JP2021144737A - Flame detection device - Google Patents

Flame detection device Download PDF

Info

Publication number
JP2021144737A
JP2021144737A JP2021093398A JP2021093398A JP2021144737A JP 2021144737 A JP2021144737 A JP 2021144737A JP 2021093398 A JP2021093398 A JP 2021093398A JP 2021093398 A JP2021093398 A JP 2021093398A JP 2021144737 A JP2021144737 A JP 2021144737A
Authority
JP
Japan
Prior art keywords
light receiving
flame
signal
light
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021093398A
Other languages
Japanese (ja)
Other versions
JP7170791B2 (en
Inventor
秀成 松熊
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020089971A external-priority patent/JP6894551B2/en
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2021093398A priority Critical patent/JP7170791B2/en
Publication of JP2021144737A publication Critical patent/JP2021144737A/en
Application granted granted Critical
Publication of JP7170791B2 publication Critical patent/JP7170791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

To make it possible to surely determine presence/absence of a combustion flame based on simultaneity of temporal changes in light receiving outputs by a plurality of light receiving units relative to a plurality of wavelength bands of radiation energy radiated from the combustion flame.SOLUTION: A plurality of light receiving units 12a, 12b are provided, and the light receiving units 12a, 12b output light receiving signals E1, E2 obtained by observing different wavelength bands among radiation energy. A determination unit 15 sets a mutual correlation of signal amplitudes of the respective light receiving signals for a predetermined period of time observed and output at substantially the same time by the light receiving units 12a, 12b as one element for judging whether or not combustion flame is present, and determines that the flame is present when the correlation is high, and determine that no flame is present when the correlation is low.SELECTED DRAWING: Figure 1

Description

本発明は、有炎燃焼に伴う光の放射を検出して、炎の有無を判定する炎検出装置に関する。 The present invention relates to a flame detection device that detects the emission of light accompanying flame combustion and determines the presence or absence of a flame.

従来、有炎燃焼により発生する放射線エネルギーを検出して、炎の有無を検出する炎検出装置にあっては、炎と炎以外の赤外線放射体との識別を行うため、有炎燃焼時に発生するCO2の共鳴放射による波長帯を含む複数の波長帯における放射線強度を検出して、それら複数の波長帯における検出値の相対比により炎の有無を検出する2波長式、3波長式等の炎検出装置や炎検出方法がよく知られている。 Conventionally, in a flame detection device that detects the presence or absence of a flame by detecting the radiation energy generated by flame combustion, it is generated at the time of flame combustion in order to distinguish between the flame and an infrared radiator other than the flame. A flame of a two-wave type, a three-wave type, etc. that detects the radiation intensity in a plurality of wavelength bands including the wavelength band due to the resonance radiation of CO 2 and detects the presence or absence of a flame by the relative ratio of the detected values in the multiple wavelength bands. Detection devices and flame detection methods are well known.

ここで、従来技術における2波長式、及び、3波長式の炎検出装置について、簡単に説明する。 Here, the two-wavelength type and three-wavelength type flame detection devices in the prior art will be briefly described.

図14は、燃焼炎と、その他の代表的な放射体の赤外波長域における放射線スペクトルを示す概念図であり、横軸は放射線の波長、縦軸は放射線の相対強度を示す。 FIG. 14 is a conceptual diagram showing radiation spectra of a combustion flame and other typical radiators in the infrared wavelength region. The horizontal axis shows the wavelength of radiation, and the vertical axis shows the relative intensity of radiation.

図14に示すように、燃焼炎のスペクトル特性100においては、CO2の共鳴放射により4.5μm付近の波長帯に放射線相対強度のピークがあり、また、このピーク波長の近傍に存在する特徴的な波長としては、例えば、長波長側の5.1μm付近に、放射線相対強度が低い波長帯が存在する。 As shown in FIG. 14, in the spectral characteristic 100 of the combustion flame, there is a peak of radiation relative intensity in the wavelength band near 4.5 μm due to the resonance radiation of CO 2, and it is characteristic that it exists in the vicinity of this peak wavelength. As a wavelength, for example, a wavelength band having a low relative radiation intensity exists in the vicinity of 5.1 μm on the long wavelength side.

なお、理論上は4.3μm帯にCO2の共鳴放射による放射強度のピークがあることが知られている。しかしながら、実際に燃焼炎を観測した場合にあっては、4.4〜4.5μm付近に放射強度のピークが現れることが経験的に示されている。したがって、以下では、特に断らない限り、CO2共鳴放射帯とは、4.4〜4.5μm帯を指すものとする。 Theoretically, it is known that there is a peak of radiation intensity due to resonance radiation of CO 2 in the 4.3 μm band. However, it has been empirically shown that when a combustion flame is actually observed, a peak of radiant intensity appears in the vicinity of 4.4 to 4.5 μm. Therefore, in the following, unless otherwise specified, the CO 2 resonance radiation band refers to the 4.4 to 4.5 μm band.

そして、2波長式の炎検出装置にあっては例えば、4.4〜4.5μm付近の波長帯と、5.1μm付近の波長帯における各々の放射線エネルギーを狭帯域の光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線エネルギーを検出し、これを光電変換したうえで増幅等所定の加工を施してエネルギー量に対応する電気信号(以下、「受光信号」という)とし、上記各々の波長帯の受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定する。 Then, in the case of the two-wavelength type flame detection device, for example, the radiation energies in the wavelength band near 4.4 to 4.5 μm and the wavelength band near 5.1 μm are obtained by a narrow-band optical wavelength band path filter. Selective transmission (passage) is performed, the radiation energy is detected by a light receiving sensor, this is photoelectrically converted, and then subjected to predetermined processing such as amplification to obtain an electric signal corresponding to the amount of energy (hereinafter referred to as "light receiving signal"). , The presence or absence of a flame is determined by taking a relative ratio of the received signal levels in each of the above wavelength bands and comparing them with a predetermined threshold value.

これにより、炎以外の赤外線放射体、例えば、スペクトル特性102に示す太陽光(6000°C)等の高温放射体や、スペクトル特性104に示す300°C程度の比較的低温の放射体、スペクトル特性106に示す人体などの低温放射体等と炎との識別が可能となる。 As a result, infrared radiators other than flames, for example, high-temperature radiators such as sunlight (6000 ° C) shown in spectral characteristics 102, relatively low-temperature radiators of about 300 ° C shown in spectral characteristics 104, and spectral characteristics. It is possible to distinguish between a low-temperature radiator such as the human body shown in 106 and a flame.

また、例えば、上述した2波長に加え、CO2の共鳴放射帯である4.4〜4.5μm帯に対し短波長側の、例えば、3.8μm付近の波長帯における放射線エネルギーを2波長式と同様の手法で検出し、これらの3波長帯における各受光信号の相対比によって炎の有無を判定する3波長式の炎検出装置も知られており炎と炎以外の赤外線放射体との識別性能をさらに向上させている。 Further, for example, in addition to the above-mentioned two wavelengths, the radiation energy in the short wavelength side of the 4.4 to 4.5 μm band, which is the resonance radiation band of CO 2, for example, in the wavelength band near 3.8 μm is divided into two wavelengths. A three-wavelength flame detector that detects the presence or absence of a flame based on the relative ratio of each received signal in these three wavelength bands is also known, and distinguishes between a flame and an infrared radiator other than the flame. The performance is further improved.

このような炎検出装置をトンネルに設置して道路トンネル内での車両炎を監視する場合、炎検出装置を左右の両方向に検出エリアを持ち、トンネルの長手方向に沿って、隣接して配置される炎検出装置との検出エリアが相互補完的に重なるように、例えば、25m間隔又は50m間隔で連続的に配置している。また、受光素子としては例えば焦電体が利用されている。 When such a flame detection device is installed in a tunnel to monitor vehicle flames in a road tunnel, the flame detection device has detection areas in both the left and right directions and is arranged adjacent to each other along the longitudinal direction of the tunnel. For example, they are continuously arranged at intervals of 25 m or 50 m so that the detection areas of the flame detection device and the flame detection device overlap each other in a complementary manner. Further, as the light receiving element, for example, a pyroelectric body is used.

特公昭55−33119号公報Special Publication No. 55-33119 特公昭59−34252号公報Special Publication No. 59-34252 特許第3357330号公報Japanese Patent No. 3357330 特開平3−78899号公報Japanese Unexamined Patent Publication No. 3-78899 特開2001−356047号公報Japanese Unexamined Patent Publication No. 2001-356047 特開2010−249769号公報JP-A-2010-249769 特開2003−217047号公報Japanese Unexamined Patent Publication No. 2003-217047 特開2001−249047号公報Japanese Unexamined Patent Publication No. 2001-249047

ところで、従来の炎検出装置にあっては、燃焼炎からのCO2の共鳴放射による4.5μm付近の波長帯とこの波長帯を含まない例えば5.1μm付近の波長帯における放射線エネルギーによる各受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定しているが、閾値の設定如何によっては、正確に炎の有無を判断しえない場合が想定され、炎の有無をより正確に判断するためには、異なる波長帯の受光信号レベルの相対比以外の要素を取り入れて炎の有無を判断することが望まれる。 By the way, in the conventional flame detection device, each light reception by the radiation energy in the wavelength band of about 4.5 μm due to the resonance radiation of CO 2 from the combustion flame and the wavelength band of, for example, about 5.1 μm which does not include this wavelength band. The presence or absence of flame is determined by taking a relative ratio of signal levels and comparing it with a predetermined threshold, but depending on the setting of the threshold, it is assumed that the presence or absence of flame cannot be accurately determined, and the presence or absence of flame is determined. In order to determine the presence or absence more accurately, it is desirable to determine the presence or absence of flame by incorporating factors other than the relative ratio of the received signal levels in different wavelength bands.

本発明は、燃焼炎から放射される放射線エネルギーの複数の波長帯について複数の受光ユニットによる受光出力の時間的変化の同時性に基づいて燃焼炎の有無を確実に判断可能とする炎検出装置を提供することを目的とする。 The present invention provides a flame detection device that can reliably determine the presence or absence of a combustion flame based on the simultaneity of temporal changes in the light receiving output by a plurality of light receiving units for a plurality of wavelength bands of radiation energy radiated from the combustion flame. The purpose is to provide.

ここで、受光ユニットとは、光学波長フィルタと、受光素子を含む光電変換部を備えた受光センサと、該受光センサからの光電変換信号を必要に応じ適宜例えば増幅等して加工処理し受光信号として出力する電気回路を含む信号検出回路ユニットを指すものとする。 Here, the light receiving unit is a light receiving sensor including an optical wavelength filter and a photoelectric conversion unit including a light receiving element, and a light receiving signal that is processed by appropriately amplifying, for example, the photoelectric conversion signal from the light receiving sensor as necessary. It shall refer to a signal detection circuit unit including an electric circuit that outputs as.

(炎検出装置)
本発明は、炎検出装置であって、
監視領域の、それぞれ異なる所定波長帯の放射線エネルギーを観測した受光信号を出力する複数の受光ユニットと、
各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号から求めたそれぞれの信号振幅の、各受光信号間の相互の相関を燃焼炎の有無判断の第1の要素とする判断部と、
を備え、
前記判断部は、前記第1の要素として、前記所定期間分の前記各受光信号をそれぞれ複数の時間区間に対応する複数の分割区間に分割し、当該所定期間内の複数の前記分割区間のうち基準となる分割区間についての前記信号振幅の積分値の、前記各受光信号間の相互の比に対する、他の分割区間についての前記信号振幅の積分値の比に基づいて燃焼炎の有無を判断することを特徴とする。
(Flame detector)
The present invention is a flame detection device.
A plurality of light receiving units that output light receiving signals that observe radiation energy in different predetermined wavelength bands in the monitoring area, and
The cross-correlation between the light-receiving signals of each signal amplitude obtained from each light-receiving signal for a predetermined period of time observed and output by each light-receiving unit at approximately the same time is used as the first element for determining the presence or absence of combustion flame. Judgment department and
With
As the first element, the determination unit divides each received signal for the predetermined period into a plurality of divided sections corresponding to a plurality of time sections, and among the plurality of divided sections within the predetermined period. The presence or absence of a combustion flame is determined based on the ratio of the integrated value of the signal amplitude for the reference divided section to the mutual ratio between the received signals to the integrated value of the signal amplitude for the other divided sections. It is characterized by that.

判断部は、燃焼炎の有無判断の第2の要素として、所定期間分の各受光信号のうち少なくとも1つの受光信号レベルに基づいて燃焼炎の有無を判断し、第1の要素の判断結果と第2の要素の判断結果とに基づいて炎を検出する。 As the second element of determining the presence or absence of the combustion flame, the determination unit determines the presence or absence of the combustion flame based on the level of at least one received light signal of each light receiving signal for a predetermined period, and determines the presence or absence of the combustion flame as the judgment result of the first element. The flame is detected based on the judgment result of the second factor.

判断部は、第2の要素として、少なくとも1つの受光信号の信号振幅が所定の閾値以上の場合、燃焼炎有りとに基づいて燃焼炎の有無を判断する。 As a second element, the determination unit determines the presence or absence of a combustion flame based on the presence or absence of a combustion flame when the signal amplitude of at least one received signal is equal to or greater than a predetermined threshold value.

(基本的な効果)
本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、燃焼炎から放射される、それぞれ異なる所定波長帯を観測した受光信号を出力する複数の受光ユニットと、各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号の、相互の相関を燃焼炎の有無判断の1要素とする判断部とを備えるようにしたため、相関が高い場合は燃焼炎から放射される放射線エネルギーの時間的な変化が略一致していることから受光ユニットへ入力された光が炎からの放射による可能性有りとし、この相関を炎有り判断の1要素とすることで、燃焼炎の有無をより確実に判断し検出可能とする。
(Basic effect)
The present invention is a flame detection device that observes the radiation energy radiated from a combustion flame to determine and detect the presence or absence of a combustion flame, and receives received signals radiated from the combustion flame by observing different predetermined wavelength bands. It is provided with a plurality of light receiving units to be output and a judgment unit in which mutual correlation of each light receiving signal for a predetermined period observed and output by each light receiving unit at substantially the same time is one element of determining the presence or absence of a combustion flame. Therefore, if the correlation is high, the temporal changes in the radiation energy emitted from the combustion flame are almost the same, so the light input to the light receiving unit may be due to the radiation from the flame. By making it one element of determining the presence or absence of flame, the presence or absence of combustion flame can be more reliably determined and detected.

(受光ユニットによる効果)
また、1の受光ユニットは、燃焼炎から放射される、CO2共鳴放射帯域を含む所定波長帯の光を選択透過させる光学波長フィルタと、光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子とを有する受光センサを備え、他の受光ユニットは、燃焼炎から放射される、CO2共鳴放射帯域を含まない所定波長帯の光を選択透過させる光学波長フィルタと、光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子とを有する受光センサを備え、更に、受光ユニットの各々は、更に、受光センサからの電気信号から所定周波数帯域の信号成分を選択抽出する周波数選択部と、周波数選択部から出力する信号成分を増幅する増幅部とを備えることで、光電ユニットの各々は、燃焼炎から放射される、概ね4.5μmを中心波長とする帯域波長の放射線エネルギー及びこれとは異なる帯域波長の放射線エネルギーの確実に光電変換して受光信号を出力することを可能とする。
(Effect of light receiving unit)
Further, the light receiving unit 1 receives an optical wavelength filter that selectively transmits light in a predetermined frequency band including a CO 2 resonance radiation band emitted from a combustion flame and a light receiving element that receives light transmitted through the optical wavelength filter. A light receiving sensor having one or a plurality of light receiving elements that output a light receiving signal based on a photoelectrically converted electric signal is provided, and the other light receiving unit is a predetermined frequency band that is emitted from a combustion flame and does not include a CO 2 resonance radiation band. It is provided with a light receiving sensor having an optical wavelength filter that selectively transmits the light of Further, each of the light receiving units further includes a frequency selection unit that selectively extracts a signal component in a predetermined frequency band from the electric signal from the light receiving sensor, and an amplification unit that amplifies the signal component output from the frequency selection unit. Then, each of the photoelectric units reliably photoelectrically convert the radiation energy of the band wavelength having a central frequency of about 4.5 μm and the radiation energy of the band wavelength different from this emitted from the combustion flame and output the received signal. It is possible to do.

また、受光センサ内に複数の受光素子を設けることで、例えば、複数の受光素子の受光特性の相違によるばらつきを、複数の受光素子で光電変換した受光出力の加算により抑制して揃えることを可能とする。 Further, by providing a plurality of light receiving elements in the light receiving sensor, for example, it is possible to suppress and align the variation due to the difference in the light receiving characteristics of the plurality of light receiving elements by adding the light receiving outputs obtained by photoelectric conversion by the plurality of light receiving elements. And.

(2つの受光ユニット)
また、受光ユニットは、少なくとも2つ設けるようにすることで、判断部によって、2つの受光ユニットで略同時期に観測して出力した異なる波長帯における所定期間分の受光信号の、相互の相関を炎判断の他の1要素とすることを可能とする。
(Two light receiving units)
In addition, by providing at least two light receiving units, the judgment unit can correlate the light receiving signals for a predetermined period in different wavelength bands observed and output by the two light receiving units at substantially the same time. It is possible to make it another element of flame judgment.

(信号振幅の相関による炎判断の効果)
また、判断部は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることで、燃焼炎の有りをより確実に判断し検出することを可能とする。
(Effect of flame judgment by correlation of signal amplitude)
In addition, the judgment unit divides the cross-correlation of each received light signal into a plurality of time sections for each received light signal for a predetermined period, and all the ratios of the signal integral values between the divided sections are within the predetermined flame judgment threshold range. If it is inside, it is possible that the light input to the light receiving unit may be due to radiation from the flame, and by using it as one element of determining the presence of flame, it is possible to more reliably determine and detect the presence of combustion flame. do.

(信号振幅の相関による炎判断詳細の効果)
また、判断部は、複数の受光ユニットから出力された所定期間分の各受光信号E1〜Emを1以上の整数nの時間区間に分割した場合、これらn個の分割区間の各々について1の受光信号E1の信号積分値ΣE11〜ΣE1nと、同じ時間区間に対応する他の受光信号Emの積分値ΣEm1〜ΣEmnの比R1〜Rnを、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、最初の時間区間の信号積分値の比R1に対し残りの時間区間の信号積分値の比R2〜Rnの全てが所定の炎判定閾範囲内にある場合は、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とするようにしたため、最初の時間区間の2つの受光信号E1,E2の振幅変化が概ね一致している相関を基準に、残りの時間区間の相関のずれを比較し、相関のずれが少ない場合は燃焼炎の有りを判断し検出することを可能とする。
(Effect of detailed flame judgment by correlation of signal amplitude)
Further, when the determination unit divides each light receiving signal E1 to Em for a predetermined period output from a plurality of light receiving units into time intervals of 1 or more integers n, 1 light receiving 1 is received for each of these n divided sections. The ratio R1 to Rn of the signal integral values ΣE11 to ΣE1n of the signal E1 and the integral values ΣEm1 to ΣEmn of other received light signals Em corresponding to the same time interval are set.
R1 to Rn = ΣE11 / ΣEm1 to ΣE1n / ΣEmn
When all of the ratios R2 to Rn of the signal integrated values in the remaining time interval to the ratio R1 of the signal integrated values in the first time interval are within the predetermined flame determination threshold range, they are input to the light receiving unit. Since there is a possibility that the light is emitted from the flame and it is one of the factors for determining the presence of flame, the correlation is based on the correlation that the amplitude changes of the two received signals E1 and E2 in the first time interval are almost the same. It is possible to compare the deviation of the correlation in the remaining time interval, and if the deviation of the correlation is small, determine and detect the presence or absence of the combustion flame.

(周波数分布の相関による炎判断の効果)
また、判断部は、各受光信号相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、所定範囲の周波数の相対レベル分布を求め、各分割区間同士の周波数相対レベル分布の積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることで、燃焼炎の有りをより確実に判断し検出することを可能とする。
(Effect of flame judgment by correlation of frequency distribution)
In addition, the determination unit obtains the relative level distribution of the frequencies in a predetermined range obtained by dividing each received signal for a predetermined period into a plurality of time sections for the correlation between the received signals, and the frequency relative level distribution between the divided sections. When all the ratios of the integral values of are within the predetermined flame judgment threshold range, it is considered that the light input to the light receiving unit may be due to the radiation from the flame, and it is considered as one element of the judgment of the presence of the flame. It is possible to more reliably determine and detect the presence or absence of.

炎検出装置の実施形態を示したブロック図Block diagram showing an embodiment of a flame detection device 図1の炎検出装置に適用される受光ユニットの概略構成を示した説明図Explanatory drawing which showed the schematic structure of the light receiving unit applied to the flame detection apparatus of FIG. 図2の受光センサの等価回路を示した回路図A circuit diagram showing an equivalent circuit of the light receiving sensor shown in FIG. 燃焼炎の放射線スペクトルを示した特性図Characteristic diagram showing the radiation spectrum of the combustion flame 図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図A characteristic diagram showing the transmittance of the optical wavelength filter and the translucent window applied to the embodiment of FIG. 1 at each wavelength. 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットの各々から出力される受光信号を示した信号波形図Signal waveform diagram showing the light-receiving signals output from each of the light-receiving units in FIG. 1 when the radiation energy radiated from the combustion flame is observed. 2つの受光信号の振幅変化の相関を判断する図1の判断部の処理動作の手順を示したフローチャートA flowchart showing the procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation between the amplitude changes of the two received signals. 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットの各々から出力される受光信号の周波数分布を示した説明図Explanatory drawing showing the frequency distribution of the light receiving signal output from each of the light receiving units of FIG. 1 when the radiation energy radiated from the combustion flame is observed. 2つの受光信号の周波数分布の相関を判断する図1の判断部の処理動作の手順を示したフローチャートA flowchart showing the procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation of the frequency distributions of the two received signals. 受光ユニットに設けた複数の受光素子からの受光信号を加算する炎検出装置の実施形態を示したブロック図A block diagram showing an embodiment of a flame detection device that adds light-receiving signals from a plurality of light-receiving elements provided in a light-receiving unit. 図10の受光センサの等価回路を示した回路図A circuit diagram showing an equivalent circuit of the light receiving sensor of FIG. トンネル内に設置して火災を監視する炎検出装置の他の実施形態を示したブロック図Block diagram showing other embodiments of a flame detector installed in a tunnel to monitor a fire 図12の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図A characteristic diagram showing the transmittance of the optical wavelength filter and the translucent window applied to the embodiment of FIG. 12 at each wavelength. 燃焼炎と、その他の代表的な放射体の放射線スペクトルを示した特性図Characteristic diagram showing radiation spectra of combustion flames and other typical radiators

[炎検出装置の概要]
図1は本発明に係る炎検出装置の実施形態を機能構成により示したブロック図、図2は図1の炎検出装置に適用される受光ユニットの概略構成を示した説明図、図3は図2の受光センサの等価回路を示した回路図、図4は燃焼炎の放射線スペクトルを示した特性図、図5は図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
[Overview of flame detector]
FIG. 1 is a block diagram showing an embodiment of a flame detection device according to the present invention by a functional configuration, FIG. 2 is an explanatory view showing a schematic configuration of a light receiving unit applied to the flame detection device of FIG. 1, and FIG. 3 is a diagram. A circuit diagram showing an equivalent circuit of the light receiving sensor of No. 2, FIG. 4 is a characteristic diagram showing a radiation spectrum of a combustion flame, and FIG. 5 is a wavelength of each wavelength of the optical wavelength filter and the translucent window applied to the embodiment of FIG. It is a characteristic diagram which showed the transmittance in.

図1に示すように、本実施形態の炎検出装置10は、監視領域に存在する燃焼炎から放射される図4に示すスペクトル特性50をもつ放射線エネルギーを観測するものであり、大別して、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E1を出力する受光ユニット12aと、燃焼炎からCO2共鳴により放射される概ね4.5μmを含まない例えば概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E2を出力する受光ユニット12bと、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を燃焼炎の有無判断の1要素とする判断部15とを備える。 As shown in FIG. 1, the flame detection device 10 of the present embodiment observes the radiation energy having the spectral characteristic 50 shown in FIG. 4 emitted from the combustion flame existing in the monitoring region, and is roughly classified into combustion. The light receiving unit 12a that observes the radiation energy in the narrow band wavelength band centered at approximately 4.5 μm emitted from the flame by CO 2 resonance and outputs the light receiving signal E1 by photoelectric conversion, and the CO 2 resonance from the combustion flame. A light receiving unit 12b that observes radiation energy in a narrow band wavelength band having a central wavelength of, for example, approximately 2.3 μm and outputs a light receiving signal E2 by photoelectric conversion, and a light receiving unit 12a, which does not include approximately 4.5 μm emitted by the light receiving unit 12a. It is provided with a determination unit 15 in which the mutual correlation of the received light signals E1 and E2 for a predetermined period observed and output at substantially the same time in 12b is one element of determining the presence or absence of a combustion flame.

(受光ユニット構成)
受光ユニット12aは、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16aと、受光センサ16aから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24aと、前置フィルタ24aを通過した信号成分を初段増幅するプリアンプ26aと、プリアンプ26aからの出力を、後述する炎判断処理に適した信号レベルに増幅して受光信号E1を出力するメインアンプ28aとで構成する。
(Light receiving unit configuration)
The light receiving unit 12a is a light receiving sensor 16a and a light receiving sensor 16a that convert radiation energy having a narrow band wavelength band having a central frequency of about 4.5 μm, which is emitted from a combustion flame by CO 2 resonance, into an electric signal and output it. The preamplifier 24a that passes only the signal component of a predetermined frequency band from the received signal output from the preamplifier 26a, the preamplifier 26a that first-stage amplifies the signal component that has passed through the preamplifier 24a, and the output from the preamplifier 26a will be described later. It is composed of a main amplifier 28a that amplifies the signal level suitable for the flame determination process and outputs the received signal E1.

また、受光ユニット12bは、燃焼炎からり放射される、概ね2.3μmを中心波長とする狭帯域波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16bと、受光センサ16bから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24bと、前置フィルタ24bを通過した信号成分を初段増幅するプリアンプ26bと、プリアンプ26bからの出力を、後述する炎判断処理に適した信号レベルに増幅して受光信号E2を出力するメインアンプ28bとで構成する。 Further, the light receiving unit 12b is obtained from a light receiving sensor 16b and a light receiving sensor 16b that convert radiation energy emitted from a combustion flame and having a narrow band frequency band having a central frequency of about 2.3 μm into an electric signal and output the signal. The preamplifier 24b that passes only the signal component of a predetermined frequency band from the output received signal, the preamplifier 26b that first-stage amplifies the signal component that has passed through the preamplifier 24b, and the output from the preamplifier 26b will be described later. It is composed of a main amplifier 28b that amplifies to a signal level suitable for flame determination processing and outputs a received signal E2.

ここで、受光センサ16a,16bは、サファイアガラス等の赤外線透光性の部材を用いて共用する透光性窓18、光学波長フィルタ20a,20a、及び焦電型の受光素子22a,22bを備えている。 Here, the light receiving sensors 16a and 16b include a translucent window 18 shared by using an infrared translucent member such as sapphire glass, optical wavelength filters 20a and 20a, and pyroelectric light receiving elements 22a and 22b. ing.

受光ユニット12a,12bからアンプ28a,28bを介して出力された受光信号E1、受光信号E2は、判断部15に設けたA/D変換ポート30a,30bによりデジタル受光信号に変換して読み込まれ、後述する炎判断が実行される。以下、各構成について具体的に説明する。 The light-receiving signals E1 and E2 output from the light-receiving units 12a and 12b via the amplifiers 28a and 28b are converted into digital light-receiving signals by the A / D conversion ports 30a and 30b provided in the determination unit 15 and read. The flame judgment described later is executed. Hereinafter, each configuration will be specifically described.

(受光センサ16a,16b)
受光ユニット12aに設けた受光センサ16aは、光学波長フィルタ20a、受光素子22a及び共用する透光性窓18で構成する。光学波長フィルタ20aは、図5に示すように、有炎燃焼時に発生するCO2共鳴により放射される概ね4.5μmの波長帯を含む所定帯域の光のみを高い透過率で透過する透過特性54をもつ光学式のバンドパスフィルタであって、例えば、4.5μmを含み且つ、後述する他の波長帯を含まない、所定帯域の光を選択透過する。受光素子22aは焦電体とFETによる光電変換機能を備え、光学波長フィルタ20aを透過した光を受光して電気信号に変換して出力する。
(Light receiving sensors 16a, 16b)
The light receiving sensor 16a provided in the light receiving unit 12a includes an optical wavelength filter 20a, a light receiving element 22a, and a shared translucent window 18. As shown in FIG. 5, the optical wavelength filter 20a has a transmission characteristic 54 that transmits only light in a predetermined band including a wavelength band of approximately 4.5 μm emitted by CO 2 resonance generated during flame combustion with high transmittance. It is an optical bandpass filter having, for example, selectively transmits light in a predetermined band containing 4.5 μm and not including other wavelength bands described later. The light receiving element 22a has a photoelectric conversion function by a pyroelectric body and an FET, receives light transmitted through the optical wavelength filter 20a, converts it into an electric signal, and outputs the light.

具体的には、図2に示すように、受光センサ16aは、基板36aの表面に配置された複数の焦電体25aと基板36aの裏面に配置されたFET27aを備えた受光素子22aと、基板36aを基部38a上に支持するための基板搭載部40aと、基板搭載部40a側の背面側から端子42aが延在して設けられた基部38aと、受光素子22aの前方に狭帯域バンドパスフィルタである光学波長フィルタ20aを備えたカバー部材44aとからなるパッケージ化された構成を有している。 Specifically, as shown in FIG. 2, the light receiving sensor 16a includes a light receiving element 22a having a plurality of pyroelectric bodies 25a arranged on the front surface of the substrate 36a and an FET 27a arranged on the back surface of the substrate 36a, and a substrate. A substrate mounting portion 40a for supporting the 36a on the base portion 38a, a base portion 38a provided with terminals 42a extending from the back side on the substrate mounting portion 40a side, and a narrow band bandpass filter in front of the light receiving element 22a. It has a packaged configuration including a cover member 44a provided with an optical wavelength filter 20a.

また、受光素子22aの等価回路は、図3に示すように、FET27aのゲートから例えば焦電体25と高抵抗29の並列回路を介してゲート端子Gに接続し、またFET27のドレインとソースをそれぞれドレイン端子Dとソース端子Sに接続している。 Further, as shown in FIG. 3, the equivalent circuit of the light receiving element 22a is connected to the gate terminal G from the gate of the FET 27a via, for example, a parallel circuit of the pyroelectric body 25 and the high resistance 29, and also connects the drain and the source of the FET 27. They are connected to the drain terminal D and the source terminal S, respectively.

一方、受光センサ16bは、光学波長フィルタ20b、受光素子22b及び共用する透光性窓18で構成する。光学波長フィルタ20bは、図5に示すように、燃焼炎から放射される概ね2.3μmの波長帯を含む所定帯域の光のみを高い透過率で透過する透過特性58をもつ光学式のバンドパスフィルタであって、例えば、2.3μmを含み、CO2共鳴により放射される概ね4.5μmの波長帯の波長帯を含まない、所定帯域の光を選択透過する。受光素子22bは焦電体とFETによる光電変換機能を備え、光学波長フィルタ20bを透過した光を受光して電気信号に変換して出力する。 On the other hand, the light receiving sensor 16b includes an optical wavelength filter 20b, a light receiving element 22b, and a shared translucent window 18. As shown in FIG. 5, the optical wavelength filter 20b is an optical band path having a transmission characteristic 58 that transmits only light in a predetermined band including a wavelength band of approximately 2.3 μm emitted from a combustion flame with a high transmittance. A filter that selectively transmits light in a predetermined band, for example, containing 2.3 μm and not including a wavelength band of approximately 4.5 μm emitted by CO 2 resonance. The light receiving element 22b has a photoelectric conversion function by a pyroelectric body and an FET, receives light transmitted through the optical wavelength filter 20b, converts it into an electric signal, and outputs the light.

具体的には、図2に示すように、受光センサ16bは、基板36bの表面に配置された複数の焦電体25bと基板36bの裏面に配置されたFET27bを備えた受光素子22bと、基板36bを基部38b上に支持するための基板搭載部40bと、基板搭載部40b側の背面側から端子42bが延在して設けられた基部38bと、受光素子22bの前方に狭帯域バンドパスフィルタである光学波長フィルタ20bを備えたカバー部材44bとからなるパッケージ化された構成を有している。また、受光素子22bの等価回路は、図3に示す受光素子22aと同様である。 Specifically, as shown in FIG. 2, the light receiving sensor 16b includes a light receiving element 22b having a plurality of pyroelectric bodies 25b arranged on the front surface of the substrate 36b and an FET 27b arranged on the back surface of the substrate 36b, and a substrate. A substrate mounting portion 40b for supporting the 36b on the base portion 38b, a base portion 38b provided with terminals 42b extending from the back side on the substrate mounting portion 40b side, and a narrow band bandpass filter in front of the light receiving element 22b. It has a packaged configuration including a cover member 44b provided with an optical wavelength filter 20b. The equivalent circuit of the light receiving element 22b is the same as that of the light receiving element 22a shown in FIG.

また、受光センサ16a,16bは、本体カバー46内に設けられた共通の取り付け部材48上に、互いに近接して所定の配列で配置されている。 Further, the light receiving sensors 16a and 16b are arranged in a predetermined arrangement in close proximity to each other on a common mounting member 48 provided in the main body cover 46.

ここで、光学波長フィルタ20a、20bは、例えば、シリコン、ゲルマニウム、サファイア等の基板上に、公知の方法でそれぞれ形成することができる。 Here, the optical wavelength filters 20a and 20b can be formed, for example, on a substrate such as silicon, germanium, or sapphire by a known method.

(透光性窓18)
透光性窓18は、受光センサ16a、16bが収納された本体カバー46の監視エリア側に相当する上面側であって、受光センサ16a、16bの前面側に設けた所定の開口部に配置し、例えば、サファイアガラス等の赤外線透光性の部材により形成している。このため受光素子22a、22bは、各々の受光限界視野が透光性窓18の縁辺部で規制されることにより、略同一の拡がり角度を有する検知エリアが設定される。
(Translucent window 18)
The translucent window 18 is located on the upper surface side corresponding to the monitoring area side of the main body cover 46 in which the light receiving sensors 16a and 16b are housed, and is arranged in a predetermined opening provided on the front side of the light receiving sensors 16a and 16b. For example, it is formed of an infrared translucent member such as sapphire glass. Therefore, the light receiving elements 22a and 22b are set with detection areas having substantially the same spreading angle by restricting the light receiving limit field of view at the edge portion of the translucent window 18.

ここで、透光性窓48を構成するサファイアガラスは、図5に示すように、概ね7.0μm付近以下の波長帯の放射線を良好に透過するショートウェーブパス特性52、換言すれば、概ね7.0μm付近より長波長の放射線を遮断するロングウェーブカット特性を有するフィルタ部材として機能する。また、本実施形態にあっては、透光性窓18は共用部材として、受光センサ16a,16bに含まれるものとして説明する。 Here, as shown in FIG. 5, the sapphire glass constituting the translucent window 48 has a short wave path characteristic 52 that satisfactorily transmits radiation in a wavelength band of approximately 7.0 μm or less, in other words, approximately 7. It functions as a filter member having a long wave cut characteristic that blocks radiation with a long wavelength from around 0.0 μm. Further, in the present embodiment, the translucent window 18 will be described as being included in the light receiving sensors 16a and 16b as a common member.

(受光センサ16a,16この波長透過特性)
図5は、図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Light receiving sensors 16a, 16 This wavelength transmission characteristic)
FIG. 5 is a characteristic diagram showing the transmittance of the optical wavelength filter and the translucent window applied to the embodiment of FIG. 1 at each wavelength.

図1の透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性52と、光学波長フィルタ20aを構成する、概ね4.5μm付近を中心波長とするバンドパスフィルタの、当該中心波長近傍の波長帯の放射線エネルギーを高い透過率で透過する透過率特性54との組合せにより、概ね4.5μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性56をもつ狭帯域バンドパスフィルタを構成する。 The sapphire glass, which is the translucent window 18 of FIG. 1, has a short wave path characteristic 52 that allows radiation of about 7.0 μm or less to be transmitted well, and a center wavelength of about 4.5 μm that constitutes the optical wavelength filter 20a. In combination with the transmittance characteristic 54 of the bandpass filter, which transmits the radiation energy in the wavelength band near the center wavelength with high transmittance, the radiation energy in the wavelength band of approximately 4.5 μm is transmitted with high transmittance. A narrowband band path filter having a transmission characteristic 56 is configured.

また、透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性52と、光学波長フィルタ20aを構成する、概ね2.3μm付近を中心波長とするバンドパスフィルタの、当該中心波長近傍の波長帯の放射線エネルギーを高い透過率で透過する透過率特性58との組合せにより、概ね2.3μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性60をもつ狭帯域バンドパスフィルタを構成する。 Further, the sapphire glass which is the translucent window 18 has a short wave path characteristic 52 which allows radiation of about 7.0 μm or less to be transmitted well, and a center wavelength of about 2.3 μm which constitutes the optical wavelength filter 20a. In combination with the transmittance characteristic 58 of the bandpass filter that transmits the radiation energy in the wavelength band near the center wavelength with high transmittance, the transmission that transmits the radiation energy in the wavelength band of approximately 2.3 μm with high transmittance. A narrowband band path filter having the characteristic 60 is configured.

(前置フィルタ24a、24b)
前置フィルタ24a、24bは、周波数選択部として機能し、受光センサ16a,16bの受光素子22a、22bの各々から出力される受光信号から、炎判断処理に用いられる特定の周波数帯域の信号成分のみを通過させる例えばアクティブフィルタであり、後段のプリアンプ26a、26bに特定の周波数帯域の信号成分を含む受光信号を出力する。
(Prefix filters 24a, 24b)
The preamplifier filters 24a and 24b function as frequency selection units, and from the light receiving signals output from the light receiving elements 22a and 22b of the light receiving sensors 16a and 16b, only the signal components of the specific frequency band used for the flame determination process are used. For example, it is an active filter, and outputs a light receiving signal including a signal component of a specific frequency band to the preamplifiers 26a and 26b in the subsequent stage.

(プリアンプ26a、26bとメインアンプ28a、28b)
プリアンプ26a、26bは、前置フィルタ24a、24bを介して入力される受光信号を所定の増幅率で初段増幅し、メインアンプ28a,28bは、プリアンプ26a、26bからの各受光信号を、後述する炎判断処理に適した信号レベルに増幅し、受光信号E1,E2として出力する。
(Preamplifiers 26a and 26b and main amplifiers 28a and 28b)
The preamplifiers 26a and 26b first-stage amplify the received light signals input via the preamplifiers 24a and 24b at a predetermined amplification factor, and the main amplifiers 28a and 28b describe the received light signals from the preamplifiers 26a and 26b as described later. It is amplified to a signal level suitable for flame judgment processing and output as received light signals E1 and E2.

(A/D変換ポート30a,30b)
A/D変換ポート30a、30bは判断部15の入力ポートとして設けたA/D変換器であり、受光信号(アナログ受光信号)E1,E2を判断部15のデジタル処理に適したデジタル信号に変換して読み込む。
(A / D conversion ports 30a, 30b)
The A / D conversion ports 30a and 30b are A / D converters provided as input ports of the judgment unit 15, and convert the light receiving signals (analog light receiving signals) E1 and E2 into digital signals suitable for digital processing of the judgment unit 15. And read.

(判断部15)
判断部15は、ハードウェアとして、CPU、メモリ、A/D変換ポート30a,30bを含む各種の入出力ポート等を備えたマイクロプロセッサユニット(MPU)等で構成する。また、判断部15は、CPUによるプログラムの実行により炎判断の制御機能を実現する。
(Judgment unit 15)
The determination unit 15 is composed of a CPU, a memory, a microprocessor unit (MPU) or the like having various input / output ports including A / D conversion ports 30a and 30b as hardware. Further, the determination unit 15 realizes a flame determination control function by executing a program by the CPU.

判断部15は、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を燃焼炎の有無判断の1要素とする制御を行う。 The determination unit 15 controls that the mutual correlation of the light receiving signals E1 and E2 for a predetermined period observed and output by the light receiving units 12a and 12b at substantially the same time is one element of determining the presence or absence of the combustion flame.

即ち、判断部15は、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を求め、相互の相関が所定基準を充足する場合は、受光ユニット12a,12bへ入力された光が炎からの放射による可能性有りとし、炎有りの1要素として、炎の有無を判断し検出する制御を行う。 That is, the determination unit 15 obtains the mutual correlation of the light receiving signals E1 and E2 for a predetermined period observed and output by the light receiving units 12a and 12b at substantially the same time, and when the mutual correlation satisfies the predetermined standard. It is assumed that the light input to the light receiving units 12a and 12b may be due to radiation from the flame, and control is performed to determine and detect the presence or absence of the flame as one element of the presence of the flame.

(受光信号E1,E2の、相互の相関による炎判断)
判断部15による受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を求めて行う炎判断の詳細を説明すると次のようになる。
(Flame judgment by mutual correlation of received signals E1 and E2)
The details of the flame determination performed by obtaining the cross-correlation of the light-receiving signals E1 and E2 for a predetermined period observed and output by the light-receiving units 12a and 12b by the judgment unit 15 at substantially the same time will be as follows.

図6は燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニット12aから出力される4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーによる受光信号E1と、受光ユニット12bから出力される2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーによる受光信号E2を示しており、受光信号E1に対し受光信号E2はレベルの低い相似した波形となっている。 FIG. 6 shows a light receiving signal E1 due to radiation energy in a narrow band wavelength band having 4.5 μm as a central wavelength output from the light receiving unit 12a of FIG. 1 when observing the radiation energy radiated from the combustion flame, and the light receiving unit 12b. The light receiving signal E2 due to the radiation energy in the narrow band wavelength band having 2.3 μm as the central wavelength is shown, and the light receiving signal E2 has a similar waveform with a low level with respect to the light receiving signal E1.

また、図6に示す受信信号E1,E2の信号波形は、判断部15に設けたA/D変換ポート30a,30bで、各受光信号E1,E2を例えば64Hzでサンプリングしてデジタル受光信号に変換し、1回の相関演算の対象として所定期間T=2秒の受光信号E1,E2をバッファメモリに一時的に記憶した状態を、アナログ波形として示している。 Further, the signal waveforms of the received signals E1 and E2 shown in FIG. 6 are converted into digital received signals by sampling the received light signals E1 and E2 at, for example, 64 Hz at the A / D conversion ports 30a and 30b provided in the determination unit 15. The state in which the received light signals E1 and E2 for a predetermined period T = 2 seconds are temporarily stored in the buffer memory as the target of one correlation calculation is shown as an analog waveform.

判断部15は、所定期間T=2秒を、例えば500ミリ秒の4つの時間区間T1,T2,T3,T4に分割し、受光信号E1,E2の中点となる基準電位からのプラス及びマイナス側の振幅との差分の絶対値となる積分値として、受光信号E1について、各時間区間T1〜T4の積分値ΣE11,ΣE12,ΣE13,ΣE14を求め、また、受光信号E2について、各時間区間T1〜T4の積分値ΣE21,ΣE22,ΣE23,ΣE24を求める。 The determination unit 15 divides the predetermined period T = 2 seconds into four time intervals T1, T2, T3, and T4 of, for example, 500 milliseconds, and plus and minus from the reference potential which is the midpoint of the received light signals E1 and E2. As the integrated value that is the absolute value of the difference from the amplitude on the side, the integrated values ΣE11, ΣE12, ΣE13, and ΣE14 of each time interval T1 to T4 are obtained for the received light signal E1, and each time interval T1 is obtained for the received signal E2. Obtain the integral values ΣE21, ΣE22, ΣE23, and ΣE24 of ~ T4.

次いで、判断部15は、同じ時間区間T1〜T4同士の各々について、受光信号E1の信号積分値ΣE11,ΣE12,ΣE13,ΣE14と、受光信号E2の積分値ΣE21ΣE22,ΣE23,ΣE24の比R1,R2,R3,R4を、
R1=ΣE11/ΣE21 式(1)
R2=ΣE12/ΣE22 式(2)
R3=ΣE13/ΣE23 式(3)
R4=ΣE14/ΣE24 式(4)
として求め、これを受光信号E1,E2の、相互の相関とする。
Next, the determination unit 15 determines the ratio R1 and R2 of the signal integral values ΣE11, ΣE12, ΣE13, ΣE14 of the received signal E1 and the integrated values ΣE21 ΣE22, ΣE23, ΣE24 of the received signal E2 for each of the same time intervals T1 to T4. , R3, R4,
R1 = ΣE11 / ΣE21 equation (1)
R2 = ΣE12 / ΣE22 equation (2)
R3 = ΣE13 / ΣE23 equation (3)
R4 = ΣE14 / ΣE24 equation (4)
This is used as the cross-correlation of the received light signals E1 and E2.

受光信号E1,E2の相互の相関を判断するため、判断部15は、最初の時間区間T1の積分値の比R1に基づき、下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定する。 In order to determine the mutual correlation between the received light signals E1 and E2, the determination unit 15 sets a flame determination threshold range having a lower limit threshold value TH1 and an upper limit threshold value TH2 based on the ratio R1 of the integrated values of the first time interval T1.

判断部15は、下限閾値TH1及び上限閾値TH2を、最初の時間区間T1の比R1に対し例えば±10%の上限と下限の閾値TH1、TH2を、TH1=0.9・R1、TH2=1.1・R1として炎判定閾範囲を設定する。これを一般的に表現すると、最初の区間T1の信号積分値の比R1に、1未満の所定の定数αを乗じて下限閾値TH1(=α・R1)を設定すると共に、1を超える所定の定数βを乗じて上限閾値TH2(=β・R1)を設定することを意味し、係数α,βの値は必要に応じて適宜の値が設定可能である。 The determination unit 15 sets the lower limit threshold value TH1 and the upper limit threshold value TH2 to, for example, ± 10% of the upper and lower threshold values TH1 and TH2 with respect to the ratio R1 of the first time interval T1, TH1 = 0.9 · R1, TH2 = 1. .1 ・ Set the flame judgment threshold range as R1. Expressing this generally, the lower limit threshold TH1 (= α · R1) is set by multiplying the ratio R1 of the signal integral values of the first interval T1 by a predetermined constant α less than 1, and a predetermined value exceeding 1 is set. It means that the upper limit threshold value TH2 (= β · R1) is set by multiplying the constant β, and the values of the coefficients α and β can be set as appropriate as needed.

このように下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定した場合、判断部15は、次の条件の成立の有無を判定する。
0.9R1≦R2≦1.1R1 式(5)
0.9R1≦R3≦1.1R1 式(6)
0.9R1≦R4≦1.1R1 式(7)
When the flame determination threshold range having the lower limit threshold value TH1 and the upper limit threshold value TH2 is set in this way, the determination unit 15 determines whether or not the following conditions are satisfied.
0.9R1 ≤ R2 ≤ 1.1 R1 equation (5)
0.9R1 ≤ R3 ≤ 1.1 R1 equation (6)
0.9R1 ≤ R4 ≤ 1.1 R1 equation (7)

判断部15は、前記式(5)〜(7)の全ての条件の成立を判定した場合、即ち、最初の時間区間T1の信号積分値の比R1に対し、残りの時間区間T2〜T4の全ての信号積分値の比R2〜R4が所定の炎判定閾範囲内にある場合、受光信号E1,E2の振幅波形が概ね相似し、受光ユニット12a,12bは共に燃焼炎からの放射線エネルギーをそれぞれ異なる波長帯で観測していると推定できることから、この場合に、炎有りの判断の1要素とし、例えば燃焼炎からCO2共鳴により放射される4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーによる十分な振幅レベルを持つ受光信号E1に基づく炎判断を許容する。 When the determination unit 15 determines that all the conditions of the above equations (5) to (7) are satisfied, that is, the ratio R1 of the signal integration value of the first time interval T1 is equal to that of the remaining time intervals T2 to T4. When the ratios R2 to R4 of all the signal integration values are within the predetermined flame judgment threshold range, the amplitude waveforms of the light receiving signals E1 and E2 are substantially similar, and the light receiving units 12a and 12b both receive the radiation energy from the combustion flame, respectively. because it can estimated to be observed at different wavelength bands, in this case, the one element of the determination there flames, 4.5 [mu] m of narrow wavelength band centered wavelength emitted by CO 2 resonance, for example, from the combustion flame Allows flame judgment based on the received signal E1 with a sufficient amplitude level due to radiation energy.

この場合の受光信号E1による炎判断として、判断部15は、例えば受光信号E1から高速フーリエ変換(FFT)等の演算方法により周波数分布を求め、炎固有のゆらぎ周波数を含む例えば8Hz以下の周波数分布の積分値を求め、この積分値が所定の閾値以上の場合に、炎の可能性ありと判断し、更に他の炎判断の要素を考慮して炎と判断する処理を行う。 In this case, as a flame determination based on the received light signal E1, the determination unit 15 obtains a frequency distribution from the received light signal E1 by a calculation method such as a fast Fourier transform (FFT), and includes a fluctuation frequency peculiar to the flame, for example, a frequency distribution of 8 Hz or less. If the integrated value is equal to or greater than a predetermined threshold value, it is determined that there is a possibility of flame, and further, a process of determining that it is a flame is performed in consideration of other elements of flame determination.

また、判断部15は、前記式(5)〜(7)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、最初の時間区間T1の信号積分値の比R1に対し残りの時間区間T2〜T4の信号積分値の比R2〜R4の少なくとも1つが所定の炎判定閾範囲を外れた場合は、燃焼炎以外からの放射線エネルギーによる受光信号E1,E2と推定できるので、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。 Further, when the determination unit 15 determines that at least one of the conditions of the above equations (5) to (7) is not satisfied, that is, the remaining time interval with respect to the ratio R1 of the signal integral value of the first time interval T1. When at least one of the ratios R2 to R4 of the signal integral values of T2 to T4 deviates from the predetermined flame judgment threshold range, it can be estimated that the received signals E1 and E2 are due to the radiation energy from other than the combustion flame. It is not an element and suppresses flame judgment based on the received signal E1.

(一般化した相互の相関の判断)
ここで、所定期間Tを分割する区間数iをi=1〜nと一般化し、また受光信号をE1〜Emと一般化すると、判断部15は、所定期間Tを、区間T1〜Tnに分割し、受光信号E1,Emの中点となる基準電位に対する差分の絶対値を積算した値(振幅積分値)として、受光信号E1について、各時間区間T1〜Tnの積分値ΣE11〜ΣE1nを求め、また、受光信号Emについて、各時間区間T1〜Tnの積分値ΣEm1〜ΣEmnを求め、更に、両者の比R1〜Rnを、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、これを受光信号E1,Emの、相互の相関とする。
(Generalized cross-correlation judgment)
Here, when the number of sections i for dividing the predetermined period T is generalized to i = 1 to n and the received signal is generalized to E1 to Em, the determination unit 15 divides the predetermined period T into the sections T1 to Tn. Then, the integrated values ΣE11 to ΣE1n of each time interval T1 to Tn are obtained for the received light signal E1 as a value (integral amplitude value) obtained by integrating the absolute value of the difference with respect to the reference potential which is the midpoint of the received light signals E1 and Em. Further, for the received signal Em, the integrated values ΣEm1 to ΣEmn of each time interval T1 to Tn are obtained, and the ratio R1 to Rn of the two is further determined.
R1 to Rn = ΣE11 / ΣEm1 to ΣE1n / ΣEmn
This is used as the cross-correlation of the received light signals E1 and Em.

次いで、前述と同様にして下限閾値TH1と上限閾値TH2を設定した場合、判断部15は、次の炎判定閾範囲内となる条件の成立の有無を判定する。
0.9R1≦R2≦1.1R1〜0.9R1≦Rn≦1.1R1
この炎判定閾範囲内となる条件の成立を判定した場合、受光信号E1,E2の振幅波形が概ね相似し、受光ユニット12a,12bは燃焼炎からの放射線エネルギーを観測していると推定できることから、炎有りの判断の1要素とし、受光信号E1に基づく炎判断を許容する。
Next, when the lower limit threshold value TH1 and the upper limit threshold value TH2 are set in the same manner as described above, the determination unit 15 determines whether or not the condition within the next flame determination threshold range is satisfied.
0.9R1 ≤ R2 ≤ 1.1R1 to 0.9R1 ≤ Rn ≤ 1.1R1
When it is determined that the condition within the flame determination threshold range is satisfied, the amplitude waveforms of the light receiving signals E1 and E2 are generally similar, and it can be estimated that the light receiving units 12a and 12b are observing the radiation energy from the combustion flame. , As one element of the judgment of the presence of flame, the flame judgment based on the received light signal E1 is allowed.

一方、判断部15は、炎判定閾範囲外となる少なくとも何れか1つの条件の不成立を判定した場合は、燃焼炎以外からの放射線エネルギーによる受光信号E1,E2と推定できるので、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。 On the other hand, when the determination unit 15 determines that at least one of the conditions outside the flame determination threshold range is not satisfied, it can be estimated that the light receiving signals E1 and E2 are due to the radiation energy from other than the combustion flame. It is not an element and suppresses flame judgment based on the received signal E1.

(炎判断の処理動作)
図7は2つの受光信号の振幅変化の相関を判断する図1の判断部の処理動作の手順を示したフローチャートである。
(Flame judgment processing operation)
FIG. 7 is a flowchart showing a procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation between the amplitude changes of the two received signals.

(ステップS1)
まず、判断部15は、受光ユニット12a,12bから出力する受光信号E1,E2を、所定サンプリング周期でA/D変換ポート30a、30bを介して所定時間T、例えばT=2秒に亘り取り込み、バッファメモリに一時的に記憶する。
(Step S1)
First, the determination unit 15 captures the light receiving signals E1 and E2 output from the light receiving units 12a and 12b via the A / D conversion ports 30a and 30b at a predetermined sampling cycle for a predetermined time T, for example, T = 2 seconds. Temporarily store in buffer memory.

(ステップS2)
次いで、判断部15は、ステップS1で取り込んだ所定期間Tの受光信号E1,E2を4つの時間区間T1,T2,T3,T4に分割し、各分割区間T1〜T4の受光信号E1の信号振幅の積分値ΣE11,ΣE12,ΣE13,ΣE14と、受光信号E2の積分値ΣE21,ΣE22,ΣE23,ΣE24を算出する。
(Step S2)
Next, the determination unit 15 divides the light receiving signals E1 and E2 of the predetermined period T captured in step S1 into four time sections T1, T2, T3, and T4, and the signal amplitude of the light receiving signals E1 in each of the divided sections T1 to T4. The integrated values ΣE11, ΣE12, ΣE13, ΣE14 and the integrated values ΣE21, ΣE22, ΣE23, ΣE24 of the received signal E2 are calculated.

なお、ステップS2以降の処理は、判断部15がA/D変換ポート30aから取り込んでいる受光信号E1の信号レベルが所定の閾値以上となった場合に実行することが望ましい。 It is desirable that the processes after step S2 be executed when the signal level of the light receiving signal E1 taken in from the A / D conversion port 30a by the determination unit 15 becomes equal to or higher than a predetermined threshold value.

(ステップS3)
次いで、判断部15は、ステップS2で算出した受光信号E1,E2の各分割区間T1〜T4の積分値の比R1,R2,R3,R4を前記式(1)〜(4)により算出する。
(Step S3)
Next, the determination unit 15 calculates the ratio R1, R2, R3, R4 of the integrated values of the divided sections T1 to T4 of the received light signals E1 and E2 calculated in step S2 by the above equations (1) to (4).

(ステップS4)
次いで、判断部15は、最初の時間区間T1の積分値の比R1に基づき、下限閾値TH1と上限閾値TH2を、例えばTH1=0.9・R1、TH2=1.1・R1とした炎判定閾範囲を設定する。
(Step S4)
Next, the determination unit 15 sets the lower limit threshold value TH1 and the upper limit threshold value TH2 to, for example, TH1 = 0.9 · R1 and TH2 = 1.1 · R1 based on the ratio R1 of the integrated values of the first time interval T1. Set the threshold range.

(ステップS5)
次いで、判断部15は、ステップS3で算出した受光信号E1,E2の最初の時間区間T1に続く残りの時間区間T2〜T4の積分値の比R2,R3,R4が前記式(5)〜(7)により下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲内か否か判定する。
(Step S5)
Next, in the determination unit 15, the ratios R2, R3, and R4 of the integrated values of the remaining time intervals T2 to T4 following the first time interval T1 of the received light signals E1 and E2 calculated in step S3 are the above equations (5) to (5). According to 7), it is determined whether or not it is within the flame determination threshold range having the lower limit threshold value TH1 and the upper limit threshold value TH2.

(ステップS6、S7)
次いで、判断部15は、ステップS6で前記式(5)〜(7)の全ての条件が成立することで、時間区間T2〜T4の積分値の比R2,R3,R4が全て炎判定閾範囲内にあることを判定した場合に、受光信号E1,E2の振幅波形が概ね相似して燃焼炎からの放射線エネルギーによる受光信号であると推定して、炎判断の1要素と判断し、ステップS7に進んで受光信号E1に基づく炎判断を許容する。
(Steps S6 and S7)
Next, the determination unit 15 satisfies all the conditions of the above equations (5) to (7) in step S6, so that the ratio R2, R3, and R4 of the integrated values of the time intervals T2 to T4 are all within the flame determination threshold range. When it is determined that the signal is inside, it is estimated that the amplitude waveforms of the received light signals E1 and E2 are substantially similar to each other and the received signal is due to the radiation energy from the combustion flame, and it is determined to be one element of the flame judgment. To allow the flame judgment based on the received light signal E1.

(ステップS6、S8)
一方、判断部15は、ステップS6で前記式(5)〜(7)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、TH1=0.9・R1、TH2=1.1・R1とした炎判定閾範囲外にあることを判定した場合、受光ユニット12a,12bからの受光信号E1,E2は燃焼炎からの放射線エネルギーによるものではないと推定し、ステップS8に進んで、受光信号E1に基づく炎判断を抑止する。
(Steps S6 and S8)
On the other hand, when the determination unit 15 determines in step S6 that at least one of the conditions of the above equations (5) to (7) is not satisfied, that is, TH1 = 0.9 · R1 and TH2 = 1.1 · R1. When it is determined that the flame is out of the flame determination threshold range, it is estimated that the light receiving signals E1 and E2 from the light receiving units 12a and 12b are not due to the radiation energy from the combustion flame, and the process proceeds to step S8 to proceed to the light receiving signal. Suppress flame judgment based on E1.

[受光信号E1,E2の周波数分布の、相互の相関による判断]
(判断部15の概要)
図1に示した判断部15の他の実施形態として、受光信号E1,E2の周波数分布から相互の相関を求めて炎判断を行うことができる。
[Judgment of frequency distribution of received signals E1 and E2 by cross-correlation]
(Outline of Judgment Unit 15)
As another embodiment of the determination unit 15 shown in FIG. 1, flame determination can be performed by obtaining a cross-correlation from the frequency distributions of the received light signals E1 and E2.

この場合、判断部15は、受光ユニット12a,12bから出力された受光信号E1,E2の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割して、各分割区間の受光信号から所定範囲の周波数の相対レベル分布(周波数分布)を求め、各分割区間同士の周波数の相対レベル分布の積分値の比が全て所定の炎判定閾範囲内にある場合、受光ユニット12a,12bへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素として、炎の有無を判断し検出する制御を行う。 In this case, the determination unit 15 divides the mutual correlation of the light receiving signals E1 and E2 output from the light receiving units 12a and 12b into a plurality of time sections for each light receiving signal for a predetermined period, and receives light in each divided section. When the relative level distribution (frequency distribution) of the frequency in a predetermined range is obtained from the signal and the ratio of the integrated values of the relative level distribution of the frequencies between the divided sections is all within the predetermined flame determination threshold range, the light receiving units 12a and 12b It is assumed that the light input to is likely to be emitted from the flame, and control is performed to determine and detect the presence or absence of the flame as one element of determining the presence or absence of the flame.

(判断部の周波数分布の相互相関に基づく炎判断)
図8は、燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニット12a,12bの各々から出力される受光信号E1,E2の周波数分布を示した説明図である。
(Flame judgment based on the cross-correlation of the frequency distribution of the judgment part)
FIG. 8 is an explanatory diagram showing the frequency distribution of the light receiving signals E1 and E2 output from each of the light receiving units 12a and 12b of FIG. 1 when the radiation energy radiated from the combustion flame is observed.

図8に示すように、燃焼炎から放射される放射線エネルギーを周波数軸で観測すると、概ね8Hzよりも低周波側に高い出力レベルを示す周波数特性が得られることから、実質的な炎のちらつき周波数が8Hzまでの周波数帯域に存在し、8Hzを超える例えば16Hzまでの高周波側は低いレベルを示す。このため、受光信号E1,E2の周波数分布の相互の相関は、例えば8Hzまでの範囲となる低周波側の周波数分布の相関を判断すれば良い。 As shown in FIG. 8, when the radiation energy radiated from the combustion flame is observed on the frequency axis, a frequency characteristic showing a higher output level on the frequency side lower than 8 Hz can be obtained, so that the actual flame flicker frequency is obtained. Exists in the frequency band up to 8 Hz, and the high frequency side above 8 Hz, for example up to 16 Hz, shows a low level. Therefore, for the mutual correlation of the frequency distributions of the received light signals E1 and E2, for example, the correlation of the frequency distribution on the low frequency side in the range up to 8 Hz may be determined.

まず、判断部15は、受光ユニット12a,12bから出力された所定期間T=2秒の受光信号E1,E2をA/D変換してバッファメモリに記憶し、例えば500ミリ秒の4つの時間区間T1,T2,T3,T4に分割し、各時間区間T1〜T4の受光信号E1,E2をそれぞれ高速フーリエ変換(FFT)して、各時間区間での周波数の相対レベル分布を求める。 First, the determination unit 15 A / D-converts the light-receiving signals E1 and E2 of the predetermined period T = 2 seconds output from the light-receiving units 12a and 12b and stores them in the buffer memory. It is divided into T1, T2, T3, and T4, and the received signals E1 and E2 in each time interval T1 to T4 are subjected to fast Fourier transform (FFT) to obtain the relative level distribution of the frequency in each time interval.

続いて、判断部15は、受光信号E1の各区間T1〜T4の周波数の相対レベル分布の積分値Σf11,Σf12,Σf13,Σf14を求め、また、受光信号E2についても、各区間T1〜T4の周波数の相対レベル分布の積分値Σf21,Σf22,Σf23,Σf24を求める。 Subsequently, the determination unit 15 obtains the integrated values Σf11, Σf12, Σf13, Σf14 of the relative level distribution of the frequencies of the respective sections T1 to T4 of the received light signal E1, and also the light receiving signal E2 of each section T1 to T4. The integrated values Σf21, Σf22, Σf23, and Σf24 of the relative level distribution of frequencies are obtained.

次いで、判断部15は、同じ時間区間T1〜T4の各々について、受光信号E1の周波数分布の積分値Σf11,Σf12,Σf13,Σf14と、受光信号E2の周波数分布の積分値Σf21Σf22,Σf23,Σf24との比Rf1,Rf2,Rf3,Rf4を、
Rf1=Σf11/Σf21 式(8)
Rf2=Σf12/Σf22 式(9)
Rf3=Σf13/Σf23 式(10)
Rf4=Σf14/Σf24 式(11)
として求め、これを受光信号E1,E2の、周波数分布の相互の相関とする。
Next, the determination unit 15 sets the integrated values Σf11, Σf12, Σf13, Σf14 of the frequency distribution of the received light signal E1 and the integrated values Σf21 Σf22, Σf23, Σf24 of the frequency distribution of the received signal E2 for each of the same time intervals T1 to T4. Ratio of Rf1, Rf2, Rf3, Rf4,
Rf1 = Σf11 / Σf21 equation (8)
Rf2 = Σf12 / Σf22 equation (9)
Rf3 = Σf13 / Σf23 equation (10)
Rf4 = Σf14 / Σf24 equation (11)
This is used as the cross-correlation of the frequency distributions of the received light signals E1 and E2.

受光信号E1,E2の周波数の相対レベル分布の相互の相関を判断するため、判断部15は、最初の時間区間T1の積分値の比Rf1に基づき、下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定する。 In order to determine the cross-correlation of the relative level distributions of the frequencies of the received light signals E1 and E2, the determination unit 15 determines the flame having the lower limit threshold value TH1 and the upper limit threshold value TH2 based on the ratio Rf1 of the integrated values of the first time interval T1. Set the threshold range.

判断部15は、下限閾値THf1及び上限閾値THf2を、最初の時間区間T1の比Rf1に対し例えば±10%の炎判定閾範囲とし、THf1=0.9・Rf1、THf2=1.1・Rf1に設定する。 The determination unit 15 sets the lower limit threshold value THf1 and the upper limit threshold value THf2 to a flame determination threshold range of, for example, ± 10% with respect to the ratio Rf1 of the first time interval T1, THf1 = 0.9 · Rf1, THf2 = 1.1 · Rf1. Set to.

このように下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定した場合、判断部15は、次の条件の成立の有無を判定する。
0.9Rf1≦Rf2≦1.1Rf1 式(12)
0.9Rf1≦Rf3≦1.1Rf1 式(13)
0.9Rf1≦Rf4≦1.1Rf1 式(14)
When the flame determination threshold range having the lower limit threshold value TH1 and the upper limit threshold value TH2 is set in this way, the determination unit 15 determines whether or not the following conditions are satisfied.
0.9Rf1 ≤ Rf2 ≤ 1.1 Rf1 equation (12)
0.9Rf1 ≤ Rf3 ≤ 1.1 Rf1 equation (13)
0.9Rf1 ≤ Rf4 ≤ 1.1 Rf1 equation (14)

判断部15は、前記式(12)〜(14)の全ての条件の成立を判定した場合、即ち、最初の時間区間T1の周波数の相対レベル分布の積分値の比Rf1に対し、残りの時間区間T2〜T4の全ての周波数の相対レベル分布の積分値の比Rf2〜Rf4が所定の炎判定閾範囲内にある場合、受光信号E1,E2の周波数分布が概ね相似し、受光ユニット12a,12bは共に燃焼炎からの放射線エネルギーによる受光信号E1,E2を出力していると推定でき、炎有りの判断の1要素とし、例えば受光信号E1に基づく炎判断を許容する。 When the determination unit 15 determines that all the conditions of the above equations (12) to (14) are satisfied, that is, the remaining time with respect to the ratio Rf1 of the integrated values of the relative level distributions of the frequencies in the first time interval T1. When the ratio Rf2 to Rf4 of the integrated values of the relative level distributions of all the frequencies in the sections T2 to T4 is within the predetermined flame determination threshold range, the frequency distributions of the light receiving signals E1 and E2 are substantially similar, and the light receiving units 12a and 12b Can be presumed to output the light receiving signals E1 and E2 due to the radiation energy from the combustion flame, and can be used as one element of the judgment of the presence or absence of the flame, and for example, the flame judgment based on the light receiving signal E1 is allowed.

また、判断部15は、前記式(12)〜(14)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、最初の時間区間T1の周波数分布の積分値の比Rf1に対し残りの時間区間T2〜T4の周波数の相対レベル分布の積分値の比Rf2〜Rf4の少なくとも1つが所定の炎判定閾範囲を外れた場合は、受光ユニット12a,12bは燃焼炎以外からの放射線エネルギーによる受光信号E1,E2を出力していると推定でき、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。 Further, when the determination unit 15 determines that at least one of the conditions of the above equations (12) to (14) is not satisfied, that is, the remaining ratio Rf1 of the integrated value of the frequency distribution in the first time interval T1. When at least one of Rf2 to Rf4, which is the ratio of the integrated values of the relative level distributions of the frequencies in the time intervals T2 to T4, is out of the predetermined flame determination threshold range, the light receiving units 12a and 12b receive light from radiation energy from other than the combustion flame. It can be estimated that the signals E1 and E2 are being output, and the flame judgment based on the received light signal E1 is suppressed without considering it as one element with flame.

(周波数分布の相関に基づく炎判断の処理動作)
図9は2つの受光信号の周波数分布の相関を判断する図1の判断部の処理動作の手順を示したフローチャートである。
(Processing operation of flame judgment based on frequency distribution correlation)
FIG. 9 is a flowchart showing a procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation of the frequency distributions of the two received signals.

(ステップS11)
まず、判断部15は、受光ユニット12a,12bから出力する受光信号E1,E2を、所定サンプリング周期でA/D変換ポート30a、30bを介して所定時間T、例えばT=2秒に亘り取り込み、バッファメモリに一時的に記憶する。
(Step S11)
First, the determination unit 15 captures the light receiving signals E1 and E2 output from the light receiving units 12a and 12b via the A / D conversion ports 30a and 30b at a predetermined sampling cycle for a predetermined time T, for example, T = 2 seconds. Temporarily store in buffer memory.

(ステップS12)
次いで、判断部15は、ステップS11で取り込んだ所定期間Tの受光信号E1,E2を4区間T1,T2,T3,T4に分割し、各区間T1〜T4の受光信号E1を高速フーリエ変換して8Hz以下の周波数範囲における相対レベル分布の積分値Σf11,Σf12,Σf13,Σf14と、受光信号E2について、高速フーリエ変換して8Hz以下の周波数範囲における相対レベルの積積分値Σf21,Σf22,Σf23,Σf24を算出する。
(Step S12)
Next, the determination unit 15 divides the light receiving signals E1 and E2 of the predetermined period T captured in step S11 into four sections T1, T2, T3, and T4, and fast Fourier transforms the light receiving signals E1 in each section T1 to T4. The integral values of the relative level distribution in the frequency range of 8 Hz or less Σf11, Σf12, Σf13, Σf14 and the received signal E2 are fast Fourier transformed and the product integral values of the relative levels in the frequency range of 8 Hz or less Σf21, Σf22, Σf23, Σf24. Is calculated.

なお、ステップS12以降の処理は、判断部15がA/D変換ポート30aから取り込んでいる受光信号E1の信号レベルが所定の閾値以上となった場合に実行することが望ましい。 It is desirable that the processes after step S12 be executed when the signal level of the light receiving signal E1 taken in from the A / D conversion port 30a by the determination unit 15 becomes equal to or higher than a predetermined threshold value.

(ステップS13)
次いで、判断部15は、ステップS12で算出した受光信号E1,E2の各区間T1〜T4の周波数の相対レベル分布の積分値の比Rf1,Rf2,Rf3,Rf4を前記式(8)〜(11)により算出する。
(Step S13)
Next, the determination unit 15 sets the ratio Rf1, Rf2, Rf3, Rf4 of the integrated values of the relative level distributions of the frequencies of the respective sections T1 to T4 of the received light signals E1 and E2 calculated in step S12 to the above equations (8) to (11). ).

(ステップS14)
次いで、判断部15は、最初の区間T1の周波数の相対レベル分布の積分値の比Rf1に基づき、下限閾値THf1と上限閾値THf2を、例えばTHf1=0.9・Rf1、THf2=1.1・Rf1に設定する。
(Step S14)
Next, the determination unit 15 sets the lower limit threshold value THf1 and the upper limit threshold value THf2, for example, THf1 = 0.9 · Rf1, THf2 = 1.1 ·. Set to Rf1.

(ステップS15)
次いで、判断部15は、ステップS13で算出した受光信号E1,E2の最初の区間T1に続く残り区間T2〜T4の周波数の相対レベル分布の積分値の比Rf2,Rf3,Rf4を前記式(12)〜(14)により下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲内となるか否か判定する。
(Step S15)
Next, the determination unit 15 sets the ratio Rf2, Rf3, Rf4 of the integrated values of the frequencies of the remaining sections T2 to T4 following the first section T1 of the received light signals E1 and E2 calculated in step S13 to the above equation (12). )-(14), it is determined whether or not the flame is within the flame determination threshold range having the lower limit threshold value TH1 and the upper limit threshold value TH2.

(ステップS16、S17)
次いで、判断部15は、ステップS16で前記式(12)〜(14)の全ての条件が成立することで炎判定閾範囲内にあることを判定した場合、受光信号E1,E2の周波数分布か概ね相似し、受光ユニット12a,12bは燃焼炎からの放射線エネルギーによる受光信号E1,E2を出力している推定し、炎判断の1要素と判定し、ステップS17に進んで、受光信号E1に基づく炎判断を許容する。
(Steps S16, S17)
Next, when the determination unit 15 determines in step S16 that all the conditions of the above equations (12) to (14) are satisfied and is within the flame determination threshold range, is it the frequency distribution of the received light signals E1 and E2? It is estimated that the light receiving units 12a and 12b are outputting the light receiving signals E1 and E2 due to the radiation energy from the combustion flame, and it is determined that the light receiving units 12a and 12b are one element of the flame judgment. Allow flame judgment.

(ステップS16、S18)
一方、判断部15は、ステップS16で前記式(12)〜(14)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、THf1=0.9・Rf1、THf2=1.1・Rf1とした炎判定閾範囲外にあることを判定した場合、受光ユニット12a,12bは燃焼炎以外の放射線エネルギーによる受光信号E1,E2を出力していると推定し、ステップS18に進んで、受光信号E1炎判断を抑止する。
(Steps S16, S18)
On the other hand, when the determination unit 15 determines in step S16 that at least one of the conditions of the above equations (12) to (14) is not satisfied, that is, THf1 = 0.9 · Rf1, THf2 = 1.1 · Rf1. When it is determined that the flame is out of the flame determination threshold range, it is estimated that the light receiving units 12a and 12b are outputting the light receiving signals E1 and E2 due to the radiation energy other than the combustion flame, and the process proceeds to step S18 to proceed to the light receiving signal. E1 Suppresses flame judgment.

[複数の受光素子を備えた受光ユニットの実施形態]
図10は受光ユニットに設けた複数の受光素子からの受光信号を加算する炎検出装置の他の実施形態による機能構成を示したブロック図である。
[Embodiment of a light receiving unit including a plurality of light receiving elements]
FIG. 10 is a block diagram showing a functional configuration according to another embodiment of a flame detection device that adds light receiving signals from a plurality of light receiving elements provided in the light receiving unit.

図10に示すように、本実施形態の受光ユニット12a,12bに設けた受光センサ16a,16bは、4つの受光素子22a,22bを各々備えている。受光素子22a,22bは、図2に示したカバー部材44a,44bの内部に配置した基板36a,36bの表側に例えば4個の焦電体25a,25bを配置し、図11の受光センサ16aの等価回路に示すように、焦電体25a、高抵抗29及びFET27aで構成した4つの受光素子22aを設け、各FET27aのドレインとゲートをそれぞれドレイン端子Dとゲート端子Gに共通接続し、各FET27aのソースはソース端子S1〜S4に個別に接続している。 As shown in FIG. 10, the light receiving sensors 16a and 16b provided in the light receiving units 12a and 12b of the present embodiment include four light receiving elements 22a and 22b, respectively. In the light receiving elements 22a and 22b, for example, four pyroelectric bodies 25a and 25b are arranged on the front side of the substrates 36a and 36b arranged inside the cover members 44a and 44b shown in FIG. As shown in the equivalent circuit, four light receiving elements 22a composed of a pyroelectric body 25a, a high resistance 29 and a FET 27a are provided, and the drain and the gate of each FET 27a are commonly connected to the drain terminal D and the gate terminal G, respectively, and each FET 27a Sources are individually connected to source terminals S1 to S4.

再び図10を参照するに、4つの受光素子22a,22bの出力は4つの前置フィルタ24a,24bを通過した後に、電流出力となる4つの受光信号を加算(電流加算)してプリアンプ26a,26bに入力している。 With reference to FIG. 10 again, the outputs of the four light receiving elements 22a and 22b pass through the four pre-filters 24a and 24b, and then the four light receiving signals that become the current outputs are added (current addition) to the preamplifier 26a, It is input to 26b.

ここで、4つの受光素子22aからの受光出力は、4つの前置フィルタ24aを通過した後に受光電流を加算してプリアンプ26aに入力していることから、ランダムなノイズ成分については電流加算による増加はほとんどなく、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを光電変換した信号成分の電流加算となり、S/N比を低下させることなく、1つの受光素子による受光出力の概ね4倍に相当する受光電流としての受光信号を生成可能とする。 Here, since the light-receiving outputs from the four light-receiving elements 22a are input to the preamplifier 26a by adding the light-receiving current after passing through the four pre-filters 24a, the random noise component is increased by the current addition. It is a current addition of the signal component obtained by photoelectric conversion of the radiation energy in the narrow band wavelength band centered at about 4.5 μm, which is emitted from the combustion flame by CO 2 resonance, and lowers the S / N ratio. Instead, it is possible to generate a light-receiving signal as a light-receiving current that corresponds to approximately four times the light-receiving output of one light-receiving element.

この点は、4つの受光素子22bからの出力についても同様であり、4つの前置フィルタ24bを通過した後に受光電流を加算してプリアンプ26bに入力していることから、ランダムなノイズ成分については電流加算による増加はほとんどなく、燃焼炎から放射される、概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを光電変換した信号成分の電流加算となり、S/N比を低下させることなく、1つの受光素子による受光出力の概ね4倍に相当する受光電流としての受光信号を生成可能とする。 This point is the same for the outputs from the four light receiving elements 22b, and since the light receiving current is added and input to the preamplifier 26b after passing through the four pre-filters 24b, the random noise component is not included. There is almost no increase due to current addition, and the current is added to the signal component that is obtained by photoelectrically converting the radiation energy in the narrow band wavelength band with a central wavelength of approximately 2.3 μm emitted from the combustion flame, and the S / N ratio is lowered. Instead, it is possible to generate a light-receiving signal as a light-receiving current that corresponds to approximately four times the light-receiving output of one light-receiving element.

このように光学ユニット12a,12bは、受光する燃焼炎から放射された放射線エネルギーが微弱であっても、4つの受光素子22a,22bで光電変換した受光信号を加算することで、受光ユニット12a,12はS/N比を低下することなく十分なレベルをもつ受光信号E1,E2を出力可能となり、炎検出エリアを大幅に拡大可能とする。 In this way, even if the radiation energy radiated from the light-receiving combustion flame is weak, the optical units 12a and 12b add the light-receiving signals converted by photoelectrics by the four light-receiving elements 22a and 22b, thereby causing the light-receiving units 12a and 12b. No. 12 can output light receiving signals E1 and E2 having a sufficient level without lowering the S / N ratio, and can greatly expand the flame detection area.

なお、プリアンプ26a,26bから判断部15までの構成及び機能は、図1の実施形態の場合と同様になることから、その説明を省略する。 Since the configurations and functions of the preamplifiers 26a and 26b to the determination unit 15 are the same as those of the embodiment of FIG. 1, the description thereof will be omitted.

また、受光センサ16a,16bに設ける受光素子22a,22bの数は必要に応じて適宜に定めることができる。また、受光センサ16a,16bに設ける受光素子22a,22bの数は同数としても良いし、その数を異ならせるようにしても良い。 Further, the number of the light receiving elements 22a and 22b provided in the light receiving sensors 16a and 16b can be appropriately determined as needed. Further, the number of the light receiving elements 22a and 22b provided in the light receiving sensors 16a and 16b may be the same, or the numbers may be different.

[トンネル用炎検出装置]
次に、図1の実施形態に示した炎検出装置の構成を、トンネル用の炎検出装置に適用した場合の実施形態について説明する。
[Tunnel flame detector]
Next, an embodiment when the configuration of the flame detection device shown in the embodiment of FIG. 1 is applied to the flame detection device for a tunnel will be described.

図12はトンネル内に設置して炎を監視する炎検出装置の他の実施形態を示したブロック図である。 FIG. 12 is a block diagram showing another embodiment of a flame detection device installed in a tunnel to monitor flames.

(受光ユニット12a,12b)
図12に示すように、受光ユニット12a,12bは、図1の実施形態と同じであり、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E1と概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E2を出力し、それぞれ判断部15に設けたA/D変換ポート30a,30bの各々でデジタル受光信号に変換して取り込んでいる。
(Light receiving units 12a, 12b)
As shown in FIG. 12, the light receiving units 12a and 12b are the same as those in the embodiment of FIG. 1, and are emitted from a combustion flame by CO 2 resonance in a narrow band wavelength band having a central wavelength of approximately 4.5 μm. The light receiving signal E1 that observes the energy and the light receiving signal E2 that observes the radiation energy in the narrow band wavelength band centered at about 2.3 μm are output, and the A / D conversion ports 30a and 30b provided in the determination unit 15 respectively. Each is converted into a digital received signal and captured.

(受光ユニット12c)
受光ユニット12cは、受光センサ16a,16bとは異なる所定の波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16cを備える。即ち、受光ユニット12cは、概ね5.0μm〜7.0μmの波長帯の放射線エネルギーを電気信号に変換した受光信号E3を出力する。
(Light receiving unit 12c)
The light receiving unit 12c includes a light receiving sensor 16c that converts radiation energy having a predetermined wavelength band different from that of the light receiving sensors 16a and 16b into an electric signal and outputs it. That is, the light receiving unit 12c outputs the light receiving signal E3 obtained by converting the radiation energy in the wavelength band of approximately 5.0 μm to 7.0 μm into an electric signal.

また、受光ユニット12cは、受光センサ16cに続いて、受光センサ16cから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24cと、前置フィルタ24cを通過した信号成分を初段増幅するプリアンプ26cと、プリアンプ26cからの出力を増幅するメインアンプ28cとで構成する。受光ユニット12cのメインアンプ28cから出力された受光信号E3は、判断部15のA/D変換ポート30cによりデジタル受光信号に変換して読み込まれ、炎の判断処理に用いられる。 Further, the light receiving unit 12c is a signal that has passed through the preamplifier filter 24c that allows only the signal component of a predetermined frequency band to pass from the light receiving signal output from the light receiving sensor 16c and the signal that has passed through the preamplifier filter 24c, following the light receiving sensor 16c. It is composed of a preamplifier 26c that amplifies the components in the first stage and a main amplifier 28c that amplifies the output from the preamplifier 26c. The light receiving signal E3 output from the main amplifier 28c of the light receiving unit 12c is converted into a digital light receiving signal by the A / D conversion port 30c of the determination unit 15 and read, and is used for the flame determination process.

(受光センサ16cの構成)
受光センサ16cは、概ね5.0μmを超える所定の波長帯の放射線を良好に透過するカットオンフィルタで構成されるロングパスフィルタである光学波長フィルタ20cと、光学波長フィルタ20cを透過した光を受光して電気信号に変換して出力する図3の等価回路でなる受光素子22cを備え、図2に示したと同様な構造により、パッケージ化された構成を有し、光学ユニット12a,12bの受光センサ16a,16bと共に、本体カバー46内に設けられた共通の取り付け部材48上に、互いに近接して所定の配列で配置している。
(Structure of light receiving sensor 16c)
The light receiving sensor 16c receives the optical wavelength filter 20c, which is a long-pass filter composed of a cut-on filter that satisfactorily transmits radiation in a predetermined wavelength band exceeding about 5.0 μm, and the light transmitted through the optical wavelength filter 20c. It is provided with a light receiving element 22c which is an equivalent circuit of FIG. 3 and is converted into an electric signal and output, and has a packaged configuration having a structure similar to that shown in FIG. , 16b and 16b are arranged in a predetermined arrangement in close proximity to each other on a common mounting member 48 provided in the main body cover 46.

(透光性窓18)
透光性窓18は、図2に示した受光センサ16a,16bと共に受光センサ16cが収納された本体カバー46の監視エリア側となる前面側に設けられた所定の開口部に配置され、例えば、サファイアガラス等の赤外線透光性の部材により形成され、受光センサ16a,16b、16cの受光素子22a,22b,22cは、各々の受光限界視野が透光性窓18の縁辺部で規制されることにより、略同一の拡がり角度を有する検知エリアが設定される。
(Translucent window 18)
The translucent window 18 is arranged in a predetermined opening provided on the front side of the main body cover 46, which houses the light receiving sensors 16a and 16b together with the light receiving sensors 16a and 16b shown in FIG. 2, on the monitoring area side. The light receiving elements 22a, 22b, 22c of the light receiving sensors 16a, 16b, 16c, which are formed of an infrared translucent member such as sapphire glass, have their respective light receiving limit fields of view regulated by the edge of the translucent window 18. Therefore, a detection area having substantially the same spread angle is set.

(受光センサ16a〜16cの波長透過特性)
図13は、図12の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Wavelength transmission characteristics of light receiving sensors 16a to 16c)
FIG. 13 is a characteristic diagram showing the transmittance of the optical wavelength filter and the translucent window applied to the embodiment of FIG. 12 at each wavelength.

図13に示すように、受光センサ16aの透過特性56と受光センサ16bの透過特性60は図5と同じになる。 As shown in FIG. 13, the transmission characteristic 56 of the light receiving sensor 16a and the transmission characteristic 60 of the light receiving sensor 16b are the same as those in FIG.

一方、受光センサ16cは、透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線エネルギーが良好に透過するショートウェーブパス特性52と、光学波長フィルタ20cを構成するロングパスフィルタの、概ね5.0μm付近を超える所定の波長帯の放射線エネルギーを良好に透過するカットオンフィルタ特性を有する透過率特性62との組合せにより、概ね5.0μm〜7.0μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性64をもつ広帯域バンドパスフィルタを構成する。 On the other hand, the light receiving sensor 16c has a short wave path characteristic 52 in which radiation energy of about 7.0 μm or less is satisfactorily transmitted by sapphire glass which is a translucent window 18, and a long pass filter constituting an optical wavelength filter 20c. By combining with the transmittance characteristic 62, which has a cut-on filter characteristic that satisfactorily transmits the radiation energy in a predetermined wavelength band exceeding about 5.0 μm, the radiation energy in the wavelength band of approximately 5.0 μm to 7.0 μm is increased. It constitutes a wideband bandpass filter having a transmission characteristic 64 that transmits with a transmittance.

(炎判断)
判断部15は、受光ユニット12a,12bから出力される受光信号E1,E2の所定期間の、相互の相関から炎有りの1要素を判断した場合、受光信号E1および受光ユニット12cから出力した受光信号E3を、A/D変換ポート30a,30cを介して所定時間取り込み、受光信号E1,E3毎に信号振幅の時間積分処理を行い、積分値ΣE1,ΣE3を算出する。ここで、積分値ΣE1,ΣE3は、便宜上、炎積分値ΣE1,非炎積分値ΣE3として区別する。
(Flame judgment)
When the determination unit 15 determines one element with flame from the mutual correlation of the light receiving signals E1 and E2 output from the light receiving units 12a and 12b for a predetermined period, the light receiving signal E1 and the light receiving signal output from the light receiving unit 12c are output. E3 is taken in via the A / D conversion ports 30a and 30c for a predetermined time, and the signal amplitude is time-integrated for each received signal E1 and E3 to calculate the integrated values ΣE1 and ΣE3. Here, the integrated values ΣE1 and ΣE3 are distinguished as the flame integrated value ΣE1 and the non-flame integrated value ΣE3 for convenience.

次いで、判断部15は、炎積分値ΣE1が、予め設定された基準レベル以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、炎積分値ΣE1が基準レベルを超えた場合には、非炎積分値ΣE3との相対比(ΣE1/ΣE3)を算出し、相対比(ΣE1/ΣE3)が、予め設定された閾値を超えた場合は、炎と判定して炎判断の1要素とし、閾値以下の場合には、例えば、人体や車両等の炎以外の比較的低温の放射線源による受光出力があったものとして、炎判断は抑止して行わない。 Next, the determination unit 15 determines that the light receiving output corresponding to the flame has not been detected when the flame integral value ΣE1 is equal to or lower than the preset reference level, while the flame integral value ΣE1 is the reference level. If it exceeds, the relative ratio (ΣE1 / ΣE3) with the non-flame integral value ΣE3 is calculated, and if the relative ratio (ΣE1 / ΣE3) exceeds the preset threshold, it is determined as a flame. It is one element of the flame judgment, and if it is below the threshold value, for example, it is assumed that there is a light receiving output from a relatively low temperature radiation source other than the flame of a human body or a vehicle, and the flame judgment is not suppressed.

なお、判断部15は、受光ユニット12a,12bから出力される受光信号E1,E2の所定期間の、相互の相関から炎有りの1要素を判断した場合、図1の実施形態に示したように、A/D変換ポート30aを介して所定時間取り込んだ受光信号E1の高速フーリエ変換による8Hz以下の周波数帯域の周波数分布を他の1要素とし、複数の要素に基づく複合的な炎判断を行うようにしてもよい。 When the determination unit 15 determines one element with flame from the mutual correlation of the light receiving signals E1 and E2 output from the light receiving units 12a and 12b for a predetermined period, as shown in the embodiment of FIG. , The frequency distribution of the frequency band of 8 Hz or less by the fast Fourier transform of the received signal E1 captured for a predetermined time via the A / D conversion port 30a is set as another element, and the complex flame judgment based on a plurality of elements is performed. It may be.

[本発明の変形例]
上記の実施形態は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比から燃焼炎の有無を判定しているが、信号積分値の比に限定されず、各受光信号の相関係数等の適宜の値による相互の相関から燃焼炎の有無を判定しても良い。
[Modification of the present invention]
In the above embodiment, the cross-correlation of each received signal is obtained by dividing each received signal for a predetermined period into a plurality of time sections, and determining the presence or absence of a combustion flame from the ratio of the signal integral values of the divided sections. However, the presence or absence of the combustion flame may be determined from the cross-correlation of appropriate values such as the correlation coefficient of each received signal, without being limited to the ratio of the signal integral values.

また、上記の実施形態は、トンネル用の炎検出装置として、燃焼炎のCO2共鳴放射帯である4.5μm付近の波長帯と2.3μm付近の波長帯の放射線エネルギーの観測による相関と、及び5.0μm付近の波長帯における放射線エネルギーを観測して炎を判定しているが、4.5μm付近の波長帯と2.3μmの波長帯の放射線エネルギーの観測による相関と、3.8μm付近の波長帯における放射線エネルギーを観測して炎の有無を判定するようにしても良い。 Further, in the above embodiment, as a flame detection device for a tunnel, there is a correlation between observation of radiation energy in a wavelength band of around 4.5 μm, which is the CO 2 resonance radiation band of a combustion flame, and a wavelength band of around 2.3 μm. And the radiation energy in the wavelength band around 5.0 μm is observed to judge the flame, but the correlation by the observation of the radiation energy in the wavelength band around 4.5 μm and the wavelength band of 2.3 μm and around 3.8 μm The presence or absence of a flame may be determined by observing the radiation energy in the wavelength band of.

また、4.5μm付近の波長帯と2.3μmの波長帯の放射線エネルギーの観測による相関に加え、3.8μm付近の波長帯及び5.0μm付近の波長帯における放射線エネルギーを観測して炎の有無を判定するにようにしても良い。 In addition to the correlation by observing the radiation energy in the wavelength band around 4.5 μm and the wavelength band of 2.3 μm, the radiation energy in the wavelength band around 3.8 μm and the wavelength band around 5.0 μm was observed to observe the flame. The presence or absence may be determined.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。 In addition, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not limited by the numerical values shown in the above embodiments.

10:炎検出装置
12a,12b,12c:受光ユニット
15:判断部
16a,16b,16c:受光センサ
18:透光性窓
20a,20b,20c:光学波長フィルタ
22a,22b,22c:受光素子
24a,24b,24c:前置フィルタ
25a,25b:焦電体
26a,26b,26c:プリアンプ
27a,27b:FET
28a,28b,28c:メインアンプ
30a,30b,30c:A/D変換ポート
10: Flame detection device 12a, 12b, 12c: Light receiving unit 15: Judgment unit 16a, 16b, 16c: Light receiving sensor 18: Translucent window 20a, 20b, 20c: Optical wavelength filter 22a, 22b, 22c: Light receiving element 24a, 24b, 24c: Pre-filter 25a, 25b: Pyroelectric body 26a, 26b, 26c: Preamplifier 27a, 27b: FET
28a, 28b, 28c: Main amplifier 30a, 30b, 30c: A / D conversion port

Claims (3)

監視領域の、それぞれ異なる所定波長帯の放射線エネルギーを観測した受光信号を出力する複数の受光ユニットと、
前記各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号から求めたそれぞれの信号振幅の、前記各受光信号間の相互の相関を燃焼炎の有無判断の第1の要素とする判断部と、
を備え、
前記判断部は、前記第1の要素として、前記所定期間分の前記各受光信号をそれぞれ複数の時間区間に対応する複数の分割区間に分割し、当該所定期間内の複数の前記分割区間のうち基準となる分割区間についての前記信号振幅の積分値の、前記各受光信号間の相互の比に対する、他の分割区間についての前記信号振幅の積分値の比に基づいて燃焼炎の有無を判断することを特徴とする炎検出装置。
A plurality of light receiving units that output light receiving signals that observe radiation energy in different predetermined wavelength bands in the monitoring area, and
The first element of determining the presence or absence of a combustion flame is the cross-correlation between the light-receiving signals of each signal amplitude obtained from each light-receiving signal for a predetermined period observed and output by each light-receiving unit at substantially the same time. Judgment department and
With
As the first element, the determination unit divides each received signal for the predetermined period into a plurality of divided sections corresponding to a plurality of time sections, and among the plurality of divided sections within the predetermined period. The presence or absence of a combustion flame is determined based on the ratio of the integrated value of the signal amplitude for the reference divided section to the mutual ratio between the received signals to the integrated value of the signal amplitude for the other divided sections. A flame detection device characterized by the fact that.
請求項1記載の炎検出装置に於いて、前記判断部は、燃焼炎の有無判断の第2の要素として、前記所定期間分の各受光信号のうち少なくとも1つの受光信号に基づいて燃焼炎の有無を判断し、前記第1の要素の判断結果と前記第2の要素の判断結果とに基づいて炎を検出することを特徴とする炎検出装置。
In the flame detection device according to claim 1, the determination unit determines the presence or absence of a combustion flame as a second element of determining the presence or absence of a combustion flame based on at least one of the received signals for the predetermined period. A flame detection device characterized in that the presence or absence is determined and a flame is detected based on the determination result of the first element and the determination result of the second element.
請求項2記載の炎検出装置に於いて、前記判断部は、前記第2の要素として、前記少なくとも1つの受光信号の信号振幅が所定の閾値以上の場合、燃焼炎有りと判断することを特徴とする炎検出装置。 In the flame detection device according to claim 2, the determination unit determines, as the second element, that there is a combustion flame when the signal amplitude of at least one received signal is equal to or greater than a predetermined threshold value. Flame detection device.
JP2021093398A 2020-05-22 2021-06-03 flame detector Active JP7170791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021093398A JP7170791B2 (en) 2020-05-22 2021-06-03 flame detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089971A JP6894551B2 (en) 2018-12-10 2020-05-22 Flame detector
JP2021093398A JP7170791B2 (en) 2020-05-22 2021-06-03 flame detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020089971A Division JP6894551B2 (en) 2018-12-10 2020-05-22 Flame detector

Publications (2)

Publication Number Publication Date
JP2021144737A true JP2021144737A (en) 2021-09-24
JP7170791B2 JP7170791B2 (en) 2022-11-14

Family

ID=77766946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021093398A Active JP7170791B2 (en) 2020-05-22 2021-06-03 flame detector

Country Status (1)

Country Link
JP (1) JP7170791B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378899A (en) * 1989-08-23 1991-04-04 Nippon Mining Co Ltd Fire detector
JP2001356047A (en) * 2000-06-14 2001-12-26 Hochiki Corp Flame detector and method for setting its detection sensitivity
JP2003217047A (en) * 2002-01-22 2003-07-31 Nohmi Bosai Ltd Flame detector
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378899A (en) * 1989-08-23 1991-04-04 Nippon Mining Co Ltd Fire detector
JP2001356047A (en) * 2000-06-14 2001-12-26 Hochiki Corp Flame detector and method for setting its detection sensitivity
JP2003217047A (en) * 2002-01-22 2003-07-31 Nohmi Bosai Ltd Flame detector
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor

Also Published As

Publication number Publication date
JP7170791B2 (en) 2022-11-14

Similar Documents

Publication Publication Date Title
US5373159A (en) Method for detecting a fire condition
EP2423896A1 (en) Flame monitoring device and flame monitoring method
JPWO2018198504A1 (en) Abnormality detector
JP6894551B2 (en) Flame detector
JP6526971B2 (en) Flame detector
JP6430795B2 (en) Flame detection device
JP2021144737A (en) Flame detection device
CA2703457C (en) Device and method for detecting flames by means of detectors
JP6748696B2 (en) Flame detector
JP7400034B2 (en) flame detection device
JP7032982B2 (en) Flame detector
JP7184269B2 (en) Flame detector
JP7061517B2 (en) Flame detector
JP7011969B2 (en) Flame detector
JP7114306B2 (en) Flame detector
RU78345U1 (en) OPTICAL FIRE DETECTOR
JPH06331755A (en) Human body detector equipped with function for detecting abnormality such as fire
JP2022036295A (en) Flame detection device
JP7462722B2 (en) Flame Detection Device
JP2022087327A (en) Flame detector
RU2236026C1 (en) Seismic signal detector
JP5797992B2 (en) Flame detector and flame judgment method
PL197908B1 (en) Method of correction of interference in infrared receivers
JP2018044792A (en) Flame detector
GB2513366A (en) Improvements in or relating to optical beam detectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7170791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150