JP2003203677A - Nonaqueous electrolyte secondary cell and manufacturing method of the same - Google Patents

Nonaqueous electrolyte secondary cell and manufacturing method of the same

Info

Publication number
JP2003203677A
JP2003203677A JP2001400528A JP2001400528A JP2003203677A JP 2003203677 A JP2003203677 A JP 2003203677A JP 2001400528 A JP2001400528 A JP 2001400528A JP 2001400528 A JP2001400528 A JP 2001400528A JP 2003203677 A JP2003203677 A JP 2003203677A
Authority
JP
Japan
Prior art keywords
active material
material layer
negative electrode
positive electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001400528A
Other languages
Japanese (ja)
Inventor
Toshiaki Nakano
敏昭 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001400528A priority Critical patent/JP2003203677A/en
Publication of JP2003203677A publication Critical patent/JP2003203677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell capable of preventing deterioration of the discharging and cycle properties, and to provide a manufacturing method of the same. <P>SOLUTION: Adhering strength between an activator and a current collector is made stronger than that between a separator and the activator. By the above, the current collector is prevented from generating crack and exfoliation from the activator, and the cell with excellent discharging property and cycle property can be provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器や通信機器等の急速な小
型化および軽量化に伴い、非水電解質二次電池(以下、
単に「電池」と称することがある)においても小型化、
高容量化が要求されている。このため、電池ケースとし
て、従来用いられてきた金属性の電池缶に代えて、ラミ
ネートフィルム製の外装材が用いられるようになってき
た。しかし、このような外装材を用いた場合には、剛性
のある電池缶を用いた場合のような、内部に収容された
発電要素への加圧力により正極−負極間の電気的接合性
を確保するという効果を得られにくくなる。
2. Description of the Related Art Recently, non-aqueous electrolyte secondary batteries (hereinafter, referred to as
(Sometimes simply referred to as "battery"), downsizing,
Higher capacity is required. For this reason, as a battery case, a laminate film exterior material has come to be used in place of the conventionally used metallic battery can. However, when such an exterior material is used, the electric connection between the positive electrode and the negative electrode is ensured by the pressure applied to the power generating element housed inside, as in the case of using a rigid battery can. It becomes difficult to obtain the effect of doing.

【0003】この問題を解決するための技術としては、
例えば特開2000−223159公報に開示されてい
るように、正極もしくは負極とセパレータとの間を接着
性高分子により接着させ、正極、負極およびセパレータ
を一体化することによって、正極−負極間の電気的接合
性を改善する技術がある。
Techniques for solving this problem include:
For example, as disclosed in Japanese Unexamined Patent Publication No. 2000-223159, by bonding an adhesive polymer between a positive electrode or a negative electrode and a separator, and integrating the positive electrode, the negative electrode, and the separator, electricity between the positive electrode and the negative electrode is reduced. There is a technology to improve the mechanical bondability.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記のよう
な電池では、電池の組立時もしくは使用時に何らかの要
因で電極とセパレータとの間に応力が生じると、活物質
層にクラックや集電体からの剥離が生じてしてしまう場
合がある。このため、電池の放電特性やサイクル特性が
低下するという問題を生じていた。
However, in the battery as described above, when a stress is generated between the electrode and the separator due to some factor during assembly or use of the battery, cracks in the active material layer or the collector may occur. May be peeled off. Therefore, there has been a problem that the discharge characteristics and cycle characteristics of the battery deteriorate.

【0005】本発明は上記した事情に鑑みてなされたも
のであり、その目的は、電池の放電特性やサイクル特性
の低下を防止できる非水電解質二次電池を提供すること
にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of preventing deterioration of discharge characteristics and cycle characteristics of the battery.

【0006】[0006]

【課題を解決するための手段】本発明者は、電池の初期
特性やサイクル特性の低下を防止できる非水電解質二次
電池およびその製造方法を提供すべく鋭意研究したとこ
ろ、以下の知見を見出した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to provide a non-aqueous electrolyte secondary battery capable of preventing the deterioration of initial characteristics and cycle characteristics of the battery and a method for producing the same, and found the following findings. It was

【0007】上記したように、従来、正極、負極および
セパレータを一体化して正極−負極間の電気的接合性を
改善することにより、電池性能を向上させることができ
ると考えられており、正極、負極とセパレータとの接着
をより強固にするための技術が数多く提案されてきた。
ところが、電極とセパレータとの間が接着されている電
池においては、電池反応に伴う活物質層の膨潤−収縮、
もしくは接着層の電解液による膨潤等により、集電体−
活物質層間、活物質層−セパレータ間に応力が生じる場
合がある。特に、巻回式の電池においては、各層毎に回
曲の度合いが異なるため、層間の歪みが大きくなり易
い。
As described above, it has been conventionally considered that the battery performance can be improved by integrating the positive electrode, the negative electrode and the separator to improve the electrical connection between the positive electrode and the negative electrode. Many techniques have been proposed for strengthening the adhesion between the negative electrode and the separator.
However, in the battery in which the electrode and the separator are bonded to each other, swelling-contraction of the active material layer accompanying the battery reaction,
Alternatively, the current collector-
Stress may occur between the active material layers and between the active material layer and the separator. In particular, in a wound type battery, since the degree of bending is different for each layer, the strain between layers tends to increase.

【0008】このような場合に、セパレータ−活物質層
間が強固に接着されていると、生じた応力はセパレータ
−活物質層間ではほとんど吸収されず、主として活物質
層−集電体間で吸収されることとなる。このため、活物
質層−集電体間に応力が集中することとなり、活物質層
にクラックや集電体からの剥離、ひいては電池の放電特
性やサイクル特性の低下が起こると考えられる。さら
に、巻回式の電池の場合には、発電要素を作製する際の
電極とセパレータとを巻き取る巻回操作時にも、活物質
層にクラックや集電体からの剥離が生じる場合がある。
In such a case, if the separator-active material layer is firmly adhered, the generated stress is hardly absorbed between the separator-active material layer and is mainly absorbed between the active material layer-current collector. The Rukoto. Therefore, it is considered that stress is concentrated between the active material layer and the current collector, causing cracks in the active material layer and separation from the current collector, and eventually deterioration of discharge characteristics and cycle characteristics of the battery. Further, in the case of a wound type battery, cracks or peeling from the current collector may occur in the active material layer even during the winding operation of winding the electrode and the separator during the production of the power generation element.

【0009】本発明者は、全く意外にも、電池の放電特
性やサイクル特性の低下を防止するためには、セパレー
タ−活物質層間よりも活物質層−集電体間の接着強度を
高くすることにより、活物質層−集電体間への応力の集
中を回避することが有効であることを見出した。特に、
巻回式の電池を製造する場合であって、あらかじめ正極
または負極とセパレータとを接着してから巻回操作を行
う場合において、セパレータ−活物質層間よりも活物質
層−集電体間の接着強度を高くすることが効果的である
ことを見出した。
The present inventor has, surprisingly, made the adhesive strength between the active material layer and the current collector higher than that between the separator and the active material layer in order to prevent the deterioration of the discharge characteristic and the cycle characteristic of the battery. Therefore, it was found that it is effective to avoid the concentration of stress between the active material layer and the current collector. In particular,
Adhesion between the active material layer and the current collector rather than the separator and the active material layer when the winding operation is performed after the positive electrode or the negative electrode and the separator are bonded to each other in the case of manufacturing a wound battery. It has been found that increasing the strength is effective.

【0010】すなわち、本発明は、正極側集電体の表面
に正極活物質層が形成された正極と、負極側集電体の表
面に負極活物質層が形成された負極と、前記正極と前記
負極との間に介在するセパレータとを備えるとともに、
前記正極および/または前記負極と前記セパレータとが
接着された非水電解質二次電池であって、前記セパレー
タと前記活物質層との間の接着強度よりも前記活物質層
と前記集電体との間の接着強度が大きくされていること
を特徴とする。
That is, the present invention provides a positive electrode having a positive electrode active material layer formed on the surface of a positive electrode side current collector, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode side current collector, and the positive electrode. With a separator interposed between the negative electrode,
A non-aqueous electrolyte secondary battery in which the positive electrode and / or the negative electrode and the separator are bonded to each other, wherein the active material layer and the current collector are more strongly than the adhesive strength between the separator and the active material layer. The adhesive strength between the two is increased.

【0011】セパレータと活物質層との間の接着強度、
および活物質層と集電体との間の接着強度は、セパレー
タの特性、接着剤の種類、活物質層の構成、結着剤の種
類や量、集電体の表面粗さ、集電体上へ活物質層を形成
する際の合剤の塗布条件等、種々の要因に影響されるの
で、電池設計に応じて個々に条件設定を行う必要がある
が、結果的にセパレータと活物質層の接着強度よりも活
物質層と集電体との接着強度の方が高くされていれば、
本発明の目的が達せられる。
Adhesion strength between the separator and the active material layer,
And the adhesive strength between the active material layer and the current collector, the characteristics of the separator, the type of adhesive, the composition of the active material layer, the type and amount of the binder, the surface roughness of the current collector, the current collector Since it is affected by various factors such as the mixture application conditions when forming the active material layer on top, it is necessary to set the conditions individually according to the battery design, but as a result, the separator and the active material layer If the adhesive strength between the active material layer and the current collector is higher than the adhesive strength of
The object of the invention is achieved.

【0012】本発明の正極活物質層に含まれる結着剤と
しては、例えばポリフッ化ビニリデンを使用することが
できる。また、正極活物質としては、例えば遷移金属の
リチウム含有酸化物であるコバルト酸リチウム、ニッケ
ル酸リチウム、スピネル系マンガン酸リチウム、あるい
はこれらの複合酸化物等が使用できる。正極活物質は、
放電特性の向上の観点から、平均粒子径1〜50μm、
比表面積0.7〜3.5m/gであることが好まし
い。さらに、正極活物質層には、上記した結着剤および
正極活物質の他、必要に応じて導電剤、その他の添加剤
を含んでいてもよい。なお、放電特性の向上、および電
極作製時における作業性の観点から、正極活物質層に含
まれる正極活物質の比率が85重量%〜95重量%、結
着剤の比率が3重量%〜8重量%、導電剤の比率が2重
量%〜7重量%であることが好ましい。
As the binder contained in the positive electrode active material layer of the present invention, for example, polyvinylidene fluoride can be used. Further, as the positive electrode active material, for example, lithium cobalt oxide, lithium nickel oxide, spinel lithium manganate, which is a lithium-containing oxide of a transition metal, or a composite oxide thereof can be used. The positive electrode active material is
From the viewpoint of improving discharge characteristics, the average particle size is 1 to 50 μm,
The specific surface area is preferably 0.7 to 3.5 m 2 / g. Further, the positive electrode active material layer may contain a conductive agent and other additives, if necessary, in addition to the binder and the positive electrode active material described above. From the viewpoint of improving discharge characteristics and workability during electrode production, the proportion of the positive electrode active material contained in the positive electrode active material layer is 85% by weight to 95% by weight, and the proportion of the binder is 3% by weight to 8%. The ratio of the weight% and the conductive agent is preferably 2% by weight to 7% by weight.

【0013】また、正極側集電体としては、非水電解質
二次電池に通常使用されるものであればとくに制限はな
いが、厚さが10〜25μm、表面粗さが中心線平均粗
さで0.14μm〜2.8μmのアルミニウム箔が好ま
しく使用できる。
The current collector on the positive electrode side is not particularly limited as long as it is one normally used in non-aqueous electrolyte secondary batteries, but the thickness is 10 to 25 μm and the surface roughness is the center line average roughness. And an aluminum foil having a thickness of 0.14 μm to 2.8 μm can be preferably used.

【0014】本発明の負極活物質層に含まれる結着剤と
しては、例えばポリフッ化ビニリデン、スチレンブタジ
エンゴム、あるいはスチレンブタジエンゴムとカルボキ
シメチルセルロースとの混合物等を使用することができ
る。また、負極活物質としては、例えばグラファイト、
カーボンブラック、活性炭、炭素繊維、コークス等の炭
素質材料、スズ酸化物、ケイ素酸化物等を用いることが
できる。炭素質材料を用いた場合には、負極活物質層に
含まれる負極活物質の比率が95重量%〜99重量%、
結着剤の比率が1重量%〜5重量%であることが好まし
い。
As the binder contained in the negative electrode active material layer of the present invention, for example, polyvinylidene fluoride, styrene butadiene rubber, or a mixture of styrene butadiene rubber and carboxymethyl cellulose can be used. Further, as the negative electrode active material, for example, graphite,
Carbon black, activated carbon, carbon fiber, carbonaceous materials such as coke, tin oxide, silicon oxide and the like can be used. When a carbonaceous material is used, the ratio of the negative electrode active material contained in the negative electrode active material layer is 95% by weight to 99% by weight,
The proportion of the binder is preferably 1% by weight to 5% by weight.

【0015】また、負極側集電体としては、非水電解質
二次電池に通常使用されるものであればとくに制限はな
いが、厚さが5〜20μm、表面粗さが中心線平均粗さ
で0.14μm〜2.8μmの銅箔が好ましく使用でき
る。
The negative electrode side current collector is not particularly limited as long as it is one normally used in non-aqueous electrolyte secondary batteries, but the thickness is 5 to 20 μm and the surface roughness is the center line average roughness. And a copper foil having a thickness of 0.14 μm to 2.8 μm can be preferably used.

【0016】本発明のセパレータとしては、非水電解質
二次電池に通常使用されるものであればとくに制限はな
く、例えばポリエチレン製、またはポリプロピレン製の
微多孔膜等が使用できる。
The separator of the present invention is not particularly limited as long as it is usually used for non-aqueous electrolyte secondary batteries, and for example, a microporous membrane made of polyethylene or polypropylene can be used.

【0017】本発明において正極または負極とセパレー
タとを接着するためには、例えばフッ化ビニリデン、4
−フッ化エチレンの重合体等の接着性高分子を使用する
ことができる。この接着性高分子を正極または負極とセ
パレータとの間に保持させる方法としては特に制限はな
く、例えば接着性高分子を適当な溶剤に溶解した接着剤
溶液を、正極、負極、およびセパレータの積層体に含浸
させた後、加圧加熱により溶剤を除去することにより保
持させてもよい。あるいは、正極、負極、またはセパレ
ータ上に接着性高分子を塗布した後、順次積層させるこ
とにより保持させてもよい。特に、保持される接着性高
分子を多孔性のものとし、その孔に電解液を保持させる
と、イオン伝導性が向上し内部抵抗が減少するので、充
放電特性上非常に好ましい。接着性高分子を多孔性にす
る方法としては、例えば特開2001−126700号
に開示されているような溶媒抽出法等を採用することが
できる。
In the present invention, for bonding the positive electrode or the negative electrode and the separator, for example, vinylidene fluoride, 4
-Adhesive polymers such as polymers of fluorinated ethylene can be used. There is no particular limitation on the method of holding the adhesive polymer between the positive electrode or the negative electrode and the separator, for example, an adhesive solution prepared by dissolving the adhesive polymer in a suitable solvent is used to laminate the positive electrode, the negative electrode, and the separator. After impregnating the body, it may be retained by removing the solvent by heating under pressure. Alternatively, the adhesive polymer may be applied to the positive electrode, the negative electrode, or the separator and then sequentially laminated to hold the adhesive polymer. In particular, if the adhesive polymer to be retained is made porous and the electrolyte is retained in the pores, the ionic conductivity is improved and the internal resistance is reduced, which is very preferable in terms of charge / discharge characteristics. As a method of making the adhesive polymer porous, for example, a solvent extraction method as disclosed in JP 2001-126700 A can be adopted.

【0018】[0018]

【発明の作用、および発明の効果】本発明によれば、活
物質層に集電体からの剥離やクラックが生じることを防
止でき、放電特性やサイクル特性の良好な電池を提供で
きる。
EFFECTS OF THE INVENTION AND EFFECTS OF THE INVENTION According to the present invention, it is possible to prevent the active material layer from being peeled or cracked from the current collector, and to provide a battery having good discharge characteristics and cycle characteristics.

【0019】[0019]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0020】<実施例1> 1.リチウムイオン二次電池の作製 1)正極の作製 コバルト酸リチウムを正極活物質とし、この正極活物質
に対して結着剤としてポリフッ化ビニリデンを、導電剤
としてグラファイトを重量比91:5:4の割合で混合
し、N−メチルピロリドンを加えて正極合剤ペーストを
調製した。このペーストを、厚さ12μm、中心線平均
粗さ1.0μmのアルミニウム箔からなる集電体の両面
に、片面あたりの厚さが100μmとなるように均一に
塗布し、乾燥させた。この後、95℃のホットロールプ
レスを施し、正極活物質層の片面あたりの厚みが85μ
mとされた帯状の正極シートを作製した。
<Example 1> 1. Preparation of Lithium Ion Secondary Battery 1) Preparation of Positive Electrode Lithium cobalt oxide was used as a positive electrode active material, and polyvinylidene fluoride was used as a binder and graphite was used as a conductive agent in a weight ratio of 91: 5: 4. The mixture was mixed at a ratio and N-methylpyrrolidone was added to prepare a positive electrode mixture paste. This paste was uniformly applied to both sides of a current collector made of an aluminum foil having a thickness of 12 μm and a center line average roughness of 1.0 μm so that the thickness per one side was 100 μm, and dried. After that, hot roll press at 95 ° C. is performed so that the thickness of one surface of the positive electrode active material layer is 85 μ
A strip-shaped positive electrode sheet with m was produced.

【0021】2)負極の作製 グラファイトを負極活物質とし、このグラファイトに対
して結着剤としてポリフッ化ビニリデンを、重量比9
5:5の割合で混合し、N−メチルピロリドンを加えて
負極合剤ペーストを調製した。このペーストを、厚さ1
0μm、中心線平均粗さ1.0μmの銅箔からなる集電
体の両面に、片面当たりの厚さが85μmとなるように
均一に塗布し、乾燥させた。この後、60℃のホットロ
ールプレスを施すことにより、負極活物質層の片面あた
りの厚みが75μmとされた帯状の負極シートを作製し
た。
2) Preparation of Negative Electrode Graphite was used as a negative electrode active material, and polyvinylidene fluoride as a binder was added to this graphite in a weight ratio of 9
The mixture was mixed at a ratio of 5: 5, and N-methylpyrrolidone was added to prepare a negative electrode mixture paste. This paste, thickness 1
A current collector made of a copper foil having a thickness of 0 μm and a center line average roughness of 1.0 μm was uniformly applied on both surfaces so that the thickness per surface was 85 μm, and dried. Thereafter, a hot roll press at 60 ° C. was applied to produce a strip-shaped negative electrode sheet having a thickness of 75 μm per one surface of the negative electrode active material layer.

【0022】3)発電素子の作製 接着性高分子としてポリフッ化ビニリデンを用いた。こ
のポリフッ化ビニリデン4重量部をN−メチルピロリド
ン96重量部に混合して接着性高分子溶液を調製した。
この接着性高分子溶液を、上記2)で作製した負極の両
面に間欠的に塗布し、その上にセパレータを重ね合わせ
た。この積層体をロールプレスにより押圧した後、65
℃の温風乾燥機中で3時間乾燥させた。このようにし
て、両面にセパレータが接着された負極シートを作製し
た。この負極シートと、上記1)で作製された正極シー
トとを重ね合わせて扁平状に巻回することにより、発電
素子を作製した。
3) Production of power generation element Polyvinylidene fluoride was used as an adhesive polymer. 4 parts by weight of this polyvinylidene fluoride was mixed with 96 parts by weight of N-methylpyrrolidone to prepare an adhesive polymer solution.
This adhesive polymer solution was intermittently applied to both surfaces of the negative electrode prepared in 2) above, and a separator was superposed on it. After pressing this laminated body with a roll press, 65
It was dried in a warm air dryer at ℃ for 3 hours. In this way, a negative electrode sheet having separators adhered on both sides was produced. The negative electrode sheet and the positive electrode sheet prepared in 1) were superposed and wound in a flat shape to prepare a power generation element.

【0023】4)電解液の調製 エチレンカーボネート、およびジエチルカーボネート
を、体積比3:7の割合で混合して、非水溶媒を調製し
た。この非水溶媒に、電解質としてリチウム塩であるL
iPF6を1.2mol/lの濃度で加え、非水電解液
を調製した。
4) Preparation of Electrolyte Solution Ethylene carbonate and diethyl carbonate were mixed in a volume ratio of 3: 7 to prepare a non-aqueous solvent. L, which is a lithium salt as an electrolyte, is added to this non-aqueous solvent.
iPF 6 was added at a concentration of 1.2 mol / l to prepare a non-aqueous electrolytic solution.

【0024】5)電池の作製 ポリエチレンテレフタレート製のフィルム、アルミニウ
ム箔、接着剤層、第1変性ポリオレフィン層、第2変性
ポリオレフィン層を順に重ねたラミネートフィルムを、
第2変性ポリオレフィン層側を内側として折り返して底
辺部及び側辺部を溶着することにより、袋状の電池ケー
スを作成した。この電池ケース内に発電素子を収納し
た。最後に、電池ケース内に上記4)で調製した電解液
を注入し、開口部を加熱圧着により封口して、電池を完
成させた。
5) Preparation of Battery A laminated film in which a polyethylene terephthalate film, an aluminum foil, an adhesive layer, a first modified polyolefin layer, and a second modified polyolefin layer are laminated in this order.
A bag-shaped battery case was prepared by folding back the second modified polyolefin layer side as the inner side and welding the bottom side and the side side. The power generation element was housed in this battery case. Finally, the electrolytic solution prepared in 4) above was injected into the battery case, and the opening was sealed by thermocompression bonding to complete the battery.

【0025】2.剥離試験 上記3)で作製された発電素子について、剥離試験を行
った。セパレータと接着された負極シートについて、負
極側集電体の終端部とセパレータの終端部とを、それぞ
れ指で摘んで逆方向に引っ張り剥離させた。負極活物質
層が負極側集電体とセパレータのいずれに付着している
か調べた。
2. Peeling test A peeling test was performed on the power generation element manufactured in 3) above. With respect to the negative electrode sheet bonded to the separator, the terminal portion of the negative electrode side current collector and the terminal portion of the separator were pinched with fingers and pulled in opposite directions to be peeled off. It was investigated whether the negative electrode active material layer was attached to the negative electrode side current collector or the separator.

【0026】3.高率放電試験 上記の方法で作成した電池について、25℃の雰囲気
下、600mAの定電流で4.1Vまで充電後、4.1
Vの定電圧で2時間充電を行った。その後、この電池を
25℃の雰囲気下、2CAの定電流で放電し、電圧が
2.75Vに達するまでの時間(放電時間)を測定し
た。
3. High Rate Discharge Test The battery prepared by the above method was charged to 4.1 V at a constant current of 600 mA in an atmosphere of 25 ° C. and then 4.1.
Charging was performed at a constant voltage of V for 2 hours. Then, this battery was discharged at a constant current of 2 CA in an atmosphere of 25 ° C., and the time until the voltage reached 2.75 V (discharge time) was measured.

【0027】4.サイクル試験 上記の方法で作成した電池について、25℃の雰囲気
下、600mAの定電流で4.1Vまで充電後、4.1
Vの定電圧で2時間充電を行った。その後、この電池を
25℃の雰囲気下、600mAの定電流で2.75Vま
で放電した。これを1サイクルとして、30サイクル繰
り返した。30サイクル目における放電時の、電圧が
2.75Vに達するまでの時間(放電時間)を測定し
た。
4. Cycle test The battery prepared by the above method was charged to 4.1 V at a constant current of 600 mA in an atmosphere of 25 ° C. and then 4.1.
Charging was performed at a constant voltage of V for 2 hours. Then, this battery was discharged to 2.75 V at a constant current of 600 mA in an atmosphere of 25 ° C. This was set as one cycle, and 30 cycles were repeated. The time (discharge time) until the voltage reached 2.75 V at the time of discharging in the 30th cycle was measured.

【0028】<実施例2>実施例1と同様の接着性高分
子溶液を、実施例1と同様にして作製した正極の両面に
間欠的に塗布し、その上にセパレータを重ね合わせた。
この積層体をロールプレスにより押圧した後、65℃の
温風乾燥機中で3時間乾燥させた。このようにして、両
面にセパレータが接着された正極シートを作製した。こ
の正極シートと、実施例1と同様にして作製された負極
シートとを重ね合わせて扁平状に巻回することにより、
発電素子を作製した。この発電素子を用いて、実施例1
と同様に電池を作製した。セパレータと接着された正極
シートについて、実施例1の負極シートの場合と同様に
剥離試験を行った。また、作製された電池について、実
施例1と同様にサイクル試験を行った。
Example 2 The same adhesive polymer solution as in Example 1 was intermittently applied to both sides of the positive electrode prepared in the same manner as in Example 1, and the separator was superposed on it.
This laminate was pressed by a roll press and then dried in a warm air dryer at 65 ° C. for 3 hours. In this way, a positive electrode sheet having separators adhered on both sides was produced. By stacking this positive electrode sheet and a negative electrode sheet produced in the same manner as in Example 1 and winding them in a flat shape,
A power generation element was produced. Using this power generation element, Example 1
A battery was prepared in the same manner as in. The positive electrode sheet adhered to the separator was subjected to a peeling test as in the case of the negative electrode sheet of Example 1. A cycle test was performed on the manufactured battery in the same manner as in Example 1.

【0029】<比較例1>実施例1と同様の接着性高分
子溶液を、実施例1と同様にして作製した負極の両面に
全面に渡ってに塗布し、その上にセパレータを重ね合わ
せた。なお、接着性高分子溶液の塗布量は実施例1の1
0倍とした。この積層体をロールプレスにより押圧した
後、65℃の温風乾燥機中で3時間乾燥させた。このよ
うにして、両面にセパレータが接着された負極シートを
作製した。この負極シートと、実施例1と同様にして作
製された正極シートとを重ね合わせて扁平状に巻回する
ことにより、発電素子を作製した。この発電素子を用い
て、実施例1と同様に電池を作製した。セパレータと接
着された負極シートについて、実施例1の負極シートの
場合と同様に剥離試験を行った。また、作製された電池
について、実施例1と同様にサイクル試験を行った。
Comparative Example 1 The same adhesive polymer solution as in Example 1 was applied over both surfaces of the negative electrode prepared in the same manner as in Example 1, and the separator was superposed thereon. . The coating amount of the adhesive polymer solution was 1 in Example 1.
It was set to 0 times. This laminate was pressed by a roll press and then dried in a warm air dryer at 65 ° C. for 3 hours. In this way, a negative electrode sheet having separators adhered on both sides was produced. The negative electrode sheet and the positive electrode sheet produced in the same manner as in Example 1 were superposed and wound in a flat shape to produce a power generating element. A battery was produced in the same manner as in Example 1 using this power generating element. A peeling test was performed on the negative electrode sheet bonded to the separator in the same manner as in the negative electrode sheet of Example 1. A cycle test was performed on the manufactured battery in the same manner as in Example 1.

【0030】<比較例2>実施例1と同様の接着性高分
子溶液を、実施例1と同様にして作製した正極の両面に
全面に渡って塗布し、その上にセパレータを重ね合わせ
た。なお、接着性高分子溶液の塗布量は実施例2の8倍
とした。この積層体をロールプレスにより押圧した後、
65℃の温風乾燥機中で3時間乾燥させた。このように
して、両面にセパレータが接着された正極シートを作製
した。この正極シートと、実施例1と同様にして作製さ
れた負極シートとを重ね合わせて扁平状に巻回すること
により、発電素子を作製した。この発電素子を用いて、
実施例1と同様に電池を作製した。セパレータと接着さ
れた正極シートについて、実施例1の負極シートの場合
と同様に剥離試験を行った。また、作製された電池につ
いて、実施例1と同様にサイクル試験を行った。
Comparative Example 2 The same adhesive polymer solution as in Example 1 was applied over both surfaces of the positive electrode prepared in the same manner as in Example 1, and the separator was superposed on it. The amount of the adhesive polymer solution applied was 8 times that in Example 2. After pressing this laminate with a roll press,
It was dried in a warm air dryer at 65 ° C. for 3 hours. In this way, a positive electrode sheet having separators adhered on both sides was produced. The positive electrode sheet and the negative electrode sheet produced in the same manner as in Example 1 were superposed and wound in a flat shape to produce a power generating element. Using this power generation element,
A battery was prepared in the same manner as in Example 1. The positive electrode sheet adhered to the separator was subjected to a peeling test as in the case of the negative electrode sheet of Example 1. A cycle test was performed on the manufactured battery in the same manner as in Example 1.

【0031】<結果と考察> 1.剥離試験 実施例1および実施例2においては、負極活物質層およ
び正極活物質層は、それぞれ負極側集電体および正極側
集電体に追随してセパレータから剥離した。一方、比較
例1においては、負極活物質層は、セパレータに追随し
て負極側集電体から剥離した。また、発電素子を作製す
る際の巻回操作時に、負極活物質層と負極側集電体との
間で一部に剥離が観察された。同様に、比較例2におい
ても、正極活物質層は、セパレータに追随して正極側集
電体から剥離した。また、発電素子を作製する際の巻回
操作時に、正極活物質層と正極側集電体との間で一部に
剥離が観察された。
<Results and Discussion> 1. Peeling test In Examples 1 and 2, the negative electrode active material layer and the positive electrode active material layer were peeled from the separator following the negative electrode side current collector and the positive electrode side current collector, respectively. On the other hand, in Comparative Example 1, the negative electrode active material layer was separated from the negative electrode side current collector following the separator. In addition, during the winding operation during the production of the power generation element, peeling was partially observed between the negative electrode active material layer and the negative electrode side current collector. Similarly, also in Comparative Example 2, the positive electrode active material layer was separated from the positive electrode side current collector following the separator. Further, during the winding operation for producing the power generation element, peeling was partially observed between the positive electrode active material layer and the positive electrode side current collector.

【0032】このように、高分子接着剤溶液の塗布方法
及び塗布量を調整することにより、セパレータ−活物質
層間の接着強度よりも活物質層−集電体間の接着強度を
高くすることができた。また、セパレータ−活物質層間
の接着強度よりも活物質層−集電体間の接着強度が低く
なっている場合においては、巻回操作時に、活物質層に
集電体からの剥離が生じるが、セパレータ−活物質層間
の接着強度よりも活物質層−集電体間の接着強度を高く
した場合においては、このような剥離を防止できること
が分かった。
As described above, the adhesive strength between the active material layer and the current collector can be made higher than the adhesive strength between the separator and the active material layer by adjusting the coating method and the coating amount of the polymer adhesive solution. did it. When the adhesive strength between the active material layer and the current collector is lower than the adhesive strength between the separator and the active material layer, peeling from the current collector occurs in the active material layer during the winding operation. It was found that such peeling can be prevented when the adhesive strength between the active material layer and the current collector is higher than the adhesive strength between the separator and the active material layer.

【0033】2.サイクル試験 各実施例および比較例について、高率放電試験およびサ
イクル試験における放電時間を表1に示した。なお、各
試験における放電時間は、それぞれ実施例2における放
電時間を100とした相対値で示した。
2. Cycle Test Table 1 shows the discharge time in the high rate discharge test and the cycle test for each of the examples and comparative examples. The discharge time in each test is shown as a relative value with the discharge time in Example 2 as 100.

【0034】[0034]

【表1】 [Table 1]

【0035】表1より、正極とセパレータとを接着した
場合、負極とセパレータとを接着した場合のいずれにお
いても、セパレータ−活物質層間の接着強度よりも活物
質層−集電体間の接着強度を高くした場合(実施例1、
実施例2)においては、セパレータ−活物質層間の接着
強度よりも活物質層−集電体間の接着強度が低くなって
いる場合(比較例1、比較例2)と比べて放電時間が長
くなっており、高率放電特性およびサイクル特性に優れ
ていた。これは、セパレータ−活物質層間の接着強度よ
りも活物質層−集電体間の接着強度を高くした場合にお
いて、発電要素の作製時における巻回操作、電池反応に
伴う活物質層の膨潤−収縮等に由来する活物質層の集電
体からの剥離が抑制されたことによるものと考えられ
る。
From Table 1, in both cases of adhering the positive electrode and the separator and adhering the negative electrode and the separator, the adhesive strength between the active material layer and the current collector is higher than the adhesive strength between the separator and the active material layer. When the value is increased (Example 1,
In Example 2), the discharge time is longer than in the case where the adhesive strength between the active material layer and the current collector is lower than the adhesive strength between the separator and the active material layer (Comparative Example 1 and Comparative Example 2). And was excellent in high rate discharge characteristics and cycle characteristics. This is because when the adhesive strength between the active material layer and the current collector is higher than the adhesive strength between the separator and the active material layer, the winding operation during the production of the power generation element, the swelling of the active material layer accompanying the battery reaction- It is considered that peeling of the active material layer from the current collector due to shrinkage or the like was suppressed.

【0036】なお、本発明の技術的範囲は、上記した実
施形態によって限定されるものではなく、均等の範囲に
まで及ぶものである。
The technical scope of the present invention is not limited to the above-described embodiments, but extends to an equivalent range.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極側集電体の表面に正極活物質層が形
成された正極と、 負極側集電体の表面に負極活物質層が形成された負極
と、 前記正極と前記負極との間に介在するセパレータとを備
えるとともに、 前記正極および/または前記負極と前記セパレータとが
接着された非水電解質二次電池であって、 前記セパレータと前記活物質層との間の接着強度よりも
前記活物質層と前記集電体との間の接着強度が大きくさ
れていることを特徴とする非水電解質二次電池。
1. A positive electrode having a positive electrode active material layer formed on the surface of a positive electrode current collector, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector, and the positive electrode and the negative electrode. A non-aqueous electrolyte secondary battery including a separator interposed between the positive electrode and / or the negative electrode and the separator, the adhesive strength between the separator and the active material layer being higher than that. A non-aqueous electrolyte secondary battery, wherein the adhesive strength between the active material layer and the current collector is increased.
【請求項2】 正極側集電体の表面に正極活物質層が形
成された正極と、 負極側集電体の表面に負極活物質層が形成された負極
と、 前記正極と前記負極との間に介在するセパレータとを備
えるとともに、 前記正極および/または前記負極と前記セパレータとが
接着された非水電解質二次電池の製造方法であって、 正極側集電体および負極側集電体の表面にそれぞれ正極
活物質層および負極活物質層を形成させる電極作製工程
と、 前記正極および/または前記負極とセパレータとを接着
する接着工程と、 前記接着工程で前記セパレータと接着された正極および
/または負極を用いて発電要素を作製する発電要素作製
工程とを含み、 かつ、前記セパレータと前記活物質層との間の接着強度
よりも前記活物質層と前記集電体との間の接着強度を大
きくすることを特徴とする非水電解質二次電池の製造方
法。
2. A positive electrode having a positive electrode active material layer formed on the surface of a positive electrode current collector, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector, and the positive electrode and the negative electrode. A method of manufacturing a non-aqueous electrolyte secondary battery comprising a separator interposed between the positive electrode and / or the negative electrode and the separator, the method comprising: a positive electrode side current collector and a negative electrode side current collector. An electrode preparation step of forming a positive electrode active material layer and a negative electrode active material layer on the surface, an adhering step of adhering the positive electrode and / or the negative electrode and a separator, and a positive electrode and / or an electrode adhered to the separator in the adhering step. Or a power generation element manufacturing step of manufacturing a power generation element using a negative electrode, and the adhesive strength between the active material layer and the current collector is more than the adhesive strength between the separator and the active material layer. To Non-aqueous method for producing electrolyte secondary battery characterized by listening.
JP2001400528A 2001-12-28 2001-12-28 Nonaqueous electrolyte secondary cell and manufacturing method of the same Pending JP2003203677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400528A JP2003203677A (en) 2001-12-28 2001-12-28 Nonaqueous electrolyte secondary cell and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400528A JP2003203677A (en) 2001-12-28 2001-12-28 Nonaqueous electrolyte secondary cell and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2003203677A true JP2003203677A (en) 2003-07-18

Family

ID=27639901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400528A Pending JP2003203677A (en) 2001-12-28 2001-12-28 Nonaqueous electrolyte secondary cell and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2003203677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146446A1 (en) * 2019-01-08 2020-07-16 SF Motors Inc. Systems and methods to control lithium plating
US11462804B2 (en) 2019-01-08 2022-10-04 TeraWatt Technology Inc. Systems and methods to control lithium plating
JP7393109B2 (en) 2022-02-02 2023-12-06 プライムプラネットエナジー&ソリューションズ株式会社 Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146446A1 (en) * 2019-01-08 2020-07-16 SF Motors Inc. Systems and methods to control lithium plating
US11462804B2 (en) 2019-01-08 2022-10-04 TeraWatt Technology Inc. Systems and methods to control lithium plating
JP7393109B2 (en) 2022-02-02 2023-12-06 プライムプラネットエナジー&ソリューションズ株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6380254B2 (en) Manufacturing method of all solid state battery
JP5593454B2 (en) Battery cell manufacturing method and battery cell manufactured by the manufacturing method
JP4038699B2 (en) Lithium ion battery
JP5304796B2 (en) Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, battery-mounted device, and method for producing positive electrode plate for lithium ion secondary battery
JP5316905B2 (en) Lithium secondary battery
TWI466365B (en) An insulating layer with heat-resistant insulation
JP4519796B2 (en) Square lithium secondary battery
EP3627586B1 (en) Separator for non-aqueous secondary batteries, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
JP4967267B2 (en) Laminated metal foil for lithium ion battery and lithium ion battery using the same
JP2022002216A (en) Electro-chemical apparatus and electronic apparatus
JP4031635B2 (en) Electrochemical devices
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP4839117B2 (en) Cylindrical lithium secondary battery
JP3508514B2 (en) Organic electrolyte battery
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
WO2022000308A1 (en) Bipolar current collector, electrochemical device, and electronic device
TW200423449A (en) Secondary cell with polymer coated anode
CN115461909A (en) Electrochemical device and electronic device comprising same
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
JP3648540B2 (en) Nonaqueous electrolyte secondary battery
JPH10284059A (en) Negative electrode plate for lithium ion battery and manufacture therefor
JP2003203677A (en) Nonaqueous electrolyte secondary cell and manufacturing method of the same
JP4476379B2 (en) Nonaqueous electrolyte secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP5699858B2 (en) Electrodes and electrical devices

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525