JPH1053432A - Quartz glass optical member, its production, and projection exposure device - Google Patents

Quartz glass optical member, its production, and projection exposure device

Info

Publication number
JPH1053432A
JPH1053432A JP8205906A JP20590696A JPH1053432A JP H1053432 A JPH1053432 A JP H1053432A JP 8205906 A JP8205906 A JP 8205906A JP 20590696 A JP20590696 A JP 20590696A JP H1053432 A JPH1053432 A JP H1053432A
Authority
JP
Japan
Prior art keywords
quartz glass
optical system
less
concentration
ppb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8205906A
Other languages
Japanese (ja)
Other versions
JP3757476B2 (en
Inventor
Norio Komine
典男 小峯
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP20590696A priority Critical patent/JP3757476B2/en
Publication of JPH1053432A publication Critical patent/JPH1053432A/en
Application granted granted Critical
Publication of JP3757476B2 publication Critical patent/JP3757476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1407Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a quarty glass optical member used for an optical system in a prescribed wavelength region, improving the transmittance of the optical system of UV light, vacuum UV light or the same wavelength region lasers by specifying the concentration of Na contained in quartz glass. SOLUTION: In the optical member sued in an optical system having a wavelength region of <=250nm (e.g. ArF excimer laser stepper), the concentration of Na contained in the quartz glass is controlled to <=20ppb. The concentrations of Na and Al are controlled to <=50ppb and 5-100ppb, respectively. The concentrations of the elements of transition metals and alkali (alkaline earth) metals are controlled to <=20ppb, respectively. The method for producing the quartz glass for the optical members comprises hydrolyzing a highly pure Si compound in an oxygen-hydrogen flame blown out from a burner in a synthesis oven and subsequently depositing the formed soot on a target to form the glass. Therein, the distance between a soot-reached position on the target and the wall of the synthesis over is controlled to >=250nm. Thereby, the contamination of impurities from the synthesis oven can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばエキシマレ
ーザリソグラフィ装置、光CVD装置、レーザ加工装置
などの、250nm以下の紫外、真空紫外線あるいは同
波長領域のレーザを光源とした照明用光学系あるいは結
像用光学系などのレンズ部材、ファイバ、窓部材、ミラ
ー、エタロン、プリズムなどの光学素子として使用され
る石英ガラス光学部材、およびその石英ガラス光学部材
をその光学系の一部あるいは全部に使用した光リソグラ
フィ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical system such as an excimer laser lithography apparatus, an optical CVD apparatus, a laser processing apparatus, etc., which uses ultraviolet, vacuum ultraviolet, or a laser in the same wavelength region as a light source. A quartz glass optical member used as an optical element such as a lens member such as an optical system for an image, a fiber, a window member, a mirror, an etalon, and a prism, and the quartz glass optical member is used for part or all of the optical system. The present invention relates to an optical lithography apparatus.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィ技術に
おいては、ステッパと呼ばれる縮小投影型露光装置が用
いられる。このステッパの光学系は、光源の光を集積回
路パターンが描かれたレチクル上に均一に照明する照明
光学系と、レチクルの集積回路パターンを例えば五分の
一に縮小してウエハ上に投影して転写する投影光学系と
で構成されている。このような光を用いて集積回路パタ
ーンをウエハ上に転写する装置を総称して光リソグラフ
ィ装置と呼ぶことにする。ウエハ上の転写パターンの解
像度は近年のLSIの高集積化に伴ってより高くする必
要がある。このとき、転写パターンの解像度は投影光学
レンズ系の開口数および光源の波長の逆数に比例するた
め、開口数を高めるか光源の波長を短くすることにより
高解像度を得ることが可能である。しかし、レンズの開
口数にはレンズ製造上の限界があるため、解像度を高め
るためには光源の波長を短くするしかない。このため、
ステッパの光源はg線(436nm)からi線(365
nm)、さらにはKrF(248nm)やArF(19
3nm)エキシマレーザへと短波長化が進められてい
る。特に、64、256メガビットあるいは1、4ギガビ
ット以上の記憶容量をもつDRAMなどの超LSIを製
造するためには、ステッパの解像度の指標であるライン
アンドスペースを0.3μm以下にする必要がある。このと
き、ステッパの光源としては、エキシマレーザなどの25
0nm以下の紫外、真空紫外線を用いるしかない。
2. Description of the Related Art Conventionally, in a photolithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon, a reduction projection type exposure apparatus called a stepper is used. The optical system of this stepper illuminates the light of the light source uniformly on the reticle on which the integrated circuit pattern is drawn, and projects the integrated circuit pattern of the reticle on the wafer by reducing it to, for example, one-fifth. And a projection optical system that performs transfer. An apparatus for transferring an integrated circuit pattern onto a wafer using such light is generically referred to as an optical lithography apparatus. The resolution of a transfer pattern on a wafer needs to be higher with the recent high integration of LSI. At this time, since the resolution of the transfer pattern is proportional to the reciprocal of the numerical aperture of the projection optical lens system and the wavelength of the light source, high resolution can be obtained by increasing the numerical aperture or shortening the wavelength of the light source. However, since the numerical aperture of the lens has a limitation in manufacturing the lens, the only way to increase the resolution is to shorten the wavelength of the light source. For this reason,
The light source of the stepper is from g-line (436 nm) to i-line (365 nm).
nm), KrF (248 nm) and ArF (19 nm).
3 nm) Excimer lasers are being shortened in wavelength. In particular, in order to manufacture a super LSI such as a DRAM having a storage capacity of 64, 256 megabits or 1, 4 gigabits or more, the line and space, which is an index of the resolution of the stepper, needs to be 0.3 μm or less. At this time, the light source of the stepper is 25 excimer laser or the like.
There is no choice but to use ultraviolet or vacuum ultraviolet rays of 0 nm or less.

【0003】一般に、i線より長波長の光源を用いたス
テッパの照明光学系あるいは投影光学系のレンズ部材と
して用いられる光学ガラスは、i線よりも短い波長領域
では光透過率が急激に低下し、特に250nm以下の波長領
域ではほとんどの光学ガラスでは光を透過しなくなって
しまう。そのため、エキシマレーザを光源としたステッ
パの光学系に使用可能な材料は、石英ガラスの他、一部
の結晶材料に限られてしまう。その中でも特に石英ガラ
スは、250nm以下の波長領域での高透過率のため、エキ
シマレーザステッパのみならず一般の紫外真空紫外線の
光学系に広く用いられている材料である。
In general, the optical glass used as an illumination optical system of a stepper or a lens member of a projection optical system using a light source having a wavelength longer than the i-line has a sharp decrease in light transmittance in a wavelength region shorter than the i-line. In particular, most optical glasses do not transmit light in the wavelength region of 250 nm or less. Therefore, the materials that can be used for the optical system of the stepper using the excimer laser as a light source are limited to quartz glass and some crystalline materials. Among them, quartz glass is a material widely used not only in excimer laser steppers but also in general ultraviolet vacuum ultraviolet optical systems because of its high transmittance in a wavelength region of 250 nm or less.

【0004】しかし、石英ガラスを光リソグラフィ装置
の光学系で用いる場合、集積回路パターンを大きな面積
で高解像度で露光するためには、その石英ガラス光学部
材には非常に高品質が要求される。例えば、部材の屈折
率分布が、直径200mm程度の非常に大きな口径内
で、10-6オーダー以下であることが要求される。ま
た、複屈折量を減少させること、すなわち光学部材の内
部歪を減少させることが、屈折率分布の均質性を向上さ
せることと同様に、光学系の解像度に対して重要であ
る。
However, when quartz glass is used in an optical system of an optical lithography apparatus, very high quality is required for the quartz glass optical member in order to expose an integrated circuit pattern with a large area and high resolution. For example, the refractive index distribution of the member is required to be in the order of 10 −6 or less within a very large diameter of about 200 mm. Also, reducing the amount of birefringence, that is, reducing the internal strain of the optical member, is important for the resolution of the optical system, as is improving the homogeneity of the refractive index distribution.

【0005】さらに、そのような屈折率に関する均質
性、歪が高品質であると同時に、透過率が非常に優れて
いる必要がある。例えば、光リソグラフィ装置の投影光
学系には、収差補正のために非常に多く曲率を有するレ
ンズが必要になり、そのため、投影光学系全体の総光路
長が1000mm以上にも及ぶ場合がある。この場合、
投影光学系のスループットを80%以上に保つために
は、光学部材の1cm当たりの内部透過率は99.8%
以上(内部吸収係数に換算すると0.002cm-1
下)という高透過率が必要になる。さらに、そのような
高透過率が部材の中心部だけでなく、全域にわたって保
たれている必要がある。このため、単に石英ガラスとい
っても、エキシマレーザステッパのような精密な光学系
に使用できるものは限られる。
Further, it is necessary that the homogeneity and distortion of the refractive index be high and the transmittance be very high. For example, a projection optical system of an optical lithography apparatus requires a lens having a very large curvature for correcting aberration, and therefore, the total optical path length of the entire projection optical system may reach 1000 mm or more. in this case,
In order to maintain the throughput of the projection optical system at 80% or more, the internal transmittance per cm of the optical member is 99.8%.
A high transmittance of above (converted to an internal absorption coefficient of 0.002 cm -1 or less) is required. Further, it is necessary that such a high transmittance be maintained not only in the central portion of the member but also in the entire region. For this reason, only quartz glass that can be used for a precision optical system such as an excimer laser stepper is limited.

【0006】石英ガラスは、製法により大まかに溶融石
英ガラスと合成石英ガラスとに分類される。溶融石英ガ
ラスは、天然水晶粉を電気溶融あるいは火炎溶融して得
られる。合成石英ガラスは、製造方法によりさらに分類
され、直接法、スート法、プラズマ法などの気相合成法
という製造方法により得られる。
[0006] Quartz glass is roughly classified into fused silica glass and synthetic quartz glass according to the manufacturing method. The fused quartz glass is obtained by electric fusion or flame fusion of natural quartz powder. Synthetic quartz glass is further classified by a manufacturing method, and is obtained by a manufacturing method called a gas phase synthesis method such as a direct method, a soot method, and a plasma method.

【0007】まず、直接法は、原料に四塩化ケイ素など
の高純度のケイ素化合物を用い、原料を酸素水素火炎で
加水分解して石英ガラス微粒子(スート)を形成させ、
それを回転、引き下げを行っているターゲット上で堆
積、溶融、透明化を一気に行うことによって石英ガラス
塊を得る方法である。また、この方法で得られた石英ガ
ラス光学部材を、さらに高品質なものとするため、石英
ガラスを合成する一次工程の後に、さらに2次的な熱処
理を行って所望の物性を得る方法が試みられている。例
えば、2000℃付近で二次的な熱処理を行うことによ
り、屈折率の均質性が向上することが知られている。
First, the direct method uses a high-purity silicon compound such as silicon tetrachloride as a raw material, and hydrolyzes the raw material with an oxygen-hydrogen flame to form quartz glass fine particles (soot).
In this method, a quartz glass block is obtained by performing deposition, melting, and transparency at a stretch on a target that is being rotated and lowered. Further, in order to further improve the quality of the quartz glass optical member obtained by this method, a method of obtaining a desired physical property by further performing a second heat treatment after the first step of synthesizing the quartz glass has been attempted. Have been. For example, it is known that by performing a secondary heat treatment at around 2000 ° C., the homogeneity of the refractive index is improved.

【0008】次に、スート法は、原料に高純度のケイ素
化合物を用い、原料を酸水素火炎で加水分解してスート
を形成させ、それをターゲット上に堆積させてスート塊
を得たのち、2次処理で透明化して石英ガラス塊を得る
方法である。さらに、プラズマ法は、原料に高純度のケ
イ素化合物を用い、原料を酸素+アルゴン混合の高周波
プラズマ火炎で酸化することによりスートを形成させ、
それを回転、引き下げしているターゲット上に堆積、溶
融、透明化を一気に行うことによって石英ガラス塊を得
る方法である。
Next, in the soot method, a high-purity silicon compound is used as a raw material, and the raw material is hydrolyzed with an oxyhydrogen flame to form soot, which is deposited on a target to obtain a soot mass. This is a method of obtaining a quartz glass block by making it transparent by a secondary treatment. Further, the plasma method uses a high-purity silicon compound as a raw material, and oxidizes the raw material with a high-frequency plasma flame of a mixture of oxygen and argon to form soot,
This is a method of obtaining a quartz glass block by performing deposition, melting, and transparency at a stretch on a target that is being rotated and lowered.

【0009】[0009]

【発明が解決しようとする課題】これらの製造方法によ
り得られる合成石英ガラスは、一般に、溶融石英ガラス
に比較して金属不純物が少なく、高純度である。そのた
め、250nm以下の紫外線波長領域で高透過性を有
し、大口径で均質な石英ガラス光学部材を得ることが可
能であり、エキシマレーザステッパなどの光リソグラフ
ィ装置の光学系として合成石英ガラスを用いることが有
望視されている。
The synthetic quartz glass obtained by these production methods generally has less metallic impurities and higher purity than fused quartz glass. Therefore, it is possible to obtain a large-diameter, homogeneous quartz glass optical member having high transmittance in the ultraviolet wavelength region of 250 nm or less, and using synthetic quartz glass as an optical system of an optical lithography apparatus such as an excimer laser stepper. That looks promising.

【0010】しかしながら、そのような合成石英ガラス
であっても、250nm以下の波長領域で部材の透過光
路長1cm当たりの透過率を99.8%以上確保するこ
とは非常に困難であった。特に波長220nm以下の真
空紫外領域になると急激に透過率が悪化するため、Ar
Fエキシマレーザステッパの光学部材としては全く使用
できないような、光路長1cm当たりの吸収量が数%以
上になってしまう。
However, even with such a synthetic quartz glass, it has been extremely difficult to secure a transmittance of 99.8% or more per 1 cm of the transmitted light path length of the member in a wavelength region of 250 nm or less. In particular, in the vacuum ultraviolet region having a wavelength of 220 nm or less, the transmittance rapidly deteriorates.
The absorption amount per 1 cm of optical path length becomes several percent or more, which cannot be used as an optical member of the F excimer laser stepper at all.

【0011】さらに、例えば光リソグラフィ装置の投影
光学系などのように高精度の石英ガラスが必要な場合、
良好な透過性と同時に直径200mm程度の非常に大き
な口径内での屈折率の均質性、歪が高品質である必要が
あった。
Further, when high precision quartz glass is required, for example, as in a projection optical system of an optical lithography apparatus,
At the same time, it is necessary that the homogeneity of the refractive index and the distortion be high in a very large diameter of about 200 mm in diameter at the same time as good transmittance.

【0012】[0012]

【課題を解決するための手段】そこで、本発明者らはま
ず、合成石英ガラスの紫外透過性に対する金属不純物の
影響を調べた。その結果、KrFエキシマレーザの波長
である248nmにおいて内部透過率が光路長1cm当た
り99.9%以上である合成石英ガラスであっても、さ
らに短波長側の透過特性を調べたところ、220nm以
下の波長領域で急激に透過率が低下し、ArFエキシマ
レーザの波長である193nmにおいて内部透過率が光
路長1cm当たり99%以下であって、光学部材として
使用できないようなものがあることが判明した。
Therefore, the present inventors first examined the effect of metal impurities on the ultraviolet transmittance of synthetic quartz glass. As a result, even if synthetic quartz glass having an internal transmittance of 99.9% or more per 1 cm of optical path length at 248 nm, which is the wavelength of the KrF excimer laser, was further examined for transmission characteristics on the shorter wavelength side, it was found that the transmittance was 220 nm or less. It has been found that the transmittance sharply decreases in the wavelength region, and the internal transmittance at 99% or less per 1 cm of the optical path length at 193 nm, which is the wavelength of the ArF excimer laser, is unusable as an optical member.

【0013】本発明者らは、このような波長220nm
以下の真空紫外領域における合成石英ガラスの急激な透
過率低下の原因について鋭意研究を行った結果、その領
域の透過率を支配する因子が不純物であるアルカリ金属
にあることを突き止めた。特にNaはその波長領域の透
過率に大きく影響しているが、図2に示したように、N
a濃度が20ppb以下になると実質的に吸収が発生し
なくなる。
The present inventors have proposed such a wavelength of 220 nm.
As a result of intensive studies on the causes of the sudden decrease in the transmittance of synthetic quartz glass in the vacuum ultraviolet region described below, it was found that the factor controlling the transmittance in that region was the alkali metal as an impurity. In particular, Na greatly affects the transmittance in the wavelength region, but as shown in FIG.
When the concentration a is less than 20 ppb, absorption does not substantially occur.

【0014】そこで、本発明は、250nm以下の波長
領域の光学系に使用される石英ガラス光学部材におい
て、石英ガラス中に含有されるNaの濃度が20ppb
以下であることを特徴とする石英ガラス光学部材を提供
する。また、本発明者らは、さらに重要な点として、A
lが適当な含有量である場合、Naの含有量が増加して
もモル濃度でAlと等量になるまでは実質的に220n
m以下の波長領域での吸収を発生させないということを
見い出した。
Therefore, the present invention relates to a quartz glass optical member used for an optical system in a wavelength region of 250 nm or less, wherein the concentration of Na contained in quartz glass is 20 ppb.
A quartz glass optical member characterized by the following is provided. In addition, the present inventors further point out that A
When 1 is an appropriate content, even if the content of Na is increased, it is substantially 220 n until the molar concentration becomes equivalent to that of Al.
It has been found that no absorption occurs in the wavelength range below m.

【0015】そこで、本発明はさらに、波長250nm
以下の波長領域の光学系に使用される石英ガラス光学部
材において、NaとAlのモル濃度比率が[Na]/
[Al]≦1であることを特徴とする石英ガラス光学部
材を提供する。
Therefore, the present invention further provides a wavelength of 250 nm.
In a quartz glass optical member used for an optical system in the following wavelength range, the molar concentration ratio of Na and Al is [Na] /
Provided is a quartz glass optical member, wherein [Al] ≦ 1.

【0016】[0016]

【発明の実施の形態】前述のように、本発明は、波長2
50nm以下の紫外線領域、特に波長220nm以下の
真空紫外領域における石英ガラスの急激な透過率低下の
原因がアルカリ金属にあり、特にNaが影響しているこ
とを見い出した。Naは、空気や水、人体などどこにで
も存在し、かつ拡散しやすいため、光学部材などに不純
物として非常に混入しやすい物質である。さらに、高温
状態になると拡散がさらに起こりやすくなる。このた
め、石英ガラス部材を、例えば電気炉などで数百℃以上
の温度で加熱処理すると容易に部材内に拡散してしま
い、特に1000℃以上の温度では失透の原因になるこ
ともある。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention provides a wavelength 2
It has been found that the cause of a sudden decrease in the transmittance of quartz glass in an ultraviolet region of 50 nm or less, particularly in a vacuum ultraviolet region of a wavelength of 220 nm or less, is caused by an alkali metal, and Na is particularly affected. Na is a substance that is present in air, water, the human body, and anywhere, and is easily diffused, and thus is very easily mixed as impurities into optical members and the like. Further, when the temperature becomes high, diffusion is more likely to occur. For this reason, if the quartz glass member is heated at a temperature of several hundred degrees Celsius or more, for example, in an electric furnace or the like, the quartz glass member is easily diffused into the member.

【0017】本発明者らは、例えば光リソグラフィ装置
の投影光学系の部材に要求される高均質性を達成するた
めに2000℃付近での二次的な熱処理を行うと、部材
内部に容易にNaが拡散してしまうことを実験的に確認
した。熱処理炉内部の構造物、例えば断熱材や通常カー
ボンなどで作られた試料容器などをいかに高純度に、特
にNa不純物を低減させたとしても、熱処理したのちに
は石英ガラス部材内部に数十ppbレベルはどうしても
混入してしまうことがわかった。
The present inventors have found that if a secondary heat treatment at around 2000 ° C. is performed to achieve high homogeneity required for a member of a projection optical system of an optical lithography apparatus, for example, It was experimentally confirmed that Na was diffused. No matter how high the purity of the structure inside the heat treatment furnace, for example, a sample container made of heat insulating material or carbon, etc., and especially if Na impurities are reduced, several tens ppb It turned out that the level was mixed in by all means.

【0018】同じアルカリ金属であるが、Kは、前述の
ような二次的な熱処理によってもほとんど混入しないこ
ともわかった。例えば、前述のような2000℃付近で
の熱処理でもKの濃度は50ppb以下を達成でき、2
20nm以下の透過率に影響を与えないことを確認し
た。これは、Naに比較してKの石英ガラス中での拡散
係数が小さいことに起因していると考えられる。
It has been found that although the same alkali metal is used, K is hardly mixed even by the secondary heat treatment as described above. For example, the K concentration can be reduced to 50 ppb or less even by the heat treatment around 2000 ° C. as described above.
It was confirmed that the transmittance of 20 nm or less was not affected. This is considered to be because the diffusion coefficient of K in quartz glass is smaller than that of Na.

【0019】従って、Kは220nm以下の波長領域の
透過率に影響を及ぼすが、その影響はNaに比較して小
さく、濃度50ppb以下にすれば220nm以下の波
長領域での透過率低下を実質的に生じさせなくすること
ができる。以上の点を踏まえて、本発明者らは、石英ガ
ラス中のアルカリ金属不純物、特にNaを低減する方法
として、二次的な熱処理を行わずに、合成時に屈折率の
均質化を達成する方法を採用した。しかし、単に合成時
に均質化を達成するにしても、Naができあがった石英
ガラスにわずかに混入してしまう危険性は避けられな
い。例えば、石英ガラスの合成炉壁として使用される耐
火物から高温下で不純物が放出されてしまう可能性があ
る。この耐火物は通常、合成炉内の石英ガラスインゴッ
トの周りに断熱材として使用されている。そこで、本発
明者らは石英ガラスインゴットと耐火物の距離を適当な
距離に保つことにより、石英ガラス部材内に混入するN
aの濃度を20ppb以下、Li、Kの濃度を50pp
b以下にすることが可能であることを確認した。具体的
には、合成炉の耐火物内面から積層点までの距離を最短
でも250mm以上保つように配置することにより本発
明を達成できる。このとき、積層点とはバーナから噴出
されるスートがインゴットヘッドに到達する場所のこと
である。スートのほとんどがこの積層点でインゴットに
捕獲される。
Therefore, although K affects the transmittance in the wavelength region of 220 nm or less, the effect is smaller than that of Na. When the concentration is 50 ppb or less, the transmittance is substantially reduced in the wavelength region of 220 nm or less. Can be eliminated. In view of the above points, the present inventors have proposed a method for achieving homogenization of the refractive index during synthesis without performing a secondary heat treatment, as a method for reducing alkali metal impurities, particularly Na, in quartz glass. It was adopted. However, even if the homogenization is simply achieved at the time of synthesis, the danger of Na being slightly mixed into the finished quartz glass is inevitable. For example, impurities may be released at a high temperature from a refractory used as a synthesis furnace wall of quartz glass. This refractory is typically used as insulation around a quartz glass ingot in a synthesis furnace. Accordingly, the present inventors have maintained the distance between the quartz glass ingot and the refractory at an appropriate distance, so that N
The concentration of a is 20 ppb or less, and the concentration of Li and K is 50 ppb.
b was confirmed to be possible. Specifically, the present invention can be achieved by arranging such that the distance from the inner surface of the refractory of the synthesis furnace to the lamination point is kept at least 250 mm or more. At this time, the lamination point is a place where the soot ejected from the burner reaches the ingot head. Most of the soot is captured by the ingot at this point.

【0020】また、従来の合成炉では、耐火物は、JI
S規格にあるような市販の耐火れんがが用いられてい
る。例えば、粘土質耐火れんがや、けい石耐火れんが
や、高アルミナ質耐火れんがである。例えば、高アルミ
ナ質耐火れんがは、90%程度のAl23からなり、不
純物としてNa2Oを0.5〜1%(蛍光X線分析法)
含んでいる。このNa2Oが、耐火物から石英ガラス中
にNaが分散する原因となる。
In the conventional synthesis furnace, the refractory is JI
Commercially available refractory bricks as specified in the S standard are used. For example, clay refractory brick, silica stone refractory brick, and high alumina refractory brick. For example, a high-alumina refractory brick is composed of about 90% of Al 2 O 3 , and 0.5 to 1% of Na 2 O as an impurity (X-ray fluorescence analysis).
Contains. This Na 2 O causes Na to be dispersed in the quartz glass from the refractory.

【0021】そこで、本発明では、合成炉内の耐火物と
してアルミナを主成分とし、Na2Oを含まない耐火物
を用いることとした。具体的には、99%以上のAl2
3からなる耐火物を作製し、これを用いた。この耐火
物を有する合成炉を用いて石英ガラスインゴットを合成
したところ、石英ガラス中のNa含有量は放射化分析法
で検出限界以下(1ppb以下)となった。
Therefore, in the present invention, a refractory containing alumina as a main component and containing no Na 2 O is used as a refractory in the synthesis furnace. Specifically, 99% or more of Al 2
A refractory made of O 3 was produced and used. When a quartz glass ingot was synthesized using the synthesis furnace having this refractory, the Na content in the quartz glass was below the detection limit (1 ppb or less) by activation analysis.

【0022】このインゴットから所望の光学部材の形状
を切り出し、アニールして得られた合成石英ガラス光学
部材のNa濃度は、10ppb以下となった。なお、ア
ルミナ(Al23)を主成分(99%以上)とする耐火
物を用いた場合、合成される石英ガラスに最低でも数p
pb以上、Alが混入する。Alは、石英ガラスにとっ
て不純物であるが、少量のAlがこれと同程度のNaと
共存する場合、Naの含有により生ずる吸収を抑制する
働きがあることがわかった。
The desired optical member shape was cut out from the ingot, and the Na concentration of the synthetic quartz glass optical member obtained by annealing was reduced to 10 ppb or less. When a refractory containing alumina (Al 2 O 3 ) as a main component (99% or more) is used, at least several p
More than pb, Al is mixed. Although Al is an impurity in quartz glass, it has been found that when a small amount of Al coexists with Na of the same level, it has a function of suppressing absorption caused by the inclusion of Na.

【0023】これは、Alが、石英ガラス中のNaの存
在により生ずる非架橋酸素を消失させて架橋させること
によると推定される。すなわち、Naが微量に存在する
石英ガラス中にNaと同程度のAlを含有させることに
より、紫外域の吸収をなくし、優れた紫外特性を得るこ
とが可能である。もっとも、Alが多量、例えば100
ppb以上であると、Al自身により生ずる吸収や構造
欠陥が問題となるので、Alの含有量は5ppb〜10
0ppbであることが好ましい。
This is presumably due to the fact that Al crosslinks by eliminating non-crosslinking oxygen generated by the presence of Na in the quartz glass. In other words, by including Al in a quartz glass containing a trace amount of Na at the same level as Na, absorption in the ultraviolet region can be eliminated and excellent ultraviolet characteristics can be obtained. However, a large amount of Al, for example, 100
If it is more than ppb, absorption and structural defects caused by Al itself become a problem, so the content of Al is 5 ppb to 10 ppb.
It is preferably 0 ppb.

【0024】[0024]

【実施例1】 <石英ガラスの合成>図1は、合成石英ガラスを製造す
るための合成炉の概略を示す概念図である。バーナ2
は、合成炉の炉壁を構成する耐火物1(耐火物について
は、後で説明する)の上部に、ターゲットにその先端を
向けて設置されている。炉壁には、観察用の窓(図示せ
ず)と排気管がそれぞれ設けられている。合成炉の下部
には、インゴット形成用のターゲット4が配置されてい
る。
Embodiment 1 <Synthesis of Quartz Glass> FIG. 1 is a conceptual view schematically showing a synthesis furnace for producing synthetic quartz glass. Burner 2
Is installed above the refractory 1 constituting the furnace wall of the synthesis furnace (the refractory will be described later) with its tip facing the target. The furnace wall is provided with an observation window (not shown) and an exhaust pipe. A target 4 for forming an ingot is arranged below the synthesis furnace.

【0025】バーナは、石英ガラス製の多重管構造のも
のを使用した。このバーナにて酸素ガス及び水素ガスを
混合、燃焼させ、原料として高純度(純度99.99%
以上で、金属不純物Fe濃度が10ppb以下、Ni、
Cr濃度が2ppb以下)の四塩化ケイ素をキャリアガ
ス(通常、酸素ガス)で希釈して、バーナの中心管から
原料流量30g/分で噴出させる。バーナ先端の火炎中
で原料が加水分解することにより、石英ガラス微粒子
(スート)が発生する。これを、1分間に7回転の速度
で回転し、80mmの移動距離、90秒周期で揺動し、
1時間当たり4mmの速度で引き下げを行っているφ2
00のターゲット板上に堆積、溶融してインゴットを合
成した。このとき、インゴット上部は、火炎により覆わ
れている。バーナから噴出される水素ガス流量は約50
0slmで、酸素ガス流量と水素ガス流量との比率をO
2/H2=0.4と設定した。
As the burner, a multi-tube structure made of quartz glass was used. Oxygen gas and hydrogen gas are mixed and burned by this burner, and high purity (purity 99.99%
As described above, the metal impurity Fe concentration is 10 ppb or less, Ni,
Silicon tetrachloride having a Cr concentration of 2 ppb or less) is diluted with a carrier gas (generally, oxygen gas) and jetted from the central tube of the burner at a raw material flow rate of 30 g / min. The raw material is hydrolyzed in the flame at the tip of the burner, so that fine silica glass particles (soot) are generated. This is rotated at a speed of 7 rotations per minute, oscillating at a moving distance of 80 mm, at a cycle of 90 seconds,
Φ2 lowering at a speed of 4 mm per hour
Ingots were deposited and melted on a target plate of No. 00 to synthesize an ingot. At this time, the upper part of the ingot is covered with the flame. Hydrogen gas flow from the burner is about 50
At 0 slm, the ratio between the oxygen gas flow rate and the hydrogen gas flow rate is set to O.
2 / H 2 = 0.4 was set.

【0026】ターゲット板を、一定周期で回転及び揺動
することにより、インゴット上部の合成面の温度分布が
小さくなるので、得られる石英ガラスの屈折率の均質性
が向上する。さらに、ターゲット板は、インゴット上部
の合成面の位置を常にバーナから等距離に保つように引
き下げられる。このように、合成時に一定周期でターゲ
ットを回転、揺動、引き下げをすることによって、3方
向脈理がなく、脈理に伴う複屈折がなく、屈折率の均質
性が2×10-6以下の石英ガラスインゴットが得られ
る。
By rotating and rocking the target plate at a constant period, the temperature distribution on the composite surface above the ingot is reduced, and the homogeneity of the refractive index of the obtained quartz glass is improved. Furthermore, the target plate is lowered so that the position of the composite surface above the ingot is always kept at the same distance from the burner. In this way, by rotating, swinging, and pulling down the target at regular intervals during synthesis, there is no striae in three directions, no birefringence accompanying striae, and homogeneity of the refractive index is 2 × 10 -6 or less. Is obtained.

【0027】また、この合成炉では、合成炉壁を構成す
る耐火物から合成面までの距離を最短で300mmとな
るようにして合成した。合成面とはバーナから噴出され
るスートがインゴット上部に到達する場所のことであ
る。また、合成炉の耐火物は石英ガラスインゴットの周
りに縦600mm×横800mm×高さ800mmの内
面形状になるように配置されたもので、アルミナ(Al
23)製とした。この耐火物は、バブル状のアルミナ中
空粒子を高アルミナ質のバインダーと混合して1500
℃で24時間焼結し、揮発成分を取り除いて作製した。
これは、99.5%以上のAl23からなり、Na2
の含有量は蛍光X線分析法で測定限界(0.03%)以
下である。
In this synthesis furnace, the synthesis was performed such that the distance from the refractory constituting the synthesis furnace wall to the synthesis surface was at least 300 mm. The composite surface is where the soot erupting from the burner reaches the upper part of the ingot. The refractory of the synthesis furnace is arranged around the quartz glass ingot so as to have an inner shape of 600 mm long × 800 mm wide × 800 mm high.
2 O 3 ). This refractory is obtained by mixing bubble-like alumina hollow particles with a high-alumina binder, and
The product was sintered at 24 ° C. for 24 hours to remove volatile components.
It consists of 99.5% or more Al 2 O 3, Na 2 O
Is less than the measurement limit (0.03%) by fluorescent X-ray analysis.

【0028】この方法により、直径300mm、長さ6
00mmの石英ガラスインゴットを得た。得られた石英
ガラスインゴットの径方向中心部、ヘッドから100m
mのところから、直径60mm、厚さ10mmの形状を
持つ透過率測定用試験片を切り出し、向かい合う2面に
光学研磨を施した。また、その透過率測定用試験片切り
出し部の直下から、10×10×5mm3のNa、K分
析用試験片を切り出した。透過率は紫外用分光光度計で
測定した。また、Na、Kの定量は熱中性子線照射によ
る放射化分析によって行った。
According to this method, the diameter is 300 mm and the length is 6 mm.
A quartz glass ingot of 00 mm was obtained. The central part in the radial direction of the obtained quartz glass ingot, 100 m from the head
From m, a test piece for transmittance measurement having a shape of 60 mm in diameter and 10 mm in thickness was cut out, and two opposing surfaces were subjected to optical polishing. In addition, a 10 × 10 × 5 mm 3 Na, K analysis test piece was cut out from immediately below the transmittance measurement test piece cutout portion. The transmittance was measured with an ultraviolet spectrophotometer. The quantification of Na and K was performed by activation analysis using thermal neutron irradiation.

【0029】また、それらの試験片に隣接する場所か
ら、アルカリ土類金属、遷移金属およびAlの元素分析
用の試料を切り出した。各元素の定量は誘導結合型プラ
ズマ発光分光法によって行った。その結果、実施例1の
試験片のアルカリ土類金属のMg、Ca、遷移金属のS
c、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、
Znの各元素濃度はそれぞれ20ppb以下であった。
また、Alの濃度は5ppbであった。さらに、実施例
1の試験片のNa濃度は2ppbであり、K濃度は検出
下限(50ppb)以下であった。
Further, samples for elemental analysis of alkaline earth metals, transition metals, and Al were cut out from places adjacent to the test pieces. Quantification of each element was performed by inductively coupled plasma emission spectroscopy. As a result, the alkaline earth metal Mg, Ca and the transition metal S of the test piece of Example 1 were obtained.
c, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Each element concentration of Zn was 20 ppb or less.
The Al concentration was 5 ppb. Furthermore, the Na concentration of the test piece of Example 1 was 2 ppb, and the K concentration was below the lower limit of detection (50 ppb).

【0030】透過特性を評価した結果、実施例1の試験
片の波長193nmでの吸収係数は0.001cm-1
なり、内部透過率に換算すると1cm当たり99.9%
という非常に良好な値が得られた。なお、吸収係数は以
下の式で算出した。吸収係数=−ln(透過率/理論透
過率)/試験片厚さこのとき、理論透過率とは内部吸収
損失がゼロで試料表面の反射損失のみで決まる透過率の
ことである。
As a result of evaluating the transmission characteristics, the absorption coefficient of the test piece of Example 1 at a wavelength of 193 nm was 0.001 cm −1 , which was 99.9% per cm in terms of internal transmittance.
A very good value was obtained. The absorption coefficient was calculated by the following equation. Absorption coefficient = -ln (transmittance / theoretical transmittance) / test piece thickness In this case, the theoretical transmittance is a transmittance determined by only the reflection loss of the sample surface with no internal absorption loss.

【0031】なお、得られた石英ガラスインゴットの屈
折率均質性をHe-Neレーザを光源としたフィゾー干渉計
で測定したところ、φ200mmの領域内で屈折率差の
最大値が1×10-6という非常に均質なものであること
がわかった。
When the homogeneity of the refractive index of the obtained quartz glass ingot was measured with a Fizeau interferometer using a He-Ne laser as a light source, the maximum value of the refractive index difference was 1 × 10 −6 within a region of φ200 mm. It turned out to be very homogeneous.

【0032】[0032]

【実施例2】実施例2の石英ガラスは、実施例1と同様
の方法により、合成炉耐火物からの積層点までの距離を
最短で200mmとなるように配置して合成した。この
方法により、直径200mm、長さ600mmの石英ガ
ラスインゴットを得た。得られた石英ガラスインゴット
の径方向中心部、ヘッドから100mmのところから、
直径60mm、厚さ10mmの形状を持つ透過率測定用
試験片を切り出し、向かい合う2面に光学研磨を施し
た。また、その透過率測定用試験片切り出し部の直下か
ら、10×10×5mm3のNa、K分析用試験片を切
り出した。また、それらの試験片に隣接する場所から、
アルカリ土類金属、遷移金属およびAlの元素分析用の
試料を切り出した。
Example 2 The quartz glass of Example 2 was synthesized in the same manner as in Example 1, with the distance from the synthesis furnace refractory to the lamination point being at least 200 mm. By this method, a quartz glass ingot having a diameter of 200 mm and a length of 600 mm was obtained. From the radial center of the obtained quartz glass ingot, 100 mm from the head,
A test piece for transmittance measurement having a shape having a diameter of 60 mm and a thickness of 10 mm was cut out, and two opposing surfaces were subjected to optical polishing. In addition, a 10 × 10 × 5 mm 3 Na, K analysis test piece was cut out from immediately below the transmittance measurement test piece cutout portion. Also, from the place adjacent to those test pieces,
Samples for elemental analysis of alkaline earth metals, transition metals and Al were cut out.

【0033】その結果、実施例2の試験片のアルカリ土
類金属のMg、Ca、遷移金属のSc、Ti、V、C
r、Mn、Fe、Co、Ni、Cu、Znの各元素濃度
はそれぞれ20ppb以下であった。また、Alの濃度
は25ppbであった。さらに実施例2の試験片のNa
濃度は19ppbであり、K濃度は検出下限(50pp
b)以下であった。また、波長193nmでの吸収係数
は0.002cm-1となり、内部透過率に換算するとは
1cm当たり99.8%という良好な値が得られた。
As a result, the alkaline earth metals Mg, Ca, and the transition metals Sc, Ti, V, C
Each element concentration of r, Mn, Fe, Co, Ni, Cu, and Zn was 20 ppb or less. Further, the concentration of Al was 25 ppb. Further, Na of the test piece of Example 2 was used.
The concentration was 19 ppb, and the K concentration was lower than the detection limit (50 ppb).
b) It was the following. Further, the absorption coefficient at a wavelength of 193 nm was 0.002 cm -1 , which was a good value of 99.8% per cm in terms of internal transmittance.

【0034】また、得られた石英ガラスインゴットの屈
折率均質性を測定したところ、φ150mmの領域内で
屈折率差の最大値が2×10-6であった。
Further, when the homogeneity of the refractive index of the obtained quartz glass ingot was measured, the maximum value of the refractive index difference was 2 × 10 −6 within the region of φ150 mm.

【0035】[0035]

【比較例1】実施例2のインゴットについてさらに屈折
率均質性を向上させるために、アルゴン雰囲気中で、圧
力10kg/cm2、保持温度1900℃、保持時間1
0時間で熱処理を行った。処理する実施例2で得られた
石英ガラス母材はカーボングラファイト製のφ200m
m、肉厚10mmの外型にセットした。また、熱処理後
に外型から母型が取り出せなくなることを防ぐために、
外型の内面にカーボンファイバーフェルトを設置した。
なお、処理炉は上下部と側部にヒータを有し、加熱炉全
体は断熱層でおおわれている。このようにして得られた
φ190の厚さ50mmの試料を比較例2とした。この
比較例2の試料の径方向中心部、厚さ方向中心部から直
径60mm、厚さ10mmの形状を持つ透過率測定用試
験片を切り出し、向かい合う2面に光学研磨を施した。
また、その透過率測定用試験片切り出し部の直下から、
10×10×5mm3のNa、K分析用試験片を切り出
した。また、それらの試験片に隣接する場所から、アル
カリ土類金属、遷移金属およびAlの元素分析用の試料
を切り出した。
Comparative Example 1 In order to further improve the refractive index homogeneity of the ingot of Example 2, the pressure was 10 kg / cm 2 , the holding temperature was 1900 ° C., and the holding time was 1 in an argon atmosphere.
Heat treatment was performed for 0 hours. The quartz glass base material obtained in Example 2 to be treated is made of carbon graphite and has a diameter of 200 m.
m, set in an outer mold having a thickness of 10 mm. Also, to prevent the mother mold from being removed from the outer mold after heat treatment,
A carbon fiber felt was installed on the inner surface of the outer mold.
Note that the processing furnace has heaters at upper and lower portions and side portions, and the entire heating furnace is covered with a heat insulating layer. A sample having a thickness of φ190 and a thickness of 50 mm thus obtained was used as Comparative Example 2. From the center part in the radial direction and the center part in the thickness direction of this sample of Comparative Example 2, a test piece for transmittance measurement having a shape having a diameter of 60 mm and a thickness of 10 mm was cut out, and two opposing surfaces were subjected to optical polishing.
In addition, from just below the cutout section for the transmittance measurement test piece,
A 10 × 10 × 5 mm 3 Na, K analysis test piece was cut out. In addition, samples for elemental analysis of alkaline earth metals, transition metals and Al were cut out from locations adjacent to those test pieces.

【0036】その結果、比較例2の試験片のアルカリ土
類金属のMg、Ca、遷移金属のSc、Ti、V、C
r、Mn、Fe、Co、Ni、Cu、Znの各元素濃度
はそれぞれ20ppb以下であった。また、Alの濃度
は10ppbであった。さらに、比較例2の試験片のN
a濃度は120ppbであり、K濃度は検出下限(50
ppb)以下であった。また、波長193nmでの吸収
係数は0.048cm-1と非常に大きく、内部透過率に
換算すると1cm当たり95.3%と不良であることがわ
かった。
As a result, the alkaline earth metals Mg, Ca, and the transition metals Sc, Ti, V, C
Each element concentration of r, Mn, Fe, Co, Ni, Cu, and Zn was 20 ppb or less. The Al concentration was 10 ppb. Furthermore, N of the test piece of Comparative Example 2
The a concentration is 120 ppb, and the K concentration is the lower limit of detection (50
ppb). In addition, the absorption coefficient at a wavelength of 193 nm was as large as 0.048 cm −1, which was a poor value of 95.3% per cm in terms of internal transmittance.

【0037】[0037]

【比較例2】比較例2の試料は比較例2の方法と同様に
して作製した。ただし、実施例2で得られた石英ガラス
母材は、SiO2粉末またはSiO2粉末を溶融して作製
した内径150mm、外形250mmのドーナツ状の母
型の中に設置し、さらにそれを内径300mmのカーボ
ングラファイト製外型内に設置して熱処理を行った。こ
のようにしてφ150mm、厚さ50mmの試料を比較
例3とした。この比較例3の試料の中心部から評価用試
験片を切り出した。
Comparative Example 2 A sample of Comparative Example 2 was produced in the same manner as in Comparative Example 2. However, the quartz glass base material obtained in Example 2 was placed in a doughnut-shaped matrix having an inner diameter of 150 mm and an outer diameter of 250 mm produced by fusing SiO 2 powder or SiO 2 powder, and further mounting it in an inner diameter of 300 mm. Was placed in an outer mold made of carbon graphite and heat-treated. Thus, a sample having a diameter of 150 mm and a thickness of 50 mm was used as Comparative Example 3. A test piece for evaluation was cut out from the center of the sample of Comparative Example 3.

【0038】分析の結果、比較例3の試験片のアルカリ
土類金属のMg、Ca、遷移金属のSc、Ti、V、C
r、Mn、Fe、Co、Ni、Cu、Znの各元素濃度
はそれぞれ20ppb以下であった。また、Alの濃度
は10ppbであった。さらに、比較例3の試験片のN
a濃度は47ppbであり、K濃度は検出下限(50p
pb)以下であった。また、波長193nmでの吸収係
数は0.012cm-1で、内部透過率に換算すると1c
m当たり98.8%と不良であることがわかった。
As a result of the analysis, the alkaline earth metals Mg, Ca and the transition metals Sc, Ti, V, C
Each element concentration of r, Mn, Fe, Co, Ni, Cu, and Zn was 20 ppb or less. The Al concentration was 10 ppb. Furthermore, N of the test piece of Comparative Example 3
The a concentration is 47 ppb, and the K concentration is the lower limit of detection (50 p
pb). The absorption coefficient at a wavelength of 193 nm is 0.012 cm −1, which is 1c when converted to the internal transmittance.
It was found to be as poor as 98.8% per m.

【0039】実施例1、2、比較例1、2の試験片につ
いて、波長193nmでの吸収係数のNa濃度依存性を
プロットした図を図2に示した。図2に示したように、
波長193nmでの吸収係数はNa濃度に強く依存し、
さらに、Na濃度が20ppb以下になると吸収がほぼ
ゼロになることがわかった。
FIG. 2 shows a plot of the dependence of the absorption coefficient at a wavelength of 193 nm on the Na concentration of the test pieces of Examples 1 and 2 and Comparative Examples 1 and 2. As shown in FIG.
The absorption coefficient at a wavelength of 193 nm strongly depends on the Na concentration,
Furthermore, it was found that the absorption became almost zero when the Na concentration was 20 ppb or less.

【0040】[0040]

【比較例3】比較例3の試料は基本的に実施例1と同様
の方法で作製されたが、異なる点は、ターゲットとして
石英ガラス板に代えて、アルミナで作られた円筒径の耐
火物の内面と下面に、SiCを敷き詰めた容器を使用し
た。この容器の内径はφ300mmであった。この容器
に直接石英ガラスを堆積させてφ300mm、厚さ20
0mmの比較例3の試料を作製した。得られた比較例3
の試料の中心部から、評価用試験片を切り出した。
Comparative Example 3 The sample of Comparative Example 3 was produced basically in the same manner as in Example 1, except that the target was a quartz glass plate, and a cylindrical refractory made of alumina instead of a quartz glass plate. A container in which SiC was spread on the inner surface and the lower surface of was used. The inner diameter of this container was φ300 mm. Quartz glass is directly deposited on this container, φ300mm, thickness 20
A 0 mm sample of Comparative Example 3 was produced. Comparative Example 3 obtained
A test piece for evaluation was cut out from the center of the sample.

【0041】分析の結果、比較例3の試験片のアルカリ
土類金属のMg、Ca、遷移金属のSc、Ti、V、C
r、Mn、Fe、Co、Ni、Cu、Znの各元素濃度
はそれぞれ20ppb以下であった。また、Alの濃度
は10ppbであった。さらに比較例4の試験片のNa
濃度は13ppbであったが、K濃度が100ppbで
あった。そしてこの試験片の波長193nmでの吸収係
数は0.010cm-1で、内部透過率に換算すると1c
m当たり99.0%と不良であることがわかった。
As a result of the analysis, the test pieces of Comparative Example 3 were Mg and Ca as alkaline earth metals and Sc, Ti, V and C as transition metals.
Each element concentration of r, Mn, Fe, Co, Ni, Cu, and Zn was 20 ppb or less. The Al concentration was 10 ppb. Further, Na of the test piece of Comparative Example 4
The concentration was 13 ppb, but the K concentration was 100 ppb. The absorption coefficient of this test piece at a wavelength of 193 nm is 0.010 cm −1, which is 1c when converted to an internal transmittance.
It was found to be as poor as 99.0% per m.

【0042】[0042]

【実施例3】本発明の石英ガラス光学部材のうち、最大
口径250mm、厚さ70mmの、エキシマレーザ照射
領域内での最大屈折率差が△n≦2×10-6であり、最
大複屈折率が2nm/cm以下であり、さらに部材全域
にわたって、アルカリ土類金属のMg、Ca、遷移金属
のSc、Ti、V、Cr、Mn、Fe、Co、Ni、C
u、Znの各元素濃度がそれぞれ20ppb以下、Al
の濃度が5〜100ppb、アルカリ金属のNa濃度が
20ppb以下、K不純物濃度が50ppb以下の特性
を有する部材を用いて、ArFエキシマレーザステッパ
投影レンズを作製した。そして、得られた投影光学系の
解像度はラインアンドスペースで0.19μmを達成
し、ArFエキシマレーザステッパとして良好な結像性
能を得ることができた。
Embodiment 3 Among the quartz glass optical members of the present invention, the maximum refractive index difference in the excimer laser irradiation region having a maximum diameter of 250 mm and a thickness of 70 mm is Δn ≦ 2 × 10 −6 and the maximum birefringence. Rate is 2 nm / cm or less, and further, Mg, Ca of alkaline earth metals, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, C
u, Zn each element concentration is 20 ppb or less, Al
An ArF excimer laser stepper projection lens was manufactured using a member having characteristics of a concentration of 5 to 100 ppb, an alkali metal Na concentration of 20 ppb or less, and a K impurity concentration of 50 ppb or less. The resolution of the obtained projection optical system was 0.19 μm in line and space, and good imaging performance was obtained as an ArF excimer laser stepper.

【0043】[0043]

【発明の効果】本発明によれば、例えばエキシマレーザ
リソグラフィ装置などに設置されている、250nm以
下の紫外、真空紫外線あるいは同波長領域のレーザの光
学系のスループットを向上させ、広い領域にわたって均
一に結像することができる光学系を実現できるような石
英ガラス光学部材や、ファイバ、窓部材、ミラー、エタ
ロン、プリズムなど、250nm以下の紫外、真空紫外
線あるいは同波長領域のレーザに対して高スループット
を有する光学素子を提供することが可能になった。さら
に、波長250nm以下の光源を用いた高精度な光リソ
グラフィ装置を提供することが可能になった。
According to the present invention, the throughput of the optical system of the ultraviolet, vacuum ultraviolet, or laser of the same wavelength region of 250 nm or less, which is installed in, for example, an excimer laser lithography apparatus, is improved, and the uniformity over a wide region is improved. High throughput for ultraviolet, vacuum ultraviolet or laser in the same wavelength range, such as quartz glass optical members, fibers, window members, mirrors, etalons, prisms, etc., that can realize optical systems capable of forming images. It has become possible to provide an optical element having the same. Further, it has become possible to provide a highly accurate optical lithography apparatus using a light source having a wavelength of 250 nm or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 合成石英ガラスを製造するための合成炉の概
略を示した概念図である。
FIG. 1 is a conceptual diagram schematically showing a synthesis furnace for producing synthetic quartz glass.

【図2】 合成石英ガラスのArFエキシマレーザー波
長である193nmでの吸収係数とNa濃度との相関を
示した図である。縦軸のcm^-1はcm-1を表してい
る。
FIG. 2 is a diagram showing a correlation between an absorption coefficient at 193 nm which is an ArF excimer laser wavelength of synthetic quartz glass and a Na concentration. Cm ^ -1 on the vertical axis represents cm- 1 .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】250nm以下の波長領域の光学系に使用
される石英ガラス光学部材において、石英ガラス中に含
有されるNaの濃度が20ppb以下であることを特徴
とする石英ガラス光学部材。
1. A quartz glass optical member used for an optical system in a wavelength region of 250 nm or less, wherein the concentration of Na contained in the quartz glass is 20 ppb or less.
【請求項2】250nm以下の波長領域の光学系に使用
される石英ガラス光学部材において、石英ガラス中に含
有されるNaの濃度が50ppb以下であり、かつAl
の濃度が5〜100ppbであることを特徴とする石英
ガラス光学部材。
2. A quartz glass optical member used for an optical system in a wavelength region of 250 nm or less, wherein the concentration of Na contained in the quartz glass is 50 ppb or less, and
Wherein the concentration is 5 to 100 ppb.
【請求項3】請求項1または2に記載の石英ガラス光学
部材において、石英ガラス中に含有される遷移金属及び
アルカリ金属及びアルカリ土類金属の各元素の濃度が各
々20ppb以下であることを特徴とする石英ガラス部
材。
3. The quartz glass optical member according to claim 1, wherein the concentration of each of the transition metal, alkali metal and alkaline earth metal contained in the quartz glass is 20 ppb or less. Quartz glass member.
【請求項4】250nm以下の波長領域の光学系に使用
される石英ガラス光学部材において、石英ガラス中に含
有されるNaとAlのモル濃度比率が、[Na]/[A
l]≦1であることを特徴とする石英ガラス光学部材。
4. A quartz glass optical member used for an optical system in a wavelength region of 250 nm or less, wherein the molar concentration ratio of Na and Al contained in the quartz glass is [Na] / [A
1] ≦ 1.
【請求項5】合成炉内で高純度のケイ素化合物をバーナ
から噴出される酸素水素火炎中で加水分解して石英ガラ
ス微粒子を形成し、ターゲット上に堆積してガラス化す
る石英ガラスの製造方法において、前記微粒子がターゲ
ットに到達した位置と合成炉壁との距離を250mm以
上に設定したことを特徴とする石英ガラスの製造方法。
5. A method for producing quartz glass in which a high-purity silicon compound is hydrolyzed in an oxygen-hydrogen flame spouted from a burner in a synthesis furnace to form quartz glass fine particles, which are deposited on a target and vitrified. , Wherein the distance between the position where the fine particles reach the target and the synthesis furnace wall is set to 250 mm or more.
【請求項6】合成炉内で高純度のケイ素化合物をバーナ
から噴出される酸素水素火炎中で加水分解して石英ガラ
ス微粒子を形成し、ターゲット上に堆積してガラス化す
る石英ガラスの製造方法において、合成炉の炉壁を形成
している耐火物がアルミナを主成分とする耐火物である
ことを特徴とする石英ガラスの製造方法。
6. A method for producing quartz glass in which a high-purity silicon compound is hydrolyzed in an oxygen-hydrogen flame spouted from a burner in a synthesis furnace to form quartz glass fine particles, deposited on a target and vitrified. 3. The method for producing quartz glass according to claim 1, wherein the refractory forming the furnace wall of the synthesis furnace is a refractory containing alumina as a main component.
【請求項7】投影光学系を用いてマスクのパターン像を
基板上に投影露光する装置であって、250nm以下の波長
領域の光を露光光としてマスクを照明する照明光学系
と、請求項1〜4のいずれかに記載の石英ガラス光学部
材を含み、前記マスクのパターン像を基板上に形成する
投影光学系と、からなる投影露光装置。
7. An apparatus for projecting and exposing a pattern image of a mask on a substrate using a projection optical system, wherein the illumination optical system illuminates the mask with light in a wavelength region of 250 nm or less as exposure light. A projection exposure apparatus, comprising: the projection optical system that includes the quartz glass optical member according to any one of Items 1 to 4, and forms a pattern image of the mask on a substrate.
【請求項8】投影光学系を用いてマスクのパターン像を
基板上に投影露光する装置であって、請求項1〜4のい
ずれかに記載の石英ガラス光学部材を含み、250nm
以下の波長領域の光を露光光としてマスクを照明する照
明光学系と、前記マスクのパターン像を基板上に形成す
る投影光学系と、からなる投影露光装置。
8. An apparatus for projecting and exposing a pattern image of a mask onto a substrate by using a projection optical system, comprising: the quartz glass optical member according to claim 1;
A projection exposure apparatus comprising: an illumination optical system that illuminates a mask using light in the following wavelength regions as exposure light; and a projection optical system that forms a pattern image of the mask on a substrate.
JP20590696A 1996-08-05 1996-08-05 Quartz glass optical member, manufacturing method thereof, and projection exposure apparatus Expired - Lifetime JP3757476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20590696A JP3757476B2 (en) 1996-08-05 1996-08-05 Quartz glass optical member, manufacturing method thereof, and projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20590696A JP3757476B2 (en) 1996-08-05 1996-08-05 Quartz glass optical member, manufacturing method thereof, and projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPH1053432A true JPH1053432A (en) 1998-02-24
JP3757476B2 JP3757476B2 (en) 2006-03-22

Family

ID=16514720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20590696A Expired - Lifetime JP3757476B2 (en) 1996-08-05 1996-08-05 Quartz glass optical member, manufacturing method thereof, and projection exposure apparatus

Country Status (1)

Country Link
JP (1) JP3757476B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985643A2 (en) * 1998-09-10 2000-03-15 Heraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass for the use in ArF excimer laser lithography
EP1033350A1 (en) * 1999-03-04 2000-09-06 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass member for use in ArF excimer laser lithography
WO2002085808A1 (en) * 2001-04-19 2002-10-31 Nikon Corporation Quartz glass member and projection aligner
JP2003104746A (en) * 2001-09-28 2003-04-09 Shinetsu Quartz Prod Co Ltd Method of manufacturing synthetic quartz glass material and synthetic quartz glass material
US6630418B2 (en) * 2001-12-21 2003-10-07 Corning Incorporated Fused silica containing aluminum
US6672111B2 (en) 2001-12-21 2004-01-06 Corning Incorporated Method and apparatus for adding metals to fused silica
US6946416B2 (en) 2001-12-21 2005-09-20 Corning Incorporated Fused silica having improved index homogeneity
WO2007145369A1 (en) * 2006-06-16 2007-12-21 Tokyo Denpa Co., Ltd. Artificial quartz member, process for producing the same, and optical element comprising the same
JP2008208017A (en) * 2006-09-11 2008-09-11 Tosoh Corp Fused quartz glass and process for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985643A2 (en) * 1998-09-10 2000-03-15 Heraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass for the use in ArF excimer laser lithography
EP0985643A3 (en) * 1998-09-10 2000-10-25 Heraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass for the use in ArF excimer laser lithography
EP1033350A1 (en) * 1999-03-04 2000-09-06 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass member for use in ArF excimer laser lithography
WO2002085808A1 (en) * 2001-04-19 2002-10-31 Nikon Corporation Quartz glass member and projection aligner
US6835683B2 (en) 2001-04-19 2004-12-28 Nikon Corporation Quartz glass member and projection aligner
JP2003104746A (en) * 2001-09-28 2003-04-09 Shinetsu Quartz Prod Co Ltd Method of manufacturing synthetic quartz glass material and synthetic quartz glass material
US6672111B2 (en) 2001-12-21 2004-01-06 Corning Incorporated Method and apparatus for adding metals to fused silica
US6689706B2 (en) 2001-12-21 2004-02-10 Corning Incorporated Fused silica containing aluminum
US6630418B2 (en) * 2001-12-21 2003-10-07 Corning Incorporated Fused silica containing aluminum
US6946416B2 (en) 2001-12-21 2005-09-20 Corning Incorporated Fused silica having improved index homogeneity
WO2007145369A1 (en) * 2006-06-16 2007-12-21 Tokyo Denpa Co., Ltd. Artificial quartz member, process for producing the same, and optical element comprising the same
US8257675B2 (en) 2006-06-16 2012-09-04 Tokyo Denpa Co., Ltd. Artificial quartz member, process for producing the same, and optical element comprising the same
JP2008208017A (en) * 2006-09-11 2008-09-11 Tosoh Corp Fused quartz glass and process for producing the same

Also Published As

Publication number Publication date
JP3757476B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
KR100382776B1 (en) Quartz glass, optical member containing the same, and manufacturing method thereof
US5958809A (en) Fluorine-containing silica glass
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
JPH1192153A (en) Quartz glass and its production
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
JP2001199735A (en) Quartz glass body for optical part and method for producing the same
JP2936138B2 (en) Quartz glass, optical member including the same, and method of manufacturing the same
US6946416B2 (en) Fused silica having improved index homogeneity
JP2000290026A (en) Optical quartz glass member for excimer laser
EP1219571B1 (en) process for producing a synthetic quartz glass article
US6630418B2 (en) Fused silica containing aluminum
JPH1067526A (en) Optical quartz glass element
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
EP0985643A2 (en) Method for producing synthetic quartz glass for the use in ArF excimer laser lithography
JP4228493B2 (en) Synthetic quartz glass
JP3965552B2 (en) Method for producing synthetic quartz glass
JPH0912323A (en) Quartz glass member suppressed from becoming dense due to irradiation of uv ray
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP3427136B2 (en) Synthetic quartz glass manufacturing apparatus and manufacturing method using the same
JP3975334B2 (en) Heat treatment method for synthetic quartz glass
JP2002255577A (en) Synthetic quartz glass member and method for manufacturing the same
JP3126188B2 (en) Quartz glass substrate for photomask
JP2000143259A (en) Synthetic quartz glass optical member and its production
JP2009078968A (en) METHOD OF MANUFACTURING SYNTHETIC QUARTZ GLASS MEMBER FOR ArF EXCIMER LASER LITHOGRAPHY

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term