the flame occurrence determining means is
A flame detection device is configured to determine that the flame is present when the normalized correlation value and the moving average ratio value are within a predetermined range at a predetermined rate or more within a predetermined time period.

【0041】また、上記において、複数の光検出手段は
3つ以上であり、正規化相関値と移動平均の比率値とを
軸とする平面座標を形成し、各検出信号の波形相互間の
正規化相関値および移動平均の比率値と、による各座標
点を平面座標上にプロットし、算出手段は、各座標点間
の距離を算出し、炎発生判別手段は、距離が一定の範囲
内のときに炎が発生したと判断する炎検出装置を構成し
た。また、上記において、炎発生判別手段は、一定の時
間内において所定の割合以上、正規化相関値と移動平均
の比率値および距離が所定の範囲内および一定範囲内で
ある場合に炎であると判断する炎検出装置を構成した。
また、上記において、炎発生判別手段は、正規化相関値
と移動平均の比率値の重心と標準偏差とを用いて炎判断
を行う炎検出装置を構成した。
Further, in the above description, the plurality of photodetection means are three or more, form a plane coordinate centered on the normalized correlation value and the ratio value of the moving average, and normalize between the waveforms of the respective detection signals. The correlation value and the ratio value of the moving average, and each coordinate point according to, are plotted on the plane coordinates, the calculating means calculates the distance between the coordinate points, and the flame occurrence determining means determines the distance within a certain range. A flame detection device is sometimes configured to judge that a flame has occurred. Further, in the above, the flame occurrence determining means is a flame when the ratio value of the normalized correlation value and the moving average and the distance are within a predetermined range and within a predetermined range at a predetermined rate or more within a predetermined time period. A flame detector for judging was constructed.
Further, in the above, the flame occurrence determination means constitutes a flame detection device that performs flame determination using the center of gravity of the normalized correlation value and the ratio value of the moving average and the standard deviation.

【0042】また、上記において、複数の光検出手段
は、炎に特有な4.4μm帯の波長の赤外線を検出する
第1の光検出手段を含む炎検出装置を構成した。また、
本発明は、炎に特有な波長の光を検出して火災時に発生
する炎を検出する炎検出装置において、炎に特有な波長
の光を検出して検出信号を出力する光検出手段と、光検
出手段により検出される検出信号を120Hzを超える
サンプリング周波数でサンプリングするサンプリング手
段と、を備えた炎検出装置を構成した。さらに、上記に
おいて、サンプリング周波数は2のべき乗である炎検出
装置を構成した。
Further, in the above, the plurality of light detecting means constitutes the flame detecting device including the first light detecting means for detecting the infrared ray having the wavelength of 4.4 μm band peculiar to the flame. Also,
The present invention is a flame detection device for detecting light having a wavelength peculiar to a flame to detect a flame generated at the time of a fire, and light detection means for detecting light having a wavelength peculiar to the flame and outputting a detection signal, The flame detection device was provided with a sampling means for sampling the detection signal detected by the detection means at a sampling frequency exceeding 120 Hz. Further, in the above, the flame detection device is configured so that the sampling frequency is a power of 2.

【0043】よって、本発明によれば、誤報源を排除す
ると共に、ノイズを除去して高精度に炎を検出すること
が可能な炎検出装置を提供することができる。
Therefore, according to the present invention, it is possible to provide a flame detecting device capable of eliminating a false alarm source and removing noise to detect a flame with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1の構成を示すブロック図
である。
FIG. 1 is a block diagram showing a configuration of a first embodiment of the present invention.

【図2】実施の形態1の動作を示すフロー図である。FIG. 2 is a flowchart showing the operation of the first embodiment.

【図3】移動平均の比率値と正規化相関値との平面座標
系を示す説明図である。
FIG. 3 is an explanatory diagram showing a plane coordinate system of a moving average ratio value and a normalized correlation value.

【図4】様々な物体から放射される赤外線の発光スペク
トル分布を示す波形図である。
FIG. 4 is a waveform diagram showing an emission spectrum distribution of infrared rays emitted from various objects.

【符号の説明】[Explanation of symbols]

1 炎検出装置 5 A/D変換器 6 判断部(炎発生判別手段) 7 火災信号発生回路 8 汎用乗算器(算出手段) 21 検出部A(光検出手段) 22 検出部B(光検出手段) 23 検出部C(光検出手段) 31,32,33 アンプ 41,42,43 アンチエイリアスフィルタ 1 Flame detector 5 A / D converter 6 Judgment part (flame occurrence judgment means) 7 Fire signal generation circuit 8 General-purpose multiplier (calculation means) 21 Detector A (light detecting means) 22 Detection unit B (light detection means) 23 Detector C (light detecting means) 31, 32, 33 amplifier 41, 42, 43 Antialiasing filter

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炎に特有な波長の光を検出して火災時に
発生する炎を検出する炎検出装置において、 前記炎に特有な異なる波長の光を複数検出して各波長に
応じた検出信号を出力する複数の光検出手段と、 該複数の光検出手段により検出される各検出信号の波形
相互間の正規化相関値および前記各検出信号の波形相互
間の移動平均の比率値を算出する算出手段と、 該算出手段により算出された正規化相関値および移動平
均の比率値がそれぞれ所定の範囲内のときに炎が発生し
たと判断する炎発生判別手段と、を備えたことを特徴と
する炎検出装置。
1. A flame detection device for detecting a flame generated during a fire by detecting light having a wavelength peculiar to a flame, wherein a plurality of detection signals having different wavelengths peculiar to the flame are detected and detection signals corresponding to the respective wavelengths are detected. And a normalized correlation value between the waveforms of the detection signals detected by the plurality of photodetectors and a ratio value of a moving average between the waveforms of the detection signals. And a flame occurrence determining means for determining that a flame has occurred when the normalized correlation value and the moving average ratio value calculated by the calculating means are within a predetermined range. Flame detector.
【請求項2】 前記炎発生判別手段は、一定の時間内に
おいて所定の割合以上、前記正規化相関値と前記移動平
均の比率値が前記所定の範囲内である場合に炎であると
判断することを特徴とする請求項1に記載の炎検出装
置。
2. The flame occurrence determination means determines that the flame is present when the normalized correlation value and the moving average ratio value are within a predetermined range for a predetermined ratio or more within a predetermined time period. The flame detection device according to claim 1, wherein
【請求項3】 前記複数の光検出手段は3つ以上であ
り、 前記正規化相関値と前記移動平均の比率値とを軸とする
平面座標を形成し、 前記各検出信号の波形相互間の前記正規化相関値および
前記移動平均の比率値と、による各座標点を前記平面座
標上にプロットし、 前記算出手段は、前記各座標点間の距離を算出し、 前記炎発生判別手段は、前記距離が一定の範囲内のとき
に炎が発生したと判断することを特徴とする請求項1に
記載の炎検出装置。
3. The plurality of photodetection means are three or more, and form plane coordinates with the normalized correlation value and the ratio value of the moving average as axes, and between the waveforms of the respective detection signals. The normalized correlation value and the ratio value of the moving average, and each coordinate point is plotted on the plane coordinates, the calculating means calculates the distance between the coordinate points, the flame occurrence determining means, The flame detection device according to claim 1, wherein it is determined that a flame has occurred when the distance is within a certain range.
【請求項4】 前記炎発生判別手段は、一定の時間内に
おいて所定の割合以上、前記正規化相関値と前記移動平
均の比率値および前記距離が前記所定の範囲内および前
記一定の範囲内である場合に炎であると判断することを
特徴とする請求項3に記載の炎検出装置。
4. The flame occurrence determination means is configured such that the normalized correlation value and the ratio value of the moving average and the distance are within a predetermined range and within the predetermined range within a predetermined time. The flame detection device according to claim 3, wherein the flame detection device determines that the flame is present.
【請求項5】 前記炎発生判別手段は、前記正規化相関
値と前記移動平均の比率値の重心と標準偏差とを用いて
炎判断を行うことを特徴とする請求項1乃至4のいずれ
かに記載の炎検出装置。
5. The flame occurrence determination means makes a flame determination using the center of gravity and the standard deviation of the normalized correlation value, the ratio value of the moving average, and the standard deviation. The flame detection device described in 1.
【請求項6】 前記複数の光検出手段は、前記炎に特有
な4.4μm帯の波長の赤外線を検出する第1の赤外線
検出手段を含むことを特徴とする請求項1乃至5のいず
れかに記載の炎検出装置。
6. The plurality of light detecting means includes a first infrared detecting means for detecting infrared rays having a wavelength of 4.4 μm band peculiar to the flame. The flame detection device described in 1.
【請求項7】 炎に特有な波長の光を検出して火災時に
発生する炎を検出する炎検出装置において、 前記炎に特有な波長の光を検出して検出信号を出力する
光検出手段と、該光検出手段により検出される検出信号
を120Hzを超えるサンプリング周波数でサンプリン
グするサンプリング手段と、 を備えたことを特徴とする炎検出装置。
7. A flame detection device for detecting light having a wavelength peculiar to a flame to detect a flame generated at the time of a fire, and light detection means for detecting light having a wavelength peculiar to the flame and outputting a detection signal. A flame detecting device comprising: a sampling unit configured to sample a detection signal detected by the light detecting unit at a sampling frequency exceeding 120 Hz.
【請求項8】 前記サンプリング周波数は2のべき乗で
あることを特徴とする請求項7に記載の炎検出装置。
8. The flame detection device according to claim 7, wherein the sampling frequency is a power of two.
JP2002013306A 2002-01-22 2002-01-22 Flame detector Expired - Fee Related JP3932527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013306A JP3932527B2 (en) 2002-01-22 2002-01-22 Flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013306A JP3932527B2 (en) 2002-01-22 2002-01-22 Flame detector

Publications (2)

Publication Number Publication Date
JP2003217047A true JP2003217047A (en) 2003-07-31
JP3932527B2 JP3932527B2 (en) 2007-06-20

Family

ID=27650295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013306A Expired - Fee Related JP3932527B2 (en) 2002-01-22 2002-01-22 Flame detector

Country Status (1)

Country Link
JP (1) JP3932527B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor
KR100927385B1 (en) 2009-08-31 2009-11-19 (주)유인테크 Vehicle fire detector with oneself checking function and using wavelength range sensing
KR100927386B1 (en) 2009-08-31 2009-11-19 (주)유인테크 Fire detector for vehicle
CN102680965A (en) * 2011-03-09 2012-09-19 株式会社电装 Radar system and power-supply device incorporated in the same
KR101573244B1 (en) * 2015-07-06 2015-12-01 주식회사 아이알티코리아 Sensitibity adjustable fire detection device in local area
KR101573236B1 (en) * 2015-06-17 2015-12-01 주식회사 아이알티코리아 Fire detection system
JP2019075138A (en) * 2018-12-10 2019-05-16 ホーチキ株式会社 Flame detector
JP2020129410A (en) * 2018-12-10 2020-08-27 ホーチキ株式会社 Flame detection device
JP2021144737A (en) * 2020-05-22 2021-09-24 ホーチキ株式会社 Flame detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932095A (en) * 1982-08-16 1984-02-21 日本警備保障株式会社 Flame detector
JPS63284427A (en) * 1987-05-16 1988-11-21 Secom Co Ltd Fire detector
JPH08305980A (en) * 1995-03-09 1996-11-22 Nittan Co Ltd Device and method for flame detection
JPH0962963A (en) * 1995-08-23 1997-03-07 Nittan Co Ltd Device and method for sensing flame
JPH09115071A (en) * 1995-10-20 1997-05-02 Nohmi Bosai Ltd Abnormality alarming device
JPH1123458A (en) * 1997-05-08 1999-01-29 Nittan Co Ltd Smoke sensor and monitoring control system
JP2000057456A (en) * 1998-06-02 2000-02-25 Hochiki Corp Flame detector and flame detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932095A (en) * 1982-08-16 1984-02-21 日本警備保障株式会社 Flame detector
JPS63284427A (en) * 1987-05-16 1988-11-21 Secom Co Ltd Fire detector
JPH08305980A (en) * 1995-03-09 1996-11-22 Nittan Co Ltd Device and method for flame detection
JPH0962963A (en) * 1995-08-23 1997-03-07 Nittan Co Ltd Device and method for sensing flame
JPH09115071A (en) * 1995-10-20 1997-05-02 Nohmi Bosai Ltd Abnormality alarming device
JPH1123458A (en) * 1997-05-08 1999-01-29 Nittan Co Ltd Smoke sensor and monitoring control system
JP2000057456A (en) * 1998-06-02 2000-02-25 Hochiki Corp Flame detector and flame detection method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor
KR100927385B1 (en) 2009-08-31 2009-11-19 (주)유인테크 Vehicle fire detector with oneself checking function and using wavelength range sensing
KR100927386B1 (en) 2009-08-31 2009-11-19 (주)유인테크 Fire detector for vehicle
CN102680965A (en) * 2011-03-09 2012-09-19 株式会社电装 Radar system and power-supply device incorporated in the same
JP2012189383A (en) * 2011-03-09 2012-10-04 Denso Corp Electric power supply and radar system
US9360548B2 (en) 2011-03-09 2016-06-07 Denso Corporation Radar system and power-supply device incorporated in the same
KR101573236B1 (en) * 2015-06-17 2015-12-01 주식회사 아이알티코리아 Fire detection system
KR101573244B1 (en) * 2015-07-06 2015-12-01 주식회사 아이알티코리아 Sensitibity adjustable fire detection device in local area
JP2019075138A (en) * 2018-12-10 2019-05-16 ホーチキ株式会社 Flame detector
JP2020129410A (en) * 2018-12-10 2020-08-27 ホーチキ株式会社 Flame detection device
JP2021144737A (en) * 2020-05-22 2021-09-24 ホーチキ株式会社 Flame detection device
JP7170791B2 (en) 2020-05-22 2022-11-14 ホーチキ株式会社 flame detector

Also Published As

Publication number Publication date
JP3932527B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
US8493573B2 (en) High-resolution optical position sensing with sparse, low-resolution detectors
JP2003217047A (en) Flame detector
EP0588753A1 (en) Method for detecting a fire condition
JP2005523458A (en) Method and apparatus for identifying periodic light sources
US5369269A (en) Human body detection system
JPS6153728A (en) Etching end point judging method
WO2018102093A1 (en) All-digital noise cancellation method for solid state spin-based sensors
US7297970B2 (en) Flame detector
JP4698267B2 (en) Flame detector
CN106772540A (en) A kind of hard X ray flux detecting system of J TEXT tokamak devices
JP4999282B2 (en) Flame detector
JPS61194332A (en) Method and device for measuring gas concentration
JPH0462455A (en) Particle size distribution measuring instrument
JP4095506B2 (en) Fire detector
TWI765190B (en) flame detection method
JP3877131B2 (en) Fire detector and fire detection method
JP4427911B2 (en) Seismograph
JPH1169583A (en) Device for diagnosing abnormality of equipment
KR20050007210A (en) Laser Rangefinder and method thereof
EP0926647B1 (en) Method for detecting a fire condition
CN209707695U (en) Waveform detection circuit
JP2619389B2 (en) Fire detector
JP6748696B2 (en) Flame detector
KR20190035059A (en) Device and method of abnormal electrocardiographic signals information output
JPS63211496A (en) Fire detector apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees