JP4427911B2 - Seismograph - Google Patents

Seismograph Download PDF

Info

Publication number
JP4427911B2
JP4427911B2 JP2001044716A JP2001044716A JP4427911B2 JP 4427911 B2 JP4427911 B2 JP 4427911B2 JP 2001044716 A JP2001044716 A JP 2001044716A JP 2001044716 A JP2001044716 A JP 2001044716A JP 4427911 B2 JP4427911 B2 JP 4427911B2
Authority
JP
Japan
Prior art keywords
time
filter
vibration
vibration detection
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001044716A
Other languages
Japanese (ja)
Other versions
JP2002243531A (en
Inventor
康裕 梅景
利則 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001044716A priority Critical patent/JP4427911B2/en
Publication of JP2002243531A publication Critical patent/JP2002243531A/en
Application granted granted Critical
Publication of JP4427911B2 publication Critical patent/JP4427911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスメータなどに設置されて地震の振動を検知する振動検出装置に関するものである。
【0002】
【従来の技術】
従来、この種の振動検出装置は、特開2000−206263号公報のようなものが知られていた。以下、その方法について図7を参照しながら説明する。
【0003】
図7に示すように、地震の振動に応じてアナログ信号を出力する加速度センサ1、2、3と、加速度センサの駆動回路4、5、6と、ノイズ除去用フィルタ7、8、9と、マイコン10を備えた構成となっていた。ここで、11はリセットスイッチ、12はSI有無スイッチ、13は演算開始設定器、14は基準設定器、15は充電器、16は電源スイッチ、17はフォトカプラ、18は表示器、19は表示機駆動回路、20は計測リセットである。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、図3に示す震度算出手順に従って計測震度を演算する方法で、マイコンによる演算処理によって計測震度を検出していた。この方法では、フーリエ変換など高速の演算処理が必要となり、消費電流を多く消耗するので電池で長期間動作させることは困難であった。そのため、充電器を用いて逐次充電しながら使用しなければならないという課題を有していた。本発明は、フィルタ手段と時間積算手段、時間判定手段によって低消費電力とし長期間動作可能な感震器を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の感震器は、地震動などを検出する振動検出手段と、計測震度のフィルタ特性を実現するフィルタ手段と、前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号が所定レベル以上になる時間を積算する時間積算手段と、前記時間積算手段が積算する積算時間が所定時間以上になるか否かを判定する時間判別手段とを備えたものである。
【0006】
これによって、フーリエ変換を用いることなくフィルタ手段で気象庁の定める計測震度の検出が可能となり、高速処理マイコンを使用することなく計測震度が検出できるので低消費電力で動作させることができる。
【0007】
【発明の実施の形態】
請求項1に記載の発明は、地震動などを検出する複数の振動検出手段と、前記複数の振動検出手段に対応して設けられ、前記振動検出手段で検出される計測震度を示す出力信号のフィルタ特性を実現する複数のフィルタ手段と、前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号が所定レベル以上になる時間を積算する時間積算手段と、前記時間積算手段が積算する積算時間が所定時間以上になるか否かを判定する時間判別手段と、前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号のそれぞれが所定レベルを超えるか否かを判定するレベル判定手段と、前記レベル判定手段の出力が変化したか否かを判定する出力判定手段とを備え、前記出力判定手段が前記レベル判定手段が前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号のうち1つ以上が所定レベルを超えたと判定した場合に、前記時間積算手段と前記時間判別手段を動作させることにより、フーリエ変換を用いることなくフィルタ手段で気象庁の定める計測震度の検出が可能となり、時間を積算して判別する簡便な方法で行えるので、高速処理マイコンを使用することなく計測震度が検出できるので低消費電力で動作させることができる。
【0008】
請求項2に記載の発明は、振動検出手段は、圧電型の振動加速度検出手段を用いて3次元方向の振動が検出可能なように配置した3次元振動検出手段からなる構成とすることにより、圧電型の振動加速度検出手段を用いることで、振動子自身が発電するので増幅を最小限に抑えることができ低消費電力とすることができる。
【0009】
請求項3に記載の発明は、フィルタ手段は、第1のカットオフ周波数を有するハイパスフィルタ回路と、第2のカットオフ周波数を有するローパスフィルタ回路とを、それぞれ少なくとも1段以上備えことにより、各フィルタ回路を組み合わせることでフィルタを実現し、フーリエ変換を用いることなくフィルタ手段で気象庁の定める計測震度の検出が可能とすることができる。
【0010】
請求項4に記載の発明は、濾過した信号が、複数個の所定レベルを超える時間をそれぞれ各所定レベル毎に積算する時間積算手段を備えて複数段階の計測震度を判別する時間判別手段を備えることにより、複数個の判定レベルの個数と所定のレベルを限定することで、必要なときだけ動作して積算時間などを検出するので低消費電力とすることができる。
【0014】
請求項5に記載の発明は、振動検出手段とフィルタ手段と時間積算手段と時間判別手段は、電池で駆動され、電源を電池とすることで、電源工事が不要となり、電源のない屋外でも使用することができるとともに、ライフラインの商用電源の供給が閉ざされた場合でも使用することができる。
【0015】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0016】
図1は本発明の実施例1の感震器を示すブロック図である。図1において、21は3方向の振動加速度を検出する振動検出手段としての圧電方式の振動センサ、22は気象庁の定めた計測震度のフィルタ特性(参考文献;官報第1831号気象庁告示第4号気象業務法施行規則に関する告示)を擬似的に再現したフィルタ手段としてのフィルタ回路と、23は振動センサ10の出力信号の一部をフィルタ回路22で濾過した信号を検出するレベル判定手段、24は出力判定手段、25はA/D変換器、26は3個のA/D変換器の出力信号をベクトル合成する合成手段、27は合成された信号波形が所定レベル以上のとき時間を積算する時間積算手段、28は、積算時間が所定時間以上か否かを判定する時間判別手段、29は時間判別手段によって判別された条件によって計測震度を判別する地震判別手段、30は出力判定手段の信号を受けるトリガ入力、31は以上の処理を行うマイコン、32はこれらの手段に電力を供給する電池である。ここで、33は振動センサの信号増幅用のアンプ、34は振動センサ10とアンプ14を一体にした振動センサ装置、35は計測震度が異常の時、地震を報知する報知手段である。そして、フィルタ回路22は、図2に示すようにハイパスフィルタ回路36と、第1のローパスフィルタ回路37と、第2のローパスフィルタ回路38とから構成した。
【0017】
次に動作、作用について図3から図6を用いて説明する。計測震度は、図3に示すフローチャートの手順によって求められる。まず、振動センサ21によって検出された東西、南北、上下の3方向の振動加速度信号に、周波数軸で所定の重み付けを行うフィルタ処理を行う。そして、それぞれフィルタ処理された3方向の成分をベクトル合成した信号から継続時間の考慮を行うため、0.3秒以上継続する加速度レベルを求め、所定の式に代入して計測震度を求めるものである。ここで、フーリエ変換を行うためには、通常信号処理プロセッサが用いられるが、電池で長期間動作させるために、フィルタ処理をフィルタ回路で実現して、近似的に計測震度を検出することとした。
【0018】
まず、振動センサの信号は、図4に示すような3つのフィルタ回路22、すなわち、ハイパスフィルタ、第1のローパスフィルタ、第2のローパスフィルタを直列に接続してフィルタ回路により信号を濾過することによって、図5に示されるような利得Aをピークにしたバンドパスフィルタ特性の重み付けを行う。そして、フィルタ回路22を通過した信号が、所定レベルか否かを判別するレベル判別手段23を各フィルタの出力段に設けた。この3つのレベル判定手段23のうち、少なくともひとつ以上が所定レベルを超えたと判別したとき、出力判定手段24がマイコン31にトリガ信号を出力する。この信号を受けて、マイコン31がフィルタ回路透過後の3つの信号をA/D変換して入力し合成手段26によってベクトル合成の処理動作を行う。例えば、所定レベルは、25から100cm/s2の間の80cm/s2で設定する。このレベルを超えるまで、マイコン31は動作しなくて良いので、電池の消費電力を抑えることができるのである。
【0019】
そして、このトリガ信号が入力された後、マイコン31は図6に示すような次の処理を行う。すなわち、ベクトル合成した信号が所定レベル以上となる時間を時間積算手段27によって積算する。例えば、計測震度I1=5を検出するには、式I=2・Log(a0)+Kより、a0を逆算してa0=107cm/s2を求め、所定レベルを107に設定する。そしてベクトル合成した信号が所定レベル(例えば、107)以上の継続時間が、0.3秒以上となるか否かを検出する時間判別手段28によって計測震度5を判別するのである。ここで、Kは、補正係数で0.94を使用する。また、計測震度I2=6の場合も同様に、a1=339cm/s2以上の信号の時間を積算して0.3秒以上となるか否かを判別することによって、計測震度6が判定でき、計測震度5と6の2段階の計測震度判別が可能になるのである。
【0020】
計測震度5のときは、報知1の処理、例えば異常表示通報を行う。また、計測震度6以上のときは、報知2の処理、例えば報知音を鳴らす通報を行う。このように、計測震度によって、処理を変えることができるので、様々な場合に適用することができる効果がある。
【0021】
このように、時間積算手段と時間判別手段を用いて特定の計測震度に限定して計測震度を検出することで、低消費電力で地震のレベルを複数段階に検出することができる。また、フーリエ変換を用いることなくフィルタ手段で気象庁の定める計測震度の検出が精度良く可能となり、時間を積算して判別する簡便な方法で行えるので、高速処理マイコンを使用することなく計測震度が検出できるので低消費電力で動作させることができる。そして、圧電型の振動加速度検出手段を用いることで、振動子自身が発電するので増幅を最小限に抑えることができ低消費電力とすることができる。そして、各フィルタ回路を組み合わせることでフィルタを実現し、フーリエ変換を用いることなくフィルタ手段で気象庁の定める計測震度の検出が可能とすることができる。そして、複数個と所定のレベルに限定することで、必要なときだけ動作して積算時間などを検出するので低消費電力で判別することができる。そして、レベル判定手段で濾過信号を判別することで、低レベルの振動の有無をマイコンが動作することなく判定できるので低消費電力とすることができる。そして、3次元方向の振動のうち、1方向でも設定した低レベルの振動を検知すれば、時間積算手段が動作するので、地震を見逃すことがない検出を行うことができる。そして、レベル判定手段後に、各手段を動作させることで低消費電力とすることができる。そして、電源を電池とすることで、電源工事が不要で、電源のない屋外でも使用することができるとともに、ライフラインの商用電源の供給が閉ざされた場合でも使用することができる。
【0022】
なお、3次元の振動検知は東西、南北、上下方向となっているが、必ずしもその方向に設置する必要はない。3個の振動センサは互いに直交しているので、どの方向に設置しても、3方向の信号をベクトル合成することで、同等の信号が得られることは明白である。そして、圧電型の振動検出手段で説明したが、低消費電力が進めば、静電容量型や歪み抵抗型でも同様にな効果を得ることができる。さらに、計測震度5と6で説明したが、使用する場所、機器、システムなどに応じて設定値を適時変更することが望ましい。また、ガスの供給設備の保安管理に用いる場合は報知だけでなく、ガス流量計やガス遮断弁などを用いてガスの流量に応じてガスを遮断する処置を複数段階に設定することができる。さらに、レベル判定手段23を用いて説明したが、常時マイコンで積算時間を検出して所定の処理を行えば、レベル判定手段なしでも計測震度の複数段階検出を実現することができる。
【0023】
【発明の効果】
以上説明したように本発明の感震器によれば、次の効果が得られる。
【0024】
本発明は、地震動などを検出する振動検出手段と、計測震度のフィルタ特性を実現するフィルタ手段と、前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号が所定レベル以上になる時間を積算する時間積算手段と、前記時間積算手段が積算する積算時間が所定時間以上になるか否かを判定する時間判別手段とを備えることで、フーリエ変換を用いることなくフィルタ手段で気象庁の定める計測震度の検出が可能となり、時間を積算して判別する簡便な方法で行えるので、高速処理マイコンを使用することなく計測震度が検出できるので低消費電力で動作させることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の感震器のブロック図
【図2】同感震器のフィルタ手段を示すブロック図
【図3】計測震度を求めるフローチャート
【図4】同感震器のフィルタ回路の特性を示す特性図
【図5】同感震器のフィルタ回路の特性を示す特性図
【図6】同感震器の処理を示すフローチャート
【図7】従来の感震器を示すブロック図
【符号の説明】
21 振動センサ(振動検出手段)
22 フィルタ回路(フィルタ手段)
23 レベル判定手段
24 出力判定手段
27 時間積算手段
28 時間判別手段
32 電池
36 ハイパスフィルタ回路(フィルタ手段)
37 第1のローパスフィルタ回路(フィルタ手段)
38 第2のローパスフィルタ回路(フィルタ手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration detection apparatus that is installed in a gas meter or the like and detects earthquake vibration.
[0002]
[Prior art]
Conventionally, this type of vibration detection apparatus is known as disclosed in Japanese Patent Application Laid-Open No. 2000-206263. The method will be described below with reference to FIG.
[0003]
As shown in FIG. 7, acceleration sensors 1, 2, and 3 that output analog signals in response to earthquake vibration, acceleration sensor drive circuits 4, 5, and 6, noise removal filters 7, 8, and 9, The configuration provided with the microcomputer 10. Here, 11 is a reset switch, 12 is an SI presence / absence switch, 13 is an operation start setting device, 14 is a reference setting device, 15 is a charger, 16 is a power switch, 17 is a photocoupler, 18 is a display, 19 is a display The machine drive circuit 20 is a measurement reset.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the measured seismic intensity is detected by the calculation process by the microcomputer by the method of calculating the measured seismic intensity according to the seismic intensity calculating procedure shown in FIG. This method requires high-speed arithmetic processing such as Fourier transform, and consumes a large amount of current, so that it is difficult to operate with a battery for a long time. Therefore, there has been a problem that the battery must be used while being sequentially charged using a charger. An object of the present invention is to provide a seismic device that can operate for a long period of time with low power consumption by means of filter means, time integration means, and time determination means.
[0005]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the seismic sensor according to the present invention includes a vibration detection unit that detects seismic motion and the like, a filter unit that realizes a filter characteristic of measured seismic intensity, and an output signal of the vibration detection unit. A time integrating means for integrating the time when the signal filtered by the means is equal to or higher than a predetermined level, and a time determining means for determining whether the integrated time accumulated by the time integrating means is equal to or longer than a predetermined time. is there.
[0006]
This makes it possible to detect the seismic intensity determined by the Japan Meteorological Agency using the filter means without using Fourier transform, and the seismic intensity can be detected without using a high-speed processing microcomputer, so that it can be operated with low power consumption.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is provided with a plurality of vibration detecting means for detecting seismic motion and the like, and an output signal filter provided corresponding to the plurality of vibration detecting means and indicating a measured seismic intensity detected by the vibration detecting means. A plurality of filter means for realizing the characteristics, a time integrating means for integrating the time when a signal obtained by filtering the output signal of the vibration detecting means by the filter means exceeds a predetermined level, and an integrated time accumulated by the time integrating means Time determining means for determining whether or not a predetermined time or more, level determining means for determining whether or not each of the signals obtained by filtering the output signal of the vibration detecting means by the filter means exceeds a predetermined level, and Output determination means for determining whether or not the output of the level determination means has changed, wherein the output determination means causes the level determination means to output the output signal of the vibration detection means. If one or more of the filtered signal by filter means is determined to have exceeded a predetermined level, by operating the time determination means and said time integrating means, prescribed by the Japan Meteorological Agency filter means without using the Fourier transform measurement The seismic intensity can be detected and a simple method of integrating and discriminating time can be performed, so that the measured seismic intensity can be detected without using a high-speed processing microcomputer, so that it can be operated with low power consumption.
[0008]
According to a second aspect of the present invention, the vibration detection means comprises a three-dimensional vibration detection means arranged so that vibration in a three-dimensional direction can be detected using a piezoelectric vibration acceleration detection means. By using the piezoelectric vibration acceleration detecting means, the vibrator itself generates power, so that amplification can be minimized and low power consumption can be achieved.
[0009]
According to a third aspect of the present invention, the filter means includes at least one or more stages of a high-pass filter circuit having a first cutoff frequency and a low-pass filter circuit having a second cutoff frequency. A filter can be realized by combining filter circuits, and the seismic intensity determined by the Japan Meteorological Agency can be detected by the filter means without using Fourier transform.
[0010]
The invention according to claim 4 includes time discriminating means for discriminating a plurality of levels of measured seismic intensity by providing time accumulating means for accumulating the time when the filtered signal exceeds a plurality of predetermined levels for each predetermined level. Thus, by limiting the number of the determination levels and the predetermined level, the operation is performed only when necessary to detect the accumulated time and the like, so that the power consumption can be reduced.
[0014]
According to the fifth aspect of the present invention, the vibration detecting means, the filter means, the time integrating means, and the time discriminating means are driven by a battery, and the power source is a battery, so that no power supply work is required, and it can be used outdoors without a power source. It can be used even when the supply of commercial power to the lifeline is closed.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
FIG. 1 is a block diagram showing a seismic device according to Embodiment 1 of the present invention. In FIG. 1, 21 is a piezoelectric vibration sensor as a vibration detecting means for detecting vibration acceleration in three directions, 22 is a filter characteristic of measured seismic intensity determined by the Japan Meteorological Agency (reference document; Gazette No. 1831, Meteorological Agency announcement No. 4 weather) A filter circuit as a filter means that reproduces the business law enforcement regulations), 23 a level determination means for detecting a signal obtained by filtering a part of the output signal of the vibration sensor 10 by the filter circuit 22, and 24 an output. Determining means, 25 is an A / D converter, 26 is a synthesizing means for vector synthesis of the output signals of the three A / D converters, and 27 is a time integration for integrating time when the synthesized signal waveform is above a predetermined level. Means 28 is a time discriminating means for judging whether or not the accumulated time is a predetermined time or more, and 29 is an earthquake discriminating which discriminates the measured seismic intensity according to the conditions discriminated by the time discriminating means Stage, 30 signal receiving trigger inputs output determining unit 31 performs the above processing microcomputer 32 is a battery for supplying electric power to these means. Here, 33 is an amplifier for signal amplification of the vibration sensor, 34 is a vibration sensor device in which the vibration sensor 10 and the amplifier 14 are integrated, and 35 is a notification means for notifying an earthquake when the measured seismic intensity is abnormal. The filter circuit 22 includes a high-pass filter circuit 36, a first low-pass filter circuit 37, and a second low-pass filter circuit 38 as shown in FIG.
[0017]
Next, operation | movement and an effect | action are demonstrated using FIGS. 3-6. The measured seismic intensity is obtained by the procedure of the flowchart shown in FIG. First, a filter process is performed that performs predetermined weighting on the frequency axis on vibration acceleration signals in three directions of east-west, north-south, and up-down detected by the vibration sensor 21. Then, in order to consider the duration from the signal obtained by vector synthesis of the filtered three-way components, the acceleration level that lasts for 0.3 seconds or more is obtained, and the measured seismic intensity is obtained by substituting it into a predetermined equation. is there. Here, in order to perform the Fourier transform, a signal processor is usually used, but in order to operate with a battery for a long period of time, filter processing is realized with a filter circuit, and the measured seismic intensity is approximately detected. .
[0018]
First, the signal of the vibration sensor is filtered by a filter circuit by connecting three filter circuits 22 as shown in FIG. 4, that is, a high-pass filter, a first low-pass filter, and a second low-pass filter in series. Thus, the weighting of the bandpass filter characteristic with the gain A as a peak as shown in FIG. 5 is performed. And the level discrimination | determination means 23 which discriminate | determines whether the signal which passed the filter circuit 22 is a predetermined level was provided in the output stage of each filter. When it is determined that at least one of the three level determination means 23 has exceeded a predetermined level, the output determination means 24 outputs a trigger signal to the microcomputer 31. In response to this signal, the microcomputer 31 performs A / D conversion on the three signals that have passed through the filter circuit and inputs them, and the combining means 26 performs a vector combining processing operation. For example, the predetermined level is set at 80 cm / s 2 between 25 and 100 cm / s 2 . Since the microcomputer 31 does not have to operate until this level is exceeded, the power consumption of the battery can be suppressed.
[0019]
After the trigger signal is input, the microcomputer 31 performs the following process as shown in FIG. That is, the time integration means 27 integrates the time during which the vector synthesized signal is equal to or higher than a predetermined level. For example, in order to detect the measured seismic intensity I1 = 5, a0 is calculated backward from the formula I = 2 · Log (a0) + K to obtain a0 = 107 cm / s 2 , and the predetermined level is set to 107. Then, the measured seismic intensity 5 is discriminated by the time discriminating means 28 for detecting whether or not the duration of the vector synthesized signal is not less than a predetermined level (for example, 107) is 0.3 seconds or more. Here, K uses a correction coefficient of 0.94. Similarly, in the case of the measured seismic intensity I2 = 6, the measured seismic intensity 6 can be determined by accumulating the signal times of a1 = 339 cm / s 2 or more and determining whether or not it is 0.3 seconds or more. The seismic intensity can be determined in two stages of seismic intensity 5 and 6.
[0020]
When the measured seismic intensity is 5, processing of the notification 1, for example, an abnormal display notification is performed. Further, when the measured seismic intensity is 6 or more, the notification 2 is processed, for example, a notification is sounded. As described above, since the process can be changed depending on the measured seismic intensity, there is an effect that can be applied to various cases.
[0021]
In this way, by detecting the measured seismic intensity by limiting to a specific measured seismic intensity using the time integrating means and the time discriminating means, the level of the earthquake can be detected in a plurality of stages with low power consumption. In addition, measurement seismic intensity determined by the Japan Meteorological Agency can be accurately detected by filter means without using Fourier transform, and it can be performed by a simple method of integrating and discriminating time, so measurement seismic intensity can be detected without using a high-speed processing microcomputer. Therefore, it can be operated with low power consumption. Then, by using the piezoelectric vibration acceleration detecting means, the vibrator itself generates power, so that amplification can be minimized and low power consumption can be achieved. A filter is realized by combining each filter circuit, and the seismic intensity measured by the Japan Meteorological Agency can be detected by the filter means without using Fourier transform. Further, by limiting the number to a predetermined level, the operation is performed only when necessary, and the accumulated time and the like are detected, so that the determination can be made with low power consumption. Then, by discriminating the filtered signal with the level determining means, it is possible to determine whether or not there is a low level of vibration without operating the microcomputer, so that low power consumption can be achieved. If the low-level vibration set in one direction is detected among the vibrations in the three-dimensional direction, the time accumulating unit operates, so that detection that does not miss the earthquake can be performed. And after a level determination means, it can be made low power consumption by operating each means. By using a battery as the power source, power supply work is not required, and it can be used outdoors without a power source, and can be used even when the supply of commercial power to the lifeline is closed.
[0022]
Although three-dimensional vibration detection is in the east-west, north-south, and up-down directions, it is not always necessary to install in that direction. Since the three vibration sensors are orthogonal to each other, it is obvious that an equivalent signal can be obtained by vector synthesis of signals in the three directions regardless of the direction. The piezoelectric vibration detecting means has been described, but if low power consumption is advanced, the same effect can be obtained even in the capacitance type and the strain resistance type. Furthermore, as explained in the measurement seismic intensities 5 and 6, it is desirable to change the set values in a timely manner according to the place, equipment, system, etc. to be used. Moreover, when using it for the security management of gas supply equipment, it is possible to set not only a notification but also a gas flow meter, a gas shut-off valve, or the like to shut off the gas according to the gas flow rate in a plurality of stages. Further, although the level determination means 23 has been described, the multistage detection of the measured seismic intensity can be realized without the level determination means if the integrated time is always detected by a microcomputer and predetermined processing is performed.
[0023]
【The invention's effect】
As described above, according to the seismic device of the present invention, the following effects can be obtained.
[0024]
The present invention integrates vibration detection means for detecting seismic motion and the like, filter means for realizing a filter characteristic of measured seismic intensity, and a time when a signal obtained by filtering the output signal of the vibration detection means by the filter means is equal to or higher than a predetermined level. And a time discriminating means determined by the Japan Meteorological Agency without using a Fourier transform. Can be detected by a simple method of integrating and discriminating time, so that the measured seismic intensity can be detected without using a high-speed processing microcomputer, so that it can be operated with low power consumption.
[Brief description of the drawings]
FIG. 1 is a block diagram of a seismic device according to a first embodiment of the present invention. FIG. 2 is a block diagram showing filter means of the seismic device. FIG. 3 is a flowchart for obtaining a measured seismic intensity. Fig. 5 is a characteristic diagram showing characteristics of the filter circuit of the seismic device. Fig. 6 is a flowchart showing processing of the seismic device. Fig. 7 is a block diagram showing a conventional seismic device. Explanation】
21 Vibration sensor (vibration detection means)
22 Filter circuit (filter means)
23 level judging means 24 output judging means 27 time integrating means 28 time judging means 32 battery 36 high pass filter circuit (filter means)
37 First low-pass filter circuit (filter means)
38 Second low-pass filter circuit (filter means)

Claims (5)

地震動などを検出する複数の振動検出手段と、
前記複数の振動検出手段に対応して設けられ、前記振動検出手段で検出される計測震度を示す出力信号のフィルタ特性を実現する複数のフィルタ手段と、
前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号が所定レベル以上になる時間を積算する時間積算手段と、
前記時間積算手段が積算する積算時間が所定時間以上になるか否かを判定する時間判別手段と
前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号のそれぞれが所定レベルを超えるか否かを判定するレベル判定手段と、
前記レベル判定手段の出力が変化したか否かを判定する出力判定手段とを備え、
前記出力判定手段が前記レベル判定手段が前記振動検出手段の出力信号を前記フィルタ手段で濾過した信号のうち1つ以上が所定レベルを超えたと判定した場合に、前記時間積算手段と前記時間判別手段を動作させる感震器。
A plurality of vibration detection means for detecting earthquake motion,
A plurality of filter means provided corresponding to the plurality of vibration detection means, and realizing a filter characteristic of an output signal indicating a measured seismic intensity detected by the vibration detection means ;
A time integration unit that integrates a time during which a signal obtained by filtering the output signal of the vibration detection unit by the filter unit is equal to or higher than a predetermined level;
Time discriminating means for judging whether or not the accumulated time accumulated by the time integrating means is a predetermined time or more ;
Level determination means for determining whether or not each of the signals obtained by filtering the output signal of the vibration detection means by the filter means exceeds a predetermined level;
Output determination means for determining whether or not the output of the level determination means has changed,
When the output determining means determines that one or more of the signals obtained by filtering the output signal of the vibration detecting means by the filter means exceeds a predetermined level, the time integrating means and the time determining means A seismic device that works.
振動検出手段は、圧電型の振動加速度検出手段を用いて3次元方向の振動が検出可能なように配置した3次元振動検出手段からなる請求項1記載の感震器。  2. The seismic sensor according to claim 1, wherein the vibration detection means comprises three-dimensional vibration detection means arranged so that vibration in a three-dimensional direction can be detected using a piezoelectric vibration acceleration detection means. フィルタ手段は、第1のカットオフ周波数を有するハイパスフィルタ回路と、第2のカットオフ周波数を有するローパスフィルタ回路とを、それぞれ少なくとも1段以上備えた請求項1記載の感震器。  2. The seismic sensor according to claim 1, wherein the filter means comprises at least one stage of a high-pass filter circuit having a first cutoff frequency and a low-pass filter circuit having a second cutoff frequency. 濾過した信号が、複数個の所定レベルを超える時間をそれぞれ各所定レベル毎に積算する時間積算手段を備えて複数段階の計測震度を判別する時間判別手段を備えた請求項1記載の感震器。  2. A seismic instrument according to claim 1, further comprising time discriminating means for discriminating a plurality of levels of measured seismic intensity by providing time accumulating means for accumulating the time when the filtered signal exceeds a plurality of predetermined levels for each predetermined level. . 振動検出手段とフィルタ手段と時間積算手段と時間判別手段は、電池で駆動される請求項1〜4のいずれか1項に記載の感震器。The vibration detector according to any one of claims 1 to 4, wherein the vibration detection means, the filter means, the time integration means, and the time determination means are driven by a battery.
JP2001044716A 2001-02-21 2001-02-21 Seismograph Expired - Fee Related JP4427911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044716A JP4427911B2 (en) 2001-02-21 2001-02-21 Seismograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044716A JP4427911B2 (en) 2001-02-21 2001-02-21 Seismograph

Publications (2)

Publication Number Publication Date
JP2002243531A JP2002243531A (en) 2002-08-28
JP4427911B2 true JP4427911B2 (en) 2010-03-10

Family

ID=18906654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044716A Expired - Fee Related JP4427911B2 (en) 2001-02-21 2001-02-21 Seismograph

Country Status (1)

Country Link
JP (1) JP4427911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190071836A (en) 2015-07-02 2019-06-24 오므론 가부시키가이샤 Seismic sensor and earthquake determination method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708709B2 (en) * 2004-01-07 2011-06-22 九州日立マクセル株式会社 Working meter
JP5375435B2 (en) * 2009-08-25 2013-12-25 株式会社ホームサイスモメータ Seismic intensity measuring device
JP6384093B2 (en) * 2014-04-01 2018-09-05 富士電機株式会社 Earthquake measuring device
WO2021124329A1 (en) * 2019-12-17 2021-06-24 E.Q. Earthquake Ltd. Systems and methods for earthquake detection and alerts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190071836A (en) 2015-07-02 2019-06-24 오므론 가부시키가이샤 Seismic sensor and earthquake determination method
US10739476B2 (en) 2015-07-02 2020-08-11 Tokyo Gas Co., Ltd. Seismic sensor and earthquake determination method

Also Published As

Publication number Publication date
JP2002243531A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JPH11118592A (en) Equipment abnormality diagnosis device and plant device mounting the same
RU2006137219A (en) METHOD AND DEVICE FOR DETECTING AND MEASURING FREQUENCY PERTURBATIONS OF ROTOR ROTATION SPEED
EP0671610B1 (en) Apparatus for diagnosing sound source and vibration source
JP4427911B2 (en) Seismograph
JP3075180B2 (en) Seismic device
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP3911854B2 (en) Vibration detector
JP4013404B2 (en) Seismograph
JP2008076246A (en) Abnormal sound detecting device and abnormal sound detection method
JP3452817B2 (en) Signal detection device for detecting water leak sound
JP3736079B2 (en) Seismic device
JP2889255B2 (en) Reactor noise monitoring device
JP4006820B2 (en) Seismic device
JPH1169583A (en) Device for diagnosing abnormality of equipment
JPS61223628A (en) Detector for leak of water
JPH10206555A (en) Seismometer
JP2839623B2 (en) Abnormal diagnosis device for rocking bearings
JPH02205727A (en) Apparatus for detecting abnormality of bearing
JP2550066B2 (en) Method for diagnosing machine abnormality using acoustic signals
JP3064196B2 (en) Impact detection apparatus and method
JPH03120438A (en) Diagnosis device for life of bearing
JPH11258381A (en) Detector abnormality diagnostic method
JPH0658298B2 (en) Bearing abnormality diagnosis device
JPH08334442A (en) Shock detection method and device
JPH01234083A (en) Abnormality inspecting device for rotary machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

LAPS Cancellation because of no payment of annual fees