JP2019075138A - Flame detector - Google Patents

Flame detector Download PDF

Info

Publication number
JP2019075138A
JP2019075138A JP2018230482A JP2018230482A JP2019075138A JP 2019075138 A JP2019075138 A JP 2019075138A JP 2018230482 A JP2018230482 A JP 2018230482A JP 2018230482 A JP2018230482 A JP 2018230482A JP 2019075138 A JP2019075138 A JP 2019075138A
Authority
JP
Japan
Prior art keywords
flame
light reception
signal
light
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018230482A
Other languages
Japanese (ja)
Other versions
JP6748696B2 (en
Inventor
秀成 松熊
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2018230482A priority Critical patent/JP6748696B2/en
Publication of JP2019075138A publication Critical patent/JP2019075138A/en
Priority to JP2020089971A priority patent/JP6894551B2/en
Application granted granted Critical
Publication of JP6748696B2 publication Critical patent/JP6748696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a flame detector capable of accurately determining presence of combustion flame on the basis of simultaneity of temporal change of a light reception output by a plurality of light reception units for a plurality of wavelength bands of a radiation energy radiated from the combustion flame.SOLUTION: In a flame detector 10, a plurality of light reception units 12a and 12b is provided. The light reception units 12a and 12b observe different wavelength band portions of radiation energy, and output corresponding light reception signals E1 and E2. A determination part 15 checks, for a predetermined time period, correlations each between the light reception signals observed and output at each of substantially same moments by the light reception units 12a and 12b as one of factors to be used for determination on presence of combustion flame, and permits the determination on presence of combustion flame on the basis of the integrated light reception signals E1 in the case where the correlation is strong, meanwhile suppresses the determination on presence of combustion flame in the case where the correlation is weak.SELECTED DRAWING: Figure 1

Description

本発明は、感知器カバー内に検煙部を備えた感知器本体を配置した煙感知器に関する。   The present invention relates to a smoke detector in which a sensor main body provided with a smoke detector is disposed in a sensor cover.

従来、有炎燃焼により発生する放射線エネルギーを検出して、炎の有無を検出する炎検出装置にあっては、炎と炎以外の赤外線放射体との識別を行うため、有炎燃焼時に発生するCO2の共鳴放射による波長帯を含む複数の波長帯における放射線強度を検出して、それら複数の波長帯における検出値の相対比により炎の有無を検出する2波長式、3波長式等の炎検出装置や炎検出方法がよく知られている。   Conventionally, in a flame detection device that detects radiation energy generated by flame combustion and detects the presence or absence of flame, it is generated at flame combustion to discriminate between flames and infrared radiators other than flames. Two-wavelength, three-wavelength, etc. flame detection that detects the radiation intensity in a plurality of wavelength bands including wavelength bands due to resonance radiation of CO 2 and detects the presence or absence of a flame based on the relative ratio of detected values in the plurality of wavelength bands Devices and flame detection methods are well known.

ここで、従来技術における2波長式、及び、3波長式の炎検出装置について、簡単に説明する。   Here, the two-wavelength and three-wavelength flame detection devices in the prior art will be briefly described.

図14は、燃焼炎と、その他の代表的な放射体の赤外波長域における放射線スペクトルを示す概念図であり、横軸は放射線の波長、縦軸は放射線の相対強度を示す。   FIG. 14 is a conceptual diagram showing a radiation spectrum in the infrared wavelength range of a combustion flame and other typical radiators, the horizontal axis showing the wavelength of radiation, and the vertical axis showing the relative intensity of radiation.

図14に示すように、燃焼炎のスペクトル特性100においては、CO2の共鳴放射により4.5μm付近の波長帯に放射線相対強度のピークがあり、また、このピーク波長の近傍に存在する特徴的な波長としては、例えば、長波長側の5.1μm付近に、放射線相対強度が低い波長帯が存在する。   As shown in FIG. 14, in the spectral characteristic 100 of the combustion flame, there is a peak of relative radiation intensity in a wavelength band around 4.5 μm due to resonance radiation of CO 2, and a characteristic existing near this peak wavelength As a wavelength, for example, a wavelength band having a low relative radiation intensity exists in the vicinity of 5.1 μm on the long wavelength side.

なお、理論上は4.3μm帯にCO2の共鳴放射による放射強度のピークがあることが知られている。しかしながら、実際に燃焼炎を観測した場合にあっては、4.4〜4.5μm付近に放射強度のピークが現れることが経験的に示されている。したがって、以下では、特に断らない限り、CO2共鳴放射帯とは、4.4〜4.5μm帯を指すものとする。   In addition, it is known that the peak of the radiation intensity by the resonant radiation of CO2 exists in a 4.3 micrometer band theoretically. However, when the combustion flame is actually observed, it is empirically shown that the peak of the radiation intensity appears in the vicinity of 4.4 to 4.5 μm. Therefore, in the following, unless otherwise specified, the CO2 resonance radiation band refers to the 4.4 to 4.5 μm band.

そして、2波長式の炎検出装置にあっては例えば、4.4〜4.5μm付近の波長帯と、5.1μm付近の波長帯における各々の放射線エネルギーを狭帯域の光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線エネルギーを検出し、これを光電変換したうえで増幅等所定の加工を施してエネルギー量に対応する電気信号(以下、「受光信号」という)とし、上記各々の波長帯の受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定する。   And, in a two-wavelength type flame detection device, for example, each radiation energy in a wavelength band around 4.4 to 4.5 μm and a wavelength band around 5.1 μm can be detected by a narrow band optical wavelength band pass filter Selective transmission (pass), the radiation energy is detected by the light reception sensor, and this radiation is photoelectrically converted, and then given processing such as amplification is performed to obtain an electrical signal (hereinafter referred to as “light reception signal”) corresponding to the amount of energy. The relative ratio of the light reception signal level of each wavelength band is obtained, and the presence or absence of a flame is determined by comparing with a predetermined threshold.

これにより、炎以外の赤外線放射体、例えば、スペクトル特性102に示す太陽光(6000°C)等の高温放射体や、スペクトル特性104に示す300°C程度の比較的低温の放射体、スペクトル特性106に示す人体などの低温放射体等と炎との識別が可能となる。   As a result, infrared emitters other than flames, for example, high-temperature emitters such as sunlight (6000.degree. C.) shown in spectral characteristic 102, relatively low temperature radiators shown in spectral characteristic 104 at about 300.degree. C., spectral characteristics It is possible to distinguish between a low temperature radiator or the like such as a human body shown in 106 and a flame.

また、例えば、上述した2波長に加え、CO2の共鳴放射帯である4.4〜4.5μm帯に対し短波長側の、例えば、3.8μm付近の波長帯における放射線エネルギーを2波長式と同様の手法で検出し、これらの3波長帯における各受光信号の相対比によって炎の有無を判定する3波長式の炎検出装置も知られており炎と炎以外の赤外線放射体との識別性能をさらに向上させている。   Also, for example, in addition to the two wavelengths described above, radiation energy in a wavelength band around 3.8 μm, for example, on the short wavelength side with respect to the 4.4 to 4.5 μm band that is a resonant emission band of CO 2 is There is also known a three-wave type flame detection device which detects by the same method and determines the presence or absence of a flame by the relative ratio of light reception signals in these three wave bands, and the discrimination performance between flames and infrared emitters other than flames Is further improved.

このような炎検出装置をトンネルに設置して道路トンネル内での車両炎を監視する場合、炎検出装置を左右の両方向に検出エリアを持ち、トンネルの長手方向に沿って、隣接して配置される炎検出装置との検出エリアが相互補完的に重なるように、例えば、25m間隔又は50m間隔で連続的に配置している。また、受光素子としては例えば焦電体が利用されている。   When such a flame detection device is installed in a tunnel to monitor vehicle flames in a road tunnel, the flame detection device has detection areas in both the left and right directions, and is disposed adjacent to each other along the longitudinal direction of the tunnel. For example, the detection areas are continuously arranged at intervals of 25 m or 50 m so that detection areas with the flame detector overlap each other in a complementary manner. Further, as a light receiving element, for example, a pyroelectric material is used.

特公昭55−33119号公報Japanese Patent Publication No. 55-33119 特公昭59−34252号公報Japanese Examined Patent Publication 59-34252 特許第3357330号公報Patent No. 3357330 gazette

ところで、従来の炎検出装置にあっては、燃焼炎からのCO2の共鳴放射による4.5μm付近の波長帯とこの波長帯を含まない例えば5.1μm付近の波長帯における放射線エネルギーによる各受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定しているが、閾値の設定如何によっては、正確に炎の有無を判断しえない場合が想定され、炎の有無をより正確に判断するためには、異なる波長帯の受光信号レベルの相対比以外の要素を取り入れて炎の有無を判断することが望まれる。   By the way, in the conventional flame detection device, each light reception signal by the radiation energy in the wavelength band around 4.5 μm due to the resonant radiation of CO 2 from the combustion flame and the wavelength band around 5.1 μm which does not include this wavelength band Although the relative ratio of the levels is taken and the presence or absence of the flame is determined by comparison with a predetermined threshold value, depending on the setting of the threshold value, it may be assumed that the presence or absence of the flame can not be accurately determined. In order to judge more accurately, it is desirable to incorporate elements other than the relative ratio of light reception signal levels of different wavelength bands to judge the presence or absence of a flame.

本発明は、燃焼炎から放射される放射線エネルギーの複数の波長帯について複数の受光ユニットによる受光出力の時間的変化の同時性に基づいて燃焼炎の有無を確実に判断可能とする炎検出装置を提供することを目的とする。   The present invention provides a flame detection device capable of reliably determining the presence or absence of a combustion flame based on the simultaneousness of temporal changes in light reception output by a plurality of light reception units for a plurality of wavelength bands of radiation energy radiated from a combustion flame. Intended to be provided.

ここで、受光ユニットとは、光学波長フィルタと、受光素子を含む光電変換部を備えた受光センサと、該受光センサからの光電変換信号を必要に応じ適宜例えば増幅等して加工処理し受光信号として出力する電気回路を含む信号検出回路ユニットを指すものとする。   Here, the light receiving unit is a light receiving sensor including an optical wavelength filter and a photoelectric conversion unit including a light receiving element, and the photoelectric conversion signal from the light receiving sensor is appropriately processed, for example, amplified and processed as necessary. It refers to a signal detection circuit unit including an electric circuit that outputs as

(炎検出装置)
本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
燃焼炎から放射される、それぞれ異なる所定波長帯を観測した受光信号を出力する複数の受光ユニットと、
各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号の、相互の相関を燃焼炎の有無判断の1要素とする判断部と、
を備え、
判断部は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割し、基準となる分割区間同士の信号積分値の比に対する他の分割区間同士の信号積分値の比に基づいて判定することを特徴とする。
(Flame detector)
The present invention is a flame detection device that observes radiation energy emitted from a combustion flame to determine and detect the presence or absence of the combustion flame,
A plurality of light receiving units for outputting light reception signals obtained by observing different predetermined wavelength bands emitted from the combustion flame;
A determination unit that uses the correlation between light reception signals of a predetermined period, which are observed and output at substantially the same time by each light reception unit, as one element of the presence or absence of a combustion flame;
Equipped with
The determination unit divides the correlation between the respective light reception signals into a plurality of time intervals for each light reception signal for a predetermined period, and integrates the signal of the other divided intervals with respect to the ratio of the signal integration value of the divided intervals serving as a reference. It is characterized in that the determination is made based on the ratio of values.

判断部は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割し、その最初の分割区間同士の信号積分値の比に対する他の分割区間同士の信号積分値の比に基づいて判定する。   The determination unit divides the correlation of the respective light reception signals into a plurality of time intervals for each light reception signal for a predetermined period, and integrates the signal of the other divided intervals with respect to the ratio of the signal integration value of the first divided intervals. Determine based on the ratio of values.

判断部は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に等間隔で分割し、その最初の分割区間同士の信号積分値の比に対する他の分割区間同士の信号積分値の比に基づいて判定する。   The determination unit divides the correlations of the respective light reception signals into a plurality of time intervals at regular intervals, dividing each light reception signal for a predetermined period, and the other divided intervals to the ratio of the signal integral value of the first divided intervals Based on the ratio of the signal integral value of

判断部は、最初の分割区間同士の信号積分値の比に対する他の複数の分割区間同士の信号積分値の比の全てが所定の炎判定閾範囲内にある場合、炎有り判断の1要素とする。   When all the ratios of the signal integrals of the other plurality of divided sections to the ratio of the signal integrals of the first divided sections to the ratio of the signal integrals of the first divided sections are within the predetermined flame determination threshold range, Do.

判断部は、炎判定閾範囲として、最初の分割区間同士の信号積分値の比に対して、所定の上限値と下限値を設定する。   The determination unit sets a predetermined upper limit value and a lower limit value as the flame determination threshold range with respect to the ratio of the signal integral value of the first divided sections.

(基本的な効果)
本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、燃焼炎から放射される、それぞれ異なる所定波長帯を観測した受光信号を出力する複数の受光ユニットと、各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号の、相互の相関を燃焼炎の有無判断の1要素とする判断部とを備えるようにしたため、相関が高い場合は燃焼炎から放射される放射線エネルギーの時間的な変化が略一致していることから受光ユニットへ入力された光が炎からの放射による可能性有りとし、この相関を炎有り判断の1要素とすることで、燃焼炎の有無をより確実に判断し検出可能とする。
(Basic effect)
The present invention is a flame detection device that observes radiation energy emitted from a combustion flame to determine the presence or absence of the combustion flame and detects light reception signals of different predetermined wavelength bands emitted from the combustion flame. A plurality of light receiving units to be output, and a determination unit that makes mutual correlation of light reception signals of a predetermined period observed and output at substantially the same time by each light reception unit be one element of the presence or absence of combustion flame Therefore, if the correlation is high, the temporal change in the radiation energy emitted from the combustion flame is substantially the same, and the light input to the light receiving unit is considered to be possibly due to the radiation from the flame. By setting it as one element of the flame presence determination, the presence or absence of the combustion flame can be more reliably determined and detected.

(受光ユニットによる効果)
また、1の受光ユニットは、燃焼炎から放射される、CO2共鳴放射帯域を含む所定波長帯の光を選択透過させる光学波長フィルタと、光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子とを有する受光センサを備え、他の受光ユニットは、燃焼炎から放射される、CO2共鳴放射帯域を含まない所定波長帯の光を選択透過させる光学波長フィルタと、光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子とを有する受光センサを備え、更に、受光ユニットの各々は、更に、受光センサからの電気信号から所定周波数帯域の信号成分を選択抽出する周波数選択部と、周波数選択部から出力する信号成分を増幅する増幅部とを備えることで、光電ユニットの各々は、燃焼炎から放射される、概ね4.5μmを中心波長とする帯域波長の放射線エネルギー及びこれとは異なる帯域波長の放射線エネルギーの確実に光電変換して受光信号を出力することを可能とする。
(Effect by light receiving unit)
The light receiving unit 1 also includes an optical wavelength filter for selectively transmitting light of a predetermined wavelength band including the CO2 resonance radiation band emitted from the combustion flame, and a light receiving element for receiving light transmitted through the optical wavelength filter. The light receiving sensor has one or more light receiving elements for outputting a light receiving signal based on the converted electric signal, and the other light receiving unit emits light of a predetermined wavelength band not included in the CO2 resonance radiation band emitted from the combustion flame A light receiving sensor having an optical wavelength filter for selectively transmitting light, and one or more light receiving elements for outputting a light receiving signal based on an electric signal obtained by receiving light transmitted through the optical wavelength filter with a light receiving element and photoelectrically converting it; Each of the light receiving units further includes a frequency selection unit for selectively extracting a signal component of a predetermined frequency band from the electric signal from the light reception sensor, and an output from the frequency selection unit. And each of the photoelectric units emits radiation energy of a band wavelength having a central wavelength of about 4.5 μm and radiation of a band wavelength different from that, which are emitted from the combustion flame. It is possible to perform photoelectric conversion of energy with certainty and output a light reception signal.

また、受光センサ内に複数の受光素子を設けることで、例えば、複数の受光素子の受光特性の相違によるばらつきを、複数の受光素子で光電変換した受光出力の加算により抑制して揃えることを可能とする。   Further, by providing a plurality of light receiving elements in the light receiving sensor, for example, it is possible to suppress and equalize variations due to differences in light receiving characteristics of a plurality of light receiving elements by adding light receiving outputs photoelectrically converted by a plurality of light receiving elements. I assume.

(2つの受光ユニット)
また、受光ユニットは、少なくとも2つ設けるようにすることで、判断部によって、2つの受光ユニットで略同時期に観測して出力した異なる波長帯における所定期間分の受光信号の、相互の相関を炎判断の他の1要素とすることを可能とする。
(2 light receiving units)
In addition, by providing at least two light receiving units, the determination unit mutually correlates the light reception signals of a predetermined period in different wavelength bands that are observed and output at substantially the same time by the two light receiving units. It is possible to make it one other element of the flame judgment.

(信号振幅の相関による炎判断の効果)
また、判断部は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることで、燃焼炎の有りをより確実に判断し検出することを可能とする。
(Effect of flame judgment by correlation of signal amplitude)
In addition, the determination unit divides the correlation of each light reception signal into a plurality of time sections by dividing each light reception signal for a predetermined period into a plurality of time sections, and all the ratios of signal integral values of the divided sections are predetermined flame determination threshold ranges If it is inside, the light input to the light receiving unit is considered to have the possibility of radiation from the flame, and it is possible to more reliably determine and detect the presence of the combustion flame by using it as one element of the flame presence determination. Do.

(信号振幅の相関による炎判断詳細の効果)
また、判断部は、複数の受光ユニットから出力された所定期間分の各受光信号E1〜Emを1以上の整数nの時間区間に分割した場合、これらn個の分割区間の各々について1の受光信号E1の信号積分値ΣE11〜ΣE1nと、同じ時間区間に対応する他の受光信号Emの積分値ΣEm1〜ΣEmnの比R1〜Rnを、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、最初の時間区間の信号積分値の比R1に対し残りの時間区間の信号積分値の比R2〜Rnの全てが所定の炎判定閾範囲内にある場合は、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とするようにしたため、最初の時間区間の2つの受光信号E1,E2の振幅変化が概ね一致している相関を基準に、残りの時間区間の相関のずれを比較し、相関のずれが少ない場合は燃焼炎の有りを判断し検出することを可能とする。
(Effect of flame judgment details by correlation of signal amplitude)
In addition, when the determination unit divides each of the light reception signals E1 to Em for a predetermined period output from the plurality of light reception units into time intervals of an integer n greater than or equal to 1, light reception of 1 is performed for each of the n divided intervals. Ratios R1 to Rn of signal integral values .SIGMA.E11 to .SIGMA.E1n of the signal E1 and integral values .SIGMA.Em1 to .SIGMA.Emn of the other light reception signal Em corresponding to the same time interval,
R1 to Rn = ΣE11 // Em1 to EE1n / ΣEmn
When all of the ratios R2 to Rn of the signal integrals of the remaining time interval to the ratio R1 of the signal integrals of the first time interval are within the predetermined flame judgment threshold range, the signal is input to the light receiving unit Since the light is considered to be the possibility of radiation from the flame and one of the elements of the judgment of the presence of flame, based on the correlation in which the amplitude changes of the two light reception signals E1 and E2 in the first time interval are substantially coincident, It is possible to compare the deviation of correlation in the remaining time intervals, and when the deviation of correlation is small, it is possible to judge and detect the presence of a combustion flame.

(周波数分布の相関による炎判断の効果)
また、判断部は、各受光信号相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、所定範囲の周波数の相対レベル分布を求め、各分割区間同士の周波数相対レベル分布の積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることで、燃焼炎の有りをより確実に判断し検出することを可能とする。
(Effect of flame judgment by correlation of frequency distribution)
Further, the determination unit determines the relative level distribution of the frequency within a predetermined range obtained by dividing each light reception signal correlation into a plurality of time sections by dividing each light reception signal for a predetermined period, and the frequency relative level distribution of each divided section If all the ratios of the integral values of the light are within the predetermined flame judgment threshold range, the light input to the light receiving unit is considered to be a possibility due to the radiation from the flame, and is regarded as one element of the flame judgment. It is possible to more reliably determine and detect the presence of

炎検出装置の実施形態を示したブロック図Block diagram showing an embodiment of the flame detection device 図1の炎検出装置に適用される受光ユニットの概略構成を示した説明図Explanatory drawing which showed schematic structure of the light reception unit applied to the flame detection apparatus of FIG. 図2の受光センサの等価回路を示した回路図A circuit diagram showing an equivalent circuit of the light receiving sensor of FIG. 2 燃焼炎の放射線スペクトルを示した特性図Characteristic chart showing radiation spectrum of combustion flame 図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図Characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and the light transmitting window applied to the embodiment of FIG. 1 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットの各々から出力される受光信号を示した信号波形図A signal waveform diagram showing a light reception signal output from each of the light receiving units of FIG. 1 when radiation energy radiated from a combustion flame is observed 2つの受光信号の振幅変化の相関を判断する図1の判断部の処理動作の手順を示したフローチャートThe flowchart which showed the procedure of the processing operation of the judgment part of FIG. 1 which judges the correlation of the amplitude change of two light reception signals 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットの各々から出力される受光信号の周波数分布を示した説明図Explanatory drawing which showed the frequency distribution of the light reception signal output from each of the light reception unit of FIG. 1 when radiation energy radiated from a combustion flame was observed 2つの受光信号の周波数分布の相関を判断する図1の判断部の処理動作の手順を示したフローチャートThe flowchart which showed the procedure of the processing operation of the judgment part of FIG. 1 which judges the correlation of the frequency distribution of two light reception signals 受光ユニットに設けた複数の受光素子からの受光信号を加算する炎検出装置の実施形態を示したブロック図A block diagram showing an embodiment of a flame detection device for adding light reception signals from a plurality of light reception elements provided in a light reception unit 図10の受光センサの等価回路を示した回路図A circuit diagram showing an equivalent circuit of the light receiving sensor of FIG. トンネル内に設置して火災を監視する炎検出装置の他の実施形態を示したブロック図Block diagram showing another embodiment of a flame detection device installed in a tunnel to monitor a fire 図12の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図The characteristic chart which showed the transmissivity in each wavelength of the optical wavelength filter and translucent window applied to the embodiment of Drawing 12 燃焼炎と、その他の代表的な放射体の放射線スペクトルを示した特性図Characteristic diagram showing the radiation spectrum of the combustion flame and other typical radiators

[炎検出装置の概要]
図1は本発明に係る炎検出装置の実施形態を機能構成により示したブロック図、図2は図1の炎検出装置に適用される受光ユニットの概略構成を示した説明図、図3は図2の受光センサの等価回路を示した回路図、図4は燃焼炎の放射線スペクトルを示した特性図、図5は図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
[Outline of flame detection device]
FIG. 1 is a block diagram showing an embodiment of a flame detection apparatus according to the present invention by a functional configuration, FIG. 2 is an explanatory view showing a schematic configuration of a light receiving unit applied to the flame detection apparatus of FIG. FIG. 4 is a characteristic diagram showing a radiation spectrum of a combustion flame, and FIG. 5 is each wavelength of an optical wavelength filter and a translucent window applied to the embodiment of FIG. It is the characteristic view which showed the transmissivity in.

図1に示すように、本実施形態の炎検出装置10は、監視領域に存在する燃焼炎から放射される図4に示すスペクトル特性50をもつ放射線エネルギーを観測するものであり、大別して、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E1を出力する受光ユニット12aと、燃焼炎からCO2共鳴により放射される概ね4.5μmを含まない例えば概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E2を出力する受光ユニット12bと、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を燃焼炎の有無判断の1要素とする判断部15とを備える。   As shown in FIG. 1, the flame detection device 10 of the present embodiment observes the radiation energy having the spectrum characteristic 50 shown in FIG. 4 emitted from the combustion flame existing in the monitoring area, A light receiving unit 12a for observing radiation energy in a narrow wavelength band having a central wavelength of approximately 4.5 μm emitted from a flame by CO2 resonance and outputting a light reception signal E1 by photoelectric conversion, and emission from CO2 resonance from a combustion flame The light receiving unit 12b which observes radiation energy of a narrow band wavelength band having a central wavelength of, for example, about 2.3 μm which does not include about 4.5 μm, and the light receiving unit 12a and 12b Judgment part 15 which makes mutual correlation of light reception signals E1 and E2 for a predetermined period which were observed and outputted approximately at the same time as one element of the judgment of the presence or absence of a combustion flame Equipped with a.

(受光ユニット構成)
受光ユニット12aは、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16aと、受光センサ16aから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24aと、前置フィルタ24aを通過した信号成分を初段増幅するプリアンプ26aと、プリアンプ26aからの出力を、後述する炎判断処理に適した信号レベルに増幅して受光信号E1を出力するメインアンプ28aとで構成する。
(Light receiving unit configuration)
The light receiving unit 12a converts light energy having a narrow wavelength band having a central wavelength of approximately 4.5 μm, which is emitted from the combustion flame by CO 2 resonance, into an electric signal and outputs the electric signal, and the light receiving sensor 16a From the light reception signal to be output, a prefilter 24a for passing only a signal component of a predetermined frequency band, a preamplifier 26a for amplifying the signal component passed through the prefilter 24a at the first stage, and an output from the preamplifier 26a will be described later. It comprises with the main amplifier 28a which amplifies to the signal level suitable for a flame judgment process, and outputs the light reception signal E1.

また、受光ユニット12bは、燃焼炎からり放射される、概ね2.3μmを中心波長とする狭帯域波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16bと、受光センサ16bから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24bと、前置フィルタ24bを通過した信号成分を初段増幅するプリアンプ26bと、プリアンプ26bからの出力を、後述する炎判断処理に適した信号レベルに増幅して受光信号E2を出力するメインアンプ28bとで構成する。   Further, the light receiving unit 12b converts light energy having a narrow wavelength band having a central wavelength of approximately 2.3 μm, which is emitted from the combustion flame, into an electric signal and outputs the electric signal, and the light receiving sensor 16b From the light reception signal to be output, a prefilter 24b passing only a signal component of a predetermined frequency band, a preamplifier 26b amplifying a signal component passed through the prefilter 24b at the first stage, and an output from the preamplifier 26b will be described later. The main amplifier 28b amplifies the signal level suitable for the flame judgment processing and outputs the light reception signal E2.

ここで、受光センサ16a,16bは、サファイアガラス等の赤外線透光性の部材を用いて共用する透光性窓18、光学波長フィルタ20a,20a、及び焦電型の受光素子22a,22bを備えている。   Here, the light receiving sensors 16a and 16b are provided with a light transmitting window 18 shared by using an infrared light transmitting member such as sapphire glass, optical wavelength filters 20a and 20a, and pyroelectric light receiving elements 22a and 22b. ing.

受光ユニット12a,12bからアンプ28a,28bを介して出力された受光信号E1、受光信号E2は、判断部15に設けたA/D変換ポート30a,30bによりデジタル受光信号に変換して読み込まれ、後述する炎判断が実行される。以下、各構成について具体的に説明する。   The light reception signal E1 and the light reception signal E2 output from the light reception units 12a and 12b via the amplifiers 28a and 28b are converted into digital light reception signals and read by A / D conversion ports 30a and 30b provided in the determination unit 15, A flame judgment to be described later is executed. Each configuration will be specifically described below.

(受光センサ16a,16b)
受光ユニット12aに設けた受光センサ16aは、光学波長フィルタ20a、受光素子22a及び共用する透光性窓18で構成する。光学波長フィルタ20aは、図5に示すように、有炎燃焼時に発生するCO2共鳴により放射される概ね4.5μmの波長帯を含む所定帯域の光のみを高い透過率で透過する透過特性54をもつ光学式のバンドパスフィルタであって、例えば、4.5μmを含み且つ、後述する他の波長帯を含まない、所定帯域の光を選択透過する。受光素子22aは焦電体とFETによる光電変換機能を備え、光学波長フィルタ20aを透過した光を受光して電気信号に変換して出力する。
(Light receiving sensors 16a, 16b)
The light receiving sensor 16a provided in the light receiving unit 12a includes an optical wavelength filter 20a, a light receiving element 22a, and a translucent window 18 shared. As shown in FIG. 5, the optical wavelength filter 20a has a transmission characteristic 54 that transmits only light of a predetermined band including a wavelength band of about 4.5 μm emitted by CO 2 resonance generated at the time of flame combustion with high transmittance. An optical band pass filter, for example, that selectively transmits light of a predetermined band that includes 4.5 μm and does not include other wavelength bands described later. The light receiving element 22a has a photoelectric conversion function of a pyroelectric material and an FET, receives light transmitted through the optical wavelength filter 20a, converts the light into an electric signal, and outputs the electric signal.

具体的には、図2に示すように、受光センサ16aは、基板36aの表面に配置された複数の焦電体25aと基板36aの裏面に配置されたFET27aを備えた受光素子22aと、基板36aを基部38a上に支持するための基板搭載部40aと、基板搭載部40a側の背面側から端子42aが延在して設けられた基部38aと、受光素子22aの前方に狭帯域バンドパスフィルタである光学波長フィルタ20aを備えたカバー部材44aとからなるパッケージ化された構成を有している。   Specifically, as shown in FIG. 2, the light receiving sensor 16a includes a plurality of pyroelectric members 25a disposed on the front surface of the substrate 36a and a light receiving element 22a including the FET 27a disposed on the back surface of the substrate 36a; Substrate mounting portion 40a for supporting 36a on base portion 38a, Base portion 38a provided with terminal 42a extending from the back side on the substrate mounting portion 40a side, Narrow band pass filter in front of light receiving element 22a And a cover member 44a provided with the optical wavelength filter 20a.

また、受光素子22aの等価回路は、図3に示すように、FET27aのゲートから例えば焦電体25と高抵抗29の並列回路を介してゲート端子Gに接続し、またFET27のドレインとソースをそれぞれドレイン端子Dとソース端子Sに接続している。   Further, as shown in FIG. 3, the equivalent circuit of the light receiving element 22a is connected from the gate of the FET 27a to the gate terminal G via, for example, a parallel circuit of the pyroelectric 25 and the high resistance 29. They are connected to the drain terminal D and the source terminal S, respectively.

一方、受光センサ16bは、光学波長フィルタ20b、受光素子22b及び共用する透光性窓18で構成する。光学波長フィルタ20bは、図5に示すように、燃焼炎から放射される概ね2.3μmの波長帯を含む所定帯域の光のみを高い透過率で透過する透過特性58をもつ光学式のバンドパスフィルタであって、例えば、2.3μmを含み、CO2共鳴により放射される概ね4.5μmの波長帯の波長帯を含まない、所定帯域の光を選択透過する。受光素子22bは焦電体とFETによる光電変換機能を備え、光学波長フィルタ20bを透過した光を受光して電気信号に変換して出力する。   On the other hand, the light receiving sensor 16b is composed of an optical wavelength filter 20b, a light receiving element 22b, and a translucent window 18 which is shared. As shown in FIG. 5, the optical wavelength filter 20b has an optical band pass having a transmission characteristic 58 that transmits only light of a predetermined band including a wavelength band of about 2.3 μm emitted from a combustion flame with high transmittance. The filter selectively transmits light of a predetermined band which includes, for example, 2.3 μm and does not include the wavelength band of the approximately 4.5 μm wavelength band emitted by the CO 2 resonance. The light receiving element 22b has a photoelectric conversion function of a pyroelectric material and an FET, receives light transmitted through the optical wavelength filter 20b, converts the light into an electric signal, and outputs the electric signal.

具体的には、図2に示すように、受光センサ16bは、基板36bの表面に配置された複数の焦電体25bと基板36bの裏面に配置されたFET27bを備えた受光素子22bと、基板36bを基部38b上に支持するための基板搭載部40bと、基板搭載部40b側の背面側から端子42bが延在して設けられた基部38bと、受光素子22bの前方に狭帯域バンドパスフィルタである光学波長フィルタ20bを備えたカバー部材44bとからなるパッケージ化された構成を有している。また、受光素子22bの等価回路は、図3に示す受光素子22aと同様である。   Specifically, as shown in FIG. 2, the light receiving sensor 16b includes a plurality of pyroelectric members 25b disposed on the front surface of the substrate 36b and a light receiving element 22b including the FET 27b disposed on the back surface of the substrate 36b; Substrate mounting portion 40b for supporting 36b on base portion 38b, Base portion 38b provided with terminal 42b extending from the back side on the substrate mounting portion 40b side, and a narrow band pass filter in front of light receiving element 22b And a cover member 44b provided with the optical wavelength filter 20b. The equivalent circuit of the light receiving element 22b is the same as that of the light receiving element 22a shown in FIG.

また、受光センサ16a,16bは、本体カバー46内に設けられた共通の取り付け部材48上に、互いに近接して所定の配列で配置されている。   The light receiving sensors 16 a and 16 b are arranged in a predetermined arrangement close to each other on a common attachment member 48 provided in the main body cover 46.

ここで、光学波長フィルタ20a、20bは、例えば、シリコン、ゲルマニウム、サファイア等の基板上に、公知の方法でそれぞれ形成することができる。   Here, the optical wavelength filters 20a and 20b can be formed on a substrate of, for example, silicon, germanium, sapphire or the like by a known method.

(透光性窓18)
透光性窓18は、受光センサ16a、16bが収納された本体カバー46の監視エリア側に相当する上面側であって、受光センサ16a、16bの前面側に設けた所定の開口部に配置し、例えば、サファイアガラス等の赤外線透光性の部材により形成している。このため受光素子22a、22bは、各々の受光限界視野が透光性窓18の縁辺部で規制されることにより、略同一の拡がり角度を有する検知エリアが設定される。
(Transparent window 18)
The translucent window 18 is disposed on a predetermined opening provided on the front surface side of the light receiving sensors 16a and 16b on the upper surface side corresponding to the monitoring area side of the main body cover 46 in which the light receiving sensors 16a and 16b are stored. For example, it is formed of an infrared light transmitting member such as sapphire glass. Therefore, in the light receiving elements 22a and 22b, detection fields having substantially the same spread angle are set by restricting the light reception limit fields of view of the light receiving elements 22a and 22b at the edge of the light transmitting window 18.

ここで、透光性窓48を構成するサファイアガラスは、図5に示すように、概ね7.0μm付近以下の波長帯の放射線を良好に透過するショートウェーブパス特性52、換言すれば、概ね7.0μm付近より長波長の放射線を遮断するロングウェーブカット特性を有するフィルタ部材として機能する。また、本実施形態にあっては、透光性窓18は共用部材として、受光センサ16a,16bに含まれるものとして説明する。   Here, as shown in FIG. 5, the sapphire wave constituting the light-transmissive window 48 has a short wave path characteristic 52 which transmits radiation of a wavelength band of about 7.0 μm or less favorably, in other words, about 7 It functions as a filter member having a long wave cut characteristic that blocks radiation of longer wavelength than around 0 μm. Further, in the present embodiment, the translucent window 18 is described as being included in the light receiving sensors 16a and 16b as a common member.

(受光センサ16a,16この波長透過特性)
図5は、図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Light receiving sensor 16a, 16 this wavelength transmission characteristic)
FIG. 5 is a characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and the light transmitting window applied to the embodiment of FIG.

図1の透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性52と、光学波長フィルタ20aを構成する、概ね4.5μm付近を中心波長とするバンドパスフィルタの、当該中心波長近傍の波長帯の放射線エネルギーを高い透過率で透過する透過率特性54との組合せにより、概ね4.5μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性56を狭帯域バンドパスフィルタを構成する。   A short wave path characteristic 52 in which radiation of around 7.0 μm or less is favorably transmitted by sapphire glass which is the translucent window 18 of FIG. 1 and an optical wavelength filter 20 a, center wavelength of around 4.5 μm The radiation energy of a wavelength band of approximately 4.5 μm is transmitted at a high transmittance by the combination of the band pass filter to be used with the transmittance characteristic 54 which transmits the radiation energy of the wavelength band near the central wavelength with high transmittance. The transmission characteristic 56 constitutes a narrow band pass filter.

また、透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性52と、光学波長フィルタ20aを構成する、概ね2.3μm付近を中心波長とするバンドパスフィルタの、当該中心波長近傍の波長帯の放射線エネルギーを高い透過率で透過する透過率特性58との組合せにより、概ね2.3μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性60をもつ狭帯域バンドパスフィルタを構成する。   In addition, short wave path characteristics 52 in which radiation of around 7.0 μm or less is favorably transmitted by sapphire glass which is the light-transmissive window 18, and around 2.3 μm constituting the optical wavelength filter 20a have a central wavelength Transmission of radiation energy of approximately 2.3 μm wavelength band with high transmittance by combination of the band pass filter with the transmittance characteristic 58 which transmits the radiation energy of the wavelength band near the center wavelength with high transmittance A narrow band pass filter with characteristic 60 is constructed.

(前置フィルタ24a、24b)
前置フィルタ24a、24bは、周波数選択部として機能し、受光センサ16a,16bの受光素子22a、22bの各々から出力される受光信号から、炎判断処理に用いられる特定の周波数帯域の信号成分のみを通過させる例えばアクティブフィルタであり、後段のプリアンプ26a、26bに特定の周波数帯域の信号成分を含む受光信号を出力する。
(Pre-filters 24a, 24b)
The prefilters 24a and 24b function as frequency selectors, and from the light reception signal output from each of the light receiving elements 22a and 22b of the light reception sensors 16a and 16b, only the signal component of the specific frequency band used for the flame determination process For example, it is an active filter that passes through and outputs a light reception signal including a signal component of a specific frequency band to the preamplifiers 26a and 26b in the subsequent stage.

(プリアンプ26a、26bとメインアンプ28a、28b)
プリアンプ26a、26bは、前置フィルタ24a、24bを介して入力される受光信号を所定の増幅率で初段増幅し、メインアンプ28a,28bは、プリアンプ26a、26bからの各受光信号を、後述する炎判断処理に適した信号レベルに増幅し、受光信号E1,E2として出力する。
(Preamplifiers 26a, 26b and main amplifiers 28a, 28b)
The preamplifiers 26a and 26b amplify the light reception signals input through the prefilters 24a and 24b at a first stage by a predetermined amplification factor, and the main amplifiers 28a and 28b describe light reception signals from the preamplifiers 26a and 26b, which will be described later. It amplifies to the signal level suitable for a flame judgment process, and outputs as light reception signal E1, E2.

(A/D変換ポート30a,30b)
A/D変換ポート30a、30bは判断部15の入力ポートとして設けたA/D変換器であり、受光信号(アナログ受光信号)E1,E2を判断部15のデジタル処理に適したデジタル信号に変換して読み込む。
(A / D conversion port 30a, 30b)
The A / D conversion ports 30a and 30b are A / D converters provided as input ports of the determination unit 15, and convert the light reception signals (analog light reception signals) E1 and E2 into digital signals suitable for digital processing of the determination unit 15. And read.

(判断部15)
判断部15は、ハードウェアとして、CPU、メモリ、A/D変換ポート30a,30bを含む各種の入出力ポート等を備えたマイクロプロセッサユニット(MPU)等で構成する。また、判断部15は、CPUによるプログラムの実行により炎判断の制御機能を実現する。
(Judgment unit 15)
The determination unit 15 is configured by hardware such as a microprocessor unit (MPU) provided with a CPU, a memory, various input / output ports including the A / D conversion ports 30a and 30b, and the like. Further, the determination unit 15 realizes the control function of the flame determination by the execution of the program by the CPU.

判断部15は、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を燃焼炎の有無判断の1要素とする制御を行う。   The determination unit 15 performs control such that the correlation between the light reception signals E1 and E2 for a predetermined period, which are observed and output at substantially the same time by the light reception units 12a and 12b, is one element of the presence / absence judgment of the combustion flame.

即ち、判断部15は、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を求め、相互の相関が所定基準を充足する場合は、受光ユニット12a,12bへ入力された光が炎からの放射による可能性有りとし、炎有りの1要素として、炎の有無を判断し検出する制御を行う。   That is, the determination unit 15 obtains the correlation between the light reception signals E1 and E2 for the predetermined period, which are observed and output at substantially the same time by the light reception units 12a and 12b, and the mutual correlation satisfies the predetermined standard. The light input to the light receiving units 12a and 12b is considered to have a possibility due to the radiation from the flame, and control is performed to determine and detect the presence or absence of the flame as one element of the presence of the flame.

(受光信号E1,E2の、相互の相関による炎判断)
判断部15による受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を求めて行う炎判断の詳細を説明すると次のようになる。
(The flame judgment by the mutual correlation of the light reception signals E1 and E2)
The details of the flame judgment performed by obtaining the correlation between the light reception signals E1 and E2 for the predetermined period observed and output by the light reception units 12a and 12b at substantially the same time by the judgment unit 15 will be described as follows.

図6は燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニット12aから出力される4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーによる受光信号E1と、受光ユニット12bから出力される2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーによる受光信号E2を示しており、受光信号E1に対し受光信号E2はレベルの低い相似した波形となっている。   FIG. 6 shows a light reception signal E1 of radiation energy in a narrow wavelength band having a central wavelength of 4.5 μm output from the light reception unit 12a of FIG. 1 when radiation energy emitted from a combustion flame is observed, and a light reception unit 12b. The light reception signal E2 by radiation energy of a narrow band wavelength band having a central wavelength of 2.3 μm output from the light reception signal E1 has a waveform similar in level to the light reception signal E1.

また、図6に示す受信信号E1,E2の信号波形は、判断部15に設けたA/D変換ポート30a,30bで、各受光信号E1,E2を例えば64Hzでサンプリングしてデジタル受光信号に変換し、1回の相関演算の対象として所定期間T=2秒の受光信号E1,E2をバッファメモリに一時的に記憶した状態を、アナログ波形として示している。   Further, the signal waveforms of the reception signals E1 and E2 shown in FIG. 6 are converted into digital light reception signals by sampling the respective light reception signals E1 and E2 at, for example, 64 Hz by the A / D conversion ports 30a and 30b provided in the determination unit 15. A state where light reception signals E1 and E2 of a predetermined period T = 2 seconds are temporarily stored in the buffer memory as a target of one correlation calculation is shown as an analog waveform.

判断部15は、所定期間T=2秒を、例えば500ミリ秒の4つの時間区間T1,T2,T3,T4に分割し、受光信号E1,E2の中点となる基準電位からのプラス及びマイナス側の振幅との差分の絶対値となる積分値として、受光信号E1について、各時間区間T1〜T4の積分値ΣE11,ΣE12,ΣE13,ΣE14を求め、また、受光信号E2について、各時間区間T1〜T4の積分値ΣE21,ΣE22,ΣE23,ΣE24を求める。   The determination unit 15 divides the predetermined period T = 2 seconds into, for example, four time intervals T1, T2, T3, and T4 of 500 milliseconds, plus and minus from the reference potential which is the middle point of the light reception signals E1 and E2. The integrals .SIGMA.E11, .SIGMA.E12, .SIGMA.E13, .SIGMA.E14 of the time periods T1 to T4 are determined for the light reception signal E1 as an integral value which is an absolute value of the difference from the amplitude on the side. Integral values EE21, EE22, EE23, ΣE24 of ~ T4 are determined.

次いで、判断部15は、同じ時間区間T1〜T4同士の各々について、受光信号E1の信号積分値ΣE11,ΣE12,ΣE13,ΣE14と、受光信号E2の積分値ΣE21ΣE22,ΣE23,ΣE24の比R1,R2,R3,R4を、
R1=ΣE11/ΣE21 式(1)
R2=ΣE12/ΣE22 式(2)
R3=ΣE13/ΣE23 式(3)
R4=ΣE14/ΣE24 式(4)
として求め、これを受光信号E1,E2の、相互の相関とする。
Next, the determination unit 15 calculates the ratio R1, R2 of the signal integral values ΣE11, EE12, EE13, EE14 of the light reception signal E1 and the integral values EE21ΣE22, EE23, ΣE24 of the light reception signal E2 for each of the same time intervals T1 to T4. , R3, R4,
R1 = .SIGMA.E11 / .SIGMA.E21 Formula (1)
R2 = .SIGMA.E12 / .SIGMA.E22 Formula (2)
R3 = ΣE13 / ΣE23 Formula (3)
R4 = ΣE14 / ΣE24 Formula (4)
As the correlation of the light reception signals E1 and E2 with each other.

受光信号E1,E2の相互の相関を判断するため、判断部15は、最初の時間区間T1の積分値の比R1に基づき、下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定する。   In order to determine the correlation between the light reception signals E1 and E2, the determination unit 15 sets a flame determination threshold range having the lower limit threshold TH1 and the upper limit threshold TH2 based on the ratio R1 of the integral values of the first time interval T1.

判断部15は、下限閾値TH1及び上限閾値Th2を、最初の時間区間T1の比R1に対し例えば±10%の上限と下限の閾値TH1、TH2を、TH1=0.9・R1、TH2=1.1・R1として炎判定閾範囲を設定する。これを一般的に表現すると、最初の区間T1の信号積分値の比R1に、1未満の所定の定数αを乗じて下限閾値TH1(=α・R1)を設定すると共に、1を超える所定の定数βを乗じて上限閾値TH2(=β・R1)を設定ことを意味し、係数α,βの値は必要に応じて適宜の値が設定可能である。   The determination unit 15 sets the lower limit threshold TH1 and the upper limit threshold Th2 to, for example, ± 10% upper and lower thresholds TH1 and TH2 with respect to the ratio R1 of the first time interval T1, TH1 = 0.9 · R1 and TH2 = 1 Set the flame judgment threshold range as 1 · R1. Generally speaking, the lower limit threshold TH1 (= .alpha..R1) is set by multiplying the ratio R1 of the signal integral value of the first section T1 by a predetermined constant .alpha. This means that the upper limit threshold TH2 (= β · R1) is set by multiplying the constant β, and appropriate values can be set as the values of the coefficients α and β as necessary.

このように下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定した場合、判断部15は、次の条件の成立の有無を判定する。
0.9R1≦R2≦1.1R1 式(5)
0.9R1≦R3≦1.1R1 式(6)
0.9R1≦R4≦1.1R1 式(7)
判断部15は、前記式(5)〜(7)の全ての条件の成立を判定した場合、即ち、最初の時間区間T1の信号積分値の比R1に対し、残りの時間区間T2〜T4の全ての信号積分値の比R2〜R4が所定の炎判定閾範囲内にある場合、受光信号E1,E2の振幅波形が概ね相似し、受光ユニット12a,12bは共に燃焼炎からの放射線エネルギーをそれぞれ異なる波長帯で観測していると推定できることから、この場合に、炎有りの判断の1要素とし、例えば燃焼炎からCO2共鳴により放射される4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーによる十分な振幅レベルを持つ受光信号E1に基づく炎判断を許容する。
When the flame determination threshold range having the lower limit threshold TH1 and the upper limit threshold TH2 is set as described above, the determination unit 15 determines whether the following condition is established.
0.9R1 ≦ R2 ≦ 1.1R1 Formula (5)
0.9R1 ≦ R3 ≦ 1.1R1 Formula (6)
0.9R1 ≦ R4 ≦ 1.1R1 Formula (7)
If the determination unit 15 determines that all the conditions of the equations (5) to (7) are satisfied, that is, for the ratio R1 of the signal integral value of the first time interval T1, the remaining time intervals T2 to T4 are obtained. When the ratio R2 to R4 of all the signal integral values is within the predetermined flame determination threshold range, the amplitude waveforms of the light reception signals E1 and E2 are substantially similar, and both of the light reception units 12a and 12b respectively receive the radiation energy from the combustion flame. In this case, since it can be estimated that observation is performed in a different wavelength band, radiation in a narrow wavelength band with a central wavelength of 4.5 μm emitted from a combustion flame by CO 2 resonance, for example Allowing the flame judgment based on the light reception signal E1 having a sufficient amplitude level by energy.

この場合の受光信号E1による炎判断として、判断部15は、例えば受光信号E1から高速フーリエ変換(FFT)等の演算方法により周波数分布を求め、炎固有のゆらぎ周波数を含む例えば8Hz以下の周波数分布の積分値を求め、この積分値が所定の閾値以上の場合に、炎の可能性ありと判断し、更に他の炎判断の要素を考慮して炎と判断する処理を行う。   As the flame judgment based on the light reception signal E1 in this case, the determination unit 15 obtains a frequency distribution from the light reception signal E1 by an arithmetic method such as fast Fourier transform (FFT), for example, and a frequency distribution of 8 Hz or less including fluctuation frequency unique to the flame. In the case where the integrated value is equal to or greater than a predetermined threshold value, it is determined that there is a possibility of a flame, and a process of determining the flame in consideration of other elements of the flame determination is performed.

また、判断部15は、前記式(5)〜(7)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、最初の時間区間T1の信号積分値の比R1に対し残りの時間区間T2〜T4の信号積分値の比R2〜R4の少なくとも1つが所定の炎判定閾範囲を外れた場合は、燃焼炎以外からの放射線エネルギーによる受光信号E1,E2と推定できるので、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。   In addition, when the determination unit 15 determines that the condition of at least one of the expressions (5) to (7) is not satisfied, that is, the remaining time interval with respect to the ratio R1 of the signal integral value of the first time interval T1. When at least one of the ratios R2 to R4 of the signal integral values of T2 to T4 deviates from the predetermined flame determination threshold range, it can be estimated as the received light signals E1 and E2 by radiation energy from other than the combustion flame, so 1 with flame It does not use an element, and suppresses the flame judgment based on the light reception signal E1.

(一般化した相互の相関の判断)
ここで、所定期間Tを分割する区間数iをi=1〜nと一般化し、また受光信号をE1〜Emと一般化すると、判断部15は、所定期間Tを、区間T1〜Tnに分割し、受光信号E1,Emの中点となる基準電位に対する差分の絶対値を積算した値(振幅積分値)として、受光信号E1について、各時間区間T1〜Tnの積分値ΣE11〜ΣE1nを求め、また、受光信号Emについて、各時間区間T1〜Tnの積分値ΣEm1〜ΣEmnを求め、更に、両者の比R1〜Rnを、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、これを受光信号E1,Emの、相互の相関とする。
(Generalized judgment of mutual correlation)
Here, when the number i of sections into which the predetermined period T is divided is generalized as i = 1 to n and the light reception signal is generalized as E1 to Em, the determination unit 15 divides the predetermined period T into sections T1 to Tn. The integrated values 積分 E11 to EE1n of the time intervals T1 to Tn are determined for the light reception signal E1 as a value (amplitude integral value) obtained by integrating the absolute value of the difference from the reference potential which is the middle point of the light reception signals E1 and Em. Further, for the light reception signal Em, integrated values EEm1 to mnEmn of each time interval T1 to Tn are determined, and further, the ratio R1 to Rn of the both is
R1 to Rn = ΣE11 // Em1 to EE1n / ΣEmn
As the correlation of the light reception signals E1 and Em with each other.

次いで、前述と同様にして下限閾値TH1と上限閾値TH2を設定した場合、判断部15は、次の炎判定閾範囲内となる条件の成立の有無を判定する。
0.9R1≦R2≦1.1R1〜0.9R1≦Rn≦1.1R1
この炎判定閾範囲内となる条件の成立を判定した場合、受光信号E1,E2の振幅波形が概ね相似し、受光ユニット12a,12bは燃焼炎からの放射線エネルギーを観測していると推定できることから、炎有りの判断の1要素とし、受光信号E1に基づく炎判断を許容する。
Next, when the lower limit threshold TH1 and the upper limit threshold TH2 are set in the same manner as described above, the determination unit 15 determines whether the condition for becoming the next flame determination threshold range is established.
0.9R1 ≦ R2 ≦ 1.1R1 to 0.9R1 ≦ Rn ≦ 1.1R1
When it is determined that the conditions for being within the flame determination threshold range are determined, the amplitude waveforms of the light reception signals E1 and E2 are substantially similar, and it can be estimated that the light reception units 12a and 12b are observing the radiation energy from the combustion flame. As one element of the judgment of the presence of flame, the flame judgment based on the light reception signal E1 is permitted.

一方、判断部15は、炎判定閾範囲外となる少なくとも何れか1つの条件の不成立を判定した場合は、燃焼炎以外からの放射線エネルギーによる受光信号E1,E2と推定できるので、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。   On the other hand, when the determination unit 15 determines that at least one condition out of the flame determination threshold range is not met, it can be estimated as the light reception signals E1 and E2 by radiation energy from other than the combustion flame, so 1 of flame presence It does not use an element, and suppresses the flame judgment based on the light reception signal E1.

(炎判断の処理動作)
図7は2つの受光信号の振幅変化の相関を判断する図1の判断部の処理動作の手順を示したフローチャートである。
(Process operation of flame judgment)
FIG. 7 is a flow chart showing the procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation of the amplitude change of two light reception signals.

(ステップS1)
まず、判断部15は、受光ユニット12a,12bから出力する受光信号E1,E2を、所定サンプリング周期でA/D変換ポート30a、30bを介して所定時間T、例えばT=2秒に亘り取り込み、バッファメモリに一時的に記憶する。
(Step S1)
First, the determination unit 15 takes in the light reception signals E1 and E2 output from the light reception units 12a and 12b through the A / D conversion ports 30a and 30b in a predetermined sampling cycle for a predetermined time T, for example, T = 2 seconds. Temporarily store in buffer memory.

(ステップS2)
次いで、判断部15は、ステップS1で取り込んだ所定期間Tの受光信号E1,E2を4つの時間区間T1,T2,T3,T4に分割し、各分割区間T1〜T4の受光信号E1の信号振幅の積分値ΣE11,ΣE12,ΣE13,ΣE14と、受光信号E2の積分値ΣE21,ΣE22,ΣE23,ΣE24を算出する。
(Step S2)
Next, the determination unit 15 divides the light reception signals E1 and E2 of the predetermined period T fetched in step S1 into four time sections T1, T2, T3 and T4, and the signal amplitude of the light reception signal E1 of each divided section T1 to T4. The integrated values .SIGMA.E11, .SIGMA.E12, .SIGMA.E13, and .SIGMA.E14 of the light reception signal and the integrated values .SIGMA.E21, .SIGMA.E22, .SIGMA.E23 and .SIGMA.E24 of the light reception signal E2 are calculated.

なお、ステップS2以降の処理は、判断部15がA/D変換ポート30aから取り込んでいる受光信号E1の信号レベルが所定の閾値以上となった場合に実行することが望ましい。   It is desirable that the processing after step S2 be executed when the signal level of the light reception signal E1 taken in by the determination unit 15 from the A / D conversion port 30a becomes equal to or higher than a predetermined threshold.

(ステップS3)
次いで、判断部15は、ステップS2で算出した受光信号E1,E2の各分割区間T1〜T4の積分値の比R1,R2,R3,R4を前記式(1)〜(4)により算出する。
(Step S3)
Next, the determination unit 15 calculates the ratios R1, R2, R3, and R4 of the integral values of the divided sections T1 to T4 of the light reception signals E1 and E2 calculated in step S2 according to the equations (1) to (4).

(ステップS4)
次いで、判断部15は、最初の時間区間T1の積分値の比R1に基づき、下限閾値TH1と上限閾値TH2を、例えばTH1=0.9・R1、TH2=1.1・R1とした炎判定閾範囲を設定する。
(Step S4)
Next, based on the ratio R1 of the integral values of the first time interval T1, the determination unit 15 determines the flame with the lower threshold TH1 and the upper threshold TH2 set to, for example, TH1 = 0.9 · R1 and TH2 = 1.1 · R1. Set the threshold range.

(ステップS5)
次いで、判断部15は、ステップS3で算出した受光信号E1,E2の最初の時間区間T1に続く残りの時間区間T2〜T4の積分値の比R2,R3,R4が前記式(5)〜(7)により下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲内か否か判定する。
(Step S5)
Next, the determination unit 15 determines that the ratios R2, R3, and R4 of the integral values of the remaining time intervals T2 to T4 following the first time interval T1 of the light reception signals E1 and E2 calculated in step S3 have the above formulas (5) to (5) 7) It is determined whether or not it is within the flame determination threshold range having the lower limit threshold TH1 and the upper limit threshold TH2.

(ステップS6、S7)
次いで、判断部15は、ステップS6で前記式(5)〜(7)の全ての条件が成立することで、時間区間T2〜T4の積分値の比R2,R3,R4が全て炎判定閾範囲内にあることを判定した場合に、受光信号E1,E2の振幅波形が概ね相似して燃焼炎からの放射線エネルギーによる受光信号であると推定して、炎判断の1要素と判断し、ステップS7に進んで受光信号E1に基づく炎判断を許容する。
(Steps S6 and S7)
Next, the determination unit 15 determines that all the ratios of the integral values of the time interval T2 to T4 are the flame determination threshold range when all the conditions of the equations (5) to (7) are satisfied in step S6. If it is determined that it is within the range, it is assumed that the amplitude waveforms of the light reception signals E1 and E2 are substantially similar and it is assumed that it is a light reception signal by radiation energy from the combustion flame, and it is judged as one element of flame judgment. To allow the flame judgment based on the light reception signal E1.

(ステップS6、S8)
一方、判断部15は、ステップS6で前記式(5)〜(7)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、TH1=0.9・R1、TH2=1.1・R1とした炎判定閾範囲外にあることを判定した場合、受光ユニット12a,12bからの受光信号E1,E2は燃焼炎からの放射線エネルギーによるものではないと推定し、ステップS8に進んで、受光信号E1に基づく炎判断を抑止する。
(Steps S6 and S8)
On the other hand, when the determination unit 15 determines that the condition of at least one of the expressions (5) to (7) is not satisfied in step S6, that is, TH1 = 0.9 · R1 and TH2 = 1.1 · R1. If it is determined that the light reception signals E1 and E2 from the light reception units 12a and 12b are not due to the radiation energy from the combustion flame, the process proceeds to step S8, and the light reception signal is determined. Suppress the flame judgment based on E1.

[受光信号E1,E2の周波数分布の、相互の相関による判断]
(判断部15の概要)
図1に示した判断部15の他の実施形態として、受光信号E1,E2の周波数分布から相互の相関を求めて炎判断を行うことができる。
[Determination of the frequency distribution of the light reception signals E1 and E2 by mutual correlation]
(Outline of judgment unit 15)
As another embodiment of the determination unit 15 shown in FIG. 1, the flame determination can be performed by obtaining the mutual correlation from the frequency distribution of the light reception signals E1 and E2.

この場合、判断部15は、受光ユニット12a,12bから出力された受光信号E1,E2の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割して、各分割区間の受光信号から所定範囲の周波数の相対レベル分布(周波数分布)を求め、各分割区間同士の周波数の相対レベル分布の積分値の比が全て所定の炎判定閾範囲内にある場合、受光ユニット12a,12bへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素として、炎の有無を判断し検出する制御を行う。   In this case, the determination unit 15 divides the correlation between the light reception signals E1 and E2 output from the light reception units 12a and 12b into a plurality of time sections for each light reception signal for a predetermined period, and receives light in each divided section. The relative level distribution (frequency distribution) of the frequency within a predetermined range is determined from the signal, and when all the ratios of the integrals of the relative level distribution of the frequencies among the divided sections are within the predetermined flame determination threshold range, the light receiving units 12a and 12b. There is a possibility that the light input to the light is emitted from the flame, and control is performed to judge and detect the presence or absence of the flame as one element of the judgment on the presence of flame.

(判断部の周波数分布の相互相関に基づく炎判断)
図8は、燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニット12a,12bの各々から出力される受光信号E1,E2の周波数分布を示した説明図である。
(Fire judgment based on cross-correlation of frequency distribution in judgment unit)
FIG. 8 is an explanatory view showing the frequency distribution of the light reception signals E1 and E2 outputted from each of the light reception units 12a and 12b of FIG. 1 when the radiation energy radiated from the combustion flame is observed.

図8に示すように、燃焼炎から放射される放射線エネルギーを周波数軸で観測すると、概ね8Hzよりも低周波側に高い出力レベルを示す周波数特性が得られることから、実質的な炎のちらつき周波数が8Hzまでの周波数帯域に存在し、8Hzを超える例えば16Hzまでの高周波側は低いレベルを示す。このため、受光信号E1,E2の周波数分布の相互の相関は、例えば8Hzまでの範囲となる低周波側の周波数分布の相関を判断すれば良い。   As shown in FIG. 8, when the radiation energy emitted from the combustion flame is observed on the frequency axis, a frequency characteristic showing a high output level on the lower frequency side than approximately 8 Hz is obtained. Exists in the frequency band up to 8 Hz, and the high frequency side up to 8 Hz, for example, up to 16 Hz shows a low level. Therefore, the correlation between the frequency distributions of the light reception signals E1 and E2 may be determined by, for example, the correlation of the frequency distribution on the low frequency side in the range up to 8 Hz.

まず、判断部15は、受光ユニット12a,12bから出力された所定期間T=2秒の受光信号E1,E2をA/D変換してバッファメモリに記憶し、例えば500ミリ秒の4つの時間区間T1,T2,T3,T4に分割し、各時間区間T1〜T4の受光信号E1,E2をそれぞれ高速フーリエ変換(FFT)して、各時間区間での周波数の相対レベル分布を求める。   First, the determination unit 15 A / D converts the light reception signals E1 and E2 of the predetermined period T = 2 seconds output from the light reception units 12a and 12b and stores them in the buffer memory, for example, four time intervals of 500 milliseconds. The light reception signals E1 and E2 of each of the time intervals T1 to T4 are respectively subjected to fast Fourier transform (FFT) to obtain relative level distribution of frequency in each time interval.

続いて、判断部15は、受光信号E1の各区間T1〜T4の周波数の相対レベル分布の積分値Σf11,Σf12,Σf13,Σf14を求め、また、受光信号E2についても、各区間T1〜T4の周波数の相対レベル分布の積分値Σf21,Σf22,Σf23,Σf24を求める。   Subsequently, the determination unit 15 obtains integral values Σf11, ff12, ff13, Σf14 of the relative level distribution of the frequencies of the sections T1 to T4 of the light reception signal E1, and the light reception signal E2 is also obtained for the sections T1 to T4. The integrals Σ f 21, f f 22, f f 23 and Σ f 24 of the relative level distribution of frequency are determined.

次いで、判断部15は、同じ時間区間T1〜T4の各々について、受光信号E1の周波数分布の積分値Σf11,Σf12,Σf13,Σf14と、受光信号E2の周波数分布の積分値Σf21Σf22,Σf23,Σf24との比Rf1,Rf2,Rf3,Rf4を、
Rf1=Σf11/Σf21 式(8)
Rf2=Σf12/Σf22 式(9)
Rf3=Σf13/Σf23 式(10)
Rf4=Σf14/Σf24 式(11)
として求め、これを受光信号E1,E2の、周波数分布の相互の相関とする。
Next, the determination unit 15 calculates integral values Σf11, ff12, ff13, Σf14 of the frequency distribution of the light reception signal E1 and integral values ff21Σf22, ff23, ff24 of the frequency distribution of the light reception signal E2 for each of the same time interval T1 to T4. Ratio Rf1, Rf2, Rf3, Rf4,
Rf1 = Σf11 / Σf21 Formula (8)
Rf2 = Σf12 / Σf22 Formula (9)
Rf3 = Σf13 / Σf23 Formula (10)
Rf4 = Σf14 / Σf24 Formula (11)
As the correlation between the frequency distributions of the light reception signals E1 and E2.

受光信号E1,E2の周波数の相対レベル分布の相互の相関を判断するため、判断部15は、最初の時間区間T1の積分値の比Rf1に基づき、下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定する。   In order to determine the correlation between the relative level distributions of the frequencies of the light reception signals E1 and E2, the determination unit 15 determines the flame having the lower threshold TH1 and the upper threshold TH2 based on the ratio Rf1 of the integral values of the first time interval T1. Set the threshold range.

判断部15は、下限閾値THf1及び上限閾値THf2を、最初の時間区間T1の比Rf1に対し例えば±10%の炎判定閾範囲とし、THf1=0.9・Rf1、THf2=1.1・Rf1に設定する。   The determination unit 15 sets the lower limit threshold THf1 and the upper limit threshold THf2 to, for example, a flame determination threshold range of ± 10% with respect to the ratio Rf1 of the first time interval T1, THf1 = 0.9 · Rf1, THf2 = 1.1 · Rf1 Set to

このように下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定した場合、判断部15は、次の条件の成立の有無を判定する。
0.9Rf1≦Rf2≦1.1Rf1 式(12)
0.9Rf1≦Rf3≦1.1Rf1 式(13)
0.9Rf1≦Rf4≦1.1Rf1 式(14)
判断部15は、前記式(12)〜(14)の全ての条件の成立を判定した場合、即ち、最初の時間区間T1の周波数の相対レベル分布の積分値の比Rf1に対し、残りの時間区間T2〜T4の全ての周波数の相対レベル分布の積分値の比Rf2〜Rf4が所定の炎判定閾範囲内にある場合、受光信号E1,E2の周波数分布が概ね相似し、受光ユニット12a,12bは共に燃焼炎からの放射線エネルギーによる受光信号E1,E2を出力していると推定でき、炎有りの判断の1要素とし、例えば受光信号E1に基づく炎判断を許容する。
When the flame determination threshold range having the lower limit threshold TH1 and the upper limit threshold TH2 is set as described above, the determination unit 15 determines whether the following condition is established.
0.9 R f 1 ≦ R f 2 ≦ 1.1 R f 1 Formula (12)
0.9 R f 1 ≦ R f 3 ≦ 1.1 R f 1 Formula (13)
0.9 R f 1 ≦ R f 4 ≦ 1.1 R f 1 Formula (14)
If the determination unit 15 determines that all the conditions of the equations (12) to (14) are satisfied, that is, the remaining time with respect to the ratio Rf1 of the integral value of the relative level distribution of the frequency in the first time interval T1. When the ratios Rf2 to Rf4 of integral values of relative level distributions of all frequencies in the sections T2 to T4 are within a predetermined flame determination threshold range, the frequency distributions of the light reception signals E1 and E2 are substantially similar, and the light reception units 12a and 12b It can be estimated that both light reception signals E1 and E2 by radiation energy from the combustion flame are output, which is one element of the judgment of the presence of flame, for example, allowing the flame judgment based on the light reception signal E1.

また、判断部15は、前記式(12)〜(14)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、最初の時間区間T1の周波数分布の積分値の比Rf1に対し残りの時間区間T2〜T4の周波数の相対レベル分布の積分値の比Rf2〜Rf4の少なくとも1つが所定の炎判定閾範囲を外れた場合は、受光ユニット12a,12bは燃焼炎以外からの放射線エネルギーによる受光信号E1,E2を出力していると推定でき、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。   In addition, when the determination unit 15 determines that the condition of at least one of the expressions (12) to (14) is not satisfied, that is, the ratio Rf1 of the integral value of the frequency distribution of the first time interval T1 remains. When at least one of the ratios Rf2 to Rf4 of the integrals of the relative level distribution of the frequency in the time interval T2 to T4 deviates from the predetermined flame determination threshold range, the light receiving units 12a and 12b receive light by radiation energy from other than the combustion flame. It can be estimated that the signals E1 and E2 are output, and the flame judgment based on the light reception signal E1 is suppressed without using one element with flame.

(周波数分布の相関に基づく炎判断の処理動作)
図9は2つの受光信号の周波数分布の相関を判断する図1の判断部の処理動作の手順を示したフローチャートである。
(Process operation of flame judgment based on the correlation of frequency distribution)
FIG. 9 is a flowchart showing the procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation of the frequency distribution of two light reception signals.

(ステップS11)
まず、判断部15は、受光ユニット12a,12bから出力する受光信号E1,E2を、所定サンプリング周期でA/D変換ポート30a、30bを介して所定時間T、例えばT=2秒に亘り取り込み、バッファメモリに一時的に記憶する。
(Step S11)
First, the determination unit 15 takes in the light reception signals E1 and E2 output from the light reception units 12a and 12b through the A / D conversion ports 30a and 30b in a predetermined sampling cycle for a predetermined time T, for example, T = 2 seconds. Temporarily store in buffer memory.

(ステップS12)
次いで、判断部15は、ステップS11で取り込んだ所定期間Tの受光信号E1,E2を4区間T1,T2,T3,T4に分割し、各区間T1〜T4の受光信号E1を高速フーリエ変換して8Hz以下の周波数範囲における相対レベル分布の積分値Σf11,Σf12,Σf13,Σf14と、受光信号E2について、高速フーリエ変換して8Hz以下の周波数範囲における相対レベルの積積分値Σf21,Σf22,Σf23,Σf24を算出する。
(Step S12)
Next, the determination unit 15 divides the light reception signals E1 and E2 of the predetermined period T taken in step S11 into four sections T1, T2, T3 and T4, and fast Fourier transforms the light reception signal E1 in each of the sections T1 to T4. The integrated values ff21, ff22, ff23, ff24 of relative levels in the frequency range of 8 Hz or less with respect to the integrated values ff11, ff12, ff13, Σf14 of the relative level distribution in the frequency range of 8 Hz or less and the light reception signal E2. Calculate

なお、ステップS12以降の処理は、判断部15がA/D変換ポート30aから取り込んでいる受光信号E1の信号レベルが所定の閾値以上となった場合に実行することが望ましい。   It is preferable that the process after step S12 is executed when the signal level of the light reception signal E1 taken by the determination unit 15 from the A / D conversion port 30a becomes equal to or higher than a predetermined threshold.

(ステップS13)
次いで、判断部15は、ステップS12で算出した受光信号E1,E2の各区間T1〜T4の周波数の相対レベル分布の積分値の比Rf1,Rf2,Rf3,Rf4を前記式(8)〜(11)により算出する。
(Step S13)
Next, the determination unit 15 calculates the ratios Rf1, Rf2, Rf3, and Rf4 of the integrals of the relative level distributions of the frequencies of the sections T1 to T4 of the light reception signals E1 and E2 calculated in step S12 to the above formulas (8) to (11). Calculated by).

(ステップS14)
次いで、判断部15は、最初の区間T1の周波数の相対レベル分布の積分値の比Rf1に基づき、下限閾値THf1と上限閾値THf2を、例えばTHf1=0.9・Rf1、THf2=1.1・Rf1に設定する。
(Step S14)
Next, the determination unit 15 determines the lower limit threshold THf1 and the upper limit threshold THf2, for example, THf1 = 0.9 · Rf1, THf2 = 1.1 ··· based on the ratio Rf1 of the integral value of the relative level distribution of the frequency in the first section T1. Set to Rf1.

(ステップS15)
次いで、判断部15は、ステップS13で算出した受光信号E1,E2の最初の区間T1に続く残り区間T2〜T4の周波数の相対レベル分布の積分値の比Rf2,Rf3,Rf4を前記式(12)〜(14)により下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲内となるか否か判定する。
(Step S15)
Next, the determination unit 15 sets the ratios Rf2, Rf3, and Rf4 of the integrals of the relative level distributions of the frequencies of the remaining sections T2 to T4 following the first section T1 of the light reception signals E1 and E2 calculated in step S13 to the above equation (12 ) Through (14), it is determined whether or not it falls within the flame determination threshold range having the lower limit threshold TH1 and the upper limit threshold TH2.

(ステップS16、S17)
次いで、判断部15は、ステップS16で前記式(12)〜(14)の全ての条件が成立することで炎判定閾範囲内にあることを判定した場合、受光信号E1,E2の周波数分布か概ね相似し、受光ユニット12a,12bは燃焼炎からの放射線エネルギーによる受光信号E1,E2を出力している推定し、炎判断の1要素と判定し、ステップS17に進んで、受光信号E1に基づく炎判断を許容する。
(Steps S16 and S17)
Next, if it is determined in step S16 that all the conditions of the equations (12) to (14) are satisfied in step S16, the determination unit 15 determines that the flame determination threshold range is satisfied, the frequency distribution of the light reception signals E1 and E2 The light receiving units 12a and 12b are roughly similar, and estimate that light reception signals E1 and E2 by radiation energy from the combustion flame are output, determine it as one element of flame judgment, and proceed to step S17, based on the light reception signal E1. Allow fire judgment.

(ステップS16、S18)
一方、判断部15は、ステップS16で前記式(12)〜(14)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、THf1=0.9・Rf1、THf2=1.1・Rf1とした炎判定閾範囲外にあることを判定した場合、受光ユニット12a,12bは燃焼炎以外の放射線エネルギーによる受光信号E1,E2を出力していると推定し、ステップS18に進んで、受光信号E1炎判断を抑止する。
(Steps S16 and S18)
On the other hand, when the determination unit 15 determines that the condition of at least one of the expressions (12) to (14) is not satisfied in step S16, that is, THf1 = 0.9 · Rf1, THf2 = 1.1 · Rf1. If the light receiving units 12a and 12b determine that they are outside the flame determination threshold range, the light receiving units 12a and 12b estimate that light receiving signals E1 and E2 of radiation energy other than the combustion flame are output, and the process proceeds to step S18. Inhibit the E1 fire judgment.

[複数の受光素子を備えた受光ユニットの実施形態]
図10は受光ユニットに設けた複数の受光素子からの受光信号を加算する炎検出装置の他の実施形態による機能構成を示したブロック図である。
[Embodiment of a light receiving unit provided with a plurality of light receiving elements]
FIG. 10 is a block diagram showing a functional configuration according to another embodiment of the flame detection device for adding light reception signals from a plurality of light reception elements provided in the light reception unit.

図10に示すように、本実施形態の受光ユニット12a,12bに設けた受光センサ16a,16bは、4つの受光素子22a,22bを各々備えている。受光素子22a,22bは、図2に示したカバー部材44a,44bの内部に配置した基板36a,36bの表側に例えば4個の焦電体25a,25bを配置し、図11の受光センサ16aの等価回路に示すように、焦電体25a、高抵抗29及びFET27aで構成した4つの受光素子22aを設け、各FET27aのドレインとゲートをそれぞれドレイン端子Dとゲート端子Gに共通接続し、各FET27aのソースはソース端子S1〜S4に個別に接続している。   As shown in FIG. 10, the light receiving sensors 16a and 16b provided in the light receiving units 12a and 12b of the present embodiment each include four light receiving elements 22a and 22b. In the light receiving elements 22a and 22b, for example, four pyroelectric members 25a and 25b are disposed on the front side of the substrates 36a and 36b disposed in the inside of the cover members 44a and 44b shown in FIG. As shown in the equivalent circuit, four light receiving elements 22a composed of a pyroelectric 25a, high resistance 29 and FET 27a are provided, and the drain and gate of each FET 27a are commonly connected to the drain terminal D and gate terminal G, respectively. The sources of R are individually connected to the source terminals S1 to S4.

再び図10を参照するに、4つの受光素子22a,22bの出力は4つの前置フィルタ24a,24bを通過した後に、電流出力となる4つの受光信号を加算(電流加算)してプリアンプ26a,26bに入力している。   Referring again to FIG. 10, after the outputs of the four light receiving elements 22a and 22b pass through the four prefilters 24a and 24b, four light receiving signals as current outputs are added (current addition) to obtain the preamplifier 26a, It is input to 26b.

ここで、4つの受光素子22aからの受光出力は、4つの前置フィルタ24aを通過した後に受光電流を加算してプリアンプ26aに入力していることから、ランダムなノイズ成分については電流加算による増加はほとんどなく、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを光電変換した信号成分の電流加算となり、S/N比を低下させることなく、1つの受光素子による受光出力の概ね4倍に相当する受光電流としての受光信号を生成可能とする。   Here, the light reception output from the four light reception elements 22a is added to the preamplifier 26a after adding the light reception current after passing through the four pre-filters 24a, so the random noise component is increased by the current addition. There is almost no noise, and it is the current addition of signal components obtained by photoelectric conversion of radiation energy in a narrow wavelength band centered on about 4.5 μm emitted from the combustion flame by CO 2 resonance, without lowering the S / N ratio. A light reception signal can be generated as a light reception current corresponding to approximately four times the light reception output of one light reception element.

この点は、4つの受光素子22bからの出力についても同様であり、4つの前置フィルタ24bを通過した後に受光電流を加算してプリアンプ26bに入力していることから、ランダムなノイズ成分については電流加算による増加はほとんどなく、燃焼炎から放射される、概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを光電変換した信号成分の電流加算となり、S/N比を低下させることなく、1つの受光素子による受光出力の概ね4倍に相当する受光電流としての受光信号を生成可能とする。   This point is the same for the outputs from the four light receiving elements 22b, and after passing through the four prefilters 24b, the light reception current is added and input to the preamplifier 26b. There is almost no increase due to current addition, and the signal addition of the photoelectric conversion of radiation energy in a narrow wavelength band centered on about 2.3 μm, emitted from the combustion flame, results in the reduction of the S / N ratio. Instead, it is possible to generate a light reception signal as a light reception current corresponding to approximately four times the light reception output of one light reception element.

このように光学ユニット12a,12bは、受光する燃焼炎から放射された放射線エネルギーが微弱であっても、4つの受光素子22a,22bで光電変換した受光信号を加算することで、受光ユニット12a,12はS/N比を低下することなく十分なレベルをもつ受光信号E1,E2を出力可能となり、炎検出エリアを大幅に拡大可能とする。   As described above, even if the radiation energy emitted from the combustion flame to be received is weak, the optical units 12a and 12b add the light reception signals photoelectrically converted by the four light reception elements 22a and 22b, thereby the light reception unit 12a, 12 can output the light reception signals E1 and E2 having a sufficient level without lowering the S / N ratio, and the flame detection area can be greatly expanded.

なお、プリアンプ26a,26bから判断部15までの構成及び機能は、図1の実施形態の場合と同様になることから、その説明を省略する。   The configurations and functions from the preamplifiers 26a and 26b to the determination unit 15 are the same as those in the embodiment of FIG.

また、受光センサ16a,16bに設ける受光素子22a,22bの数は必要に応じて適宜に定めることができる。また、受光センサ16a,16bに設ける受光素子22a,22bの数は同数としても良いし、その数を異ならせるようにしても良い。   Further, the number of light receiving elements 22a and 22b provided in the light receiving sensors 16a and 16b can be appropriately determined as needed. Further, the number of light receiving elements 22a and 22b provided in the light receiving sensors 16a and 16b may be the same or different.

[トンネル用炎検出装置]
次に、図1の実施形態に示した炎検出装置の構成を、トンネル用の炎検出装置に適用した場合の実施形態について説明する。
[Flame detection device for tunnel]
Next, an embodiment in which the configuration of the flame detection device shown in the embodiment of FIG. 1 is applied to a flame detection device for tunnel will be described.

図12はトンネル内に設置して炎を監視する炎検出装置の他の実施形態を示したブロック図である。   FIG. 12 is a block diagram illustrating another embodiment of a flame detection device installed in a tunnel to monitor flames.

(受光ユニット12a,12b)
図12に示すように、受光ユニット12a,12bは、図1の実施形態と同じであり、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E1と概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E2を出力し、それぞれ判断部15に設けたA/D変換ポート30a,30bの各々でデジタル受光信号に変換して取り込んでいる。
(Light receiving unit 12a, 12b)
As shown in FIG. 12, the light receiving units 12a and 12b are the same as the embodiment of FIG. 1, and the radiation energy of a narrow wavelength band having a central wavelength of about 4.5 μm emitted from the combustion flame by CO2 resonance. And a light reception signal E2 obtained by observing radiation energy in a narrow wavelength band having a central wavelength of approximately 2.3 μm, and each of the A / D conversion ports 30a and 30b provided in the determination unit 15 Converted to a digital light reception signal.

(受光ユニット12c)
受光ユニット12cは、受光センサ16a,16bとは異なる所定の波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16cを備える。即ち、受光ユニット12cは、概ね5.0μm〜7.0μmの波長帯の放射線エネルギーを電気信号に変換した受光信号E3を出力する。
(Light receiving unit 12c)
The light receiving unit 12c includes a light receiving sensor 16c that converts radiation energy having a predetermined wavelength band different from that of the light receiving sensors 16a and 16b into an electric signal and outputs the electric signal. That is, the light receiving unit 12c outputs a light receiving signal E3 obtained by converting radiation energy in a wavelength band of approximately 5.0 μm to 7.0 μm into an electric signal.

また、受光ユニット12cは、受光センサ16cに続いて、受光センサ16cから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24cと、前置フィルタ24cを通過した信号成分を初段増幅するプリアンプ26cと、プリアンプ26cからの出力を増幅するメインアンプ28cとで構成する。受光ユニット12cのメインアンプ28cから出力された受光信号E3は、判断部15のA/D変換ポート30cによりデジタル受光信号に変換して読み込まれ、炎の判断処理に用いられる。   Further, the light receiving unit 12c is a light receiving signal output from the light receiving sensor 16c following the light receiving sensor 16c, a prefilter 24c that passes only a signal component of a predetermined frequency band, and a signal passing through the prefilter 24c. It comprises a preamplifier 26c for amplifying the components in the first stage, and a main amplifier 28c for amplifying the output from the preamplifier 26c. The light reception signal E3 output from the main amplifier 28c of the light reception unit 12c is converted into a digital light reception signal and read by the A / D conversion port 30c of the determination unit 15, and is used for the flame determination process.

(受光センサ16cの構成)
受光センサ16cは、概ね5.0μmを超える所定の波長帯の放射線を良好に透過するカットオンフィルタで構成されるロングパスフィルタである光学波長フィルタ20cと、光学波長フィルタ20cを透過した光を受光して電気信号に変換して出力する図3の等価回路でなる受光素子22cを備え、図2に示したと同様な構造により、パッケージ化された構成を有し、光学ユニット12a,12bの受光センサ16a,16bと共に、本体カバー46内に設けられた共通の取り付け部材48上に、互いに近接して所定の配列で配置している。
(Configuration of the light receiving sensor 16c)
The light receiving sensor 16c receives the light transmitted through the optical wavelength filter 20c, which is a long pass filter configured of a cut-on filter that transmits radiation of a predetermined wavelength band approximately exceeding 5.0 μm well, and the optical wavelength filter 20c. Light receiving element 22c of the equivalent circuit of FIG. 3 which converts the light signal into an electric signal and outputs the same, and has a packaged structure with a structure similar to that shown in FIG. 2, and the light receiving sensor 16a of the optical unit 12a, 12b. , 16b on a common mounting member 48 provided in the main body cover 46, arranged in a predetermined arrangement close to each other.

(透光性窓18)
透光性窓18は、図2に示した受光センサ16a,16bと共に受光センサ16cが収納された本体カバー46の監視エリア側となる前面側に設けられた所定の開口部に配置され、例えば、サファイアガラス等の赤外線透光性の部材により形成され、受光センサ16a,16b、16cの受光素子22a,22b,22cは、各々の受光限界視野が透光性窓18の縁辺部で規制されることにより、略同一の拡がり角度を有する検知エリアが設定される。
(Transparent window 18)
The translucent window 18 is disposed at a predetermined opening provided on the front side which is the monitoring area side of the main body cover 46 in which the light receiving sensor 16c is housed together with the light receiving sensors 16a and 16b shown in FIG. The light receiving elements 22a, 22b and 22c of the light receiving sensors 16a, 16b and 16c are formed of infrared light transmitting members such as sapphire glass, and the light receiving limit fields of the light receiving elements 22a, 22b and 22c are restricted by the edge of the light transmitting window 18. Thus, detection areas having substantially the same spread angle are set.

(受光センサ16a〜16cの波長透過特性)
図13は、図12の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Wavelength transmission characteristics of the light receiving sensors 16a to 16c)
FIG. 13 is a characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and the light transmitting window applied to the embodiment of FIG.

図13に示すように、受光センサ16aの透過特性56と受光センサ16bの透過特性60は図5と同じになる。   As shown in FIG. 13, the transmission characteristic 56 of the light receiving sensor 16a and the transmission characteristic 60 of the light receiving sensor 16b are the same as in FIG.

一方、受光センサ16cは、透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線エネルギーが良好に透過するショートウェーブパス特性52と、光学波長フィルタ20cを構成するロングパスフィルタの、概ね5.0μm付近を超える所定の波長帯の放射線エネルギーを良好に透過するカットオンフィルタ特性を有する透過率特性62との組合せにより、概ね5.0μm〜7.0μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性64をもつ広帯域バンドパスフィルタを構成する。   On the other hand, the light receiving sensor 16c is a short wave path characteristic 52 in which radiation energy of about 7.0 μm or less is favorably transmitted by sapphire glass as the light transmitting window 18, and a long pass filter constituting the optical wavelength filter 20c. The radiation energy of the wavelength band of approximately 5.0 μm to 7.0 μm is high by the combination with the transmittance characteristic 62 having the cut-on filter characteristic of favorably transmitting the radiation energy of the predetermined wavelength band exceeding approximately 5.0 μm. A wide band pass filter is constructed with a transmission characteristic 64 that transmits at transmission.

(炎判断)
判断部15は、受光ユニット12a,12bから出力される受光信号E1,E2の所定期間の、相互の相関から炎有りの1要素を判断した場合、受光信号E1および受光ユニット12cから出力した受光信号E3を、A/D変換ポート30a,30cを介して所定時間取り込み、受光信号E1,E3毎に信号振幅の時間積分処理を行い、積分値ΣE1,ΣE3を算出する。ここで、積分値ΣE1,ΣE3は、便宜上、炎積分値ΣE1,非炎積分値ΣE3として区別する。
(Fire judgment)
The determination unit 15 determines the light reception signal E1 and the light reception signal output from the light reception unit 12c when determining one element with flame from the correlation between the predetermined periods of the light reception signals E1 and E2 output from the light reception units 12a and 12b. E3 is taken in for a predetermined time via the A / D conversion ports 30a and 30c, and time integration processing of the signal amplitude is performed for each of the light reception signals E1 and E3 to calculate integral values EE1 and ΣE3. Here, the integrals ΣE1 and ΣE3 are distinguished as flame integral ΣE1 and non-flame integral ΣE3 for the sake of convenience.

次いで、判断部15は、炎積分値ΣE1が、予め設定された基準レベル以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、炎積分値ΣE1が基準レベルを超えた場合には、非炎積分値ΣE3との相対比(ΣE1/ΣE3)を算出し、相対比(ΣE1/ΣE3)が、予め設定された閾値を超えた場合は、炎と判定して炎判断の1要素とし、閾値以下の場合には、例えば、人体や車両等の炎以外の比較的低温の放射線源による受光出力があったものとして、炎判断は抑止して行わない。   Next, when the flame integral value EE1 is equal to or less than a preset reference level, the determination unit 15 determines that the light reception output corresponding to the flame is not detected, while the flame integral value EE1 is the reference level If the relative ratio (.SIGMA.E1 / .SIGMA.E3) with the non-flame integral value .SIGMA.E3 is exceeded, and if the relative ratio (.SIGMA.E1 / .SIGMA.E3) exceeds the preset threshold value, it is judged as a flame. It is regarded as one element of the flame judgment, and when it is below the threshold value, the flame judgment is not performed, for example, assuming that there is a light reception output by a relatively low temperature radiation source other than flames such as human body and vehicles.

なお、判断部15は、受光ユニット12a,12bから出力される受光信号E1,E2の所定期間の、相互の相関から炎有りの1要素を判断した場合、図1の実施形態に示したように、A/D変換ポート30aを介して所定時間取り込んだ受光信号E1の高速フーリエ変換による8Hz以下の周波数帯域の周波数分布を他の1要素とし、複数の要素に基づく複合的な炎判断を行うようにしてもよい。   As shown in the embodiment of FIG. 1, the determination unit 15 determines one element with flame from the correlation between the predetermined periods of the light reception signals E1 and E2 output from the light reception units 12a and 12b. , The frequency distribution of the frequency band of 8 Hz or less by fast Fourier transform of the light reception signal E1 captured for a predetermined time through the A / D conversion port 30a is taken as another element to perform complex flame judgment based on a plurality of elements You may

[本発明の変形例]
上記の実施形態は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比から燃焼炎の有無を判定しているが、信号積分値の比に限定されず、各受光信号の相関係数等の適宜の値による相互の相関から燃焼炎の有無を判定しても良い。
[Modification of the present invention]
The above embodiment determines the presence or absence of the combustion flame from the ratio of the signal integral value of each divided section obtained by dividing each light received signal for a predetermined period into a plurality of time sections by correlating the mutual correlation of each light received signal with each other. However, the present invention is not limited to the ratio of the signal integral value, and the presence or absence of the combustion flame may be determined from the mutual correlation by an appropriate value such as the correlation coefficient of each light reception signal.

また、上記の実施形態は、トンネル用の炎検出装置として、燃焼炎のCO2共鳴放射帯である4.5μm付近の波長帯と2.3μm付近の波長帯の放射線エネルギーの観測による相関と、及び5.0μm付近の波長帯における放射線エネルギーを観測して炎を判定しているが、4.5μm付近の波長帯と2.3μmの波長帯の放射線エネルギーの観測による相関と、3.8μm付近の波長帯における放射線エネルギーを観測して炎の有無を判定するようにしても良い。   In the above embodiment, as a flame detection device for tunnel, correlation by observation of radiation energy in a wavelength band near 4.5 μm and a wavelength band near 2.3 μm, which is a CO 2 resonance radiation band of a combustion flame, The flame is determined by observing the radiation energy in the wavelength band around 5.0 μm, but the correlation by observation of the radiation energy in the wavelength band around 4.5 μm and the wavelength band in 2.3 μm and around 3.8 μm The radiation energy in the wavelength band may be observed to determine the presence or absence of a flame.

また、4.5μm付近の波長帯と2.3μmの波長帯の放射線エネルギーの観測による相関に加え、3.8μm付近の波長帯及び5.0μm付近の波長帯における放射線エネルギーを観測して炎の有無を判定するにようにしても良い。   In addition to the correlation by observation of radiation energy in the wavelength band around 4.5 μm and the wavelength band in 2.3 μm, radiation energy in the wavelength band around 3.8 μm and the wavelength band around 5.0 μm is observed to The presence or absence may be determined.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。   In addition, the present invention includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above-described embodiment.

10:炎検出装置
12a,12b,12c:受光ユニット
15:判断部
16a,16b,16c:受光センサ
18:透光性窓
20a,20b,20c:光学波長フィルタ
22a,22b,22c:受光素子
24a,24b,24c:前置フィルタ
25a,25b:焦電体
26a,26b,26c:プリアンプ
27a,27b:FET
28a,28b,28c:メインアンプ
30a,30b,30c:A/D変換ポート
10: flame detection devices 12a, 12b, 12c: light receiving units 15: judgment units 16a, 16b, 16c: light receiving sensors 18: light transmitting windows 20a, 20b, 20c: optical wavelength filters 22a, 22b, 22c: light receiving elements 24a, 24b, 24c: pre-filters 25a, 25b: pyroelectrics 26a, 26b, 26c: preamplifiers 27a, 27b: FET
28a, 28b, 28c: main amplifiers 30a, 30b, 30c: A / D conversion port

Claims (5)

燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
燃焼炎から放射される、それぞれ異なる所定波長帯を観測した受光信号を出力する複数の受光ユニットと、
前記各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号の、相互の相関を燃焼炎の有無判断の1要素とする判断部と、
を備え、
前記判断部は、前記各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割し、基準となる分割区間同士の信号積分値の比に対する他の分割区間同士の信号積分値の比に基づいて判定することを特徴とする炎検出装置。
A flame detection device that observes radiation energy emitted from a combustion flame to determine and detect the presence or absence of the combustion flame,
A plurality of light receiving units for outputting light reception signals obtained by observing different predetermined wavelength bands emitted from the combustion flame;
A determination unit that uses a correlation between light reception signals of a predetermined period, which are observed and output at substantially the same time by each of the light reception units, as one element of the presence / absence judgment of the combustion flame;
Equipped with
The determination unit divides the correlation between the light reception signals into a plurality of time intervals for each light reception signal of a predetermined period, and makes the other division intervals with respect to the ratio of the signal integral value of the division intervals serving as a reference. A flame detection apparatus characterized by making judgment based on a ratio of signal integral values.
請求項1記載の炎検出装置に於いて、前記判断部は、前記各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割し、その最初の分割区間同士の信号積分値の比に対する他の分割区間同士の信号積分値の比に基づいて判定することを特徴とする炎検出装置。
The flame detection apparatus according to claim 1, wherein the determination unit divides the correlation between the light reception signals into a plurality of time sections for a predetermined period, and sets the first divided sections to each other. A flame detection apparatus characterized by making judgment based on a ratio of signal integral values of other divided sections to a ratio of signal integral values.
請求項1記載の炎検出装置に於いて、前記判断部は、前記各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に等間隔で分割し、その最初の分割区間同士の信号積分値の比に対する他の分割区間同士の信号積分値の比に基づいて判定することを特徴とする炎検出装置。
The flame detection apparatus according to claim 1, wherein the determination unit divides the correlation between the light reception signals into a plurality of time intervals at equal intervals for a predetermined period, and first divides the light reception signals. A flame detection apparatus characterized by making judgment based on a ratio of signal integral values of other divided sections to a ratio of signal integral values of sections.
請求項2又は3記載の炎検出装置に於いて、前記判断部は、前記最初の分割区間同士の信号積分値の比に対する他の複数の分割区間同士の信号積分値の比の全てが所定の炎判定閾範囲内にある場合、炎有り判断の1要素とすることを特徴とする炎検出装置。
The flame detection device according to claim 2 or 3, wherein the determination unit is configured to determine all of the ratios of signal integrals of the plurality of other divided sections to the ratio of the signal integral of the first divided sections to each other. A flame detection device characterized in that when it is within the flame judgment threshold range, it is regarded as one element of the flame judgment.
請求項4記載の炎検出装置に於いて、前記判断部は、前記炎判定閾範囲として、前記最初の分割区間同士の信号積分値の比に対して、所定の上限値と下限値を設定することを特徴とする炎検出装置。
The flame detection apparatus according to claim 4, wherein the determination unit sets a predetermined upper limit value and a lower limit value as a ratio of the signal integral value of the first divided sections as the flame determination threshold range. A flame detector characterized in that.
JP2018230482A 2018-12-10 2018-12-10 Flame detector Active JP6748696B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018230482A JP6748696B2 (en) 2018-12-10 2018-12-10 Flame detector
JP2020089971A JP6894551B2 (en) 2018-12-10 2020-05-22 Flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018230482A JP6748696B2 (en) 2018-12-10 2018-12-10 Flame detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015003723A Division JP6526971B2 (en) 2015-01-10 2015-01-10 Flame detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020089971A Division JP6894551B2 (en) 2018-12-10 2020-05-22 Flame detector

Publications (2)

Publication Number Publication Date
JP2019075138A true JP2019075138A (en) 2019-05-16
JP6748696B2 JP6748696B2 (en) 2020-09-02

Family

ID=66544770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018230482A Active JP6748696B2 (en) 2018-12-10 2018-12-10 Flame detector

Country Status (1)

Country Link
JP (1) JP6748696B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220857A (en) * 1978-11-01 1980-09-02 Systron-Donner Corporation Optical flame and explosion detection system and method
JPH0378899A (en) * 1989-08-23 1991-04-04 Nippon Mining Co Ltd Fire detector
JPH0962963A (en) * 1995-08-23 1997-03-07 Nittan Co Ltd Device and method for sensing flame
JPH10188169A (en) * 1996-12-26 1998-07-21 Nohmi Bosai Ltd Fire detector
JP2001356047A (en) * 2000-06-14 2001-12-26 Hochiki Corp Flame detector and method for setting its detection sensitivity
JP2003217047A (en) * 2002-01-22 2003-07-31 Nohmi Bosai Ltd Flame detector
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor
JP2006293646A (en) * 2005-04-08 2006-10-26 Nohmi Bosai Ltd Image processor
CN2932335Y (en) * 2006-04-04 2007-08-08 上海安誉智能科技有限公司 Double-wavelength infrared flame detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220857A (en) * 1978-11-01 1980-09-02 Systron-Donner Corporation Optical flame and explosion detection system and method
JPH0378899A (en) * 1989-08-23 1991-04-04 Nippon Mining Co Ltd Fire detector
JPH0962963A (en) * 1995-08-23 1997-03-07 Nittan Co Ltd Device and method for sensing flame
JPH10188169A (en) * 1996-12-26 1998-07-21 Nohmi Bosai Ltd Fire detector
JP2001356047A (en) * 2000-06-14 2001-12-26 Hochiki Corp Flame detector and method for setting its detection sensitivity
JP2003217047A (en) * 2002-01-22 2003-07-31 Nohmi Bosai Ltd Flame detector
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor
JP2006293646A (en) * 2005-04-08 2006-10-26 Nohmi Bosai Ltd Image processor
CN2932335Y (en) * 2006-04-04 2007-08-08 上海安誉智能科技有限公司 Double-wavelength infrared flame detector

Also Published As

Publication number Publication date
JP6748696B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP5109079B2 (en) Flame detector
US5373159A (en) Method for detecting a fire condition
US20140015668A1 (en) Photoelectric smoke detector and process for testing the photoelectric smoke detector
JP6526971B2 (en) Flame detector
JP6430795B2 (en) Flame detection device
JP6748696B2 (en) Flame detector
US5838242A (en) Fire detection system using modulation ratiometrics
JP6894551B2 (en) Flame detector
JP7170791B2 (en) flame detector
JP7400034B2 (en) flame detection device
JP2003217047A (en) Flame detector
JP2019067246A (en) Optical monitoring system
JP7061517B2 (en) Flame detector
JP7114306B2 (en) Flame detector
JP7032982B2 (en) Flame detector
JP7277643B2 (en) flame detector
JPH0962963A (en) Device and method for sensing flame
JP6826719B2 (en) Flame detector
JP7322205B2 (en) Flame detector
JP2019191901A (en) Flame detection device
JP2019191902A (en) Flame detection device
JP7462722B2 (en) Flame Detection Device
JPH06331755A (en) Human body detector equipped with function for detecting abnormality such as fire
RU2236026C1 (en) Seismic signal detector
EP0926647A2 (en) Method for detecting a fire condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200608

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200807

R150 Certificate of patent or registration of utility model

Ref document number: 6748696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150