JP2003188219A - Inspection method for semiconductor device - Google Patents

Inspection method for semiconductor device

Info

Publication number
JP2003188219A
JP2003188219A JP2001387695A JP2001387695A JP2003188219A JP 2003188219 A JP2003188219 A JP 2003188219A JP 2001387695 A JP2001387695 A JP 2001387695A JP 2001387695 A JP2001387695 A JP 2001387695A JP 2003188219 A JP2003188219 A JP 2003188219A
Authority
JP
Japan
Prior art keywords
inspection
temperature
inspection data
semiconductor device
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001387695A
Other languages
Japanese (ja)
Inventor
Kazuhide Fujimoto
和秀 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001387695A priority Critical patent/JP2003188219A/en
Publication of JP2003188219A publication Critical patent/JP2003188219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device-inspecting method for comparing inspection data in detail in the different inspection temperatures of normal- temperature wafer inspection and high-temperature product shipment inspection, and for supplying a stable yield. <P>SOLUTION: The semiconductor device-inspecting method includes a normal- temperature wafer inspection process S200 for allowing a semiconductor device, having a memory for storing inspection data to be subjected to normal- temperature wafer inspection, a normal-temperature inspection data-write process S201 for storing obtained normal-temperature inspection data into the memory of the semiconductor device, a normal-temperature inspection data-read process S202 for reading the normal-temperature inspection data, a high-temperature product shipment inspection process S400 for allowing the semiconductor device to be subjected to high-temperature product shipment inspection, and a temperature-dependent characteristics inspection process S500 for inspecting the temperature dependence characteristics in a semiconductor product according to the normal-temperature inspection data and the high-temperature inspection data that are measured by the high-temperature product shipment inspection process. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置検査方
法に関するもので、特に半導体装置内の不揮発性メモリ
を用いて複数の検査温度での検査データを永久的に記憶
し、詳細な温度依存特性の良否判別、または検査後及び
製品出荷後の不具合分析を容易にする半導体装置検査方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device inspection method, and in particular, a nonvolatile memory in a semiconductor device is used to permanently store inspection data at a plurality of inspection temperatures to obtain detailed temperature dependence characteristics. The present invention relates to a semiconductor device inspection method for facilitating the quality judgment, or the failure analysis after the inspection and after the product is shipped.

【0002】[0002]

【従来の技術】一般的に半導体装置の出荷検査では、常
温にてウエハ検査後、製品組み立てし高温にて製品出荷
検査を実施している。温度依存特性検査の良否判別は検
査温度差ΔTでの特性変化量Δαを試作評価データより
予測し、プロセスばらつきを加味した検査マージンをと
って選別していた。
2. Description of the Related Art Generally, in the shipping inspection of a semiconductor device, after the wafer is inspected at room temperature, the product is assembled and the product shipping inspection is performed at a high temperature. In the quality judgment of the temperature-dependent characteristic inspection, the characteristic change amount Δα at the inspection temperature difference ΔT is predicted from the trial evaluation data, and the inspection margin is selected in consideration of the process variation.

【0003】LSIなどの半導体装置の製品出荷フロー
を図5に示す。シリコンウエハなどに拡散工程S100
で形成された半導体装置は、まずウエハ状態でLSIテ
スタやプローバーなどの常温ウエハ検査装置を用いて、
常温ウエハ検査S200を行う。常温ウエハ検査S20
0では、DC特性テスト、AC特性テスト、及びファン
クションテストなどの検査項目に関して、良品チップ/
不良品チップに選別する。次に良品チップのみパッケー
ジ封止工程S300で組み立てられる。パッケージ封止
工程S300で組み立てられた半導体装置を、常温ウエ
ハ検査装置とは異なるLSIテスタやハンドラーなどの
高温製品出荷検査装置を用いて、高温製品出荷検査S4
00を行う。高温製品出荷検査S400では、動作保証
する温度に対して検査マージン温度を加えた高温検査温
度で、DC特性テスト、AC特性テスト、及びファンク
ションテストなどの検査項目に関して、良品デバイス/
不良品デバイスに選別する。良品デバイスを製品出荷S
600する。
FIG. 5 shows a product shipment flow of a semiconductor device such as an LSI. Diffusion process S100 on silicon wafer
First, the semiconductor device formed by using a normal temperature wafer inspection device such as an LSI tester or a prober in a wafer state.
The normal temperature wafer inspection S200 is performed. Room temperature wafer inspection S20
In 0, the inspection items such as DC characteristic test, AC characteristic test and function test are good chips /
Sort into defective chips. Next, only good chips are assembled in the package sealing step S300. The semiconductor device assembled in the package sealing step S300 is subjected to a high temperature product shipment inspection S4 using a high temperature product shipment inspection device such as an LSI tester or a handler different from the room temperature wafer inspection device.
00 is performed. In the high-temperature product shipment inspection S400, a high-quality inspection temperature obtained by adding an inspection margin temperature to the operation-guaranteed temperature is used, and the inspection items such as the DC characteristic test, the AC characteristic test, and the function test are non-defective devices /
Select defective devices. Ship non-defective devices as products S
600.

【0004】温度依存特性検査の良否判別方法につい
て、図6に示す半導体装置に搭載されている電圧制御発
振器(Voltage Controlled Oscillator 以下VCO)を
用いたPLL(Phase Locked Loop)のVCO温度依存
特性検査の良否判別方法を、図7のリングオシレータ型
VCO構成と、図8のVCO室温及び高温の温度依存特
性を参照しながら説明する。
Regarding the method of determining the quality of the temperature dependent characteristic inspection, a VCO temperature dependent characteristic inspection of a PLL (Phase Locked Loop) using a voltage controlled oscillator (VCO) mounted on the semiconductor device shown in FIG. The pass / fail judgment method will be described with reference to the ring oscillator type VCO configuration of FIG. 7 and the temperature-dependent characteristics of the VCO room temperature and high temperature of FIG.

【0005】例えば、磁気記録媒体などの43Mbps
再生信号を倍サンプリングする場合の再生信号に同期し
た84MHzサンプリングクロック生成のPLL動作に
ついて説明する。まず、VCOが初期状態で同期してい
ない84MHzクロックによって、A/D変換装置(A/D Co
nverter 以下ADC)2で入力再生信号をサンプリング
する。次にセンター周波数検出3で、サンプリングした
再生信号中に同期するためのセンター周波数84MHz
に対するセンター周波数位相誤差を検出する。検出した
センター周波数位相誤差は、D/A変換装置(D/A Conv
erter 以下DAC)4より2MHzサンプリングでセン
ター周波数位相誤差電圧に変換される。また、周波数誤
差検出5で、センター周波数84MHzに対する±10
%の周波数誤差の位相誤差を検出する。検出した周波数
誤差の位相誤差は、DAC6より50MHzサンプリン
グでセンター周波数84MHzに対する±10%の周波
数誤差の位相誤差電圧に変換される。
For example, 43 Mbps of a magnetic recording medium or the like
The PLL operation for generating the 84 MHz sampling clock in synchronization with the reproduction signal when the reproduction signal is double-sampled will be described. First, the A / D converter (A / D Co
The input reproduction signal is sampled by nverter (hereinafter ADC) 2. Next, in the center frequency detection 3, a center frequency of 84 MHz for synchronizing the reproduced signal sampled
The center frequency phase error with respect to is detected. The detected center frequency phase error is detected by the D / A converter (D / A Conv
It is converted to a center frequency phase error voltage by 2 MHz sampling from the DAC 4). In addition, the frequency error detection 5 is ± 10 with respect to the center frequency 84 MHz.
Detect the phase error of the% frequency error. The detected phase error of the frequency error is converted by the DAC 6 into a phase error voltage of ± 10% frequency error with respect to the center frequency of 84 MHz by sampling at 50 MHz.

【0006】次にDAC4とDAC6の出力電圧を合わ
せLow Pass Filter(以下LPF)7を通し、VCO1
に入力し再生信号に同期した84MHzサンプリングク
ロックを生成する。また、同期した84MHzサンプリ
ングクロックが生成された場合、センター周波数検出3
で検出しているセンター周波数位相誤差はそのまま保持
され、周波数誤差検出5で検出しているセンター周波数
84MHzに対する±10%の周波数誤差のみ変化す
る。
Next, the output voltages of the DAC 4 and the DAC 6 are combined and passed through a Low Pass Filter (hereinafter referred to as LPF) 7, and VCO 1
And a 84 MHz sampling clock synchronized with the reproduction signal is generated. When the synchronized 84 MHz sampling clock is generated, the center frequency detection 3
The center frequency phase error detected in (4) is held as it is, and only the frequency error of ± 10% with respect to the center frequency 84 MHz detected in frequency error detection 5 changes.

【0007】センター周波数84MHzに対する±10
%の周波数誤差電圧を出力するDAC6の出力電圧ダイ
ナミックレンジは±0.4Vとすると、たとえば図8に
示すように、VCO1のVCO室温の温度依存特性13
のA点で84MHzセンター周波数誤差が保持された
時、A点の電圧値1.70Vに対して±0.4Vの範囲
内において84MHz±10%のクロック周波数が高温
特性でも得られれば良い。また、VCO1のVCO高温
の温度依存特性14のD点で84MHzセンター周波数
誤差が保持された時、D点の電圧値1.52Vに対して
±0.4Vの範囲内において84MHz±10%のクロ
ック周波数が高温特性でも得られれば良い。なお、B点
は、VCO1のVCO室温の84MHz+10%のクロ
ック周波数点で、VCO入力電圧は1.75Vである。
C点は、VCO1のVCO室温の84MHz−10%の
クロック周波数点で、VCO入力電圧は1.64Vであ
る。E点は、VCO1のVCO高温の84MHz+10
%のクロック周波数点で、VCO入力電圧は1.67V
である。F点は、VCO1のVCO高温の84MHz−
10%のクロック周波数点で、VCO入力電圧は1.3
4Vである。
± 10 with respect to the center frequency of 84 MHz
Assuming that the output voltage dynamic range of the DAC 6 that outputs a frequency error voltage of ± 0.4 V is ± 0.4 V, for example, as shown in FIG.
When the 84 MHz center frequency error is held at point A, it is only necessary to obtain a clock frequency of 84 MHz ± 10% within the range of ± 0.4 V with respect to the voltage value of 1.70 V at point A even with high temperature characteristics. Further, when the 84 MHz center frequency error is held at the point D of the temperature dependence characteristic 14 of the VCO high temperature of the VCO 1, a clock of 84 MHz ± 10% within a range of ± 0.4 V with respect to the voltage value of the point D of 1.52 V. It suffices if the frequency can be obtained even at high temperature characteristics. The point B is the clock frequency point of 84 MHz + 10% of the VCO room temperature of the VCO 1, and the VCO input voltage is 1.75V.
Point C is a clock frequency point of 84 MHz-10% of the VCO room temperature of VCO 1, and the VCO input voltage is 1.64V. E point is 84MHz + 10 of VCO1 high temperature of VCO
VCO input voltage is 1.67V at the% clock frequency point
Is. F point is 84 MHz-
At the clock frequency point of 10%, the VCO input voltage is 1.3
It is 4V.

【0008】VCO温度依存特性検査の良否判別方法
は、まず常温ウエハ検査において、下記の3項目を検査
する。
In the method for determining the quality of the VCO temperature dependent characteristic inspection, first, in the room temperature wafer inspection, the following three items are inspected.

【0009】(1)VCO出力周波数が84MHzの
時、VCO入力電圧が1.5V〜1.7Vの範囲内であ
ること。
(1) When the VCO output frequency is 84 MHz, the VCO input voltage is within the range of 1.5V to 1.7V.

【0010】(2)VCO出力周波数が84MHzの時
のVCO入力電圧に対して+0.4VのVCO入力電圧
の時、VCO出力周波数が84MHz+10%以上であ
ること。
(2) The VCO output frequency is 84 MHz + 10% or more when the VCO input voltage is +0.4 V with respect to the VCO input voltage when the VCO output frequency is 84 MHz.

【0011】(3)VCO出力周波数が84MHzの時
のVCO入力電圧に対して−0.4VのVCO入力電圧
の時、VCO出力周波数が84MHz−10%以下であ
ること。
(3) The VCO output frequency is 84 MHz-10% or less when the VCO input voltage is -0.4 V with respect to the VCO input voltage when the VCO output frequency is 84 MHz.

【0012】次に高温製品出荷検査において、下記2項
目を検査する。
Next, in the high temperature product shipment inspection, the following two items are inspected.

【0013】(4)常温ウエハ検査1.7Vに対して−
0.4Vすなわち1.3VのVCO入力電圧の時、VC
O出力周波数が84MHz−10%以下であること。
(4) Room temperature wafer inspection 1.7V-
When the VCO input voltage is 0.4V or 1.3V, VC
O output frequency is 84MHz-10% or less.

【0014】(5)常温ウエハ検査1.5Vに対して+
0.4Vすなわち1.9VのVCO入力電圧の時、VC
O出力周波数が84MHz+10%以上であること。
(5) Room temperature wafer inspection + 1.5V
When the VCO input voltage is 0.4V or 1.9V, VC
O output frequency is 84MHz + 10% or more.

【0015】常温ウエハ検査基準より、VCO1の評価
データより相対的に高温製品出荷検査の検査基準を決定
していた。
Based on the room temperature wafer inspection standard, the inspection standard for the high temperature product shipment inspection is determined based on the VCO1 evaluation data.

【0016】消費電力が少ないという優位性を持つCM
OSプロセスでVCOを実現する場合、多くはインバー
タなどの遅延素子をリング状に接続したリングオシレー
タ構成をとる。しかし、リングオシレータ型VCOは、
図7に示すようにインバータの電流を決定する定電流回
路8およびVCO1の入力電圧を電流に変換する回路9
の第1の極性のトランジスタ11や、リングオシレータ
10での第1の極性のトランジスタ11や、第2の極性
のトランジスタ12の各能力比で決定するSW電圧など
が、電源電圧、温度、プロセスばらつきの影響を受けや
すい。
CM having an advantage of low power consumption
When the VCO is realized by the OS process, in most cases, a ring oscillator configuration in which delay elements such as inverters are connected in a ring shape is adopted. However, the ring oscillator type VCO
As shown in FIG. 7, a constant current circuit 8 that determines the current of the inverter and a circuit 9 that converts the input voltage of the VCO 1 into a current.
The first polarity transistor 11, the first polarity transistor 11 in the ring oscillator 10, and the SW voltage determined by the respective performance ratios of the second polarity transistor 12 are power supply voltage, temperature, and process variation. Susceptible to.

【0017】[0017]

【発明が解決しようとする課題】しかし、従来のような
半導体装置の出荷検査方法では、製品の保証部分を電源
電圧、温度などの動作環境に依存する部分と、プロセス
ばらつきによるロットばらつき部分とに分けて考えた場
合、プロセス微細化に伴ってプロセスばらつきが大き
く、製品保証範囲を占めるロットばらつき量が、個々の
製品の動作環境依存変化量よりも大きくなった。VCO
温度依存特性検査において、常温ウエハ検査の検査項目
(1)VCO出力周波数が84MHzの時、VCO入力
電圧が1.5V〜1.7Vの範囲内に収まりきらず、常
温ウエハ検査歩留まり低下の原因となった。また、上記
常温ウエハ検査の検査項目(1)の検査基準を緩め1.
4V〜1.8Vとした場合、常温ウエハ検査歩留まり低
下は防止できるが高温製品出荷検査歩留まり低下の原因
となる。高温製品出荷検査の検査項目(4)及び(5)
の検査基準は次のとおりとなる。
However, in the conventional shipping inspection method for a semiconductor device, the guaranteed portion of the product is divided into a portion that depends on the operating environment such as power supply voltage and temperature, and a lot variation portion due to process variation. When considered separately, the process variation was large due to the process miniaturization, and the lot variation amount occupying the product guarantee range was larger than the operating environment dependent variation amount of each product. VCO
In the temperature dependent characteristic inspection, the inspection item of the room temperature wafer inspection (1) When the VCO output frequency is 84 MHz, the VCO input voltage does not fall within the range of 1.5V to 1.7V, which causes a decrease in the room temperature wafer inspection yield. It was Further, the inspection standard of the inspection item (1) of the above-mentioned room temperature wafer inspection is loosened.
When the voltage is set to 4V to 1.8V, the decrease in the room temperature wafer inspection yield can be prevented, but it causes the decrease in the high temperature product shipment inspection yield. Inspection items (4) and (5) for high-temperature product shipment inspection
The inspection standard of is as follows.

【0018】(4)常温ウエハ検査1.8Vに対して−
0.4Vすなわち1.4VのVCO入力電圧の時、VC
O出力周波数が84MHz−10%以下であること。
(4) Room temperature wafer inspection: For 1.8V-
When VCO input voltage of 0.4V or 1.4V, VC
O output frequency is 84MHz-10% or less.

【0019】(5)常温ウエハ検査1.4Vに対して+
0.4Vすなわち1.8VのVCO入力電圧の時、VC
O出力周波数が84MHz+10%以上であること。
(5) Room temperature wafer inspection: 1.4V +
When the VCO input voltage is 0.4V or 1.8V, VC
O output frequency is 84MHz + 10% or more.

【0020】仮に、常温ウエハ検査でVCO出力周波数
が84MHzの時のVCO入力電圧が1.4Vとなった
常温ウエハ検査良品チップが、高温製品出荷検査では、
検査項目(4)の1.4VのVCO入力電圧での、VC
O出力周波数が84MHz−10%以下にはならないた
め不良判別される。しかし、高温時の製品実力は常温ウ
エハ検査1.4Vに対して−0.4Vすなわち1.0V
のVCO入力電圧で、VCO出力周波数が84MHz−
10%以下であれば良い。すなわち、不良判別された製
品も特性上問題ない。LSI設計で電源電圧依存変化、
温度依存変化は吸収できても、ロットばらつきは吸収で
きない状況が発生してきた。各検査基準に多少の検査マ
ージンをとっているが、ロットばらつきが大きいと、温
度依存保証範囲内のデバイスでも不良判別され歩留低下
の原因となった。さらに、温度依存特性などの常温ウエ
ハ検査と高温製品出荷検査の間で保証する検査項目にお
いて、『ウエハ検査装置と製品出荷検査装置が違う』
『検査データ転送が困難』などの物理的な問題により、
異なる温度での詳細な検査データ比較が行えず、同一デ
バイスの温度依存特性検査が出来なかった。
If the normal temperature wafer inspection non-defective chip whose VCO input voltage is 1.4 V when the VCO output frequency is 84 MHz in the normal temperature wafer inspection,
VC at 1.4V VCO input voltage of inspection item (4)
Since the O output frequency does not fall below 84 MHz-10%, it is determined to be defective. However, the product ability at high temperature is -0.4V, ie 1.0V, compared to 1.4V for room temperature wafer inspection.
VCO input voltage, VCO output frequency is 84MHz-
It should be 10% or less. That is, there is no problem in the characteristics of the product which is determined as defective. Power supply voltage dependent change in LSI design,
A situation has arisen where temperature-dependent changes can be absorbed but lot variations cannot. Although some inspection margins are set for each inspection standard, if lot variation is large, even devices within the temperature-dependent guaranteed range are defectively determined, which causes a decrease in yield. Furthermore, regarding the inspection items that are guaranteed between the normal temperature wafer inspection and the high temperature product shipment inspection, such as temperature dependent characteristics, "Wafer inspection equipment and product shipment inspection equipment are different."
Due to physical problems such as "difficult to transfer inspection data",
The detailed inspection data comparison at different temperatures could not be performed, and the temperature dependent characteristic inspection of the same device could not be performed.

【0021】また、従来の常温ウエハ検査では良品チッ
プ/不良品チップの判別しか行っておらず、低歩留ロッ
トなどの解析を行おうとしたら、不具合再現環境の準備
や再度データ収集が必要であった。また、従来の高温製
品出荷検査でも良品デバイス/不良品デバイスの判別し
か行っておらず、低歩留ロットなどの解析を行おうとし
たら、不具合再現環境の準備や再度データ収集が必要で
あった。さらに、製品出荷した後、不具合が発生した場
合、出荷時のロット単位の特性傾向は管理しているが、
LSI個々の出荷時の品質データがなく不具合解析が困
難であった。
Further, in the conventional room temperature wafer inspection, only good chips / defective chips are discriminated, and when trying to analyze low yield lots, it is necessary to prepare a defect reproduction environment and collect data again. It was Further, in the conventional high-temperature product shipment inspection, only non-defective / defective devices are discriminated, and when trying to analyze low yield lots, it is necessary to prepare a defect reproduction environment and collect data again. Furthermore, if a defect occurs after the product is shipped, the characteristic tendency of each lot at the time of shipment is managed.
Since there is no quality data at the time of shipment of each LSI, it is difficult to analyze the defect.

【0022】そこで、本発明は半導体装置の常温ウエハ
検査と高温製品出荷検査の異なる検査温度間での詳細な
検査データ比較を行い安定した歩留まりを供給する半導
体装置検査方法を提供することを第1の目的とする。ま
た、常温ウエハ検査において低歩留ロットなどの解析を
容易にすることを第2の目的とする。また、高温製品出
荷検査において低歩留ロットなどの解析を容易にするこ
とを第3の目的とする。さらに製品出荷した後、発生し
た不具合の解析を容易にすることを第4の目的とする。
Therefore, the first aspect of the present invention is to provide a semiconductor device inspection method for supplying a stable yield by performing detailed inspection data comparison between different inspection temperatures of a normal temperature wafer inspection of a semiconductor device and a high temperature product shipment inspection. The purpose of. A second object is to facilitate analysis of low-yield lots and the like in room temperature wafer inspection. A third object is to facilitate analysis of low-yield lots in high-temperature product shipment inspection. A fourth object of the present invention is to facilitate the analysis of a defect that has occurred after the product is shipped.

【0023】[0023]

【課題を解決するための手段】請求項1記載の半導体装
置検査方法は、検査データを記憶するためのメモリを設
けた半導体装置を常温ウエハ検査する常温ウエハ検査工
程と、常温ウエハ検査工程で測定した常温検査データを
半導体装置のメモリに記憶する常温検査データ書き込み
工程と、常温検査データ書き込み工程で半導体装置のメ
モリに記憶した常温検査データを読み出す常温検査デー
タ読み出し工程と、常温検査データ読み出し工程で常温
検査データを読み出した半導体装置を高温製品出荷検査
する高温製品出荷検査工程と、常温検査データ読み出し
工程で読み出した常温検査データと高温製品出荷検査工
程で測定した高温検査データにより半導体製品の温度依
存特性を検査する温度依存特性検査工程を含むものであ
る。
A method of inspecting a semiconductor device according to claim 1, wherein a semiconductor device provided with a memory for storing inspection data is inspected at room temperature by a room temperature wafer inspection step and a room temperature wafer inspection step. The normal temperature inspection data writing process of storing the normal temperature inspection data stored in the memory of the semiconductor device, the normal temperature inspection data reading process of reading the normal temperature inspection data stored in the memory of the semiconductor device in the normal temperature inspection data writing process, and the normal temperature inspection data reading process Depends on the temperature of the semiconductor product by the high temperature product shipment inspection process that performs the high temperature product shipment inspection of the semiconductor device that has read the room temperature inspection data, and the room temperature inspection data read in the normal temperature inspection data read process and the high temperature inspection data measured in the high temperature product shipment inspection process It includes a temperature-dependent characteristic inspection step for inspecting characteristics.

【0024】請求項1記載の半導体装置検査方法によれ
ば、メモリに記憶している常温検査データを読み出し高
温製品出荷検査データと比較することにより、デバイス
毎の高精度な温度依存特性検査が行え、プロセスばらつ
きによる歩留低下が防止出来る。
According to the semiconductor device inspection method of the first aspect, the temperature-dependent characteristic inspection for each device can be performed with high accuracy by reading the room-temperature inspection data stored in the memory and comparing it with the high-temperature product shipment inspection data. It is possible to prevent a decrease in yield due to process variations.

【0025】請求項2記載の半導体装置検査方法は、検
査データを記憶するためのメモリを設けた半導体装置を
常温ウエハ検査する常温ウエハ検査工程と、常温ウエハ
検査工程で測定した常温検査データを半導体装置のメモ
リに記憶する常温検査データ書き込み工程と、常温検査
データ書き込み工程で半導体装置のメモリに記憶した常
温検査データを読み出す常温検査データ読み出し工程
と、常温検査データ読み出し工程で読み出した常温検査
データより常温検査不具合を解析する解析工程を含むも
のである。
According to a second aspect of the present invention, there is provided a method for inspecting a semiconductor device, comprising a room temperature wafer inspection step of inspecting a semiconductor device having a memory for storing inspection data, and a room temperature inspection data measured in the room temperature wafer inspection step. From the room temperature inspection data writing process of storing in the device memory, the room temperature inspection data reading process of reading the room temperature inspection data stored in the semiconductor device memory in the room temperature inspection data writing process, and the room temperature inspection data read in the room temperature inspection data reading process This includes an analysis step of analyzing a room temperature inspection failure.

【0026】請求項2記載の半導体装置検査方法によれ
ば、メモリに記憶している常温検査データを使用するこ
とにより、常温ウエハ検査での不良チップ解析において
常温ウエハ検査環境下での情報収集ができ解析が容易に
なる。
According to the semiconductor device inspection method of the second aspect, by using the room temperature inspection data stored in the memory, information can be collected under the room temperature wafer inspection environment in the defective chip analysis in the room temperature wafer inspection. This facilitates analysis.

【0027】請求項3記載の半導体装置検査方法は、検
査データを記憶するためのメモリを設けた半導体装置
と、半導体装置を高温製品出荷検査する高温製品出荷検
査工程と、高温製品出荷検査工程で測定した高温検査デ
ータを半導体装置のメモリに記憶する高温検査データ書
き込み工程と、高温検査データ書き込み工程で半導体装
置のメモリに記憶した高温検査データを読み出す高温検
査データ読み出し工程と、高温検査データ読み出し工程
で読み出した高温検査データより高温検査不具合を解析
する解析工程を含むものである。
According to a third aspect of the present invention, there is provided a semiconductor device inspection method comprising a semiconductor device provided with a memory for storing inspection data, a high temperature product shipment inspection process for inspecting the semiconductor device at high temperature product shipment, and a high temperature product shipment inspection process. High temperature inspection data writing step of storing the measured high temperature inspection data in the memory of the semiconductor device, high temperature inspection data reading step of reading the high temperature inspection data stored in the memory of the semiconductor device in the high temperature inspection data writing step, and high temperature inspection data reading step It includes an analysis step of analyzing a high-temperature inspection failure from the high-temperature inspection data read out in step 1.

【0028】請求項3記載の半導体装置検査方法によれ
ば、メモリに記憶している高温検査データを使用するこ
とにより、高温製品出荷検査での不良デバイス解析にお
いて高温製品出荷検査環境下での情報収集ができ解析が
容易になる。
According to the semiconductor device inspection method of the third aspect, by using the high temperature inspection data stored in the memory, the information under the high temperature product shipment inspection environment can be obtained in the defective device analysis in the high temperature product shipment inspection. It can be collected and analyzed easily.

【0029】請求項4記載の半導体装置検査方法は、検
査データを記憶するためのメモリを設けた半導体装置を
常温ウエハ検査する常温ウエハ検査工程と、常温ウエハ
検査工程で測定した常温検査データを半導体装置のメモ
リに記憶する常温検査データ書き込み工程と、半導体装
置を高温製品出荷検査する高温製品出荷検査工程と、高
温製品出荷検査工程で測定した高温検査データを半導体
装置のメモリに記憶する高温検査データ書き込み工程
と、常温検査データ書き込み工程で半導体装置のメモリ
に記憶した常温検査データを読み出す常温検査データ読
み出し工程と、高温検査データ書き込み工程で半導体装
置のメモリに記憶した高温検査データを読み出す高温検
査データ読み出し工程と、常温検査データ読み出し工程
で読み出した常温検査データと高温検査データ読み出し
工程で読み出した高温検査データより製品出荷後の製品
不具合を解析する解析工程を含むものである。
According to a fourth aspect of the present invention, there is provided a method for inspecting a semiconductor device, wherein a room temperature wafer inspection step of inspecting a semiconductor device provided with a memory for storing inspection data, and a room temperature inspection data measured in the room temperature wafer inspection step. Normal temperature inspection data writing process to store in device memory, high temperature product shipping inspection process to inspect semiconductor device for high temperature product shipment, and high temperature inspection data to store high temperature inspection data measured in high temperature product shipment inspection process in semiconductor device memory High temperature inspection data for reading the high temperature inspection data stored in the memory of the semiconductor device during the writing process and the high temperature inspection data writing process for reading the normal temperature inspection data stored in the memory of the semiconductor device during the writing process and the high temperature inspection data writing process Reading process and room temperature inspection In which from the read high-temperature inspection data at the data and high-temperature inspection data reading step comprises an analysis step of analyzing the product to fail after product shipment.

【0030】請求項4記載の半導体装置検査方法によれ
ば、メモリに記憶している常温検査データ及び、高温検
査データを使用することにより、製品出荷後不具合が発
生した場合でも出荷時の初期データが確認でき不具合解
析が容易になる。
According to the semiconductor device inspection method of the fourth aspect, by using the room temperature inspection data and the high temperature inspection data stored in the memory, the initial data at the time of shipment is produced even if a defect occurs after the product is shipped. Can be confirmed, which facilitates defect analysis.

【0031】[0031]

【発明の実施の形態】図1に半導体装置の温度依存特性
を保証するため常温検査データを記憶するための不揮発
性メモリ(例えば強磁性体メモリ)を設けたLSIなど
の半導体装置の半導体検査フローを示す。シリコンウエ
ハなどに拡散工程S100で形成された半導体装置は、
まずウエハ状態でLSIテスタやプローバーなどの常温
ウエハ検査装置を用いて、常温ウエハ検査S200を行
う。常温ウエハ検査S200では、DC特性テスト、A
C特性テスト、及びファンクションテストなどの検査項
目に関して、良品チップ/不良品チップに選別する。次
に常温検査データ書き込み工程S201で常温ウエハ検
査S200で測定した常温検査データを半導体装置のメ
モリに記憶する。次に良品チップのみパッケージ封止工
程S300で組み立てられる。常温ウエハ検査装置とは
異なるLSIテスタやハンドラーなどの高温製品出荷検
査装置を用いて高温製品出荷検査S400を行う前に、
パッケージ封止工程S300で組み立てられた半導体装
置から、常温検査データ読み出し工程S202で半導体
装置のメモリに記憶した常温検査データを読み出す。次
に高温製品出荷検査S400を行う。高温製品出荷検査
S400では、動作保証する温度に対して検査マージン
温度を加えた高温検査温度で、DC特性テスト、AC特
性テスト、及びファンクションテストなどの検査項目に
関して、良品デバイス/不良品デバイスに選別する。上
記常温検査データ読み出し工程S202で読み出した常
温検査データと上記高温製品出荷検査工程S400で測
定した高温検査データにより半導体装置の温度依存特性
を保証するための温度依存特性検査S500を行い良品
デバイスを製品出荷(S600)する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a semiconductor inspection flow of a semiconductor device such as an LSI provided with a non-volatile memory (for example, a ferromagnetic memory) for storing room temperature inspection data in order to guarantee the temperature-dependent characteristics of the semiconductor device. Indicates. The semiconductor device formed on the silicon wafer or the like in the diffusion step S100 is
First, in a wafer state, a room temperature wafer inspection device such as an LSI tester or a prober is used to perform a room temperature wafer inspection S200. At room temperature wafer inspection S200, DC characteristic test, A
The inspection items such as the C characteristic test and the function test are classified into good chips / defective chips. Next, in the room temperature inspection data writing step S201, the room temperature inspection data measured in the room temperature wafer inspection S200 is stored in the memory of the semiconductor device. Next, only good chips are assembled in the package sealing step S300. Before performing the high temperature product shipment inspection S400 using a high temperature product shipment inspection device such as an LSI tester or a handler different from the room temperature wafer inspection device,
The normal temperature inspection data stored in the memory of the semiconductor device in the normal temperature inspection data reading process S202 is read from the semiconductor device assembled in the package sealing process S300. Next, a high temperature product shipment inspection S400 is performed. In the high-temperature product shipping inspection S400, the inspection items such as the DC characteristic test, the AC characteristic test, and the function test are classified into non-defective devices / defective devices at a high inspection temperature obtained by adding the inspection margin temperature to the operation-guaranteed temperature. To do. The normal temperature inspection data read out in the normal temperature inspection data reading step S202 and the high temperature inspection data measured in the high temperature product shipment inspection step S400 are subjected to a temperature dependent characteristic inspection S500 for guaranteeing the temperature dependent characteristic of the semiconductor device, and a non-defective device is manufactured. Ship (S600).

【0032】VCO温度依存特性検査において、常温ウ
エハ検査の検査項目(1)のVCO出力周波数が84M
Hzの時、VCO入力電圧が1.5V〜1.7Vの範囲
や、VCO入力電圧が1.4V〜1.8Vの範囲の場合
でも常温ウエハ検査項目(1)から(3)はそのまま行
う。高温製品出荷検査は、下記2項目のとおり常温検査
データ読み出し工程S202で読み出した常温検査デー
タのVCO出力周波数が84MHzの時、VCO入力電
圧値に対して(4’)、(5’)の検査をする。
In the VCO temperature dependent characteristic inspection, the inspection item (1) of the room temperature wafer inspection has a VCO output frequency of 84M.
At Hz, the room temperature wafer inspection items (1) to (3) are performed as they are even if the VCO input voltage is in the range of 1.5V to 1.7V or the VCO input voltage is in the range of 1.4V to 1.8V. As for the high temperature product shipment inspection, when the VCO output frequency of the room temperature inspection data read in the room temperature inspection data reading step S202 is 84 MHz as described in the following two items, the inspections of (4 ') and (5') are performed for the VCO input voltage value. do.

【0033】(4’)VCO出力周波数が84MHz時
の常温VCO入力電圧値に対して−0.4Vすなわち
(常温VCO入力電圧値−0.4V)のVCO入力電圧
の時、VCO出力周波数が84MHz−10%以下であ
ること。
(4 ') When the VCO output frequency is 84 MHz and the VCO input voltage is -0.4 V with respect to the room temperature VCO input voltage value, that is, (room temperature VCO input voltage value -0.4 V), the VCO output frequency is 84 MHz. -10% or less.

【0034】(5’)VCO出力周波数が84MHz時
の常温VCO入力電圧値に対して+0.4Vすなわち
(常温VCO入力電圧値+0.4V)のVCO入力電圧
の時、VCO出力周波数が84MHz+10%以上であ
ること。
(5 ') When the VCO output frequency is +0.4 V with respect to the room temperature VCO input voltage value when the VCO output frequency is 84 MHz, that is, (room temperature VCO input voltage value +0.4 V), the VCO output frequency is 84 MHz + 10. % Or more.

【0035】常温検査データを使用しない高温製品出荷
検査で、VCO出力周波数が84MHz時の常温VCO
入力電圧が1.4Vとなった良品チップが、高温製品出
荷検査の検査項目(4)で1.4VのVCO入力電圧の
時、VCO出力周波数が84MHz−10%以下にはな
らないため不良判別される。しかし、常温検査データを
使用する高温製品出荷検査の検査項目(4’)では常温
VCO入力電圧値−0.4Vすなわち、1.0VのVC
O入力電圧時の、VCO出力周波数が84MHz−10
%以下であるので良品判別され、歩留まりも向上した。
A normal temperature VCO when the VCO output frequency is 84 MHz in a high temperature product shipment inspection that does not use normal temperature inspection data.
When a good chip with an input voltage of 1.4V has a VCO input voltage of 1.4V in the inspection item (4) of the high temperature product shipment inspection, the VCO output frequency does not fall below 84MHz-10%, so it is determined as defective. It However, in the inspection item (4 ') of the high temperature product shipment inspection using the room temperature inspection data, the room temperature VCO input voltage value is -0.4V, that is, the VC of 1.0V.
VCO output frequency at O input voltage is 84MHz-10
Since it was less than%, it was judged as a good product and the yield was improved.

【0036】また、図2に半導体装置の常温ウエハ検査
での低歩留ロットなど不具合解析のため常温検査データ
を記憶するための不揮発性メモリ(例えば強磁性体メモ
リ)を設けたLSIなどの半導体装置の半導体検査フロ
ーを示す。常温ウエハ検査での低歩留ロットなど不具合
を常温ウエハ検査後メモリに書き込んだ常温検査データ
を読み出すことにより不具合解析を容易に行う。
Further, FIG. 2 shows a semiconductor such as an LSI provided with a non-volatile memory (for example, a ferromagnetic memory) for storing room temperature inspection data for failure analysis such as a low yield lot in a room temperature wafer inspection of a semiconductor device. The semiconductor inspection flow of an apparatus is shown. Defect analysis is easily performed by reading out the room temperature inspection data written in the memory after the room temperature wafer inspection for problems such as low yield lots in the room temperature wafer inspection.

【0037】シリコンウエハなどに拡散工程S100で
形成された半導体装置は、まずウエハ状態でLSIテス
タやプローバーなどの常温ウエハ検査装置を用いて、常
温ウエハ検査S200を行う。常温ウエハ検査S200
では、DC特性テスト、AC特性テスト、及びファンク
ションテストなどの検査項目に関して、良品チップ/不
良品チップに選別する。次に常温検査データ書き込み工
程S201で常温ウエハ検査S200で測定した常温検
査データを半導体装置のメモリに記憶する。しかし、何
らかの原因で常温ウエハ検査での低歩留ロットなど不具
合が発生(S700)した場合の不具合解析S800に
おいて、不具合のある複数の不良チップから、常温検査
データ読み出し工程S202で半導体装置のメモリから
読み出した常温検査データより、低歩留ロットなどの不
具合解析を行う。
The semiconductor device formed on the silicon wafer or the like in the diffusion step S100 is first subjected to the normal temperature wafer inspection S200 using a normal temperature wafer inspection device such as an LSI tester or a prober in a wafer state. Room temperature wafer inspection S200
Then, the inspection items such as the DC characteristic test, the AC characteristic test, and the function test are classified into good chips / defective chips. Next, in the room temperature inspection data writing step S201, the room temperature inspection data measured in the room temperature wafer inspection S200 is stored in the memory of the semiconductor device. However, when a defect such as a low-yield lot in the room temperature wafer inspection occurs for some reason (S700), in the defect analysis S800, from the defective defective chips, from the memory of the semiconductor device in the room temperature inspection data reading step S202. Analyze defects such as low yield lots from the read room temperature inspection data.

【0038】また、図3に半導体装置の高温製品出荷検
査での低歩留ロットなど不具合解析のため高温検査デー
タを記憶するための不揮発性メモリ(例えば強磁性体メ
モリ)を設けたLSIなどの半導体装置の半導体検査フ
ローを示す。高温製品出荷検査での低歩留ロットなど不
具合を高温製品出荷検査後メモリに書き込んだ高温検査
データを読み出すことにより不具合解析を容易に行う。
Further, FIG. 3 shows an LSI or the like provided with a non-volatile memory (for example, a ferromagnetic memory) for storing high-temperature inspection data for failure analysis such as a low-yield lot in a high-temperature product shipment inspection of a semiconductor device. The semiconductor inspection flow of a semiconductor device is shown. Failure analysis is easily performed by reading out the high temperature inspection data written in the memory after the high temperature product shipment inspection for defects such as low yield lots in the high temperature product shipment inspection.

【0039】シリコンウエハなどに拡散工程S100で
形成された半導体装置は、まずウエハ状態でLSIテス
タやプローバーなどの常温ウエハ検査装置を用いて、常
温ウエハ検査S200を行う。常温ウエハ検査S200
では、DC特性テスト、AC特性テスト、及びファンク
ションテストなどの検査項目に関して、良品チップ/不
良品チップに選別する。次に良品チップのみパッケージ
封止工程S300で組み立てられる。パッケージ封止工
程S300で組み立てられた半導体装置を、常温ウエハ
検査装置とは異なるLSIテスタやハンドラーなどの高
温製品出荷検査装置を用いて、高温製品出荷検査S40
0を行う。高温製品出荷検査S400では、動作保証す
る温度に対して検査マージン温度を加えた高温検査温度
で、DC特性テスト、AC特性テスト、及びファンクシ
ョンテストなどの検査項目に関して、良品デバイス/不
良品デバイスに選別する。次に高温検査データ書き込み
工程S401で高温製品出荷検査S400で測定した高
温検査データを半導体装置のメモリに記憶する。しか
し、何らかの原因で高温製品出荷検査での低歩留ロット
など不具合が発生(S701)した場合の不具合解析S
800において、不具合のある複数の不良デバイスか
ら、高温検査データ読み出し工程S402で半導体装置
のメモリから読み出した高温検査データより、低歩留ロ
ットなどの不具合解析を行う。
A semiconductor device formed on a silicon wafer or the like in the diffusion step S100 is first subjected to a normal temperature wafer inspection S200 in a wafer state by using a normal temperature wafer inspection device such as an LSI tester or a prober. Room temperature wafer inspection S200
Then, the inspection items such as the DC characteristic test, the AC characteristic test, and the function test are classified into good chips / defective chips. Next, only good chips are assembled in the package sealing step S300. The semiconductor device assembled in the package sealing step S300 is subjected to a high temperature product shipment inspection S40 using a high temperature product shipment inspection device such as an LSI tester or a handler different from the room temperature wafer inspection device.
Perform 0. In the high temperature product shipping inspection S400, the inspection items such as the DC characteristic test, the AC characteristic test, and the function test are classified into non-defective devices / defective devices at a high inspection temperature obtained by adding the inspection margin temperature to the operation guarantee temperature. To do. Next, in the high temperature inspection data writing step S401, the high temperature inspection data measured in the high temperature product shipment inspection S400 is stored in the memory of the semiconductor device. However, if a defect such as a low-yield lot in the high-temperature product shipment inspection occurs for some reason (S701), a defect analysis S
At 800, a defect analysis such as a low-yield lot is performed from the high-temperature inspection data read from the memory of the semiconductor device in the high-temperature inspection data reading step S402 from a plurality of defective defective devices.

【0040】さらに、図4に半導体装置の製品出荷後、
発生した不具合解析のため常温検査データ及び、高温検
査データを記憶するための不揮発性メモリ(例えば強磁
性体メモリ)を設けたLSIなどの半導体装置の半導体
検査フローを示す。製品出荷後、発生した不具合を常温
ウエハ検査後メモリに書き込んだ常温検査データや、高
温製品出荷検査後メモリに書き込んだ高温検査データを
読み出すことにより不具合解析を容易に行う。
Further, as shown in FIG. 4, after the semiconductor device is shipped,
3 shows a semiconductor inspection flow of a semiconductor device such as an LSI provided with a non-volatile memory (for example, a ferromagnetic memory) for storing room temperature inspection data and high temperature inspection data for analyzing a generated defect. After the product is shipped, the defect analysis can be easily performed by reading the room temperature inspection data written in the memory after the room temperature wafer inspection and the high temperature inspection data written in the memory after the high temperature product shipment inspection after the product is shipped.

【0041】シリコンウエハなどに拡散工程S100で
形成された半導体装置は、まずウエハ状態でLSIテス
タやプローバーなどの常温ウエハ検査装置を用いて、常
温ウエハ検査S200を行う。常温ウエハ検査S200
では、DC特性テスト、AC特性テスト、及びファンク
ションテストなどの検査項目に関して、良品チップ/不
良品チップに選別する。次に常温検査データ書き込み工
程S201で常温ウエハ検査S200で測定した常温検
査データを半導体装置のメモリに記憶する。次に良品チ
ップのみパッケージ封止工程S300で組み立てられ
る。パッケージ封止工程S300で組み立てられた半導
体装置を、常温ウエハ検査装置とは異なるLSIテスタ
やハンドラーなどの高温製品出荷検査装置を用いて、高
温製品出荷検査S400を行う。高温製品出荷検査S4
00では、動作保証する温度に対して検査マージン温度
を加えた高温検査温度で、DC特性テスト、AC特性テ
スト、及びファンクションテストなどの検査項目に関し
て、良品デバイス/不良品デバイスに選別する。次に高
温検査データ書き込み工程S401で高温製品出荷検査
S400で測定した高温検査データを半導体装置のメモ
リに記憶する。良品デバイスを製品出荷(S600)す
る。製品出荷後、何らかの原因で不具合が発生(S70
2)した場合の不具合解析S800において、不具合の
ある半導体装置から、常温検査データ読み出し工程S2
02で半導体装置のメモリから読み出した常温検査デー
タと、高温検査データ読み出し工程S402で半導体装
置のメモリから読み出した高温検査データと、出荷後の
常温及び高温の実力データを比較し、製品出荷後の不具
合解析を行う。
The semiconductor device formed on the silicon wafer or the like in the diffusion step S100 is first subjected to the room temperature wafer inspection S200 by using a room temperature wafer inspection device such as an LSI tester or a prober in a wafer state. Room temperature wafer inspection S200
Then, the inspection items such as the DC characteristic test, the AC characteristic test, and the function test are classified into good chips / defective chips. Next, in the room temperature inspection data writing step S201, the room temperature inspection data measured in the room temperature wafer inspection S200 is stored in the memory of the semiconductor device. Next, only good chips are assembled in the package sealing step S300. The semiconductor device assembled in the package sealing step S300 is subjected to a high temperature product shipment inspection S400 using a high temperature product shipment inspection device such as an LSI tester or a handler different from the room temperature wafer inspection device. High temperature product shipment inspection S4
In 00, the inspection items such as the DC characteristic test, the AC characteristic test, and the function test are selected as a non-defective device / defective device at a high inspection temperature obtained by adding an inspection margin temperature to the operation-guaranteed temperature. Next, in the high temperature inspection data writing step S401, the high temperature inspection data measured in the high temperature product shipment inspection S400 is stored in the memory of the semiconductor device. The non-defective device is shipped as a product (S600). After the product is shipped, a problem occurs for some reason (S70
2) In case of failure analysis S800, the normal temperature inspection data reading step S2 is performed from the defective semiconductor device.
The normal temperature inspection data read from the memory of the semiconductor device in 02, the high temperature inspection data read from the memory of the semiconductor device in the high temperature inspection data reading step S402, and the room temperature and high temperature actual data after shipment are compared, and Perform defect analysis.

【0042】なお、本発明において、図1から図4の各
実施の形態のすべてを行う工程、またはすべてを行う工
程からいずれか1つの実施の形態を除いた工程、もしく
はいずれか2つの実施の形態を除いた工程など、組み合
わせによる半導体装置検査方法も可能である。
In the present invention, steps of performing all of the embodiments of FIGS. 1 to 4 or steps of excluding any one embodiment from the steps of performing all or any two of the embodiments. A semiconductor device inspection method may be possible by a combination of processes excluding the form.

【0043】[0043]

【発明の効果】請求項1記載の半導体装置検査方法によ
れば、メモリに記憶している常温検査データを読み出し
高温製品出荷検査データと比較することにより、デバイ
ス毎の高精度な温度依存特性検査が行え、プロセスばら
つきによる歩留低下が防止出来る。
According to the semiconductor device inspection method of the first aspect, the room temperature inspection data stored in the memory is read out and compared with the high temperature product shipment inspection data to thereby perform the highly accurate temperature dependent characteristic inspection for each device. It is possible to prevent the yield reduction due to the process variation.

【0044】請求項2記載の半導体装置検査方法によれ
ば、メモリに記憶している常温検査データを使用するこ
とにより、常温ウエハ検査での不良チップ解析において
常温ウエハ検査環境下での情報収集ができ解析が容易に
なる。
According to the semiconductor device inspection method of the second aspect, by using the room temperature inspection data stored in the memory, it is possible to collect information under the room temperature wafer inspection environment in the defective chip analysis in the room temperature wafer inspection. This facilitates analysis.

【0045】請求項3記載の半導体装置検査方法によれ
ば、メモリに記憶している高温検査データを使用するこ
とにより、高温製品出荷検査での不良デバイス解析にお
いて高温製品出荷検査環境下での情報収集ができ解析が
容易になる。
According to the semiconductor device inspection method of the third aspect, by using the high temperature inspection data stored in the memory, the information under the high temperature product shipping inspection environment is used in the defective device analysis in the high temperature product shipping inspection. It can be collected and analyzed easily.

【0046】請求項4記載の半導体装置検査方法によれ
ば、メモリに記憶している常温検査データ及び、高温検
査データを使用することにより、製品出荷後不具合が発
生した場合でも出荷時の初期データが確認でき不具合解
析が容易になる。
According to the semiconductor device inspection method of the fourth aspect, by using the room temperature inspection data and the high temperature inspection data stored in the memory, even if a defect occurs after the product is shipped, the initial data at the time of shipping is shipped. Can be confirmed, which facilitates defect analysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】温度依存特性を保証するため常温検査データを
記憶するためのメモリを設けた半導体装置の半導体検査
フロー図である。
FIG. 1 is a semiconductor inspection flow chart of a semiconductor device provided with a memory for storing room temperature inspection data in order to guarantee temperature dependent characteristics.

【図2】常温ウエハ検査での低歩留ロットなど不具合解
析のため常温検査データを記憶するためのメモリを設け
た半導体装置の半導体検査フロー図である。
FIG. 2 is a semiconductor inspection flow chart of a semiconductor device provided with a memory for storing room temperature inspection data for analyzing defects such as low yield lots in room temperature wafer inspection.

【図3】高温製品出荷検査での低歩留ロットなど不具合
解析のため高温検査データを記憶するためのメモリを設
けた半導体装置の半導体検査フロー図である。
FIG. 3 is a semiconductor inspection flow chart of a semiconductor device provided with a memory for storing high temperature inspection data for failure analysis such as a low yield lot in a high temperature product shipment inspection.

【図4】製品出荷後、発生した不具合解析のため常温検
査データ及び、高温検査データを記憶するためのメモリ
を設けた半導体装置の半導体検査フロー図である。
FIG. 4 is a semiconductor inspection flow chart of a semiconductor device provided with a memory for storing room temperature inspection data and high temperature inspection data for failure analysis after a product is shipped.

【図5】LSIなどの半導体装置の製品出荷フロー図で
ある。
FIG. 5 is a product shipment flow chart of a semiconductor device such as an LSI.

【図6】半導体装置に搭載されている電圧制御発振器を
用いたPLLのブロック図である。
FIG. 6 is a block diagram of a PLL using a voltage controlled oscillator mounted on a semiconductor device.

【図7】リングオシレータ型VCO構成の回路図であ
る。
FIG. 7 is a circuit diagram of a ring oscillator type VCO configuration.

【図8】VCO室温及び高温の温度依存特性図である。FIG. 8 is a temperature dependence characteristic diagram of VCO room temperature and high temperature.

【符号の説明】[Explanation of symbols]

S100 拡散工程 S200 常温ウエハ検査 S201 常温検査データ書き込み工程 S202 常温検査データ読み出し工程 S300 パッケージ封止工程 S400 高温製品出荷検査 S401 高温検査データ書き込み工程 S402 高温検査データ読み出し工程 S500 温度依存特性検査 S600 製品出荷工程 S700 常温ウエハ検査不具合発生 S701 高温製品出荷検査不具合発生 S702 製品出荷後不具合発生 S800 半導体装置解析工程 1 電圧制御発振器 2 A/D変換装置 3 センター周波数検出器 4 2MHzサンプリングD/A変換装置 5 センター周波数に対する周波数誤差検出器 6 50MHzサンプリングD/A変換装置 7 Low Pass Filter 8 インバータの電流を決定する定電流回路 9 入力電圧を電流に変換する回路 10 リングオシレータ回路 11 第1の極性のトランジスタ 12 第2の極性のトランジスタ 13 VCO室温の温度依存特性 14 VCO高温の温度依存特性 S100 diffusion process S200 Normal temperature wafer inspection S201 Normal temperature inspection data writing process S202 Room temperature inspection data reading process S300 Package sealing process S400 High temperature product shipment inspection S401 High temperature inspection data writing process S402 High temperature inspection data reading process S500 Temperature dependent characteristic inspection S600 product shipping process S700 Room temperature wafer inspection failure S701 High temperature product shipment inspection failure occurred S702 Problem occurred after product shipment S800 Semiconductor device analysis process 1 Voltage controlled oscillator 2 A / D converter 3 Center frequency detector 42 MHz sampling D / A converter 5 Frequency error detector for center frequency 6 50MHz sampling D / A converter 7 Low Pass Filter 8 Constant current circuit that determines the current of the inverter 9 Circuit that converts input voltage to current 10 Ring oscillator circuit 11 First polarity transistor 12 Second polarity transistor 13 VCO Temperature dependence of room temperature 14 VCO temperature dependence of high temperature

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 検査データを記憶するためのメモリを設
けた半導体装置を常温ウエハ検査する常温ウエハ検査工
程と、前記常温ウエハ検査工程で測定した常温検査デー
タを前記半導体装置のメモリに記憶する常温検査データ
書き込み工程と、前記常温検査データ書き込み工程で前
記半導体装置のメモリに記憶した常温検査データを読み
出す常温検査データ読み出し工程と、前記常温検査デー
タ読み出し工程で常温検査データを読み出した前記半導
体装置を高温製品出荷検査する高温製品出荷検査工程
と、前記常温検査データ読み出し工程で読み出した常温
検査データと前記高温製品出荷検査工程で測定した高温
検査データにより半導体製品の温度依存特性を検査する
温度依存特性検査工程を含む半導体装置検査方法。
1. A room temperature wafer inspection process for inspecting a semiconductor device having a memory for storing inspection data at room temperature wafer, and room temperature for storing room temperature inspection data measured in the room temperature wafer inspection process in the memory of the semiconductor device. An inspection data writing step; an ordinary temperature inspection data reading step of reading the ordinary temperature inspection data stored in the memory of the semiconductor device in the ordinary temperature inspection data writing step; and a semiconductor device having the ordinary temperature inspection data read in the ordinary temperature inspection data reading step. High-temperature product shipment inspection process for inspecting high-temperature product shipment, temperature-dependent characteristics for inspecting temperature-dependent characteristics of semiconductor products by normal-temperature inspection data read in the normal-temperature inspection data reading process and high-temperature inspection data measured in the high-temperature product shipment inspection process A semiconductor device inspection method including an inspection step.
【請求項2】 検査データを記憶するためのメモリを設
けた半導体装置を常温ウエハ検査する常温ウエハ検査工
程と、前記常温ウエハ検査工程で測定した常温検査デー
タを前記半導体装置のメモリに記憶する常温検査データ
書き込み工程と、前記常温検査データ書き込み工程で前
記半導体装置のメモリに記憶した常温検査データを読み
出す常温検査データ読み出し工程と、前記常温検査デー
タ読み出し工程で読み出した常温検査データより常温検
査不具合を解析する解析工程を含む半導体装置検査方
法。
2. A room temperature wafer inspection process for inspecting a semiconductor device having a memory for storing inspection data at room temperature, and a room temperature for storing room temperature inspection data measured in the room temperature wafer inspection process in the memory of the semiconductor device. The inspection data writing step, the room temperature inspection data reading step of reading the room temperature inspection data stored in the memory of the semiconductor device in the room temperature inspection data writing step, and the room temperature inspection failure read from the room temperature inspection data read in the room temperature inspection data reading step A semiconductor device inspection method including an analysis step of analyzing.
【請求項3】 検査データを記憶するためのメモリを設
けた半導体装置を高温製品出荷検査する高温製品出荷検
査工程と、前記高温製品出荷検査工程で測定した高温検
査データを前記半導体装置のメモリに記憶する高温検査
データ書き込み工程と、前記高温検査データ書き込み工
程で前記半導体装置のメモリに記憶した高温検査データ
を読み出す高温検査データ読み出し工程と、前記高温検
査データ読み出し工程で読み出した高温検査データより
高温検査不具合を解析する解析工程を含む半導体装置検
査方法。
3. A high-temperature product shipment inspection step of inspecting a semiconductor device provided with a memory for storing inspection data in high-temperature product shipment inspection, and high-temperature inspection data measured in the high-temperature product shipment inspection step in a memory of the semiconductor device. A high temperature inspection data writing step of storing, a high temperature inspection data reading step of reading the high temperature inspection data stored in the memory of the semiconductor device in the high temperature inspection data writing step, and a temperature higher than the high temperature inspection data read in the high temperature inspection data reading step. A semiconductor device inspection method including an analysis step of analyzing an inspection defect.
【請求項4】 検査データを記憶するためのメモリを設
けた半導体装置を常温ウエハ検査する常温ウエハ検査工
程と、前記常温ウエハ検査工程で測定した常温検査デー
タを前記半導体装置のメモリに記憶する常温検査データ
書き込み工程と、前記半導体装置を高温製品出荷検査す
る高温製品出荷検査工程と、前記高温製品出荷検査工程
で測定した高温検査データを前記半導体装置のメモリに
記憶する高温検査データ書き込み工程と、前記常温検査
データ書き込み工程で前記半導体装置のメモリに記憶し
た常温検査データを読み出す常温検査データ読み出し工
程と、前記高温検査データ書き込み工程で前記半導体装
置のメモリに記憶した高温検査データを読み出す高温検
査データ読み出し工程と、前記常温検査データ読み出し
工程で読み出した常温検査データと前記高温検査データ
読み出し工程で読み出した高温検査データより製品出荷
後の製品不具合を解析する解析工程を含む半導体装置検
査方法。
4. A room temperature wafer inspection process for inspecting a semiconductor device having a memory for storing inspection data at room temperature wafer, and room temperature for storing room temperature inspection data measured in the room temperature wafer inspection process in the memory of the semiconductor device. An inspection data writing step, a high temperature product shipment inspection step of inspecting the semiconductor device for high temperature product shipment, and a high temperature inspection data writing step of storing the high temperature inspection data measured in the high temperature product shipment inspection step in the memory of the semiconductor device, Room temperature inspection data reading step for reading room temperature inspection data stored in the semiconductor device memory in the room temperature inspection data writing step, and high temperature inspection data for reading high temperature inspection data stored in the semiconductor device memory in the high temperature inspection data writing step The read process and the normal temperature test data read process A semiconductor device inspection method comprising: an analysis step of analyzing a product defect after product shipment from temperature inspection data and the high temperature inspection data read in the high temperature inspection data reading step.
JP2001387695A 2001-12-20 2001-12-20 Inspection method for semiconductor device Pending JP2003188219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387695A JP2003188219A (en) 2001-12-20 2001-12-20 Inspection method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387695A JP2003188219A (en) 2001-12-20 2001-12-20 Inspection method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2003188219A true JP2003188219A (en) 2003-07-04

Family

ID=27596445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387695A Pending JP2003188219A (en) 2001-12-20 2001-12-20 Inspection method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2003188219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214892A (en) * 2005-02-04 2006-08-17 Fujitsu Ltd Method of testing semiconductor device
CN116413581A (en) * 2023-03-22 2023-07-11 南京宏泰半导体科技股份有限公司 High-performance test system and method for high-temperature products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214892A (en) * 2005-02-04 2006-08-17 Fujitsu Ltd Method of testing semiconductor device
CN116413581A (en) * 2023-03-22 2023-07-11 南京宏泰半导体科技股份有限公司 High-performance test system and method for high-temperature products

Similar Documents

Publication Publication Date Title
US8035407B2 (en) Bist DDR memory interface circuit and method for testing the same
JP2725615B2 (en) Integrated circuit test equipment
US20070132443A1 (en) System and method for testing integrated circuit timing margins
EP3239673A1 (en) Semiconductor device, temperature sensor and power supply voltage monitor
US8560993B2 (en) Semiconductor device and method of testing the same
US7184936B1 (en) Timing variation measurement system and method
JPH08315598A (en) Memory integrated circuit with test function
JP2008002900A (en) Screening method, system, and program for semiconductor devices
KR20100085390A (en) Semiconductor device test apparatus having interface unit and semiconductor device test method using the same
JP2003188219A (en) Inspection method for semiconductor device
Ali et al. Challenges and directions for testing IC
JP4923395B2 (en) Semiconductor circuit, semiconductor circuit characteristic monitoring method, semiconductor circuit test method, semiconductor circuit test apparatus, and semiconductor circuit test program
US8618823B2 (en) Semiconductor device
KR100996091B1 (en) Semiconductor memory device for outputting internal detection signals in test mode
JP2002323546A (en) Method for testing leak current and semiconductor integrated circuit
US7061224B2 (en) Test circuit for delay lock loops
US7777512B2 (en) Semiconductor device
JP4385523B2 (en) Semiconductor device operation test apparatus and operation test method
CN113496758A (en) Memory operation capability prediction method
JPH11142471A (en) Burn-in test method and burn-in test device
JP2008537140A (en) Integration circuit for test preparation with internal power supply area
TWI717222B (en) Prediction method of memory operation ability
US20230194598A1 (en) Method and system for testing an integrated circuit
Bahukudumbi Wafer-level testing and test planning for integrated circuits
JP2003344493A (en) Semiconductor device evaluator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817