JP2003183768A - Steel material, steel structure, and connecting method - Google Patents

Steel material, steel structure, and connecting method

Info

Publication number
JP2003183768A
JP2003183768A JP2001381669A JP2001381669A JP2003183768A JP 2003183768 A JP2003183768 A JP 2003183768A JP 2001381669 A JP2001381669 A JP 2001381669A JP 2001381669 A JP2001381669 A JP 2001381669A JP 2003183768 A JP2003183768 A JP 2003183768A
Authority
JP
Japan
Prior art keywords
steel
steel material
joint
less
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001381669A
Other languages
Japanese (ja)
Other versions
JP3786001B2 (en
Inventor
Kazuhiro Ogawa
和博 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001381669A priority Critical patent/JP3786001B2/en
Publication of JP2003183768A publication Critical patent/JP2003183768A/en
Application granted granted Critical
Publication of JP3786001B2 publication Critical patent/JP3786001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medium and high carbon steel material which can improve characteristics in the pressure welded part, without decreasing application efficiency and versatility, and to provide a steel structure made by connecting the steel material, and a connecting method. <P>SOLUTION: The steel material used for pressure welding comprises, by mass%, 0.1-1% C, 2% or less Si, and 3% or less Mn, and the balance Fe with unavoidable impurities, and, in addition, a microstructure in which a total volume fraction of ferrite and pearlite is 40% or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械、輸送用機
器、建築物等に圧接されて用いられる鋼材、鋼構造物お
よび接合方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material, a steel structure and a joining method which are used by being pressure-welded to machines, transportation equipment, buildings and the like.

【0002】[0002]

【従来の技術】高い強度が必要とされる部材には、中高
炭素鋼が用いられることが多いが、溶接の際、高温から
急冷されると硬化しやすい。このため、アーク溶接に代
表される溶融溶接を用いる場合、溶接割れや脆化組織を
生じやすい。この対策のため、溶接の際に予熱処理もし
くは後熱処理またはその両方が必要とされ、施工能率お
よび経済性が低下する。
2. Description of the Related Art Medium-high carbon steel is often used for members requiring high strength, but it is easily hardened when rapidly cooled from a high temperature during welding. For this reason, when melt welding represented by arc welding is used, weld cracks and brittle structures are likely to occur. As a countermeasure against this, pre-heat treatment and / or post-heat treatment are required at the time of welding, which reduces the work efficiency and the economical efficiency.

【0003】接合方法のうちで圧接法は、アーク溶接に
比べて投入熱量が小さく、かつ面接合が行なえるため、
接合の経済性に優れている。しかし、炭素量が0.3質
量%(以下、%と記す)以上の鋼材を圧接すると、やは
り接合界面に硬化層を生じ、接合部特性、とくに接合部
の信頼性の指標である曲げ延性が劣化する問題がある。
Of the joining methods, the pressure welding method has a smaller amount of heat input than arc welding and is capable of performing surface joining.
Excellent in economics of joining. However, when a steel material having a carbon content of 0.3 mass% (hereinafter referred to as%) or more is pressure-welded, a hardened layer is also formed at the joint interface, and the bending ductility, which is an index of the joint characteristics, especially the joint reliability, is reduced. There is a problem of deterioration.

【0004】圧接技術の研究は古くから行なわれてお
り、接合強度の改善対策として、たとえば接合界面に生
じる酸化物をバリとして排出し、正常な接合部を得る方
法が知られている。このような酸化物をバリとして排出
する対策を応用して、硬化層となる部分をバリとして排
出することができれば、中高炭素鋼の圧接部の特性を改
善できると推測される。
Research on the pressure welding technique has been conducted for a long time, and as a measure for improving the bonding strength, for example, a method is known in which oxides generated at the bonding interface are discharged as burrs to obtain a normal bonding portion. It is presumed that if the measures for discharging such oxides as burrs can be applied to discharge the hardened layer as burrs, the characteristics of the pressure-welded portion of the medium-high carbon steel can be improved.

【0005】しかしながら、硬化層となる部分をバリと
して排出するために、接合界面に垂直な力(アップセッ
ト圧力)を負荷しても、必ずしも接合界面から硬化層と
なる部分が意図したように排出されることにならない。
このため、圧接法における上記のような対策が実用化さ
れることなく、中高炭素鋼の圧接部では、構造物に負荷
される荷重を負担できるだけの接合強度を得ることは困
難であるとされてきた。
However, even if a force (upset pressure) perpendicular to the bonding interface is applied in order to discharge the portion to be the hardened layer as burr, the portion to be the hardened layer is always discharged from the bonding interface as intended. It will not be done.
For this reason, it has been considered difficult to obtain a joining strength sufficient to bear the load applied to the structure at the pressure-bonded portion of the medium-high carbon steel without practically implementing the above-mentioned measures in the pressure-bonding method. It was

【0006】これを打開するため、圧接界面を形成する
突合せ面の形状を雌雄型の嵌め合い形状とする提案がな
された(特開2000−15462号公報)。このよう
な接合界面の形状的な対策により接合部の特性改善が得
られている。
In order to break this, a proposal has been made that the shape of the abutting surface forming the pressure contact interface is a male-female fitting shape (Japanese Patent Laid-Open No. 2000-15462). Improvements in the characteristics of the joint have been obtained by taking such a geometrical measure of the joint interface.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、部材に
よっては突き合わせ面にこのような雌雄型の形状をとり
えない構造物もあり、上記のような突合せ面の形状に頼
る対策は、必ずしも普遍的な解決手段ではない。また、
突合せ面の加工に工数を要し、施工能率および経済性の
点から望ましくない。このため、中高炭素鋼の圧接にお
いて、施工能率を低下させず接合部の特性を向上させる
汎用的な解決手段が望まれていた。
However, depending on the member, there are structures in which the abutting surface cannot have such a male-and-female shape, and the above-mentioned measures relying on the shape of the abutting surface are not always universal. Not a solution. Also,
It takes man-hours to process the butt surfaces, which is not desirable from the viewpoint of construction efficiency and economy. Therefore, in the pressure welding of medium-high carbon steel, a general-purpose solution means for improving the characteristics of the joint without lowering the working efficiency has been desired.

【0008】本発明の目的は、施工能率や汎用性を低下
させることなく、中高炭素鋼の圧接部の特性を向上させ
ることができる鋼材、その鋼材を用いた鋼構造物および
その鋼材を用いた接合方法を提供することにある。
The object of the present invention is to use a steel material capable of improving the characteristics of the pressure-welded portion of medium-high carbon steel without deteriorating the construction efficiency and versatility, a steel structure using the steel material and the steel material. It is to provide a joining method.

【0009】なお、以後の説明において、圧接とは、接
合する面を集中的に加熱し、塑性変形が生じるほどの圧
力を加えて接合する方法をさす。したがって、アーク溶
接やレーザ溶接などの溶融溶接における溶融池を形成す
ることはない。例示すれば、フラッシュバット溶接、D
C(直流)バット溶接、スポット溶接、摩擦圧接、電縫
溶接などを挙げることができるが、上記の例示された接
合方法に限定されない。たとえば、上記のように突き合
わせ部を加熱し加圧することにより本発明の作用が発現
されて、接合界面部の硬化層となる部分がバリとして排
出されれば、突合せ接合なども本発明の対象となる接合
方法である。
In the following description, pressure welding refers to a method of intensively heating the surfaces to be joined and applying a pressure sufficient to cause plastic deformation to join them. Therefore, no molten pool is formed in melt welding such as arc welding or laser welding. For example, flash butt welding, D
C (direct current) butt welding, spot welding, friction welding, electric resistance welding, etc. can be mentioned, but not limited to the above-exemplified joining method. For example, if the action of the present invention is exhibited by heating and pressurizing the butt portion as described above, and the portion that becomes the hardened layer of the joint interface portion is discharged as burrs, butt joint and the like are also the subject of the present invention. It is a joining method.

【0010】なお、硬化層は、突き合わせ部が加熱さ
れ、溶融点またそれに近い高温域に加熱された部分に炭
素が濃縮し、その後の冷却で生成した高炭素マルテンサ
イト組織などからなる。以後の説明で、「硬化層となる
部分」とは、上記のように炭素が濃縮して、溶融した部
分、または非常に軟化した固体部分またはそれらの混合
部分をさす。
The hardened layer is composed of a high-carbon martensite structure or the like, which is produced by the condensing portion being heated, the carbon being concentrated in a portion heated to a melting point or a high temperature region close to it, and then being cooled. In the following description, the "cured layer portion" refers to a molten portion where carbon is concentrated as described above, or a very softened solid portion or a mixed portion thereof.

【0011】[0011]

【課題を解決するための手段】本発明の鋼材は、圧接に
用いられる鋼材であって、質量%で、C:0.1%以上
1%以下、Si:2%以下、Mn:3%以下を含有し、
残部がFeおよび不純物からなり、さらに、フェライト
とパーライトとを合わせた体積率が40%以下のミクロ
組織からなる(請求項1)。
A steel material of the present invention is a steel material used for pressure welding, and in mass%, C: 0.1% or more and 1% or less, Si: 2% or less, Mn: 3% or less. Contains
The balance consists of Fe and impurities, and further has a microstructure with a volume ratio of ferrite and pearlite of 40% or less (claim 1).

【0012】この構成によれば、圧接の際、接合界面付
近の硬化層となる部分をバリとして排出しやすい。その
根拠は次の点にある。
According to this structure, it is easy to discharge the portion which becomes the hardened layer in the vicinity of the bonding interface as burrs during pressure welding. The grounds for this are as follows.

【0013】(a)フェライトとパーライトとを合わせ
た体積率40%以下: (a1)単にアプセット圧力を増加させただけでは、接
合界面だけでなくその近くの高温に加熱された領域(以
下、熱影響部と記す)を含めた広い部分を全体的に変形
し、硬化層となる部分をバリとして排出することができ
ない。さらにアプセット力を過大にした場合には、接合
体全体を圧潰することになる。理想的には、接合界面部
のみが加熱されて軟化し、周囲の領域が加熱されなけれ
ば、アプセット圧力による変形は、軟化した接合界面部
のみに集中し、硬化層となる部分はバリとして排出され
る。しかし、現実には、熱伝導により接合界面部の周囲
の領域も加熱される。
(A) 40% or less in volume ratio of ferrite and pearlite combined: (a1) By simply increasing the upset pressure, not only the bonding interface but also the region heated to a high temperature (hereinafter referred to as a heat It is impossible to entirely deform a wide portion including an affected portion) and to discharge the hardened portion as a burr. Further, if the upsetting force is excessively large, the entire bonded body will be crushed. Ideally, if only the joint interface is heated and softened, and the surrounding area is not heated, the deformation due to the upset pressure is concentrated only on the softened joint interface, and the hardened layer is discharged as burr. To be done. However, in reality, the area around the bonding interface is also heated by heat conduction.

【0014】(a2)そこで、接合界面部の周囲の領域
が加熱されても、その領域の高温変形抵抗が、過渡的な
期間、接合界面部よりも相対的に高くなるように母材の
ミクロ組織を予め調整しておく方法を着想した。すなわ
ち、接合界面部の周囲の領域が加熱されても、圧接が完
了するまで軟化しなければ、変形は上記接合界面部に集
中し、硬化層となる部分をバリとして排出することがで
きるという着想である。
(A2) Therefore, even if the region around the joint interface is heated, the high temperature deformation resistance of the region is relatively higher than that of the joint interface during the transient period, so that the microstructure of the base metal is high. I came up with a method of adjusting the organization in advance. In other words, the idea is that even if the area around the joint interface portion is heated, if it does not soften until the pressure welding is completed, the deformation concentrates on the joint interface portion, and the portion to be the hardened layer can be discharged as burrs. Is.

【0015】(a3)具体的には、母材のフェライトと
パーライトとを合わせた体積率を40%以下とすること
により、加熱による軟化を遅らせることができ、硬化層
となる部分を排出できることを確認した。中高炭素鋼に
おいて、フェライトおよびパーライトの領域を少なくす
ると、結果的にベイナイト領域、またはベイナイト領域
およびマルテンサイト領域が多くなる。残留オーステナ
イトが含まれる場合もあるが、残留オーステナイトはベ
イナイトまたはマルテンサイト領域の中に分散して残
る。後記するように、フェライトおよびパーライトの体
積率の測定法は光学顕微鏡の視野内で行うことができる
ので、残留オーステナイトのように微細に分散して残る
組織は、それ自体検出されず、たとえば、ベイナイトや
マルテンサイトの体積率を求めれば、その中に含まれ
る。残留オーステナイトがフェライトやパーライトの中
に分散する場合は少ないので、後記する測定法で測定し
たフェライトおよびパーライトの体積率には、通常、上
記残留オーステナイトは含まれていない。また、パーラ
イトは、層状パーライトもしくは擬似パーライトまたは
それらの混合物であってもよい。
(A3) Specifically, by setting the total volume ratio of ferrite and pearlite of the base material to 40% or less, it is possible to delay the softening due to heating and to discharge the portion to be the hardened layer. confirmed. In the medium-high carbon steel, when the area of ferrite and pearlite is reduced, the area of bainite, or the area of bainite and martensite is increased. Retained austenite may be present, but it remains dispersed in the bainite or martensite regions. As will be described later, since the method for measuring the volume fraction of ferrite and pearlite can be performed within the field of view of an optical microscope, a finely dispersed residual structure such as retained austenite is not detected by itself, and, for example, bainite is used. If the volume ratio of martensite is calculated, it is included in it. Since the residual austenite is rarely dispersed in ferrite or pearlite, the volume ratio of ferrite and pearlite measured by the measurement method described later does not usually include the above retained austenite. Further, the perlite may be layered perlite or pseudo perlite or a mixture thereof.

【0016】フェライトおよびパーライトの構成要素の
フェライトでは、固溶炭素濃度が低く、一方ベイナイト
では、固溶炭素濃度は高いかまたは炭素は微細なセメン
タイト粒子として含まれる。急速加熱された場合、ベイ
ナイト領域では、上記炭素の形態が高温強度確保に有効
に寄与し、加熱初期には高い高温強度、すなわち高い変
形抵抗を示す。このため、たとえ接合界面部の周囲の領
域が加熱されても、接合界面部への変形の集中が可能と
なり、硬化層となる部分を排出することができる。フェ
ライトおよびパーライトが多く占める場合には、加熱初
期には固溶炭素が低いために変形抵抗は低くなり、アプ
セット圧力を負荷しても変形を接合界面部に集中させる
ことはできない。
Ferrite and ferrite, which is a constituent of pearlite, have a low solid solution carbon concentration, while bainite has a high solid solution carbon concentration or carbon is contained as fine cementite particles. In the case of rapid heating, in the bainite region, the above-mentioned carbon morphology effectively contributes to securing high temperature strength, and exhibits high high temperature strength, that is, high deformation resistance in the early stage of heating. Therefore, even if the region around the bonding interface is heated, the deformation can be concentrated on the bonding interface, and the portion to be the hardened layer can be discharged. When ferrite and pearlite occupy a large amount, the amount of solid solution carbon is low at the initial stage of heating, so that the deformation resistance is low, and even if an upset pressure is applied, the deformation cannot be concentrated at the bonding interface.

【0017】(a4)母材のフェライトおよびパーライ
トの体積率を40%以下とすることにより、接合界面部
の周囲の領域の加熱による軟化を遅らせることができ、
接合界面部にアプセット圧力による変形を集中させるこ
とができる。この結果、硬化層となる部分をバリとして
排出することができ、優れた接合部特性を得ることがで
きる。上記のフェライトおよびパーライトの体積率は、
より好ましくは30%以下、さらに好ましくは20%以
下とすることにより、さらに加熱初期における軟化を遅
らせることができ、より確実に硬化層となる部分をバリ
として排出することが可能となる。
(A4) By setting the volume ratio of ferrite and pearlite of the base material to 40% or less, it is possible to delay softening due to heating in the region around the joint interface portion,
It is possible to concentrate the deformation due to the upset pressure on the bonding interface. As a result, the portion to be the cured layer can be discharged as burrs, and excellent joint characteristics can be obtained. The volume ratio of the above ferrite and pearlite is
By more preferably setting it to 30% or less, and further preferably 20% or less, it is possible to further delay the softening in the initial stage of heating, and it is possible to more reliably discharge the portion to be the hardened layer as burrs.

【0018】母材のフェライトおよびパーライトの体積
率が40%を超えると、パーライト中の粗大セメンタイ
トが固溶して拡散が十分生じないため加熱初期には高温
強度の低下が起きる。このため、アプセット圧力を加え
ても変形が熱影響部(HAZ)に広がって生じ、硬化層
となる部分を排出することができない。
When the volume ratio of ferrite and pearlite of the base material exceeds 40%, coarse cementite in pearlite is solid-dissolved and diffusion does not occur sufficiently, so that the high temperature strength is lowered in the initial stage of heating. Therefore, even if an upset pressure is applied, the deformation occurs in the heat-affected zone (HAZ), and the hardened layer cannot be discharged.

【0019】上述のように、通常は、フェライトおよび
パーライト組織以外の部分はベイナイトまたはベイナイ
トとマルテンサイトとの混合組織が主体になる。ベイナ
イトまたはマルテンサイト中では、固溶炭素が多く、転
位密度の高いラス状組織となっている。またベイナイト
組織では微細なセメンタイトが転位密度の高いラス組織
中に分散している。このため、これらベイナイトやマル
テンサイトは、高い高温強度、したがって高い高温変形
抵抗を有する。
As described above, usually, the portion other than the ferrite and pearlite structures is mainly composed of bainite or a mixed structure of bainite and martensite. Bainite or martensite has a large amount of solute carbon and has a lath-like structure with a high dislocation density. In the bainite structure, fine cementite is dispersed in the lath structure having a high dislocation density. Therefore, these bainite and martensite have high high-temperature strength and therefore high-temperature deformation resistance.

【0020】フェライトとパーライトとを合せたミクロ
組織の体積率の測定方法は、次の方法で行うことができ
る。
The volume ratio of the microstructure including ferrite and pearlite can be measured by the following method.

【0021】光学顕微鏡の500倍の視野において、縦
20×横20の正方形格子を置いた際の格子点と重なる
フェライトおよびパーライトの頻度を10視野分測定す
る。その平均値が全格子点に占める割合を求め、フェラ
イトおよびパーライト量の体積率とすることができる。
In a field of view of 500 times of an optical microscope, the frequency of ferrite and pearlite overlapping grid points when a square grid of 20 × 20 is placed is measured for 10 fields of view. The volume ratio of the amount of ferrite and pearlite can be obtained by obtaining the ratio of the average value to all the lattice points.

【0022】(b)化学組成:次に化学組成の範囲につ
いて説明する。
(B) Chemical composition: Next, the range of the chemical composition will be described.

【0023】C:0.1〜1.0% Cは、鋼のミクロ組織に大きく影響し、鋼材に要求され
る引張強さなどの強度を向上させるが、その含有率が1
%を超えると圧接時に硬化層となる部分が排出されず、
本発明の効果を得ることができなくなる。このため、含
有率の上限を1%としたが、0.8%以下のほうが望ま
しい。さらに望ましい上限は、0.7%である。一方、
本発明の効果を得るためには、C含有率の下限はとくに
設ける必要はないが、0.1%未満ではフェライトとパ
ーライトとの体積率をとくに限定しなくても圧接性に問
題を生じなくなる。とくに本発明の上記フェライトとパ
ーライトとの体積率の限定が効果的に作用するのは、C
が0.2%以上である。
C: 0.1 to 1.0% C greatly affects the microstructure of steel and improves the strength such as tensile strength required for steel materials, but its content is 1
If it exceeds%, the part that becomes the hardened layer is not discharged during pressure contact,
The effect of the present invention cannot be obtained. Therefore, the upper limit of the content rate is set to 1%, but 0.8% or less is preferable. A more desirable upper limit is 0.7%. on the other hand,
In order to obtain the effect of the present invention, it is not necessary to set the lower limit of the C content in particular, but if it is less than 0.1%, there is no problem in the pressure contact property even if the volume ratio of ferrite and pearlite is not particularly limited. . In particular, the limitation of the volume ratio of the ferrite and the pearlite of the present invention works effectively because C
Is 0.2% or more.

【0024】Si:2%以下 Siは、溶鋼の精錬時に脱酸作用を得るため、また鋳造
性改善のために用いられる。しかし、その含有率が2%
を超えると圧接性が劣化するので、上限を2%とする。
圧接性の点からSi含有率は低いほど好ましいが、上記
の脱酸作用および鋳造性改善などから0.05%以上含
むことが望ましい。
Si: 2% or less Si is used to obtain a deoxidizing action during refining of molten steel and to improve castability. However, the content rate is 2%
If it exceeds, the pressure contact property deteriorates, so the upper limit is made 2%.
The lower the Si content is, the more preferable from the viewpoint of pressure contact property, but it is preferable that the Si content is 0.05% or more in view of the above-mentioned deoxidizing action and improvement of castability.

【0025】Mn:3%以下 Mnは、溶鋼の精錬時に脱酸作用を得るため、また鋼材
の強度および靭性を確保するため用いられる。しかし、
その含有率が3%を超えるとかえって脆化するのでその
上限を3%とする。圧接性の点からMn含有率は低いほ
ど好ましいが、上記作用を得るため、0.05%以上含
むことが望ましい。
Mn: 3% or less Mn is used to obtain a deoxidizing action during refining of molten steel, and to secure the strength and toughness of the steel material. But,
If its content exceeds 3%, it becomes rather brittle, so its upper limit is made 3%. From the viewpoint of pressure contact, the lower the Mn content is, the more preferable.

【0026】上記の化学成分は、鋼の特性を確保するた
めに含まれるものであるが、上記の他に、溶鋼の精錬時
に脱酸剤としてAlが添加される場合があり、この場合
にO(酸素)と結合する量を超えるAlが添加される
と、鋼中にAlとして残留する。このAlは、鋼中に不
可避的に含まれるN(窒素)と結合してAlNを形成し
たり、または固溶Alとして存在する。本発明の鋼材
は、もちろんこのようなAlやNを含んでもよい。上記
のようなAl脱酸は、C含有率が比較的低い場合に用い
られるが、C含有率が高い場合に用いられてもよい。N
は、鋼を転炉溶製する場合は、およそ0.0005%〜
0.02%程度であり、また電気炉溶製する場合は、お
よそ0.002%〜0.03%である。しかし、鋳造時
に窒素ガスでシールしたり、真空引きするなどして増減
を制御できるので、一概には決められない。脱酸後、鋼
に残留して鋼材に含まれるAl含有率は、通常0.1%
以下である。
The above chemical components are contained in order to secure the characteristics of the steel, but in addition to the above, Al may be added as a deoxidizing agent during refining of molten steel. When Al is added in excess of the amount that bonds with (oxygen), it remains in the steel as Al. This Al combines with N (nitrogen) inevitably contained in the steel to form AlN, or exists as solid solution Al. The steel material of the present invention may of course contain such Al and N. The Al deoxidation as described above is used when the C content is relatively low, but may be used when the C content is high. N
Is about 0.0005% when melting steel in a converter.
It is about 0.02%, and in the case of melting in an electric furnace, it is about 0.002% to 0.03%. However, since it is possible to control the increase / decrease by sealing with nitrogen gas or evacuation during casting, it cannot be decided unconditionally. After deoxidation, the Al content remaining in the steel is usually 0.1%.
It is the following.

【0027】不可避的な不純物として含まれるものに、
PとSとがある。これらの不純物は、通常、鋼の特性に
悪影響を及ぼすので、精錬において意図的に減少させる
が、その低減レベルに応じて製造コストが大きく変動す
る。本発明では、次の目安でP含有率およびS含有率を
減少させることが望ましい。
Those contained as inevitable impurities include
There are P and S. Since these impurities usually adversely affect the properties of steel, they are intentionally reduced in refining, but the production cost greatly varies depending on the reduction level. In the present invention, it is desirable to reduce the P content and the S content according to the following criteria.

【0028】P:0.04%以下 Pは鋼材の特性を確保するため、その含有率は低いほど
望ましいがその除去に精錬コストがかかるので、経済性
の点から0.005%程度までとすることが望ましい。
圧接性の点から、0.04%を超えると接合強度の確保
が困難になるので、0.04%以下とすることが望まし
い。
P: 0.04% or less P is the lower the content of P to secure the characteristics of the steel material, but it is desirable to remove it, but refining costs are high. Is desirable.
From the viewpoint of pressure contact property, if it exceeds 0.04%, it becomes difficult to secure the bonding strength, so it is desirable to set it to 0.04% or less.

【0029】S:0.01%以下 Sは鋼材の特性を確保するため、その含有率は低いほど
望ましいがその除去に精錬コストがかかるので、経済性
の点から0.001%、より望ましくは0.003%以
上、さらに望ましくは0.005%以上とすることが望
ましい。圧接性の点から、0.01%を超えると接合強
度の確保が困難になるので、0.01%以下とすること
が望ましい。
S: 0.01% or less Since S secures the characteristics of the steel material, it is desirable that its content is as low as possible, but refining cost is required for its removal, so 0.001% is more desirable from the economical point of view, and more desirably. It is desirable to set it to 0.003% or more, and more desirably 0.005% or more. From the viewpoint of pressure contact property, if the content exceeds 0.01%, it becomes difficult to secure the bonding strength. Therefore, the content is preferably 0.01% or less.

【0030】また、電気炉溶製鋼の場合はとくに、また
転炉溶製鋼の場合でも、不純物として、Cr、Ni、C
u、Mo、Ti、Nb、Vなどが含まれるが、0.1%
未満の範囲であれば上記の本発明の作用を損なうことが
なく、母材特性なども本発明の鋼と実質的に同じと考え
られるので、上記本発明の鋼材の範囲に含まれる。
Further, especially in the case of the electric furnace molten steel making, and also in the case of the converter molten steel making, Cr, Ni, C are used as impurities.
u, Mo, Ti, Nb, V, etc. are included, but 0.1%
If the amount is less than the range, the function of the present invention is not impaired and the properties of the base material are considered to be substantially the same as those of the steel of the present invention.

【0031】本発明の鋼は、さらに上記の他に不可避的
に含まれるAsやSnなどの不純物を、通常の鋼材に含
まれる範囲で含んでいてもよい。
The steel of the present invention may further contain impurities, such as As and Sn, which are inevitably contained in addition to the above, in a range contained in ordinary steel materials.

【0032】本発明の鋼構造物は、接合する鋼材の少な
くとも一方の鋼材に、上記本発明の鋼材を用いて突き合
せて加熱し加圧して接合した接合部を備える(請求項
2)。
The steel structure of the present invention is provided with a joint portion in which at least one steel material to be joined is abutted with the steel material of the present invention and heated and pressed to join (claim 2).

【0033】この構成により、この鋼構造物は、硬化層
を含まない圧接された接合部を含むので、優れた特性を
有する鋼構造物を得ることができる。この鋼構造物は、
たとえば建造物を構成している部材であって、鋼材を接
合した接合部を有する部材であってもよい。また、接合
部を挟む鋼材のうち一方だけ、上記本発明のいずれかの
鋼材であってもよい。
With this structure, since the steel structure includes the pressure-bonded joint portion that does not include the hardened layer, the steel structure having excellent characteristics can be obtained. This steel structure is
For example, it may be a member that constitutes a building, and may be a member that has a joint portion formed by joining steel materials. Further, only one of the steel materials sandwiching the joint may be the steel material according to any one of the above inventions.

【0034】本発明の接合方法は、接合する鋼材同士を
突き合わせる際、その少なくとも一方の鋼材に上記本発
明の鋼材を用いて突き合わせる工程と、突き合せた部分
を、加熱しかつ加圧する工程とを備える(請求項3)。
In the joining method of the present invention, when the steel materials to be joined are butted to each other, at least one of the steel materials is butted with the above steel material of the present invention, and a step of heating and pressurizing the butted parts. And (claim 3).

【0035】この接合方法により、圧接において硬化層
を有しない接合部を、加工工数などを増やさず、かつ経
済性を害さず、簡便に得ることができるようになる。
By this joining method, it becomes possible to easily obtain a joining portion having no hardened layer by pressure welding without increasing the processing man-hours and the like and without impairing the economical efficiency.

【0036】[0036]

【発明の実施の形態】次に図面を用いて本発明の実施の
形態について説明する。図1は、本発明の実施の形態に
おける圧接方法を説明する図である。図1(a)は、フ
ェライトとパーライトとの体積率が少なく40%以下の
鋼材(本発明例:実線)と、フェライトとパーライトと
体積率が多く40%を超える鋼(比較例:破線)との、
圧接時の変形抵抗の時間推移を示す図である。また、図
1(b)は、図1(a)における変形抵抗が推定される
A点を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a pressure welding method according to an embodiment of the present invention. FIG. 1A shows a steel material having a small volume ratio of ferrite and pearlite of 40% or less (invention example: solid line) and a steel material having a large volume ratio of ferrite and pearlite and more than 40% (comparative example: broken line). of,
It is a figure which shows the time transition of the deformation resistance at the time of press contact. Further, FIG. 1B is a diagram showing point A where the deformation resistance in FIG. 1A is estimated.

【0037】これらの図によれば、比較例では、フェラ
イトとパーライトとの体積率が多いために、加熱初期に
A点で軟化が進み、A点の変形抵抗は大きく低下する。
このため、熱影響部を含めて接合部が全体的に変形して
硬化層となる部分がバリとして排出されにくい。
According to these figures, in the comparative example, since the volume ratio of ferrite and pearlite is large, the softening proceeds at the point A at the initial stage of heating, and the deformation resistance at the point A is greatly reduced.
For this reason, it is difficult for the portion including the heat-affected zone to be entirely deformed to become the hardened layer and be discharged as burrs.

【0038】さらに時間が経つと、炭素の拡散が進み変
形抵抗は上昇するはずであるが、同時にA点の温度が上
昇するため、変形抵抗は高くならず、かえって低下す
る。
With further passage of time, the diffusion resistance of carbon should advance and the deformation resistance should rise, but at the same time, since the temperature at point A rises, the deformation resistance does not rise, but rather falls.

【0039】これに対して、本発明例では、圧接期間
中、圧接界面部の周囲の領域の代表点であるA点の変形
抵抗は、温度上昇につれ低下するものの、その低下は小
さい。このため、溶融点またはそれに近い温度にまで加
熱されて変形抵抗を非常に減じられた接合界面部に比較
して、本発明例のA点では歴然と高い変形抵抗を有す
る。このため、アプセット圧力は接合界面部に集中して
かかり、硬化層となる部分をバリとして排出しやすくな
る。
On the other hand, in the example of the present invention, the deformation resistance at the point A, which is the representative point of the region around the pressure contact interface portion, decreases with the temperature rise during the pressure contact period, but the decrease is small. For this reason, the point A of the example of the present invention has a remarkably high deformation resistance as compared with the joint interface portion which is heated to the melting point or a temperature close to the melting point and the deformation resistance is greatly reduced. Therefore, the upset pressure is concentrated on the bonding interface portion, and the portion to be the hardened layer is easily discharged as burr.

【0040】次に、上記のことを検証した接合部につい
て説明する。図2は、フェライトとパーライトとを合せ
た体積率が40%以下の本発明例の鋼材の圧接部の断面
図である。この圧接部の特徴は、膨出部4に明らかにバ
リを含み、バリ部分が外側に大きく押し出されている点
にある。接合界面部3に硬化層はなく、圧接時に硬化層
となる部分が外側にバリとして押し出されたことが分か
る。接合界面部の周囲の領域は熱影響部2であり、母材
1に連続している。図3は、本発明例の鋼材の圧接過程
初期における熱影響部(HAZ:Heat Affected Zone)2の特
性を接合界面からの距離にしたがって示した推測図であ
る。図3に示すように、熱影響部の高温強度は、接合界
面に近い領域で、固溶Cが高いことを反映して高く、そ
こから緩い勾配で低下している。しかし、接合界面部の
周囲の領域の変形抵抗は、十分高いことを示している。
この結果、アプセット圧力による変形は接合界面部に集
中して、硬化層となる部分をバリとして排出したものと
考えられる。
Next, description will be made on the joint portion that verifies the above. FIG. 2 is a cross-sectional view of a pressure-welded portion of the steel material of the present invention having a volume ratio of ferrite and pearlite of 40% or less. The feature of this press contact portion is that the bulging portion 4 obviously includes a burr, and the burr portion is largely pushed outward. It can be seen that there is no hardened layer at the bonding interface portion 3, and the portion that will become the hardened layer during pressure welding was extruded as burrs to the outside. The region around the bonding interface is the heat-affected zone 2 and is continuous with the base material 1. FIG. 3 is a speculative diagram showing the characteristics of the heat affected zone (HAZ) 2 in the initial stage of the pressure welding process of the steel material of the present invention example according to the distance from the joint interface. As shown in FIG. 3, the high-temperature strength of the heat-affected zone is high in the region near the bonding interface, reflecting the high solid solution C, and then decreases with a gentle gradient. However, it shows that the deformation resistance of the region around the bonding interface is sufficiently high.
As a result, it is considered that the deformation due to the upset pressure was concentrated on the joint interface portion and the portion to be the hardened layer was discharged as burr.

【0041】一方、図4は、比較例の鋼材の圧接部の断
面図である。この圧接部の特徴は、変形が接合界面部を
含んでHAZ全体にわたり、膨出部4にはバリといえる
ものがほとんど含まれていない点にある。このため接合
界面部3に硬化層5が認められる。図5は、比較例の鋼
材の圧接過程初期における熱影響部2の特性を接合界面
からの距離にしたがって示した推測図である。図5に示
すように、熱影響部の高温強度は、接合界面に近い領域
で、固溶Cが低いことを反映して、接合界面から急勾配
で低下している。このため、アプセット圧力による変形
は接合界面部と熱影響部とにわたって分布して、硬化層
となる部分はバリとして排出されなかったものと考えら
れる。
On the other hand, FIG. 4 is a sectional view of a pressure contact portion of a steel material of a comparative example. The feature of this press contact portion is that the deformation includes the bonding interface portion over the entire HAZ, and the bulging portion 4 contains almost no burr. Therefore, the hardened layer 5 is recognized in the bonding interface portion 3. FIG. 5 is an estimated diagram showing the characteristics of the heat-affected zone 2 in the initial stage of the pressure welding process of the steel material of the comparative example according to the distance from the joint interface. As shown in FIG. 5, the high-temperature strength of the heat-affected zone falls steeply from the bonding interface, reflecting the low solid solution C in the region near the bonding interface. Therefore, it is considered that the deformation due to the upset pressure was distributed over the bonding interface and the heat-affected zone, and the portion to be the hardened layer was not discharged as burr.

【0042】上記のフェライトおよびパーライトの体積
率を40%以下とする鋼は、オーステナイト温度域から
の冷却速度を制御することによって得ることができる。
また、オーステナイト温度域からフェライト変態温度域
に冷却して所定時間だけ保持した後冷却することによっ
ても得ることができる。さらに、オーステナイト温度域
からの冷却方法を調整することによっても得ることがで
きる。熱延コイルの場合には、仕上げ温度、冷却速度調
整および巻き取り温度の調整により上記ミクロ組織を得
ることができる。また、厚鋼板の場合には、熱間圧延仕
上げ温度の調整や制御冷却の適用によって得ることがで
きる。等温変態によって、上記ミクロ組織を得る場合に
は、等温変態図(TTT図:Time Temperature Transfor
mation)に基き、そのフェライト析出ノーズの温度から
約50℃を減じた温度を上まわらない温度に保持すれば
よい。具体的には、たとえば、次の条件によって上記ミ
クロ組織を有した鋼材を製造することができる。 (a)溶接鋼管の1例:電気抵抗溶接製造管後、950
℃に5分間加熱し、500℃まで急冷し、3分間その温
度に保持した後、空冷する。 (b)熱延鋼板(ホットコイル)の1例:950℃で圧
延を仕上げた後、400℃〜500℃の温度域で巻き取
る。
The above-mentioned steel in which the volume ratio of ferrite and pearlite is 40% or less can be obtained by controlling the cooling rate from the austenite temperature range.
It can also be obtained by cooling from the austenite temperature range to the ferrite transformation temperature range, holding for a predetermined time, and then cooling. Further, it can be obtained by adjusting the cooling method from the austenite temperature range. In the case of a hot rolled coil, the above microstructure can be obtained by adjusting the finishing temperature, cooling rate and winding temperature. Further, in the case of a thick steel plate, it can be obtained by adjusting the hot rolling finish temperature and applying controlled cooling. When the above microstructure is obtained by isothermal transformation, a TTT diagram (Time Temperature Transfor
The temperature obtained by subtracting about 50 ° C. from the temperature of the ferrite precipitation nose may be maintained at a temperature which does not exceed the temperature of the ferrite nose. Specifically, for example, a steel material having the above microstructure can be manufactured under the following conditions. (A) One example of welded steel pipe: 950 after electric resistance welding production pipe
Heat to 5 ° C for 5 minutes, quench to 500 ° C, hold at that temperature for 3 minutes, then air cool. (B) One example of hot-rolled steel sheet (hot coil): After finishing rolling at 950 ° C., it is wound in a temperature range of 400 ° C. to 500 ° C.

【0043】[0043]

【実施例】表1に示す化学組成の鋼P1〜P3を、50k
g真空高周波炉で溶解後、鋳造、熱間圧延により6mm
厚の鋼板とした。その後、圧接性を評価するため、表2
〜表4に示す各種圧接法により接合継手を作製し、評価
試験を実施した。
EXAMPLES Steels P1 to P3 having the chemical compositions shown in Table 1 were each heated to 50 k
6mm after melting in a vacuum high-frequency furnace, then casting and hot rolling
It was a thick steel plate. Then, in order to evaluate the pressure contact property, Table 2
-Joint joints were produced by various pressure welding methods shown in Table 4 and evaluation tests were carried out.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】(A)フラッシュバット溶接およびDCバ
ット溶接 熱間圧延により得られた上記鋼板に、880℃で10分
間加熱し空冷した後、400〜650℃の温度域の一温
度(保持温度)に10分間保持した後空冷する熱処理を
施し、表5に示すミクロ組織の供試材を作製した。すな
わち供試鋼P1については、保持温度を、上記温度域の
530℃以下とすることにより、フェライトおよびパー
ライトの体積率が合計で40%以下のミクロ組織を得、
また、保持温度を530℃を超える温度とすることによ
り、上記体積率が40%を超えるミクロ組織を得た。供
試鋼P2およびP3については、保持温度を上記温度域の
510℃以下とすることにより、上記体積率が40%以
下のミクロ組織を得た。
(A) Flash butt welding and DC butt welding The above steel sheet obtained by hot rolling was heated at 880 ° C. for 10 minutes and air-cooled, and then at one temperature (holding temperature) in the temperature range of 400 to 650 ° C. After being held for 10 minutes, a heat treatment of air cooling was performed to fabricate test materials having the microstructure shown in Table 5. That is, for the sample steel P1, by setting the holding temperature to 530 ° C. or lower in the above temperature range, a microstructure in which the volume ratio of ferrite and pearlite is 40% or less in total is obtained,
Further, by setting the holding temperature to a temperature higher than 530 ° C., a microstructure having a volume ratio of more than 40% was obtained. For the sample steels P2 and P3, the microstructure having a volume ratio of 40% or less was obtained by setting the holding temperature to 510 ° C. or lower in the above temperature range.

【0049】上記供試材の端面をI開先に機械加工し、
6mm×200mmの矩形断面同士を突き合せて、表2
または表3に示す条件にて溶接し、接合継手を作製し
た。 (B)摩擦圧接 熱間圧延により得られた上記鋼板をロールにて管状に成
形し、電縫溶接して外径35mmの溶接管を作製した。
この溶接管に、上記熱処理を施し、表5に示すミクロ組
織の管を作製した。すなわち、供試鋼P1については、
保持温度を、上記温度域の530℃以下とすることによ
り、フェライトおよびパーライトの体積率が合計で40
%以下のミクロ組織を得、また、保持温度を、530℃
を超える温度とすることにより、上記体積率が40%を
超えるミクロ組織を得た。
The end surface of the test material was machined into an I-groove,
Butt the 6 mm x 200 mm rectangular cross sections, and
Alternatively, welding was performed under the conditions shown in Table 3 to produce a bonded joint. (B) The above steel sheet obtained by friction welding hot rolling was formed into a tubular shape with a roll, and electric resistance welding was performed to produce a welded tube having an outer diameter of 35 mm.
This welded tube was subjected to the above heat treatment to produce a tube having a microstructure shown in Table 5. That is, for the test steel P1,
By setting the holding temperature to 530 ° C. or lower in the above temperature range, the volume ratio of ferrite and pearlite is 40 in total.
% Microstructure is obtained, and the holding temperature is 530 ° C.
By setting the temperature to exceed, a microstructure having the above volume ratio of more than 40% was obtained.

【0050】得られた管の端面をI開先に機械加工して
端面同士を突き合せて表4に示す条件で摩擦圧接し、接
合継手を得た。
The end faces of the obtained pipe were machined into I-grooves, the end faces were abutted against each other, and friction welded under the conditions shown in Table 4 to obtain a joint.

【0051】上記の接合継手から、溶接線に直交方向
に、中央に接合部を持つ、厚さ6mm、幅10mm、長
さ200mmの側曲げ試験片を、各接合継手から5本採
取した。この側曲げ試験片について、曲げ半径12mm
にて180度曲げた。この曲げた試験片について、曲げ
表面の接合界面部での割れの有無を50倍の拡大視野に
て検鏡し、接合部での割れの有無を調べた。また、併せ
て、接合部断面にて荷重1kgfでビッカース硬さ試験
を実施し、接合界面で硬化層を評価した。接合部に割れ
が生じなかった試験体を接合強度良好とする基準で評価
した。評価結果を表5に示す。
From the above-mentioned bonded joint, five side-bending test pieces having a thickness of 6 mm, a width of 10 mm, and a length of 200 mm and having a bonded portion in the center in the direction orthogonal to the welding line were sampled from each bonded joint. This side bending test piece has a bending radius of 12 mm
It was bent 180 degrees. With respect to this bent test piece, the presence or absence of cracks at the joint interface portion of the bending surface was examined with a 50 times magnified field of view, and the presence or absence of cracks at the joint portion was examined. In addition, in addition, a Vickers hardness test was performed on the cross section of the joint with a load of 1 kgf, and the hardened layer was evaluated at the joint interface. The test body in which no crack was generated in the joint was evaluated based on the criterion that the joint strength was good. The evaluation results are shown in Table 5.

【0052】[0052]

【表5】 [Table 5]

【0053】フェライトとパーライトとの体積率が40
%以下を満たす本発明例の鋼材では、代符A1〜A15の
ように、いずれの接合方法を用いた継手でも、接合界面
のビッカース硬さは350以下であり、このため接合部
の曲げ試験体に割れが生じなかった。このような良好な
圧接性は、化学組成の異なる鋼材P1〜P3のすべてにつ
いて、フェライトとパーライトとの体積率が40%以下
の場合にのみ達成されている。
The volume ratio of ferrite and pearlite is 40.
%, The Vickers hardness of the joint interface is 350 or less in any joint using any joining method, as in the alternatives A1 to A15. No cracks occurred in the. Such good pressure contact property is achieved only when the volume ratio of ferrite and pearlite is 40% or less for all the steel materials P1 to P3 having different chemical compositions.

【0054】一方、代符B1〜B6、B10、B11のよう
に、母材のフェライトとパーライトとを合せた体積率が
40%を超えた鋼材では、いずれの圧接法でも、たとえ
アプセット圧力を高くしても接合界面のビッカース硬さ
は380を超える。このため、接合部の曲げ試験体に割
れが発生した。
On the other hand, as in the substitutes B1 to B6, B10 and B11, for steel materials having a total volume ratio of ferrite and pearlite of the base material of more than 40%, the upset pressure can be increased by any pressure welding method. However, the Vickers hardness of the joint interface exceeds 380. Therefore, cracks occurred in the bending test body at the joint.

【0055】上記により、本発明の要件を満たす鋼材を
用いることにより、優れた接合特性を有する圧接継手を
得ることが可能となることが分かった。
From the above, it was found that it is possible to obtain a pressure-welded joint having excellent joining characteristics by using a steel material satisfying the requirements of the present invention.

【0056】上記において、本発明の実施の形態につい
て説明を行ったが、上記に開示された本発明の実施の形
態は、あくまで例示であって、本発明の範囲はこれら発
明の実施の形態に限定されない。たとえば、本発明の接
合方法は、フラッシュバット溶接法、摩擦圧接法に限定
されない。接合部を突き合わせて加熱および加圧して硬
化層となる部分を押し出す接合方法であれば、どのよう
な溶接法であってもよい。本発明の範囲は、特許請求の
範囲の記載によって示され、さらに特許請求の範囲と均
等の意味および範囲内でのすべての変更を含むものであ
る。
Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these embodiments. Not limited. For example, the joining method of the present invention is not limited to the flash butt welding method and the friction welding method. Any welding method may be used as long as it is a joining method in which the joined portions are butted and heated and pressed to extrude the portion to be the hardened layer. The scope of the present invention is shown by the description of the claims, and further includes meanings equivalent to the claims and all modifications within the scope.

【0057】[0057]

【発明の効果】本発明の鋼材および接合方法を用いるこ
とにより、硬化層となる部分を押し出すことができ、優
れた接合特性を有する接合継手を得ることができる。
EFFECTS OF THE INVENTION By using the steel material and the joining method of the present invention, the portion to be the hardened layer can be extruded and a joined joint having excellent joining characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)は本発明の鋼材の接合界面部の周囲の
領域の変形抵抗を説明する図であり、(b)は接合部を
示す図である。
FIG. 1A is a diagram for explaining deformation resistance in a region around a joint interface portion of a steel material of the present invention, and FIG. 1B is a diagram showing a joint portion.

【図2】 本発明の鋼材を圧接した接合部の断面図であ
る。
FIG. 2 is a cross-sectional view of a joint portion where the steel material of the present invention is pressure-welded.

【図3】 図2の接合部の圧接初期における変形抵抗等
の推測図である。
FIG. 3 is an estimated view of deformation resistance and the like at the initial stage of pressure welding of the joint portion in FIG.

【図4】 比較例の鋼材を圧接した接合部の断面図であ
る。
FIG. 4 is a cross-sectional view of a joint portion where a steel material of a comparative example is pressure-welded.

【図5】 図4の接合部の圧接初期における変形抵抗等
の推測図である。
5 is an estimated diagram of deformation resistance and the like at the initial stage of pressure welding of the joint portion of FIG.

【符号の説明】[Explanation of symbols]

1 母材、2 熱影響部(HAZ)、3 接合界面部、
4 接合部の膨出部、5 硬化層。
1 base material, 2 heat affected zone (HAZ), 3 joint interface,
4 bulging part of joint part, 5 hardened layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧接に用いられる鋼材であって、質量%
で、C:0.1%以上1%以下、Si:2%以下、M
n:3%以下を含有し、残部がFeおよび不純物からな
り、さらに、フェライトとパーライトとを合わせた体積
率が40%以下のミクロ組織からなることを特徴とする
鋼材。
1. A steel material used for pressure welding, which comprises% by mass.
C: 0.1% or more and 1% or less, Si: 2% or less, M
A steel material containing n: 3% or less, the balance being Fe and impurities, and further having a microstructure having a volume ratio of ferrite and pearlite of 40% or less.
【請求項2】 接合する鋼材の少なくとも一方の鋼材に
請求項1に記載の鋼材を用いて突き合せて加熱し加圧し
て接合した接合部を備えることを特徴とする鋼構造物。
2. A steel structure comprising a joint portion in which at least one of the steel materials to be joined is abutted with the steel material according to claim 1, heated, pressurized and joined.
【請求項3】 接合する鋼材同士を突き合わせる際、そ
の少なくとも一方の鋼材に請求項1に記載の鋼材を用い
て突き合わせる工程と、突き合せた部分を、加熱しかつ
加圧する工程とを備えることを特徴とする接合方法。
3. When abutting steel materials to be joined together, a step of abutting at least one of the steel materials with the steel material according to claim 1, and a step of heating and pressing the abutted portion A joining method characterized by the above.
JP2001381669A 2001-12-14 2001-12-14 Steel, steel structure and joining method Expired - Lifetime JP3786001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381669A JP3786001B2 (en) 2001-12-14 2001-12-14 Steel, steel structure and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381669A JP3786001B2 (en) 2001-12-14 2001-12-14 Steel, steel structure and joining method

Publications (2)

Publication Number Publication Date
JP2003183768A true JP2003183768A (en) 2003-07-03
JP3786001B2 JP3786001B2 (en) 2006-06-14

Family

ID=27592273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381669A Expired - Lifetime JP3786001B2 (en) 2001-12-14 2001-12-14 Steel, steel structure and joining method

Country Status (1)

Country Link
JP (1) JP3786001B2 (en)

Also Published As

Publication number Publication date
JP3786001B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
RU2633414C2 (en) Spot-weld joint and method for spot welding
CA2657518C (en) Hot bend pipe and a process for its manufacture
US20100143747A1 (en) Liquid phase diffusion bonding method of metal machine part and such metal machine part
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP3770106B2 (en) High strength steel and its manufacturing method
JP4456471B2 (en) Liquid phase diffusion bonding method for metal machine parts and metal machine parts
WO2019156073A1 (en) Method for resistance spot welding, and method for producing resistance-spot-welded joint
JP4687268B2 (en) Manufacturing method of ERW steel pipe for high-strength thick-walled pipe with excellent weld toughness
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
JPH09194998A (en) Welded steel tube and its production
JP2002220634A (en) High tension steel superior in resistance to stress aging, and manufacturing method therefor
JP3786001B2 (en) Steel, steel structure and joining method
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same
Ichiyama et al. Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel
JP4127993B2 (en) Submerged arc welded joint
JPH09262684A (en) Diffusion welding method for metallic material
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JP5439898B2 (en) High tensile steel plate with excellent resistance spot weldability
JP4516702B2 (en) High toughness low temperature transformation flux cored wire
JP2005288504A (en) Welded joint excellent in fatigue strength and its welding method
JP4264298B2 (en) Large section flash butt welded structure with high toughness in the weld zone
JPH09194997A (en) Welded steel tube and its production
JPH08120346A (en) Production of welded steel pipe for oil well excellent in sulphide corrosion cracking resistance
WO2024063010A1 (en) Welded member and method for manufacturing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Ref document number: 3786001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term