JP2003192363A - Synthetic quartz glass and method for producing it - Google Patents

Synthetic quartz glass and method for producing it

Info

Publication number
JP2003192363A
JP2003192363A JP2001393534A JP2001393534A JP2003192363A JP 2003192363 A JP2003192363 A JP 2003192363A JP 2001393534 A JP2001393534 A JP 2001393534A JP 2001393534 A JP2001393534 A JP 2001393534A JP 2003192363 A JP2003192363 A JP 2003192363A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
fluorine
birefringence
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001393534A
Other languages
Japanese (ja)
Other versions
JP3965552B2 (en
Inventor
Koji Matsuo
浩司 松尾
Motoyuki Yamada
素行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001393534A priority Critical patent/JP3965552B2/en
Publication of JP2003192363A publication Critical patent/JP2003192363A/en
Application granted granted Critical
Publication of JP3965552B2 publication Critical patent/JP3965552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain optically homogeneous synthetic quartz glass having a high transmittance to a vacuum ultraviolet light of a wave length of less than 400 nm, especially less than 200 nm for F<SB>2</SB>excimer laser and having a small amount of birefringence. <P>SOLUTION: A method for producing a synthetic quartz glass comprises heat-treating a synthetic quartz glass material containing fluorine atoms under an atmosphere containing a fluorine compound is provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空紫外領域で使
用されるリソグラフィー用光学部材に有用な合成石英ガ
ラス及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz glass useful as an optical member for lithography used in the vacuum ultraviolet region and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】合成石
英ガラスは、その高い紫外線透過性のため、半導体製造
におけるリソグラフィー用の光学部材として主要な役割
を果たしている。リソグラフィー装置における合成石英
ガラスの役割は、シリコンウエハ上への回路パターンの
露光、転写工程で用いられるステッパー用レンズ材料や
レチクル(フォトマスク)基板材料である。
2. Description of the Related Art Synthetic silica glass plays a major role as an optical member for lithography in semiconductor manufacturing because of its high ultraviolet light transmittance. The role of synthetic quartz glass in a lithographic apparatus is a lens material for steppers and a reticle (photomask) substrate material used in the exposure and transfer processes of circuit patterns on a silicon wafer.

【0003】ステッパー装置は、照明系部、投影レンズ
部、ウエハ駆動部から構成されており、光源から出た光
を照明系が均一な照度の光としてレチクル上に供給し、
投影レンズ部がレチクル上の回路パターンを正確かつ縮
小してウエハ上に結像させる役割をもっている。
The stepper device is composed of an illumination system section, a projection lens section, and a wafer driving section, and the light emitted from the light source is supplied onto the reticle by the illumination system as light of uniform illuminance.
The projection lens unit has a role of accurately and reducing the circuit pattern on the reticle to form an image on the wafer.

【0004】これらの素材に要求される品質は、光源か
らの光の透過性の高いことはもちろんのこと、透過する
光の強度が均一であるなど光学的均質性も非常に重要な
ものとなっている。近年、LSIはますます多機能、高
性能化しており、ウエハ上の素子の高集積化技術が研究
開発されている。
The quality required for these materials is not only high in the light transmission from the light source, but also the optical homogeneity is very important such that the intensity of the transmitted light is uniform. ing. In recent years, LSIs have become more multifunctional and have higher performance, and high integration technology of devices on a wafer has been researched and developed.

【0005】素子の高集積化のためには、微細なパター
ンの転写が可能な高い解像度を得る必要があり、この場
合、解像度は下記式(1)で表すことができる。 R = k1×λ/NA (1) R : 解像度 k1 : 係数 λ : 光源の波長 NA : 開口数
For high integration of the device, it is necessary to obtain a high resolution capable of transferring a fine pattern. In this case, the resolution can be expressed by the following equation (1). R = k1 × λ / NA (1) R: resolution k1: coefficient λ: wavelength NA of light source: numerical aperture

【0006】上記式(1)によれば、高解像度を得る手
段は2つ考えられる。1つは、開口数を大きくすること
である。しかしながら、開口数を大きくするとそれにつ
れて焦点深度が小さくなるため、現状がほぼ限界と考え
られている。もう1つの方法は、光源を短波長化するこ
とである。現在、光源として利用されている紫外線の波
長は248.3nm(KrF)が主流であるが、19
3.4nm(ArF)への移行が急がれており、また将
来的には157.6nm(F2)への移行が非常に有力
になっている。
According to the above equation (1), there are two possible means for obtaining high resolution. One is to increase the numerical aperture. However, as the numerical aperture increases, the depth of focus decreases, and the current situation is considered to be almost the limit. Another method is to shorten the wavelength of the light source. At present, the mainstream wavelength of ultraviolet rays used as a light source is 248.3 nm (KrF).
The shift to 3.4 nm (ArF) is urgent, and in the future, the shift to 157.6 nm (F 2 ) will be very effective.

【0007】200nm以下の波長のいわゆる真空紫外
域に使用する素材としては、透過性のみであればフッ化
カルシウム単結晶も使用可能と考えられるが、素材強
度、熱膨張率やレチクル用基板として使用するための表
面研磨技術等、実用レベルで克服すべき問題が多い。
As a material used in a so-called vacuum ultraviolet region having a wavelength of 200 nm or less, it is considered that calcium fluoride single crystal can be used as long as it has transparency, but it is used as a material strength, a coefficient of thermal expansion and a substrate for a reticle. There are many problems that need to be overcome at a practical level, such as surface polishing technology for doing so.

【0008】このため合成石英ガラスは、将来的にもレ
チクル用の基板を構成する素材として非常に重要な役割
を担うと考えられる。
Therefore, it is considered that synthetic quartz glass will continue to play a very important role as a material constituting a substrate for a reticle in the future.

【0009】しかしながら、高い紫外線透過性を有して
いる合成石英ガラスであっても、200nm以下の真空
紫外域では透過性が次第に低下していき、合成石英ガラ
スの本質的な構造による吸収領域である140nm付近
になると光を通さなくなる。
However, even with synthetic quartz glass having a high ultraviolet ray transmittance, the transmittance gradually decreases in the vacuum ultraviolet region of 200 nm or less, and in the absorption region due to the essential structure of synthetic quartz glass. At around 140 nm, light cannot be transmitted.

【0010】本質吸収領域までの範囲における透過性
は、合成石英ガラス内の不安定な構造や欠陥構造によっ
て決まる。
The permeability up to the essential absorption region is determined by the unstable structure and defect structure in the synthetic quartz glass.

【0011】不安定な構造とは、合成石英ガラスの基本
骨格であるSi−O−Si結合で、不安定な結合角を有
するものであり、3員環及び4員環構造をとる。これら
がレーザー照射を受けると、そのエネルギーにより開環
し、欠陥構造を生成する。
The unstable structure is a Si-O-Si bond which is a basic skeleton of synthetic quartz glass and has an unstable bond angle, and has a 3-membered ring structure and a 4-membered ring structure. When these are irradiated with a laser, they are opened by the energy and a defect structure is generated.

【0012】欠陥構造に関しては、たとえば、光源波長
が157.6nmであるF2エキシマレーザーを例にと
ると、透過率に影響する欠陥構造としてSi−Si結合
及びSi−OH結合が存在する。Si−Si結合は酸素
欠損型欠陥と言われ、吸収の中心波長を163nmにも
つ。
Regarding the defect structure, for example, when an F 2 excimer laser having a light source wavelength of 157.6 nm is taken as an example, Si-Si bonds and Si-OH bonds are present as defect structures affecting the transmittance. The Si-Si bond is called an oxygen deficiency type defect and has an absorption center wavelength of 163 nm.

【0013】この酸素欠損型欠陥は、215nmに吸収
帯を示すSi・欠陥構造の前駆体でもあるため、F
2(157.6nm)ではもちろんのこと、KrF(2
48.3nm)やArF(193.4nm)を光源とす
る場合にも非常に問題となる。また、Si−OH結合は
160nm付近に吸収帯を示す。
Since this oxygen-defective defect is also a precursor of Si / defect structure showing an absorption band at 215 nm,
2 (157.6 nm), of course, KrF (2
It is also very problematic when using 48.3 nm) or ArF (193.4 nm) as the light source. Further, the Si-OH bond has an absorption band near 160 nm.

【0014】よって高い真空紫外線透過性を実現するた
めには、上記の3員環及び4員環構造や欠陥構造を可能
な限り低減させる必要がある。
Therefore, in order to realize high vacuum ultraviolet ray transparency, it is necessary to reduce the above three-membered ring and four-membered ring structures and defect structures as much as possible.

【0015】これを解決するために従来の研究では、シ
リカ原料ガスの火炎加水分解により多孔質シリカ母材を
作製し、これをフッ素化合物ガス雰囲気下で溶融ガラス
化するなどの方法がとられてきた。
In order to solve this problem, in the conventional research, a method of producing a porous silica base material by flame hydrolysis of a silica raw material gas, and melting and vitrifying it in a fluorine compound gas atmosphere has been taken. It was

【0016】この方法により、合成石英ガラス中にフッ
素がドープされるわけであるが、フッ素のドープにより
3員環及び4員環構造が低減することが知られている。
また、フッ素ドープにより合成石英ガラス中のSi−O
H結合をなくし、Si−F結合を生成させることができ
る。Si−F結合は結合エネルギーが大きく、強固な結
合であり、その上150〜170nmに吸収帯をもたな
い。その結果として、上記方法でフッ素をドープした合
成石英ガラスはF2(157.6nm)の真空紫外線に
対して高い透過性を示す。
By this method, fluorine is doped into the synthetic quartz glass, and it is known that doping of fluorine reduces the three-membered ring structure and the four-membered ring structure.
In addition, Si-O in synthetic quartz glass is doped with fluorine.
The H bond can be eliminated and a Si—F bond can be generated. The Si—F bond has a large binding energy and is a strong bond, and on top of that, it has no absorption band at 150 to 170 nm. As a result, the synthetic quartz glass doped with fluorine by the above method exhibits high transparency to vacuum ultraviolet rays of F 2 (157.6 nm).

【0017】しかしながら、このようにして得られた合
成石英ガラスを成型し基板を作製すると、基板面内で複
屈折が非常に高いなどの光学的な不均一性を示す場合が
少なくない。このような光学的に不均一な基板をレチク
ル等に使用した場合、転写する像が一部ぼやけてしま
い、材料としての使用が困難になる。そのため、高い透
過性を有することに加えて、光学的に均質である合成石
英ガラスの製造方法の確立が望まれている。
However, when the synthetic quartz glass thus obtained is molded to form a substrate, optical nonuniformity such as extremely high birefringence in the plane of the substrate is often exhibited. When such an optically non-uniform substrate is used as a reticle or the like, the transferred image is partially blurred, and it becomes difficult to use it as a material. Therefore, it is desired to establish a method for producing synthetic quartz glass that is optically homogeneous in addition to having high transparency.

【0018】本発明は、上記要望に応えるためになされ
たもので、真空紫外光に対して高い透過性を有し、複屈
折量が低く、光学的に均質な合成石英ガラス及びその製
造方法を提供することを目的とする。
The present invention has been made in order to meet the above-mentioned demands, and provides a synthetic quartz glass having a high transparency to vacuum ultraviolet light, a low birefringence amount, and an optically homogeneous synthetic glass, and a method for producing the same. The purpose is to provide.

【0019】[0019]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記目的を達成するため、ガラス化した合
成石英ガラスの熱処理条件を鋭意検討した結果、フッ素
原子を含有する合成石英ガラス材に対し、これを更にフ
ッ素化合物を含む雰囲気下で熱処理すること、この場
合、特に熱処理前に予め合成石英ガラス材の外周部分を
除去しておくことにより、400nm以下、特にArF
やF2など200nm以下の真空紫外光に対して高い透
過性を有し、かつ複屈折量が低い、光学的に均質な合成
石英ガラスが得られることを知見し、本発明をなすに至
った。
MEANS FOR SOLVING THE PROBLEMS AND BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve the above-mentioned object, the present inventors have diligently studied the heat treatment conditions of vitrified synthetic quartz glass, and as a result, the synthetic quartz containing a fluorine atom By subjecting the glass material to a heat treatment in an atmosphere containing a fluorine compound, in this case, by removing the outer peripheral portion of the synthetic quartz glass material in advance before the heat treatment, 400 nm or less, especially ArF
The inventors have found that an optically homogeneous synthetic quartz glass having a high transparency to a vacuum ultraviolet light of 200 nm or less such as F 2 and F 2 and having a low birefringence amount can be obtained, and completed the present invention. .

【0020】即ち、本発明は、下記合成石英ガラス及び
その製造方法を提供する。 (1)フッ素原子を含有する合成石英ガラス材をフッ素
化合物を含んだ雰囲気下で熱処理することを特徴とする
合成石英ガラスの製造方法、(2)熱処理する合成石英
ガラス材の外周部分を予め除去しておくことを特徴とす
る(1)記載の合成石英ガラスの製造方法、(3)複屈
折が10nm/cm以下である(1)又は(2)記載の
方法により得られた合成石英ガラス。
That is, the present invention provides the following synthetic quartz glass and a method for producing the same. (1) A synthetic quartz glass manufacturing method, characterized in that a synthetic quartz glass material containing fluorine atoms is heat-treated in an atmosphere containing a fluorine compound, and (2) an outer peripheral portion of the synthetic quartz glass material to be heat-treated is removed in advance. (1) The synthetic quartz glass obtained by the method according to (1) or (2), which has a birefringence of 10 nm / cm or less.

【0021】以下、本発明につき更に詳しく説明する。
本発明は、真空紫外光の透過率が高く、かつ光学的に均
質なフッ素含有合成石英ガラス及びその製造方法に係る
ものである。
The present invention will be described in more detail below.
The present invention relates to a fluorine-containing synthetic quartz glass having a high transmittance for vacuum ultraviolet light and being optically homogeneous, and a method for producing the same.

【0022】ここで、真空紫外光の透過率を高めるため
には、合成石英ガラスにフッ素原子をドープすることが
必要であり、フッ素ドープにより、合成石英ガラス中の
不安定な結合状態や欠陥構造を低減させることができ
る。その上、ドープにより生成したSi−F結合は結合
エネルギーが大きいため、耐紫外線性が良好である。
Here, in order to increase the transmittance of vacuum ultraviolet light, it is necessary to dope the synthetic quartz glass with fluorine atoms. Due to the fluorine doping, unstable bonding states and defect structures in the synthetic quartz glass are caused. Can be reduced. In addition, since the Si-F bond generated by doping has a large bond energy, it has good ultraviolet resistance.

【0023】従って、本発明においては、まずフッ素ド
ープ合成石英ガラス材を製造する。この場合、その方法
としては、酸素ガス、水素ガス及びシリカ製造原料ガス
をバーナーから反応域に供給し、この反応域においてシ
リカ製造原料ガスの火炎加水分解によりシリカ微粒子を
生成させると共に、上記反応域に回転可能に配置された
基材に上記シリカ微粒子を堆積させて多孔質シリカ母材
を作製し、この母材をフッ素化合物ガス含有雰囲気下で
加熱・溶融し、合成石英ガラス材を得る方法が採用し得
る。かかる方法自体は公知の方法、条件を採用し得、例
えば酸素ガス、水素ガス、シリカ製造原料ガスの流量な
どは通常の流量範囲を選択し得る。また、フッ素化合物
ガスをバーナーから反応域に供給し、フッ素含有多孔質
シリカ母材を作製し、これをガラス化しても良い。
Therefore, in the present invention, first, the fluorine-doped synthetic quartz glass material is manufactured. In this case, as the method, oxygen gas, hydrogen gas and silica-producing raw material gas are supplied from the burner to the reaction zone, and silica fine particles are produced by flame hydrolysis of the silica-producing raw material gas in this reaction zone, and the reaction zone A method of obtaining a synthetic quartz glass material by depositing the above silica fine particles on a rotatably arranged base material to prepare a porous silica base material and heating and melting the base material in an atmosphere containing a fluorine compound gas Can be adopted. As the method itself, known methods and conditions can be adopted, and for example, the flow rate of oxygen gas, hydrogen gas, silica production raw material gas, etc. can be selected within a normal flow rate range. Alternatively, a fluorine compound gas may be supplied from a burner to the reaction zone to prepare a fluorine-containing porous silica base material and vitrify it.

【0024】シリカ製造原料ガスとしては、四塩化ケイ
素などのクロロシランやテトラメトキシシランなどのア
ルコキシシラン、ヘキサメチルジシランなどのジシラン
等の公知のケイ素化合物が使用されるが、Si−Cl結
合の紫外線吸収を考慮すると、Clを含まないアルコキ
シシランが好ましい。フッ素化合物ガスとしては、Si
4、CHF3、CF4などが選択されうる。加熱・溶融
雰囲気としては、上記フッ素化合物ガスやヘリウム、ア
ルゴンなどの不活性ガス又はこれらの混合雰囲気とされ
る。ここで、ガラス化温度及び時間は、ガラス化雰囲気
中のフッ素化合物ガス濃度や多孔質シリカ母材の密度な
どにより1200〜1700℃の範囲で適切な条件が選
択される。ガラス化の前に、ガラス化温度より低い温度
で多孔質シリカ母材を加熱する、脱水工程を実施しても
良い。この場合の加熱雰囲気も、上記フッ素化合物ガス
やヘリウム、アルゴンなどの不活性ガス又はこれらの混
合雰囲気とされる。
Known silica compounds such as chlorosilanes such as silicon tetrachloride and alkoxysilanes such as tetramethoxysilane and disilanes such as hexamethyldisilane are used as the raw material gas for producing silica. Considering the above, an alkoxysilane containing no Cl is preferable. As a fluorine compound gas, Si
F 4 , CHF 3 , CF 4 etc. may be selected. The heating / melting atmosphere is the above-mentioned fluorine compound gas, an inert gas such as helium or argon, or a mixed atmosphere thereof. Here, the vitrification temperature and time are appropriately selected within the range of 1200 to 1700 ° C. depending on the concentration of the fluorine compound gas in the vitrification atmosphere, the density of the porous silica matrix and the like. Before vitrification, a dehydration step of heating the porous silica base material at a temperature lower than the vitrification temperature may be carried out. The heating atmosphere in this case is also the above-mentioned fluorine compound gas, an inert gas such as helium or argon, or a mixed atmosphere thereof.

【0025】ガラス化後は同炉内にて急冷、徐冷もしく
は放冷にて室温まで冷却されるのであるが、冷却もフッ
素化合物ガス含有雰囲気下で行うのが好ましい。
After vitrification, it is cooled to room temperature in the same furnace by rapid cooling, gradual cooling or cooling, but it is also preferable to perform cooling in an atmosphere containing a fluorine compound gas.

【0026】このようにして得られるフッ素原子を含有
する合成石英ガラス材中におけるフッ素ドープ量は0.
1重量%以上、より好ましくは0.1〜2.4重量%、
更に好ましくは0.3〜1.5重量%であることが好ま
しい。
The fluorine doping amount in the synthetic quartz glass material containing fluorine atoms obtained in this way is 0.
1 wt% or more, more preferably 0.1 to 2.4 wt%,
More preferably, it is 0.3 to 1.5% by weight.

【0027】このようにして得られたフッ素ドープ合成
石英ガラス材を成型し、熱処理・切断・研磨等の工程を
経てリソグラフィー用の光学部材を製造し得るが、本発
明においては、フッ素化合物含有雰囲気下でフッ素ドー
プ合成石英ガラス材の熱処理を行う。
The fluorine-doped synthetic quartz glass material thus obtained can be molded, and an optical member for lithography can be manufactured through steps such as heat treatment, cutting and polishing. In the present invention, however, an atmosphere containing a fluorine compound is used. The fluorine-doped synthetic quartz glass material is heat-treated below.

【0028】即ち、従来では、合成石英ガラスの歪を除
去するためのアニール処理は大気中で行われるのである
が、このような環境下では合成石英ガラス中のSi−F
結合が熱で切断され、外周部に変質層が生成する。この
変質層が存在すると、アニール処理しても合成石英ガラ
ス中の歪の除去が困難になる。
That is, conventionally, the annealing treatment for removing the strain of the synthetic quartz glass is carried out in the atmosphere, but under such an environment, Si--F in the synthetic quartz glass is used.
The bond is cut by heat, and an altered layer is formed on the outer periphery. The presence of this altered layer makes it difficult to remove the strain in the synthetic quartz glass even by annealing.

【0029】本発明では、この変質層の発生を抑制する
環境下でアニール処理することにより、歪の除去を効果
的に実施する。つまり、フッ素化合物含有雰囲気下でア
ニールを行う。
In the present invention, the strain is effectively removed by performing the annealing treatment in the environment in which the generation of the altered layer is suppressed. That is, annealing is performed in a fluorine compound-containing atmosphere.

【0030】この場合のフッ素化合物は、SiF4、C
HF3、CF4などが選択され、アニール雰囲気として
は、上記フッ素化合物ガス雰囲気又はフッ素化合物ガス
とヘリウム、アルゴンなどの不活性ガスとの混合雰囲気
とされる。
The fluorine compound in this case is SiF 4 , C
HF 3 , CF 4 or the like is selected, and the annealing atmosphere is the above-mentioned fluorine compound gas atmosphere or a mixed atmosphere of the fluorine compound gas and an inert gas such as helium or argon.

【0031】アニール時のフッ素化合物濃度は、合成石
英ガラス中のフッ素原子濃度又は合成石英ガラス製造時
(ドープ時)の濃度に相当する濃度以上が好ましい。
The concentration of the fluorine compound during annealing is preferably equal to or higher than the concentration of fluorine atoms in the synthetic quartz glass or the concentration during the production (doping) of the synthetic quartz glass.

【0032】また、熱間成型等で既に生成してしまった
変質層をアニール処理の前に予め除去することにより、
尚一層の歪除去効果を得ることができる。
Further, by removing the deteriorated layer which has already been formed by hot molding or the like before the annealing treatment,
It is possible to obtain a further strain removing effect.

【0033】変質層の深さは合成石英ガラスのフッ素原
子濃度や熱処理条件によって異なるが、通常の場合は表
面から数mmであり、1〜10mm程度研削又は切断す
れば大抵の場合除去される。
The depth of the altered layer varies depending on the fluorine atom concentration of the synthetic quartz glass and heat treatment conditions, but is usually several mm from the surface, and is usually removed by grinding or cutting about 1 to 10 mm.

【0034】アニールの温度条件については、合成石英
ガラスの徐冷点以上で歪を除去し得る一定時間(通常1
〜10時間)加熱保持し、次いで歪点以下まで徐冷する
方法で良いのであるが、徐冷点及び歪点は合成石英ガラ
ス中のフッ素原子濃度で変化するので、適切な温度を設
定する必要がある。通常は1200℃以下の範囲であ
る。歪点以下までの徐冷速度は10℃/Hr以下が好ま
しい。
Regarding the temperature condition of the annealing, a certain time (usually 1
It is good to heat and hold, and then gradually cool to below the strain point, but since the slow cooling point and strain point change depending on the fluorine atom concentration in the synthetic quartz glass, it is necessary to set an appropriate temperature. There is. It is usually in the range of 1200 ° C or lower. The slow cooling rate up to the strain point or lower is preferably 10 ° C./Hr or lower.

【0035】このように、本発明では、フッ素ドープに
より400nm以下の波長領域、特に真空紫外領域で高
い透過性を有する合成石英ガラスにおいて、従来とは異
なる条件で熱処理することにより複屈折を低減させ、光
学的均質性を向上させるものである。
As described above, according to the present invention, the birefringence is reduced by heat-treating the synthetic quartz glass having a high transmittance in the wavelength region of 400 nm or less, particularly in the vacuum ultraviolet region, by the fluorine doping under the condition different from the conventional one. , To improve optical homogeneity.

【0036】即ち、従来、熱処理は合成石英ガラス内の
熱応力による歪などを除去するために行われてきた。そ
の方法としては、合成石英ガラスの徐冷点以上で一定時
間加熱し、歪点以下まで徐冷するものである。ここで、
歪点とは合成石英ガラスの粘度が1013.5Pa・sとな
る温度であり、この温度では粘性流動が事実上起こら
ず、この温度未満ではガラス中の歪を除去できない。ま
た、徐冷点は粘度が10 12Pa・sとなる温度であり、
ガラス加工で生じた内部歪が約15分で除去できる温度
とされている(非晶質シリカ材料応用ハンドブック、株
式会社リアライズ社)。
That is, conventionally, the heat treatment is performed in the synthetic quartz glass.
It has been performed to remove strains and the like due to thermal stress. So
As a method of, at a certain temperature above the annealing point of synthetic quartz glass
It is heated for a while and gradually cooled to a strain point or lower. here,
The strain point is that the viscosity of synthetic quartz glass is 1013.5Pa · s
Temperature at which viscous flow actually occurs.
However, below this temperature, the strain in the glass cannot be removed. Well
Also, the annealing point has a viscosity of 10 12The temperature is Pa · s,
Temperature at which internal strain generated by glass processing can be removed in about 15 minutes
(Amorphous silica material application handbook, Ltd.)
Expression company Realize Inc.).

【0037】つまり、従来の熱処理方法としては、15
分で歪が除去できるような高温で保持することにより歪
を除去し、冷却の際にあらたな歪が発生しないように時
間をかけて徐冷する。
That is, the conventional heat treatment method is 15
The strain is removed by holding it at a high temperature such that the strain can be removed in minutes, and gradually cooled over time so that new strain does not occur during cooling.

【0038】この方法では、直接法やスート法などで合
成した通常の合成石英ガラスの複屈折を低減させること
ができるが、F2エキシマレーザ用のようなフッ素をド
ープした合成石英ガラスについては、必ずしも複屈折を
低減できるとは限らなかった。この理由について、本発
明者らは以下のように考えている。
This method can reduce the birefringence of the ordinary synthetic quartz glass synthesized by the direct method or the soot method, but with respect to the synthetic quartz glass doped with fluorine such as for F 2 excimer laser, It was not always possible to reduce the birefringence. The present inventors consider the reason for this as follows.

【0039】フッ素を含有した合成石英ガラスを高温下
にさらすと、合成石英ガラス中のSi−F結合が一部切
れて、その部分のフッ素原子濃度が低下する。結合の切
断は合成石英ガラスの外周部分で発生しやすいので、合
成石英ガラスの中央部分に比べて外周部のフッ素濃度は
低くなる。実際にEPMA(Electron Pro
be Micro Analyzer)分析にて熱処理
した合成石英ガラスの表面を分析したところ、表面のフ
ッ素原子濃度は検出限界以下であった。
When the synthetic quartz glass containing fluorine is exposed to a high temperature, the Si--F bond in the synthetic quartz glass is partially broken, and the concentration of fluorine atoms in that portion is lowered. Since the bond breakage easily occurs in the outer peripheral portion of the synthetic quartz glass, the fluorine concentration in the outer peripheral portion becomes lower than in the central portion of the synthetic quartz glass. Actually EPMA (Electron Pro
When the surface of the synthetic quartz glass subjected to the heat treatment was analyzed by be Micro Analyzer) analysis, the fluorine atom concentration on the surface was below the detection limit.

【0040】合成石英ガラスの外周部は、フッ素原子濃
度が低いために中央部よりも粘性が非常に高く、先述の
徐冷点や歪点も粘性に応じて高温になる。このような高
粘性な層(以下、変質層とする)が合成石英ガラスの外
周に存在すると、歪除去を目的としてアニール処理を行
った場合、徐冷の際に外周部分から先に硬化するため内
部の応力が十分解放されずに合成石英ガラス中にとどま
ってしまう。また、このような状況下では、応力を解放
して歪を除去するのが困難なだけでなく、外周の変質層
によりあらたな歪を発生させる場合もありうる。実際に
合成石英ガラスの複屈折を測定した場合、アニールして
もなお複屈折の高い合成石英ガラスは、その外周部分に
複屈折の高い領域が存在している場合が非常に多い。
The outer peripheral portion of the synthetic quartz glass has a much higher viscosity than the central portion due to the low concentration of fluorine atoms, and the annealing point and strain point described above also become hot depending on the viscosity. If such a highly viscous layer (hereinafter referred to as an altered layer) exists on the outer periphery of the synthetic quartz glass, when annealing is performed for the purpose of strain removal, the outer peripheral portion is cured first during slow cooling. The internal stress is not sufficiently released and remains in the synthetic quartz glass. Further, under such a situation, it is not only difficult to release the stress and remove the strain, but also a new strain may be generated due to the altered layer on the outer periphery. When actually measuring the birefringence of synthetic quartz glass, it is very often the case that synthetic quartz glass having a high birefringence even after annealing has a region having a high birefringence in its outer peripheral portion.

【0041】変質層の発生は合成石英ガラスを高温にさ
らした場合に発生するが、本発明では歪除去のアニール
処理をフッ素化合物含有雰囲気下で行うため、合成石英
ガラス中のSi−F結合が熱で切断されても、再結合さ
れやすい環境にある。また、アニール雰囲気中のフッ素
濃度が高いため、合成石英ガラスからのフッ素の拡散を
抑制することができる。そのため、変質層の生成を抑制
し、アニールによる歪除去効果を十分に発揮することが
できる。
The generation of the altered layer occurs when the synthetic quartz glass is exposed to a high temperature. However, in the present invention, since the annealing treatment for removing the strain is performed in the fluorine compound-containing atmosphere, the Si--F bond in the synthetic quartz glass is formed. Even if it is cut by heat, it is in an environment where it is likely to be recombined. Further, since the fluorine concentration in the annealing atmosphere is high, it is possible to suppress the diffusion of fluorine from the synthetic quartz glass. Therefore, generation of an altered layer can be suppressed, and the effect of removing strain by annealing can be sufficiently exerted.

【0042】また、合成石英ガラスを大気中で熱間成型
した場合、外周に変質層が生成される可能性が高いわけ
であるが、この合成石英ガラスの外周を研削・切断など
により除去することにより、フッ素化合物含有雰囲気下
でのアニールをより効果的に行うことができる。
Further, when synthetic quartz glass is hot-molded in the atmosphere, it is highly likely that an altered layer is formed on the outer periphery, but the outer periphery of this synthetic quartz glass should be removed by grinding or cutting. Thereby, annealing in a fluorine compound-containing atmosphere can be performed more effectively.

【0043】このようにして得られた合成石英ガラス
は、熱処理後の研削・切断加工や研磨などを経てリソグ
ラフィー用の光学部材を得ることができる。その結果、
得られた部材、例えばレチクル用の基板であれば、その
物性は以下の値が好ましい。
The synthetic quartz glass thus obtained can be used as an optical member for lithography through grinding, cutting and polishing after heat treatment. as a result,
The following values are preferable for the physical properties of the obtained member, for example, a substrate for a reticle.

【0044】透過率は分光光度計により測定され、15
7.6nmであれば83.0%以上、好ましくは85.
0%以上とする。透過率分布は、157.6nmで1.
0%以下が好ましい。より好ましくは0.5%以下、更
に好ましくは0.3%以下とする。
The transmittance was measured by a spectrophotometer and
If it is 7.6 nm, it is 83.0% or more, preferably 85.
0% or more. The transmittance distribution is 157.6 nm at 1.
0% or less is preferable. It is more preferably 0.5% or less, still more preferably 0.3% or less.

【0045】複屈折量は、波長633nmのHe−Ne
レーザーによる光ヘテロダイン法により測定され、その
値は10nm/cm以下が好ましく、より好ましくは5
nm/cm以下、更に好ましくは1nm/cm以下とす
る。複屈折量は波長依存性があるため、測定値はF2
ーザーの使用波長である157.6nmやArFエキシ
マレーザの使用波長である193.4nmなどの複屈折
量に換算することができる(Physics and
Chemistry of Glasses19
(4) 1978)。
The amount of birefringence is He--Ne having a wavelength of 633 nm.
It is measured by an optical heterodyne method using a laser, and the value is preferably 10 nm / cm or less, more preferably 5
nm / cm or less, more preferably 1 nm / cm or less. Since the amount of birefringence depends on the wavelength, the measured value can be converted into the amount of birefringence such as the wavelength used for the F 2 laser of 157.6 nm and the wavelength used for the ArF excimer laser of 193.4 nm (Physics). and
Chemistry of Glasses19
(4) 1978).

【0046】[0046]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。なお、この実施例に記載されている合成石
英ガラスの熱処理温度などの条件は、この発明をその範
囲に限定することを意味しない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples. The conditions such as the heat treatment temperature of the synthetic quartz glass described in this example do not mean that the present invention is limited to the range.

【0047】[実施例1]多孔質シリカ母材をSiF4
とHeの混合ガス雰囲気(SiF4濃度:10vol
%)で加熱溶融してフッ素含有合成石英ガラスインゴッ
トを作製し、これを180mm角のサイズに加熱成型し
た。成型インゴットの中央125mm角内の複屈折を測
定したところ、30nm/cm以上であった。次いで、
この成型インゴットのアニールを行った。アニールの条
件は、多孔質シリカ母材のガラス化時と同じ濃度のSi
4とHeの混合雰囲気で1100℃で10時間保持
し、SiF4濃度を一定に保ったまま500℃まで10
℃/Hrの速度で徐冷した。アニール後の複屈折をアニ
ール前と同じ領域内で比較したところ、10nm/cm
以下であった。結果を表1に示す。
[Example 1] A porous silica base material was replaced with SiF 4
And He mixed gas atmosphere (SiF 4 concentration: 10 vol
%) To produce a fluorine-containing synthetic quartz glass ingot, which was heat-molded to a size of 180 mm square. The birefringence of the molded ingot in the center 125 mm square was measured and found to be 30 nm / cm or more. Then
This molded ingot was annealed. The annealing conditions are the same concentration of Si as when vitrifying the porous silica base material.
Hold in a mixed atmosphere of F 4 and He at 1100 ° C. for 10 hours, and keep the SiF 4 concentration constant up to 500 ° C.
It was slowly cooled at a rate of ° C / Hr. When the birefringence after annealing is compared in the same region as before annealing, 10 nm / cm
It was below. The results are shown in Table 1.

【0048】[実施例2]実施例1と同様に、多孔質シ
リカ母材をSiF4とHeの混合ガス雰囲気で加熱溶融
してフッ素含有合成石英ガラスインゴットを製造し、こ
れを180mm角のサイズに加熱成型した。成型インゴ
ットの中央125mm角内の複屈折を測定したところ、
30nm/cm以上であった。次いで、この成型インゴ
ットの外周を全面3mm除去してからアニールを行っ
た。アニールの条件は、多孔質シリカ母材のガラス化時
と同じ濃度のSiF4とHeの混合雰囲気で1100℃
で10時間保持し、SiF4濃度を一定に保ったまま5
00℃まで10℃/Hrの速度で徐冷した。アニール後
の複屈折をアニール前と同じ領域内で比較したところ、
5nm/cm以下であった。結果を表1に示す。
[Example 2] Similar to Example 1, a porous silica matrix was heated and melted in a mixed gas atmosphere of SiF 4 and He to produce a fluorine-containing synthetic quartz glass ingot, which was 180 mm square in size. It was heat molded into. When the birefringence in the central 125 mm square of the molded ingot was measured,
It was 30 nm / cm or more. Then, the outer periphery of the molded ingot was removed by 3 mm on the entire surface, and then annealed. The annealing condition is 1100 ° C. in a mixed atmosphere of SiF 4 and He of the same concentration as when vitrifying the porous silica base material.
At 10 ° C for 10 hours, keeping the SiF 4 concentration constant at 5
The mixture was gradually cooled to 00 ° C at a rate of 10 ° C / Hr. When comparing the birefringence after annealing in the same region as before annealing,
It was 5 nm / cm or less. The results are shown in Table 1.

【0049】[実施例3]実施例1と同様に、多孔質シ
リカ母材をSiF4とHeの混合ガス雰囲気で加熱溶融
してフッ素含有合成石英ガラスインゴットを製造し、こ
れを180mm角のサイズに加熱成型した。成型インゴ
ットの中央125mm角内の複屈折を測定したところ、
30nm/cm以上であった。次いで、この成型インゴ
ットの外周を全面10mm除去してからアニールを行っ
た。アニールの条件は、多孔質シリカ母材のガラス化時
よりもSiF4濃度を高く(SiF4濃度:20vol
%)し、1100℃で10時間保持し、SiF4濃度を
一定に保ったまま500℃まで5℃/Hrの速度で徐冷
した。アニール後の複屈折をアニール前と同じ領域内で
比較したところ、3nm/cm以下であった。結果を表
1に示す。
[Example 3] As in Example 1, a porous silica base material was heated and melted in a mixed gas atmosphere of SiF 4 and He to produce a fluorine-containing synthetic quartz glass ingot, which was 180 mm square in size. It was heat molded into. When the birefringence in the central 125 mm square of the molded ingot was measured,
It was 30 nm / cm or more. Next, the outer periphery of the molded ingot was removed by 10 mm on the entire surface and then annealed. The annealing conditions are such that the SiF 4 concentration is higher than that when the porous silica base material is vitrified (SiF 4 concentration: 20 vol).
%) And held at 1100 ° C. for 10 hours and gradually cooled to 500 ° C. at a rate of 5 ° C./Hr while keeping the SiF 4 concentration constant. When the birefringence after annealing was compared in the same region as before annealing, it was 3 nm / cm or less. The results are shown in Table 1.

【0050】[比較例1]実施例1と同じ条件でフッ素
含有合成石英ガラスの成型インゴットを作製し、成型イ
ンゴットの中央125mm角内の複屈折を測定したとこ
ろ、30nm/cm以上であった。これを、大気雰囲気
であることを除いて実施例1と同じ条件でアニールし
た。アニール後の複屈折をアニール前と同じ領域内で比
較したところ、複屈折は依然30nm/cm以上であっ
た。また、その測定領域内ではアニールによって複屈折
が大きくなっている部分も見られた。結果を表1に示
す。
Comparative Example 1 A molded ingot of synthetic silica glass containing fluorine was prepared under the same conditions as in Example 1, and the birefringence within the 125 mm square in the center of the molded ingot was measured and found to be 30 nm / cm or more. This was annealed under the same conditions as in Example 1 except that it was in the atmosphere. When the birefringence after annealing was compared in the same region as before annealing, the birefringence was still 30 nm / cm or more. In addition, in the measurement region, a part where the birefringence increased due to annealing was also seen. The results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明の合成石英ガラスの製造方法によ
り、400nm以下の波長領域、特にF2エキシマレー
ザ用など200nm以下の真空紫外光に対して透過率が
高く、複屈折量が低い、光学的に均質な合成石英ガラス
を得ることができる。
Industrial Applicability According to the method for producing synthetic quartz glass of the present invention, the transmittance is high and the birefringence amount is low with respect to vacuum ultraviolet light having a wavelength region of 400 nm or less, particularly 200 nm or less for F 2 excimer laser. It is possible to obtain synthetic quartz glass that is homogeneous in nature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/027 H01L 21/30 515D Fターム(参考) 4G014 AH00 4G062 AA04 BB02 CC04 DA08 DB01 DC01 DD01 DE01 DF01 EA01 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GB01 GC01 GD01 GE02 GE03 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM02 MM27 NN16 5F046 BA03 CA03 CA04 CB02 CB12 CB17 CB19 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/027 H01L 21/30 515D F term (reference) 4G014 AH00 4G062 AA04 BB02 CC04 DA08 DB01 DC01 DD01 DE01 DF01 EA01 EA10 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GB01 GC01 GD01 GE02 GE03 HH01 HH03 HH05 JJ KK JJ05 KK JJ05 JJ WH JJ WH JJ WH JJ WH JJ WH CA03 CA04 CB02 CB12 CB17 CB19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フッ素原子を含有する合成石英ガラス材
をフッ素化合物を含んだ雰囲気下で熱処理することを特
徴とする合成石英ガラスの製造方法。
1. A method for producing synthetic quartz glass, which comprises subjecting a synthetic quartz glass material containing fluorine atoms to a heat treatment in an atmosphere containing a fluorine compound.
【請求項2】 熱処理する合成石英ガラス材の外周部分
を予め除去しておくことを特徴とする請求項1記載の合
成石英ガラスの製造方法。
2. The method for producing synthetic quartz glass according to claim 1, wherein the outer peripheral portion of the synthetic quartz glass material to be heat-treated is previously removed.
【請求項3】 複屈折が10nm/cm以下である請求
項1又は2記載の方法により得られた合成石英ガラス。
3. The synthetic quartz glass obtained by the method according to claim 1, which has a birefringence of 10 nm / cm or less.
JP2001393534A 2001-12-26 2001-12-26 Method for producing synthetic quartz glass Expired - Fee Related JP3965552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393534A JP3965552B2 (en) 2001-12-26 2001-12-26 Method for producing synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393534A JP3965552B2 (en) 2001-12-26 2001-12-26 Method for producing synthetic quartz glass

Publications (2)

Publication Number Publication Date
JP2003192363A true JP2003192363A (en) 2003-07-09
JP3965552B2 JP3965552B2 (en) 2007-08-29

Family

ID=27600505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393534A Expired - Fee Related JP3965552B2 (en) 2001-12-26 2001-12-26 Method for producing synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP3965552B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139848A1 (en) * 2007-05-09 2008-11-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JP2008303100A (en) * 2007-06-06 2008-12-18 Shin Etsu Chem Co Ltd Titania-doped quartz glass for nanoimprint mold
JP2011051893A (en) * 2010-11-29 2011-03-17 Shin-Etsu Chemical Co Ltd Titania-doped quartz glass for nanoimprint mold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139848A1 (en) * 2007-05-09 2008-11-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
US8153336B2 (en) 2007-05-09 2012-04-10 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate fabricating method, photomask, and exposing method that uses the photomask
CN101681092B (en) * 2007-05-09 2012-07-25 株式会社尼康 Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JP5304644B2 (en) * 2007-05-09 2013-10-02 株式会社ニコン PHOTOMASK SUBSTRATE, PHOTOMASK SUBSTRATE MOLDING MEMBER, PHOTOMASK SUBSTRATE MANUFACTURING METHOD, PHOTOMASK, AND EXPOSURE METHOD USING PHOTOMASK
KR101545361B1 (en) 2007-05-09 2015-08-19 가부시키가이샤 니콘 Photomask substrate photomask substrate forming member photomask substrate manufacturing method photomask and exposure method using photomask
JP2008303100A (en) * 2007-06-06 2008-12-18 Shin Etsu Chem Co Ltd Titania-doped quartz glass for nanoimprint mold
US7935648B2 (en) 2007-06-06 2011-05-03 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass for nanoimprint molds
JP2011051893A (en) * 2010-11-29 2011-03-17 Shin-Etsu Chemical Co Ltd Titania-doped quartz glass for nanoimprint mold

Also Published As

Publication number Publication date
JP3965552B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
KR100298167B1 (en) Method for manufacturing silica glass for vacuum ultraviolet wavelength light ray, and the silica glass and optical member manufactured thereby
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
JP2002536705A (en) Silicon oxyfluoride glass for vacuum ultraviolet light transmission lithography
JP2005179088A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP4763877B2 (en) Synthetic quartz glass optical material and optical member for F2 excimer laser
JP2010064950A (en) TiO2-CONTAINING SILICA GLASS
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
US8735308B2 (en) Optical member comprising TiO2-containing silica glass
EP1035084A2 (en) Synthetic fused silica glass member
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
EP1866256A1 (en) Process for producing synthetic quartz glass and synthetic quartz glass for optical member
EP2377826B2 (en) OPTICAL MEMBER COMPRISING SILICA GLASS CONTAINING TiO2
EP1219571B1 (en) process for producing a synthetic quartz glass article
JP3965552B2 (en) Method for producing synthetic quartz glass
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
JP2000290026A (en) Optical quartz glass member for excimer laser
JP3975334B2 (en) Heat treatment method for synthetic quartz glass
JP4110362B2 (en) Method for producing synthetic quartz glass member
JP2003201124A (en) Synthetic quartz glass for optical member and its manufacturing method
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
WO2004065315A1 (en) Synthetic quartz glass optical member and method for preparation thereof
JP4744046B2 (en) Method for producing synthetic quartz glass material
JP3126188B2 (en) Quartz glass substrate for photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3965552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees