JP2003179331A - Component joining method and device - Google Patents

Component joining method and device

Info

Publication number
JP2003179331A
JP2003179331A JP2001378486A JP2001378486A JP2003179331A JP 2003179331 A JP2003179331 A JP 2003179331A JP 2001378486 A JP2001378486 A JP 2001378486A JP 2001378486 A JP2001378486 A JP 2001378486A JP 2003179331 A JP2003179331 A JP 2003179331A
Authority
JP
Japan
Prior art keywords
component
substrate
electrodes
electrode
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001378486A
Other languages
Japanese (ja)
Inventor
Eishin Nishikawa
英信 西川
Yoichi Nakamura
洋一 中村
Kazuo Kubota
和夫 久保田
Naoshi Akiguchi
尚士 秋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001378486A priority Critical patent/JP2003179331A/en
Publication of JP2003179331A publication Critical patent/JP2003179331A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component joining method capable of joining after making an electrode corrosion accelerating material sufficiently flow out to the outer side together with a resin and a component joined body formed by the method. <P>SOLUTION: The component joining method is provided with an initial pressurizing process of making the electrode corrosion accelerating material 10 flow out from a clearance of a component 1 and a substrate 5 outwards together with an insulating joining resin 3 immediately after the component 1 and the substrate 5 start to get closer and a thermo-compression bonding process of bringing the component and the substrate further closer with a pressure equal to or more than the pressure in the initial pressurizing process thereafter, heating and setting the insulating joining resin at a temperature higher than the one in the initial pressurizing process and joining the component 1 and the substrate 5. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁性接合樹脂を
介して部品と基板とを接近させて上記部品の複数の電極
と上記基板の複数の電極とをそれぞれ接触させて上記部
品と上記基板とを接合する部品接合方法及びその方法に
より形成される部品接合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component and a substrate by bringing the component and the substrate close to each other through an insulating bonding resin to bring the plurality of electrodes of the component and the plurality of electrodes of the substrate into contact with each other. The present invention relates to a component joining method for joining and a component joined body formed by the method.

【0002】[0002]

【従来の技術】従来、この種の部品接合方法は種々の構
造のものが知られている。
2. Description of the Related Art Hitherto, various types of structures have been known as this type of component joining method.

【0003】例えば、絶縁性接合樹脂を介して部品と基
板とを接近させて上記部品の複数の電極と上記基板の複
数の電極とをそれぞれ接触させて上記部品と上記基板と
を接合するようにしている。上記部品と基板とを絶縁性
接合樹脂を介して圧接させるとき、接合に必要な大きな
圧力を一度にかけて、上記部品と基板との間から上記絶
縁性接合樹脂を押し出して、上記部品の複数の電極と上
記基板の複数の電極とをそれぞれ、直接的に又は上記絶
縁性接合樹脂中の導電性粒子を介して間接的に、接触さ
せることにより、電極間が確実に接触するようにしてい
る。上記導電性粒子を含む絶縁性接合樹脂の一例として
は、絶縁性樹脂中に導電性粒子が大略均一に分散された
異方性導電性樹脂シート(いわゆる、ACF)がある。
For example, the component and the substrate are brought close to each other via an insulating bonding resin, and the plurality of electrodes of the component and the plurality of electrodes of the substrate are brought into contact with each other to bond the component and the substrate. ing. When the parts and the substrate are pressed into contact with each other via an insulating bonding resin, a large pressure necessary for bonding is applied at one time to extrude the insulating bonding resin from between the parts and the substrate, and a plurality of electrodes of the component The electrodes and the plurality of electrodes of the substrate are brought into contact with each other directly or indirectly through the conductive particles in the insulating bonding resin to ensure reliable contact between the electrodes. An example of the insulating bonding resin containing the conductive particles is an anisotropic conductive resin sheet (so-called ACF) in which the conductive particles are substantially uniformly dispersed in the insulating resin.

【0004】このような接合方法が近年例えば携帯電話
などに使用されるようになっているが、海岸に近い地域
で携帯電話を頻繁に使用する場合に電極部分でのバンプ
腐食によるショート不良が多発する傾向がある。
Recently, such a joining method has been used in, for example, a mobile phone. However, when the mobile phone is frequently used in a region near the coast, short-circuit defects due to bump corrosion at electrode portions frequently occur. Tend to do.

【0005】この原因について分析すると、図7に示す
ように、ICチップ側のAu電極2,2間に断面大略丸
形状のボイド20が発生しており、ボイド20内にNa
Cl結晶26が存在するとともに、窒素系化合物のCN
基の物質のような電極腐食促進物質が存在することがわ
かった。
When the cause of this is analyzed, as shown in FIG. 7, a void 20 having a substantially circular cross section is generated between the Au electrodes 2 and 2 on the IC chip side, and Na is present in the void 20.
Cl crystal 26 is present and the nitrogen compound CN
It has been found that there are electrode corrosion promoters such as the base material.

【0006】ところで、上記ACF3中には、導電性粒
子24、水分子23、陽イオン21、陰イオン22があ
り、圧着時にACF3の樹脂とともに流動している。こ
の陰イオン22の中にはCN基の陰イオンCNがAC
Fの材質によって含まれていることがあり、このCN基
により、上記ボイド20の部分に、水分子23の液化・
保水構造が形成されている。すなわち、圧着時にACF
3の樹脂流動により、CN基の物質が移動してAu電極
2,2言い替えればバンプ間に詰まる。このCN基の物
質は、粒径が約10数μmで高吸水率化合物であり、イ
オンが移動容易な状態を形成している。
By the way, in the ACF 3, there are conductive particles 24, water molecules 23, cations 21 and anions 22, which flow together with the resin of ACF 3 at the time of pressure bonding. In this anion 22, the anion CN of the CN group is AC.
It may be included depending on the material of F, and due to this CN group, liquefaction of water molecules 23 in the void 20 portion
A water retention structure is formed. That is, ACF at the time of pressure bonding
Due to the resin flow of No. 3, the CN-based substance moves and is clogged between the Au electrodes 2 and 2, in other words, between the bumps. This CN group substance is a compound having a high water absorption rate with a particle size of about 10 and several μm, and forms a state in which ions can easily move.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記方
法では、電極間の間隔が小さい(例えば電極間のピッチ
が10μmの)部品を基板に接合する場合に接合に必要
な圧力を一気にかけると、部品の電極と基板の電極との
間の隙間が一挙に縮まり、上記電極腐食促進物質が外側
に樹脂とともに流出する前に部品の電極と基板の電極と
の間に挟まってしまい、電極を腐食させる原因となって
いた。
However, in the above method, when a component having a small gap between electrodes (for example, a pitch between electrodes is 10 μm) is joined to a substrate, the pressure required for the joining is suddenly applied. The gap between the electrode on the board and the electrode on the board shrinks all at once, causing the electrode corrosion promoting substance to get caught between the electrode on the component and the electrode on the board before flowing out together with the resin to the outside, causing the electrode to corrode. It was.

【0008】従って、本発明の目的は、上記問題を解決
することにあって、電極腐食促進物質が外側に樹脂とと
もに十分に流出したのち接合することができる部品接合
方法及びその方法により形成される部品接合体を提供す
ることにある。
[0008] Therefore, an object of the present invention is to solve the above problems and to form a component joining method by which an electrode corrosion accelerating substance can be joined together after it sufficiently flows out together with a resin to the outside and a method therefor. It is to provide a joined part.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下のように構成する。
In order to achieve the above object, the present invention is configured as follows.

【0010】本発明の第1態様によれば、部品と基板と
を絶縁性接合樹脂を介して配置したのち、上記接合樹脂
を介して上記部品と上記基板とを接近させて、上記部品
の複数の電極と上記基板の複数の電極とを接触させて部
品と基板とを接合する部品接合方法において、上記部品
と上記基板とを相対的に接近させ、上記接合樹脂に含ま
れる上記電極を腐食させうる電極腐食促進物質を、上記
部品と上記基板との隙間を通して上記部品と上記基板と
の接合箇所から離れる向きに上記接合樹脂と共に流動さ
せる工程と、更に上記部品と上記基板とを相対的に接近
させ、上記部品の上記複数の電極と上記基板の上記複数
の電極とを接触させて上記部品と上記基板とを接合さ
せ、上記接合樹脂を加熱して硬化させて、上記部品の上
記複数の電極と上記基板の上記複数の電極とを接触させ
た状態で上記部品と基板とを接合する工程とを備えるよ
うにしたことを特徴とする部品接合方法を提供する。
According to the first aspect of the present invention, after the component and the substrate are arranged with the insulating bonding resin interposed therebetween, the component and the substrate are brought close to each other through the bonding resin, and a plurality of the components In the component joining method of bringing the electrode and the plurality of electrodes of the substrate into contact with each other to join the component and the substrate, the component and the substrate are brought relatively close to each other, and the electrodes included in the joining resin are corroded. A step of causing the electrode corrosion accelerating substance to flow together with the bonding resin in a direction away from the joint between the component and the substrate through a gap between the component and the substrate, and further relatively bringing the component and the substrate close to each other. Then, the plurality of electrodes of the component and the plurality of electrodes of the substrate are brought into contact with each other to bond the component and the substrate, and the bonding resin is heated and cured, so that the plurality of electrodes of the component. And above Provides a component bonding method characterized by in a state of being contact with the plurality of electrodes of the plate was set to and a step of bonding the above components and the substrate.

【0011】本発明の第2態様によれば、部品と基板と
を絶縁性接合樹脂を介して配置したのち、上記絶縁性接
合樹脂を介して上記部品と上記基板とを接近させて上記
部品の複数の電極と上記基板の複数の電極とをそれぞれ
接触させて上記部品と上記基板とを接合する部品接合方
法において、上記部品と上記基板とを相対的に接近開始
直後は、上記絶縁性接合樹脂が流動して、上記絶縁性接
合樹脂内に含まれかつ上記接合後の隣接電極間に挟まっ
て上記電極を腐食させうる電極腐食促進物質が上記部品
と上記基板との隙間から上記絶縁性接合樹脂とともに外
向きに上記流れ出る初期加圧工程と、上記初期加圧工程
後、上記初期加圧工程での圧力以上の圧力で上記部品と
上記基板とをさらに相対的に移動させて、上記部品の複
数の電極と上記基板の複数の電極とをそれぞれ接触さ
せ、かつ、上記初期加圧工程よりも高い温度で上記絶縁
性接合樹脂を加熱して硬化させて、上記部品の上記複数
の電極と上記基板の上記複数の電極とをそれぞれ接触さ
せた状態で上記部品と上記基板とを接合する熱圧着工程
とを備えるようにしたことを特徴とする部品接合方法を
提供する。
According to the second aspect of the present invention, after the component and the board are arranged with the insulating bonding resin interposed therebetween, the component and the substrate are brought close to each other with the insulating bonding resin interposed therebetween to make the component In a component joining method of joining a plurality of electrodes and a plurality of electrodes of the substrate respectively to join the component and the substrate, immediately after the components and the substrate are relatively approached to each other, the insulating joining resin is used. Flow through the insulating bonding resin, and an electrode corrosion accelerating substance contained in the insulating bonding resin and sandwiched between the adjacent electrodes after the bonding and capable of corroding the electrode is discharged from the gap between the component and the substrate to the insulating bonding resin. Together with the initial pressurizing step that flows outwards, and after the initial pressurizing step, the component and the substrate are further moved relative to each other at a pressure equal to or higher than the pressure in the initial pressurizing step, and a plurality of the component parts are Electrodes and the above Each of the plurality of electrodes are contacted with each other, and the insulating bonding resin is heated and cured at a temperature higher than that in the initial pressurizing step, so that the plurality of electrodes of the component and the plurality of electrodes of the substrate. And a thermocompression bonding step of bonding the component and the substrate in a state where they are in contact with each other.

【0012】本発明の第3態様によれば、さらに、上記
部品と上記基板との間より外向きに流出した上記絶縁性
接合樹脂を加熱して硬化させる部品外側領域熱硬化工程
を備える第1又は2の態様に記載の部品接合方法を提供
する。
According to the third aspect of the present invention, further, there is provided a first component outside region thermosetting step of heating and curing the insulating bonding resin flowing outward from between the component and the substrate. Alternatively, the method for joining components according to the second aspect is provided.

【0013】本発明の第4態様によれば、上記絶縁性接
合樹脂は、異方導電性シート又は異方導電性ペーストで
ある第1〜3のいずれか1つの態様に記載の部品接合方
法を提供する。
According to a fourth aspect of the present invention, the insulating joining resin is an anisotropic conductive sheet or an anisotropic conductive paste according to any one of the first to third aspects. provide.

【0014】本発明の第5態様によれば、上記熱圧着工
程では、上記初期加圧工程よりも単位時間当たりの温度
上昇速度が高くなるように加熱する第1〜4のいずれか
1つの態様に記載の部品接合方法を提供する。
According to a fifth aspect of the present invention, in the thermocompression bonding step, heating is performed so that the temperature rising rate per unit time is higher than in the initial pressurizing step, so that the heating is performed. The method for joining components according to 1. is provided.

【0015】本発明の第6態様によれば、上記熱圧着工
程での加圧圧力は、上記初期加圧工程での加圧圧力より
も大きい第1〜5のいずれか1つの態様に記載の部品接
合方法を提供する。
According to a sixth aspect of the present invention, the pressure applied in the thermocompression bonding step is higher than the pressure applied in the initial pressure applying step. A method for joining parts is provided.

【0016】本発明の第7態様によれば、上記初期加圧
工程中での上記絶縁性接合樹脂を介在させた状態での上
記部品と上記基板との間の上記隙間は、少なくとも、上
記部品の上記電極の厚みと上記基板の上記電極の厚みと
の合計寸法であり、上記熱圧着工程終了時点での上記部
品の上記電極の厚みと上記基板の上記電極の厚みとの合
計寸法よりも大きく、かつ、上記電極腐食促進物質の粒
径より大きい第1〜6のいずれか1つの態様に記載の部
品接合方法を提供する。
According to the seventh aspect of the present invention, at least the gap between the component and the substrate with the insulating bonding resin interposed in the initial pressurizing step is at least the component. Is a total dimension of the thickness of the electrode and the thickness of the electrode of the substrate, greater than the total dimension of the thickness of the electrode of the component and the thickness of the electrode of the substrate at the end of the thermocompression bonding step And a method for joining parts according to any one of the first to sixth aspects, wherein the particle size is larger than the particle diameter of the electrode corrosion promoting substance.

【0017】本発明の第8態様によれば、上記電極腐食
促進物質はCN基の物質であり、上記部品の上記電極と
上記基板の上記電極とのうち少なくとも一方の電極は金
である第1〜7のいずれか1つの態様に記載の部品接合
方法を提供する。
According to an eighth aspect of the present invention, the electrode corrosion promoting substance is a CN-based substance, and at least one of the electrode of the component and the electrode of the substrate is gold. The component joining method according to any one of aspects 1 to 7 is provided.

【0018】本発明の第9態様によれば、第1〜8のい
ずれか1つの態様に記載の部品接合方法により上記部品
と上記基板とが接合されて形成された部品接合体を提供
する。
According to a ninth aspect of the present invention, there is provided a component joined body formed by joining the component and the substrate by the component joining method according to any one of the first to eighth aspects.

【0019】[0019]

【発明の実施の形態】以下に、本発明にかかる実施の形
態を図面に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】本発明の第1の実施形態にかかる部品接合
方法及びその方法により形成された部品接合体は、図1
〜図3に示すように、部品例えばICチップ1と基板例
えばフレキシブル基板5とを、絶縁性接合樹脂3を介し
て配置したのち、上記ICチップ1と上記基板5とを接
近させて上記ICチップ1の複数の電極(例えば金のバ
ンプより構成されるバンプ電極)2と上記基板の複数の
例えば金又は他の金属の電極4とをそれぞれ接触させて
上記ICチップ1と上記基板5とを接合する部品接合方
法において、初期加圧工程と熱圧着工程とを備えるよう
にしている。
The component joining method according to the first embodiment of the present invention and the component joined body formed by the method are shown in FIG.
As shown in FIG. 3, after the components such as the IC chip 1 and the substrate such as the flexible substrate 5 are arranged via the insulating bonding resin 3, the IC chip 1 and the substrate 5 are brought close to each other and the IC chip is One IC electrode 1 (for example, a bump electrode formed of a gold bump) 2 and a plurality of gold or other metal electrodes 4 on the substrate are brought into contact with each other to bond the IC chip 1 and the substrate 5 to each other. In the component joining method described above, an initial pressing step and a thermocompression bonding step are provided.

【0021】上記絶縁性接合樹脂3は、例えば、絶縁樹
脂中に導電性粒子が大略均一に分散された、異方導電性
樹脂シート(いわゆる、ACF)又は異方性導電ペース
トである。
The insulating bonding resin 3 is, for example, an anisotropic conductive resin sheet (so-called ACF) or an anisotropic conductive paste in which conductive particles are substantially uniformly dispersed in the insulating resin.

【0022】上記初期加圧工程では、図1〜図2に示す
ように、絶縁性接合樹脂3を介在させた状態で上記IC
チップ1と上記基板5とを相対的に接近開始させる。例
えば、基板5をステージ16(図5参照)などの基板保
持装置に吸着保持したのち、基板5上に絶縁性接合樹脂
3を載置する一方、ICチップ1を圧着ツールの下端に
吸着保持して上記基板5に接近させる。この接近開始し
た直後は、上記絶縁性接合樹脂3が上記ICチップ1と
上記基板5との間に挟み込まれて、上記絶縁性接合樹脂
3が流動する。このとき、上記絶縁性接合樹脂3内に含
まれかつ上記接合後の例えばICチップ1側の隣接バン
プ電極2,2間に挟まって上記電極2を腐食させうる電
極腐食促進物質10が上記ICチップ1と上記基板5と
の隙間30から上記絶縁性接合樹脂3とともに外向きに
上記流れ出るようにしている。
In the initial pressurizing step, as shown in FIGS. 1 and 2, the IC is bonded with the insulating bonding resin 3 interposed.
The chip 1 and the substrate 5 are started to relatively approach each other. For example, after the substrate 5 is sucked and held by a substrate holding device such as the stage 16 (see FIG. 5), the insulating bonding resin 3 is placed on the substrate 5 while the IC chip 1 is sucked and held by the lower end of the crimping tool. To approach the substrate 5. Immediately after this approach starts, the insulating bonding resin 3 is sandwiched between the IC chip 1 and the substrate 5, and the insulating bonding resin 3 flows. At this time, the electrode corrosion-promoting substance 10 contained in the insulating bonding resin 3 and sandwiched between the adjacent bump electrodes 2 on the IC chip 1 side after the bonding and capable of corroding the electrode 2 is the IC chip. The gap 30 between the substrate 1 and the substrate 5 flows outward together with the insulating bonding resin 3.

【0023】従って、上記初期加圧工程は、不純物、特
に、上記電極腐食促進物質10が、上記隣接電極2,2
又は4,4間に挟み込まれたり詰まったりしないよう
に、上記ICチップ1と上記基板5との隙間30から外
部に上記絶縁性接合樹脂3とともに流出させる工程であ
る。このため、上記初期加圧工程中での上記絶縁性接合
樹脂3を介在させた状態での上記ICチップ1と上記基
板5との両対向面間の上記隙間30は、少なくとも上記
ICチップ1の上記電極2の厚みt1と上記基板5の上
記電極4の厚みt3との合計寸法以上で、かつ、上記熱
圧着工程終了時点での上記ICチップ1の上記電極2の
厚みと上記基板5の上記電極4の厚みと上記電極2,4
間に挟み込まれた上記絶縁性接合樹脂3の厚みt2との
合計寸法t4よりも大きく、かつ、上記電極腐食促進物
質10の粒径R1より大きくして、上記電極腐食促進物
質10がICチップ1と基板5との両対向面間の隙間か
ら外側に絶縁性接合樹脂3とともに円滑に流出できるよ
うにする。このため、上記隙間の高さを所定高さ(具体
的には、ICチップ1のバンプ電極2の厚みt1と基板
5の電極4の厚みt3の合計寸法)以上に制御するとと
もに、初期加圧工程での圧力を所定圧力(具体的には、
上記所定高さが維持可能な圧力)以下に制御する必要が
ある。
Therefore, in the initial pressurizing step, impurities, especially the electrode corrosion accelerating substance 10, are removed from the adjacent electrodes 2 and 2.
Alternatively, it is a step of causing the insulating bonding resin 3 to flow out from the gap 30 between the IC chip 1 and the substrate 5 to the outside so as not to be caught or clogged between the 4 and 4. Therefore, at least the gap 30 between the opposing surfaces of the IC chip 1 and the substrate 5 in the state where the insulating bonding resin 3 is interposed in the initial pressing step is at least the IC chip 1 at least. The total size of the thickness t1 of the electrode 2 and the thickness t3 of the electrode 4 of the substrate 5 is equal to or larger than the total size, and the thickness of the electrode 2 of the IC chip 1 and the thickness of the substrate 5 at the end of the thermocompression bonding process. Thickness of the electrode 4 and the electrodes 2 and 4
The thickness t2 of the insulating bonding resin 3 sandwiched therebetween is larger than the total dimension t4 and is larger than the particle size R1 of the electrode corrosion promoting substance 10 so that the electrode corrosion promoting substance 10 is included in the IC chip 1 The insulating bonding resin 3 and the insulating bonding resin 3 can smoothly flow out from the gap between the opposing surfaces of the substrate 5 and the substrate 5. Therefore, the height of the gap is controlled to be equal to or more than a predetermined height (specifically, the total size of the thickness t1 of the bump electrode 2 of the IC chip 1 and the thickness t3 of the electrode 4 of the substrate 5) and the initial pressure is applied. The pressure in the process is set to a predetermined pressure (specifically,
It is necessary to control the pressure to be equal to or lower than the pressure at which the predetermined height can be maintained.

【0024】上記初期加圧工程の条件の一例としては、
各組成分解温度T1、最高温度T2とするとき、各組成
分解温度T1である170℃より低温で加熱を開始し、
温度を徐々に上げていき、170℃近傍でこの初期加圧
工程を終了できるようにする。このように加熱すること
により、上記絶縁性接合樹脂3に含まれる各組成粒子の
流動性を高めて、電極腐食促進物質10が流動しやすく
なるようにする。
As an example of the conditions of the initial pressing step,
When the composition decomposition temperature T1 and the maximum temperature T2 are set, heating is started at a temperature lower than 170 ° C., which is the composition decomposition temperature T1,
The temperature is gradually raised so that the initial pressurizing step can be completed at around 170 ° C. By heating in this manner, the fluidity of each composition particle contained in the insulating bonding resin 3 is increased, and the electrode corrosion promoting substance 10 is made to flow easily.

【0025】上記熱圧着工程は、上記初期加圧工程後、
上記初期加圧工程での圧力以上の圧力で上記ICチップ
1と上記基板5とをさらに相対的に移動させて、上記I
Cチップ1の複数の電極2と上記基板5の複数の電極4
とを、それぞれ、上記絶縁性接合樹脂3内の導電性粒子
を介して接触させ、かつ、上記初期加圧工程よりも高い
温度で上記絶縁性接合樹脂3を加熱して硬化させて、上
記ICチップ1の上記各電極2と上記基板5の上記各電
極4とをそれぞれ導電性粒子を介して接触させた状態で
上記ICチップ1と上記基板5とを接合固定するもので
ある。上記ICチップ1の上記各電極2と上記基板5の
上記各電極4とをそれぞれ接触させるとき、上記ICチ
ップ1の上記各電極2と上記基板5の上記各電極4とを
それぞれ上記絶縁性接合樹脂3中の導電性粒子を介して
間接的に接触させることにより、電極2,4間が確実に
接触するようにしている。
In the thermocompression bonding step, after the initial pressing step,
The IC chip 1 and the substrate 5 are moved relative to each other at a pressure equal to or higher than the pressure in the initial pressurizing step, and the I
A plurality of electrodes 2 of the C chip 1 and a plurality of electrodes 4 of the substrate 5
Are contacted with each other via the conductive particles in the insulating bonding resin 3, and the insulating bonding resin 3 is heated and cured at a temperature higher than that in the initial pressurizing step, and the IC The IC chip 1 and the substrate 5 are bonded and fixed in a state where the electrodes 2 of the chip 1 and the electrodes 4 of the substrate 5 are in contact with each other via conductive particles. When the respective electrodes 2 of the IC chip 1 and the respective electrodes 4 of the substrate 5 are brought into contact with each other, the respective electrodes 2 of the IC chip 1 and the respective electrodes 4 of the substrate 5 are respectively insulated and bonded. The electrodes 2 and 4 are surely brought into contact with each other by indirectly contacting them via the conductive particles in the resin 3.

【0026】上記熱圧着工程の条件の一例としては、上
記初期加圧工程で到達した加熱温度170℃より高い2
20℃の高温で加熱して、上記絶縁性接合樹脂3を完全
硬化するようにする。
As an example of the conditions of the thermocompression bonding process, the heating temperature higher than 170 ° C. reached in the initial pressing process is 2
The insulating bonding resin 3 is completely cured by heating at a high temperature of 20 ° C.

【0027】上記電極腐食促進物質10は、例えば、C
N基の物質であり、上記絶縁性接合樹脂3内の組成物中
の水を吸いやすいものであって、上記ICチップ1の上
記電極2と上記フレキシブル基板5の上記電極3とのう
ち少なくとも一方の電極が金で構成されている場合に、
その金の電極を腐食させる物質である。
The electrode corrosion promoting substance 10 is, for example, C
It is an N-based substance and easily absorbs water in the composition in the insulating bonding resin 3, and at least one of the electrode 2 of the IC chip 1 and the electrode 3 of the flexible substrate 5 If the electrodes of are made of gold,
It is a substance that corrodes the gold electrode.

【0028】ここで、市販のACFでは、一般的には、
連続層を成すエポキシ系樹脂としてビスフェノールAグ
リシジルエーテル型エポキシ樹脂が用いられている他、
平均粒径が約3〜5μmの導電性粒子(これは一般的に
粒径分布が非常に狭く、個々の導電性粒子が平均粒径と
実質的に同一の粒径を有するものとみなし得る)、2−
メチルイミダゾールから成る平均粒径が約3〜10μm
の硬化剤ならびにアクリロニトリル共重合体から成る平
均粒径が約3〜10μmの添加剤及びアクリル変性エポ
キシ樹脂から成る平均粒径が約3〜10μmの別の添加
剤などの粒状材料が原料成分として使用されている。こ
のため、隣接バンプ電極間のギャップG1を約10μm
とした場合、比較的小さい粒径を有する導電性粒子は隣
接バンプ電極間のスペースを通過し得るが、硬化剤及び
添加剤のうちギャップG1と同等以上の粒径を有する粒
子は、ボイド20がネック部となってそこに詰まり得
る。この状態のまま、熱雰囲気に曝してエポキシ系樹脂
を熱硬化させて硬化エポキシ系樹脂とすると、硬化剤及
び添加剤に由来する成分が絶縁性接合樹脂3のボイド2
0において他の領域よりも過多に存在する。この結果、
得られる絶縁性接合樹脂3の組成は基板表面沿い方向に
おいて不均質となる。
Here, in the commercially available ACF, generally,
A bisphenol A glycidyl ether type epoxy resin is used as an epoxy resin forming a continuous layer,
Conductive particles having an average particle size of about 3 to 5 μm (which generally has a very narrow particle size distribution and can be regarded as individual conductive particles having substantially the same particle size as the average particle size). , 2-
Mean imidazole average particle size is about 3-10 μm
As a raw material component, a granular material such as a curing agent for Acrylonitrile Co., Ltd., an additive having an average particle size of about 3 to 10 μm and another additive having an average particle size of about 3 to 10 μm made of an acrylic modified epoxy resin Has been done. Therefore, the gap G1 between the adjacent bump electrodes should be about 10 μm.
In that case, the conductive particles having a relatively small particle size can pass through the space between the adjacent bump electrodes, but the particles having a particle size equal to or larger than the gap G1 among the curing agent and the additive have voids 20. It can become a neck and get stuck there. In this state, if the epoxy resin is exposed to a hot atmosphere to be thermally cured to form a cured epoxy resin, the components derived from the curing agent and the additive are voids 2 of the insulating bonding resin 3.
At 0, there is more than at other regions. As a result,
The composition of the obtained insulating bonding resin 3 becomes inhomogeneous in the direction along the substrate surface.

【0029】市販のACFにおいて、主剤のエポキシ系
樹脂として使用されているビスフェノールAグリシジル
エーテル型エポキシ樹脂及び添加剤の1つとして使用さ
れているアクリル変性エポキシ樹脂は、いずれも約0.
05〜0.08%の同等程度の飽和給水率を有する。他
方、硬化剤及び別の添加剤としてそれぞれ使用されてい
る2−メチルイミダゾール及びアクリロニトリル共重合
体の飽和吸水率は、各々約0.4%及び約0.3%であ
り、上記のようなエポキシ系樹脂(アクリル変性したも
のを含む)の飽和吸水率よりも高い。2−メチルイミダ
ゾールの吸水性の高さは、疎水基であるメチル基が1つ
の分子に対して1つしかないことによるものであり、ア
クリロロニトリル共重合体の吸水性の高さは、親水基で
あるシアノ基(−CN)が1つの分子に対して多く存在
することによるものであると考えられる。尚、上記飽和
給水率とは、ASTM D−570に従って測定される
値を言い、概略的には、常温常圧条件下で実質的に平衡
状態にある、10mm×50mm×1mmの大きさの原
料成分のテストピースを、23℃の温度の水中に24時
間浸漬したときの重量の増加割合を求めることにより決
定される。
In the commercially available ACF, the bisphenol A glycidyl ether type epoxy resin used as the epoxy resin as the main ingredient and the acrylic modified epoxy resin used as one of the additives are both about 0.
It has an equivalent saturated water supply rate of 05 to 0.08%. On the other hand, the saturated water absorptions of 2-methylimidazole and acrylonitrile copolymer used as a curing agent and another additive are about 0.4% and about 0.3%, respectively. It is higher than the saturated water absorption of resin (including acrylic modified). The water absorption of 2-methylimidazole is due to the fact that there is only one methyl group, which is a hydrophobic group, per molecule, and the water absorption of the acrylonitrile copolymer is hydrophilic. It is considered that this is because many cyano groups (-CN), which are groups, exist in one molecule. The saturated water supply rate means a value measured according to ASTM D-570, and is roughly a raw material having a size of 10 mm × 50 mm × 1 mm which is substantially in equilibrium under normal temperature and pressure conditions. It is determined by determining the percentage increase in weight of the component test piece when immersed in water at a temperature of 23 ° C. for 24 hours.

【0030】また、ビスフェノールAグリシジルエーテ
ル型エポキシ樹脂及びアクリル変性エポキシ樹脂は、い
ずれも300℃以下の温度範囲では分解しないのに対し
て、2−メチルイミダゾールは約198℃の分解温度を
有し、アクリロニトリル共重合体は約185℃の分解温
度を有する。熱圧着は、エポキシ系樹脂の硬化温度及び
ICチップの耐熱温度等を考慮して、一般的に約180
〜230℃にて行なわれ、この熱圧着温度では、ビスフ
ェノールAグリシジルエーテル型エポキシ樹脂及びアク
リル変性エポキシ樹脂は分解しない。他方、2−メチル
イミダゾール及びアクリロニトリル共重合体は熱圧着の
際、場合によっては分解して、絶縁性接合樹脂3にてイ
オン性の物質を生成する。分解生成物であるイオン性物
質は極性を有するため、親水性が高く、よって吸水性が
高いと考えられる。
Further, neither the bisphenol A glycidyl ether type epoxy resin nor the acrylic modified epoxy resin decomposes in the temperature range of 300 ° C. or lower, whereas 2-methylimidazole has a decomposition temperature of about 198 ° C. The acrylonitrile copolymer has a decomposition temperature of about 185 ° C. The thermocompression bonding is generally about 180 in consideration of the curing temperature of the epoxy resin and the heat resistant temperature of the IC chip.
It is carried out at ˜230 ° C., and at this thermocompression bonding temperature, the bisphenol A glycidyl ether type epoxy resin and the acrylic modified epoxy resin do not decompose. On the other hand, the 2-methylimidazole and acrylonitrile copolymer are sometimes decomposed during thermocompression bonding to generate an ionic substance in the insulating bonding resin 3. Since the ionic substance that is a decomposition product has polarity, it is considered to have high hydrophilicity and therefore high water absorption.

【0031】従って、2−メチルイミダゾール及び/又
はアクリロニトリル共重合体が分解せずにそのまま絶縁
性接合樹脂3に存在する場合には、これら原料成分のも
ともとの吸水性の高さに起因して、上述のボイド20
は、絶縁性接合樹脂3の他の領域に比べて水分をトラッ
プし易い腐蝕環境となると考えられる。また、これらが
分解してイオン性物質を生成する場合には、該イオン性
物質の吸水性の高さに起因して、上述のボイド20は、
絶縁性接合樹脂3の他の領域に比べて水分をトラップし
易い腐蝕環境となると考えられる。
Therefore, when the 2-methylimidazole and / or acrylonitrile copolymer is present in the insulating bonding resin 3 as it is without being decomposed, due to the original high water absorption of these raw material components, Void 20 mentioned above
Is considered to be a corrosive environment in which moisture can be easily trapped as compared with other regions of the insulating bonding resin 3. Further, when these decompose to generate an ionic substance, the void 20 described above is caused by the high water absorption of the ionic substance.
It is considered that the corrosive environment is more likely to trap moisture than other regions of the insulating bonding resin 3.

【0032】要約すれば、絶縁性接合樹脂3における腐
蝕環境の形成は、以下の2つの段階を経ると考えられ
る。 (1)電極対間のスペースに原料成分の粒子が詰まり;
そして、(2)上記スペースに詰まった粒子を構成する
原料成分の材料のもともとの吸水性の高さ及び/又はそ
の分解生成物の吸水性の高さに起因して、その場所に腐
蝕環境を形成する。
In summary, the formation of a corrosive environment in the insulating bonding resin 3 is considered to go through the following two stages. (1) Particles of raw material components are clogged in the space between the electrode pair;
And (2) due to the original height of water absorption of the material of the raw material component constituting the particles clogged in the space and / or the high water absorption of its decomposition product, a corrosive environment is created at that location. Form.

【0033】以上のような2つの段階を経て形成された
腐蝕環境は、高温多湿条件下における電圧印加試験にお
いてより多くの水分をトラップし、バンプ電極2の腐蝕
をもたらす一方で、腐蝕環境にトラップされた水分は、
その誘電率が比較的高いことからバンプ電極2間の電流
パスとして機能し、ショート不良を招き得ると考えられ
る。即ち、高温多湿条件下における電圧印加試験におい
て発生する、隣接する電極対間でのショートは、電極対
間のスペースの近傍に上記のような腐蝕環境が形成され
ることに起因すると考えられる。
The corrosive environment formed through the above two steps traps more moisture in the voltage application test under the high temperature and high humidity condition and causes corrosion of the bump electrode 2, while trapping in the corrosive environment. The water content is
It is considered that because of its relatively high dielectric constant, it functions as a current path between the bump electrodes 2 and may cause a short circuit failure. That is, it is considered that the short circuit between the adjacent electrode pairs, which occurs in the voltage application test under the high temperature and high humidity condition, is caused by the above-mentioned corrosive environment being formed in the vicinity of the space between the electrode pairs.

【0034】従って、上記電極腐食促進物質10は、上
記したように水分をトラップすることができる物質であ
り、当該物質自体又は他の物質が、上記腐蝕環境にトラ
ップされた水分を利用して電極をアタックして腐食を生
じさせる物質のことを意味する。一例として、上記CN
基の物質は、上記したように水分をトラップすることが
できる物質であり、かつ、当該物質自体が、上記腐蝕環
境にトラップされた水分を利用して電極をアタックして
腐食を生じさせる物質である。
Therefore, the electrode corrosion-promoting substance 10 is a substance capable of trapping moisture as described above, and the substance itself or another substance utilizes the moisture trapped in the corrosive environment to form an electrode. Means a substance that attacks and causes corrosion. As an example, the CN
The base substance is a substance capable of trapping moisture as described above, and the substance itself is a substance which attacks the electrode by utilizing the moisture trapped in the corrosive environment and causes corrosion. is there.

【0035】一例として、ICチップの厚みを0.4μ
m、ICチップの金のバンプ電極の厚みを15μm、A
CFの厚みを40μm、フレキシブル回路基板5側のC
u−Ni(又はCu−Au)の電極の厚みを12μmと
すると、初期化圧工程でのICチップと基板との両対向
面間の隙間は15μm+12μm=27μmとなる。こ
の場合、初期加圧工程では、後述するような導電性粒子
を介在させずに部品側電極と基板側電極とを直接的に接
触させる場合には、この27μm以上の隙間を維持させ
る一方、上記した実施形態のように部品側電極と基板側
電極とを絶縁性接合樹脂3を介在させて間接的に接触さ
せる場合には、熱圧着工程終了時点での最終隙間寸法2
9〜30μmよりも大きな寸法とする。このとき、上記
電極腐食促進物質10の粒径R1は10数μm(例えば
15μm)であり、十分に上記隙間30から隙間外部へ
流出することができる。
As an example, the thickness of the IC chip is 0.4 μm.
m, the thickness of the gold bump electrode of the IC chip is 15 μm, A
The thickness of CF is 40 μm, and C on the flexible circuit board 5 side
When the thickness of the u-Ni (or Cu-Au) electrode is 12 μm, the gap between the opposing surfaces of the IC chip and the substrate in the initialization pressure step is 15 μm + 12 μm = 27 μm. In this case, in the initial pressurizing step, when the component-side electrode and the substrate-side electrode are brought into direct contact with each other without interposing conductive particles, which will be described later, while maintaining the gap of 27 μm or more, When the component-side electrode and the substrate-side electrode are indirectly contacted with each other with the insulating bonding resin 3 interposed therebetween as in the embodiment described above, the final gap dimension 2 at the end of the thermocompression bonding step 2
The size is larger than 9 to 30 μm. At this time, the particle diameter R1 of the electrode corrosion accelerating substance 10 is 10 and several μm (for example, 15 μm), and the electrode corrosion accelerating substance 10 can sufficiently flow out of the gap 30 to the outside of the gap.

【0036】上記初期加圧工程から熱圧着工程に到る工
程での圧着制御は、温度制御、加圧制御、高さ制御のい
ずれか1つ、又は、温度制御と加圧制御との組み合わ
せ、又は、温度制御と高さ制御との組み合わせにより行
うことができる。
The pressure control in the steps from the initial pressure step to the thermocompression step is any one of temperature control, pressure control, and height control, or a combination of temperature control and pressure control, Alternatively, it can be performed by a combination of temperature control and height control.

【0037】まず、温度制御は、次のようにして行うこ
とができる。
First, the temperature control can be performed as follows.

【0038】各組成分解温度T1、最高温度T2とする
とき、T1+50℃>T2とする。言い換えれば、初期
加圧工程での加熱温度T1に50℃を加えた温度が、熱
圧着工程での加熱温度T2より大きくなるようにする。
When each composition decomposition temperature T1 and maximum temperature T2 are set, T1 + 50 ° C.> T2. In other words, the temperature obtained by adding 50 ° C. to the heating temperature T1 in the initial pressing step is set to be higher than the heating temperature T2 in the thermocompression bonding step.

【0039】図4に示すように、2段以上の温度プロフ
ァイルでは、初期加圧工程での加熱温度T3を各組成分
解温度T1に大略等しくする。熱圧着工程での到達温度
をT2とする。このとき、単位時間当たりの温度上昇速
度すなわち昇温速度は、各組成分解温度T1まではV1
(℃/sec)とし、到達温度T2まではV2(℃/s
ec)とするとき、V2>V1とする。すなわち、熱圧
着工程での昇温速度V2が初期加圧工程での昇温速度V
1より大きくなるようにする。上記関係を維持するよう
に、圧着時に温度制御を行う。
As shown in FIG. 4, in the temperature profile of two or more stages, the heating temperature T3 in the initial pressurizing step is made substantially equal to each composition decomposition temperature T1. The temperature reached in the thermocompression bonding process is T2. At this time, the rate of temperature rise per unit time, that is, the rate of temperature rise, is V1 up to the composition decomposition temperature T1.
(° C / sec) and V2 (° C / s
ec), V2> V1. That is, the temperature rising rate V2 in the thermocompression bonding step is equal to the temperature rising rate V in the initial pressurizing step.
It should be greater than 1. Temperature control is performed during pressure bonding so as to maintain the above relationship.

【0040】次に、加圧制御は、次のようにして行うこ
とができる。
Next, the pressurization control can be performed as follows.

【0041】各組成分解温度T1までの圧着ツール15
の下降速度をW1とし、到達温度T2までの圧着ツール
15の下降速度をW2とするとき、W2>W1とする。
すなわち、熱圧着工程での圧着ツール15の下降速度W
2が初期加圧工程での圧着ツール15の下降速度W1よ
り大きくなるようにする。
Crimping tool 15 up to the composition decomposition temperature T1
Let W1 be the descending speed of, and W2 be the descending speed of the crimping tool 15 up to the reached temperature T2, then W2> W1.
That is, the lowering speed W of the crimping tool 15 in the thermocompression bonding process
2 is set to be higher than the descending speed W1 of the crimping tool 15 in the initial pressing step.

【0042】各組成分解温度T1までの圧着ツール15
によりICチップ側に作用させる荷重をP1とし、到達
温度T2までの圧着ツール15によりICチップ側に作
用させる荷重をP2とするとき、P2>P1とする。す
なわち、熱圧着工程での圧着ツール15による荷重P2
が初期加圧工程での圧着ツール15による荷重P1より
大きくなるようにする。
Crimping tool 15 up to the composition decomposition temperature T1
When the load acting on the IC chip side is P1 and the load acting on the IC chip side by the pressure bonding tool 15 up to the reached temperature T2 is P2, P2> P1. That is, the load P2 by the crimping tool 15 in the thermocompression bonding process
Is larger than the load P1 applied by the crimping tool 15 in the initial pressing step.

【0043】上記下降速度及び荷重関係を維持するよう
に、圧着時に圧着ツール15の下降及び荷重制御を行
う。
The crimping tool 15 is lowered and the load is controlled during crimping so that the descending speed and the load relationship are maintained.

【0044】次に、高さ制御は、次のようにして行うこ
とができる。
Next, the height control can be performed as follows.

【0045】絶縁性接合樹脂3の各組成分粒子径、特
に、電極腐食促進物質の粒子径をR1とし、ICチップ
1のバンプ電極2の高さをt1、基板側の電極4の高さ
をt3とするとき、(t1+t3)>R1とする。上記
関係を維持するように、圧着時に圧着ツール15の下降
及び荷重制御を行う。
Let R1 be the particle diameter of each component of the insulating bonding resin 3, especially the particle diameter of the electrode corrosion promoting substance, the height of the bump electrode 2 of the IC chip 1 be t1, and the height of the electrode 4 on the substrate side. When t3 is set, (t1 + t3)> R1. In order to maintain the above relationship, the crimping tool 15 is lowered and the load is controlled during crimping.

【0046】上記実施形態によれば、上記ICチップ1
の上記各電極2と上記基板5の上記各電極4とをそれぞ
れ上記絶縁性接合樹脂3を介在させて、上記ICチップ
1と上記基板5とを相対的に接近させることにより、上
記接合樹脂に含まれる上記電極2又は4を腐食させうる
電極腐食促進物質10を、上記ICチップ1と上記基板
5との隙間を通して上記ICチップ1と上記基板5との
接合箇所(例えば電極2,4同士の接合個所)から離れ
る向きに上記接合樹脂3と共に円滑に流動させるように
している。この結果、上記ICチップ1と上記基板5と
の接合箇所に電極腐食促進物質10が少なくなり、電極
腐食促進物質10による腐食が生じにくくすることがで
きる。
According to the above embodiment, the IC chip 1 is
Of the electrodes 2 and the electrodes 4 of the substrate 5 with the insulating bonding resin 3 interposed therebetween to bring the IC chip 1 and the substrate 5 relatively close to each other. An electrode corrosion promoting substance 10 capable of corroding the contained electrode 2 or 4 is passed through a gap between the IC chip 1 and the substrate 5 to join the IC chip 1 and the substrate 5 (for example, between the electrodes 2 and 4). The joint resin 3 is made to flow smoothly together with the joint resin 3 in a direction away from the joint portion). As a result, the electrode corrosion accelerating substance 10 is reduced in the joint portion between the IC chip 1 and the substrate 5, and the corrosion due to the electrode corrosion accelerating substance 10 can be made less likely to occur.

【0047】また、初期加圧工程においては、上記IC
チップ1の上記各電極2と上記基板5の上記各電極4と
をそれぞれ上記絶縁性接合樹脂3を介在させて、ゆっく
りと加圧することにより、上記ICチップ1と基板5と
の両対向面間の隙間30から、上記絶縁性接合樹脂3に
含まれる電極腐食促進物質10が流動しやすい状態を確
保して、電極腐食促進物質10が円滑に流れ出しやすく
するとともに、上記ICチップ1と基板5との両対向面
間の隙間30内においても大略均一に分散された状態を
維持できるようにする。この結果、上記ICチップ1と
基板5との両対向面間の隙間30に、電極腐食促進物質
10が少なく、かつ、電極腐食促進物質10が局部的に
偏って集中して存在せず大略均一に分散された状態とす
ることができる。よって、従来のように電極腐食促進物
質10が上記ICチップ1の上記隣接バンプ電極2,2
間に挟まって局部的に偏って存在することにより電極腐
食が生じやすくなるといった現象を、本実施形態にかか
る部品接合方法により形成される部品接合体によれば防
止することができる。
In the initial pressing step, the above IC
By slowly pressing the electrodes 2 of the chip 1 and the electrodes 4 of the substrate 5 with the insulating bonding resin 3 interposed therebetween, between the opposing surfaces of the IC chip 1 and the substrate 5. The electrode corrosion accelerating substance 10 contained in the insulating bonding resin 3 is ensured to flow easily from the gap 30 to facilitate the smooth flow of the electrode corrosion accelerating substance 10, and the IC chip 1 and the substrate 5 are It is possible to maintain a substantially uniformly dispersed state even in the gap 30 between the two facing surfaces. As a result, the electrode corrosion accelerating substance 10 is small in the gap 30 between the opposing surfaces of the IC chip 1 and the substrate 5, and the electrode corrosion accelerating substance 10 is not locally deviated and concentrated, and is substantially uniform. Can be in a dispersed state. Therefore, as in the conventional case, the electrode corrosion accelerating substance 10 causes the adjacent bump electrodes 2 and 2 of the IC chip 1 to be separated.
The phenomenon that electrode corrosion is likely to occur due to the presence of localized unevenness between the electrodes can be prevented by the component joined body formed by the component joining method according to the present embodiment.

【0048】なお、本発明は上記実施形態に限定される
ものではなく、その他種々の態様で実施できる。
The present invention is not limited to the above embodiment, but can be implemented in various other modes.

【0049】例えば、図5及び図6に示すように、上記
ICチップ1と上記フレキシブル基板5との間より外向
きに流出した上記絶縁性接合樹脂3を加熱して硬化させ
る部品外側領域熱硬化工程を備えるようにしてもよい。
すなわち、圧着時に、絶縁性接合樹脂3のICチップ1
の周辺(例えば、四角形のICチップ1の場合にはその
4辺)全てにはみ出した部分3Aを熱風などにより加熱
して、ICチップ1からはみ出した絶縁性接合樹脂3の
硬化を促進させて、水の浸入を防止する。又は、圧着後
に、絶縁性接合樹脂3のICチップ1の周辺全てにはみ
出した部分3Aを熱風などにより加熱して、ICチップ
1からはみ出した絶縁性接合樹脂3Aの硬化を促進させ
る。この結果、上記電極腐食促進物質10が未硬化の絶
縁性接合樹脂3内で自由に移動するのを防止し、かつ、
外部から上記隙間30内への水の浸入を防止することが
できる。
For example, as shown in FIG. 5 and FIG. 6, the component outside region thermosetting for heating and curing the insulating bonding resin 3 flowing outward from between the IC chip 1 and the flexible substrate 5 is performed. You may make it provide a process.
That is, at the time of pressure bonding, the IC chip 1 of the insulating bonding resin 3
Is heated by hot air or the like to accelerate the curing of the insulating bonding resin 3 protruding from the IC chip 1 (for example, four sides in the case of the rectangular IC chip 1). Prevent ingress of water. Alternatively, after the pressure bonding, the portion 3A of the insulating bonding resin 3 that protrudes all around the IC chip 1 is heated by hot air or the like to accelerate the curing of the insulating bonding resin 3A that protrudes from the IC chip 1. As a result, the electrode corrosion promoting substance 10 is prevented from freely moving in the uncured insulating bonding resin 3, and
Water can be prevented from entering the gap 30 from the outside.

【0050】また、上記ICチップ1の電極2は金に限
らず、スズなど他の金属であっても、本発明を適用する
ことにより、上記した作用効果を奏することができる。
Further, the electrode 2 of the IC chip 1 is not limited to gold, but other metals such as tin can be applied to the present invention to obtain the above-described effects.

【0051】また、上記絶縁性接合樹脂3としては、A
CFに限らず、導電性粒子を含まない絶縁性樹脂から構
成して、上記ICチップ1の上記各電極2と上記基板5
の上記各電極4とをそれぞれ直接的に接触させるように
してもよい。
As the insulating bonding resin 3, A
Not limited to CF, the electrodes 2 and the substrate 5 of the IC chip 1 are made of an insulating resin containing no conductive particles.
The electrodes 4 may be directly contacted with each other.

【0052】なお、上記様々な実施形態のうちの任意の
実施形態を適宜組み合わせることにより、それぞれの有
する効果を奏するようにすることができる。
By properly combining the arbitrary embodiments of the aforementioned various embodiments, the effects possessed by them can be produced.

【0053】[0053]

【発明の効果】本発明によれば、上記部品の上記各電極
と上記基板の上記各電極とをそれぞれ上記絶縁性接合樹
脂を介在させて、上記部品と上記基板とを相対的に接近
させることにより、上記接合樹脂に含まれる上記電極を
腐食させうる電極腐食促進物質を、上記部品と上記基板
との隙間を通して上記部品と上記基板との接合箇所から
離れる向きに上記接合樹脂と共に円滑に流動させるよう
にしている。この結果、上記部品と上記基板との接合箇
所に電極腐食促進物質が少なくなり、電極腐食促進物質
による腐食が生じにくくすることができる。
According to the present invention, the components and the substrate are relatively brought close to each other by interposing the insulating bonding resin between the electrodes of the component and the electrodes of the substrate. The electrode corrosion-promoting substance contained in the bonding resin and capable of corroding the electrode is smoothly flowed together with the bonding resin in a direction away from the bonding portion between the component and the substrate through the gap between the component and the substrate. I am trying. As a result, the electrode corrosion accelerating substance is reduced in the joint portion between the component and the substrate, and the corrosion due to the electrode corrosion accelerating substance can be suppressed.

【0054】また、本発明によれば、初期加圧工程にお
いては、上記部品の上記各電極と上記基板の上記各電極
とをそれぞれ上記絶縁性接合樹脂を介在させて、ゆっく
りと加圧することにより、上記部品と基板との両対向面
間の隙間から、上記絶縁性接合樹脂に含まれる電極腐食
促進物質が流動しやすい状態を確保して、電極腐食促進
物質が円滑に流れ出しやすくするとともに、上記部品と
基板との両対向面間の隙間内においても大略均一に分散
された状態を維持できるようにする。この結果、上記部
品と基板との両対向面間の隙間に、電極腐食促進物質が
少なく、かつ、電極腐食促進物質が局部的に偏って集中
して存在せず大略均一に分散された状態とすることがで
きる。よって、従来のように電極腐食促進物質が上記部
品の上記隣接バンプ電極間に挟まって局部的に偏って存
在することにより電極腐食が生じやすくなるといった現
象を、本発明にかかる部品接合方法により形成される部
品接合体によれば防止することができる。
Further, according to the present invention, in the initial pressurizing step, the electrodes of the component and the electrodes of the substrate are slowly pressed through the insulating bonding resin. , Through the gap between the opposing surfaces of the component and the substrate, to ensure a state in which the electrode corrosion promoting substance contained in the insulating bonding resin easily flows, to facilitate smooth outflow of the electrode corrosion promoting substance, It is possible to maintain a substantially uniformly dispersed state even in the gap between the facing surfaces of the component and the substrate. As a result, in the gap between the facing surfaces of the component and the substrate, there is little electrode corrosion promoting substance, and the electrode corrosion promoting substance is not locally concentrated in a localized manner and is almost uniformly dispersed. can do. Therefore, the phenomenon in which the electrode corrosion accelerating substance easily occurs due to the presence of the electrode corrosion accelerating substance which is sandwiched between the adjacent bump electrodes of the component and locally unevenly formed by the component bonding method according to the present invention is formed. This can be prevented by the joined parts assembly.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態にかかる部品接合方法に
おける接合前のICチップとフレキシブル基板とACF
との状態を示す工程図である。
FIG. 1 is an IC chip, a flexible substrate, and an ACF before joining in a component joining method according to an embodiment of the present invention.
It is a process drawing showing the state of.

【図2】 上記部品接合方法における接合中のICチッ
プとフレキシブル基板とACFとの状態を示す工程図で
ある。
FIG. 2 is a process diagram showing a state of an IC chip, a flexible substrate, and an ACF during joining in the component joining method.

【図3】 上記部品接合方法における接合後のICチッ
プとフレキシブル基板とACFとの状態を示す工程図で
ある。
FIG. 3 is a process diagram showing a state of an IC chip, a flexible substrate, and an ACF after joining in the component joining method.

【図4】 上記部品接合方法における圧着制御を示すグ
ラフである。
FIG. 4 is a graph showing pressure control in the component joining method.

【図5】 上記部品接合方法における接合後のACFを
介してのICチップとフレキシブル基板との状態を示す
概略側面図である。
FIG. 5 is a schematic side view showing a state of an IC chip and a flexible substrate via an ACF after joining in the component joining method.

【図6】 上記部品接合方法における接合後のACFを
介してのICチップとフレキシブル基板との状態を示す
概略平面図である。
FIG. 6 is a schematic plan view showing a state of an IC chip and a flexible substrate via an ACF after joining in the component joining method.

【図7】 従来の接合不良状態を説明するための説明図
である。
FIG. 7 is an explanatory diagram for explaining a conventional bonding failure state.

【符号の説明】[Explanation of symbols]

1…ICチップ、2…ICチップ側の電極、3…絶縁性
接合樹脂、3A…全てにはみ出した部分、4…基板側の
電極、5…フレキシブル基板、6…レジスト、10…電
極腐食促進物質、15…圧着ツール、16…ステージ。
DESCRIPTION OF SYMBOLS 1 ... IC chip, 2 ... IC chip side electrode, 3 ... Insulating bonding resin, 3A ... Part which protrudes entirely, 4 ... Board side electrode, 5 ... Flexible board, 6 ... Resist, 10 ... Electrode corrosion promoting substance , 15 ... Crimping tool, 16 ... Stage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 和夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 秋口 尚士 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E319 AA01 AC01 BB16 CC61 CD26 GG20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuo Kubota             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Naoshi Akiguchi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5E319 AA01 AC01 BB16 CC61 CD26                       GG20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 部品(1)と基板(5)とを絶縁性接合
樹脂(3)を介して配置したのち、上記接合樹脂を介し
て上記部品と上記基板とを接近させて、上記部品の複数
の電極(2)と上記基板の複数の電極(4)とを接触さ
せて部品と基板とを接合する部品接合方法において、 上記部品と上記基板とを相対的に接近させ、上記接合樹
脂に含まれる上記電極を腐食させうる電極腐食促進物質
を、上記部品と上記基板との隙間(10)を通して上記
部品と上記基板との接合箇所から離れる向きに上記接合
樹脂と共に流動させる工程と、 更に上記部品と上記基板とを相対的に接近させ、上記部
品の上記複数の電極と上記基板の上記複数の電極とを接
触させて上記部品と上記基板とを接合させ、上記接合樹
脂を加熱して硬化させて、上記部品の上記複数の電極と
上記基板の上記複数の電極とを接触させた状態で上記部
品と基板とを接合する工程とを備えるようにしたことを
特徴とする部品接合方法。
1. A component (1) and a substrate (5) are arranged via an insulating bonding resin (3), and then the component and the substrate are brought close to each other via the bonding resin to make the component In a component bonding method of bonding a plurality of electrodes (2) and a plurality of electrodes (4) of the substrate to bond the component and the substrate, the component and the substrate are relatively brought close to each other, and A step of flowing an electrode corrosion-promoting substance contained therein, which can corrode the electrode, together with the bonding resin in a direction away from a joint between the component and the substrate through a gap (10) between the component and the substrate; The component and the substrate are brought relatively close to each other, the plurality of electrodes of the component are brought into contact with the plurality of electrodes of the substrate to bond the component and the substrate, and the bonding resin is heated and cured. Let's do the above Component bonding method characterized by while in contact electrode and a plurality of electrodes of the substrate was set to and a step of bonding the above components and the substrate.
【請求項2】 部品(1)と基板(5)とを絶縁性接合
樹脂(3)を介して配置したのち、上記絶縁性接合樹脂
を介して上記部品(1)と上記基板(5)とを接近させ
て上記部品の複数の電極(2)と上記基板の複数の電極
(4)とをそれぞれ接触させて上記部品(1)と上記基
板(5)とを接合する部品接合方法において、 上記部品と上記基板とを相対的に接近開始直後は、上記
絶縁性接合樹脂が流動して、上記絶縁性接合樹脂内に含
まれかつ上記接合後の隣接電極間に挟まって上記電極を
腐食させうる電極腐食促進物質(10)が上記部品
(1)と上記基板(5)との隙間(30)から上記絶縁
性接合樹脂とともに外向きに上記流れ出る初期加圧工程
と、 上記初期加圧工程後、上記初期加圧工程での圧力以上の
圧力で上記部品と上記基板とをさらに相対的に移動させ
て、上記部品の複数の電極(2)と上記基板の複数の電
極(4)とをそれぞれ接触させ、かつ、上記初期加圧工
程よりも高い温度で上記絶縁性接合樹脂を加熱して硬化
させて、上記部品の上記複数の電極(2)と上記基板の
上記複数の電極(4)とをそれぞれ接触させた状態で上
記部品(1)と上記基板(5)とを接合する熱圧着工程
とを備えるようにしたことを特徴とする部品接合方法。
2. The component (1) and the substrate (5) are arranged via an insulating bonding resin (3), and then the component (1) and the substrate (5) are bonded via the insulating bonding resin. And a plurality of electrodes (2) of the component and a plurality of electrodes (4) of the substrate are brought into contact with each other to join the component (1) and the substrate (5). Immediately after the relative approach of the component and the substrate is started, the insulating bonding resin may flow and be sandwiched between the adjacent electrodes after being bonded and included in the insulating bonding resin to corrode the electrode. An initial pressurizing step in which the electrode corrosion promoting substance (10) flows outward from the gap (30) between the component (1) and the substrate (5) together with the insulating bonding resin, and after the initial pressurizing step, The component and the substrate at a pressure higher than the pressure in the initial pressurizing step. Are further moved to bring the plurality of electrodes (2) of the component into contact with the plurality of electrodes (4) of the substrate, respectively, and to perform the insulating bonding at a temperature higher than that in the initial pressing step. The resin (1) and the substrate (5) are heated and cured to bring the plurality of electrodes (2) of the component into contact with the plurality of electrodes (4) of the substrate, respectively. And a thermocompression bonding step for bonding the components.
【請求項3】 さらに、上記部品と上記基板との間より
外向きに流出した上記絶縁性接合樹脂(3A)を加熱し
て硬化させる部品外側領域熱硬化工程を備える請求項1
又は2に記載の部品接合方法。
3. The component outside region thermosetting step of heating and curing the insulating bonding resin (3A) flowing outward from between the component and the substrate.
Alternatively, the component joining method according to item 2.
【請求項4】 上記絶縁性接合樹脂(3)は、絶縁性樹
脂中に導電性粒子が含まれる異方導電性シート又は異方
導電性ペーストである請求項1〜3のいずれか1つに記
載の部品接合方法。
4. The anisotropic bonding resin (3) is an anisotropic conductive sheet or an anisotropic conductive paste in which conductive particles are contained in the insulating resin. The method of joining the described parts.
【請求項5】 上記熱圧着工程では、上記初期加圧工程
よりも単位時間当たりの温度上昇速度が高くなるように
加熱する請求項1〜4のいずれか1つに記載の部品接合
方法。
5. The component joining method according to claim 1, wherein in the thermocompression bonding step, heating is performed so that a temperature rising rate per unit time is higher than that in the initial pressing step.
【請求項6】 上記熱圧着工程での加圧圧力は、上記初
期加圧工程での加圧圧力よりも大きい請求項1〜5のい
ずれか1つに記載の部品接合方法。
6. The component joining method according to claim 1, wherein a pressure applied in the thermocompression bonding step is higher than a pressure applied in the initial pressure applying step.
【請求項7】 上記初期加圧工程中での上記絶縁性接合
樹脂を介在させた状態での上記部品と上記基板との間の
上記隙間(30)は、少なくとも、上記部品の上記電極
の厚みと上記基板の上記電極の厚みとの合計寸法であ
り、上記熱圧着工程終了時点での上記部品の上記電極の
厚みと上記基板の上記電極の厚みとの合計寸法よりも大
きく、かつ、上記電極腐食促進物質の粒径より大きい請
求項1〜6のいずれか1つに記載の部品接合方法。
7. The gap (30) between the component and the substrate with the insulating bonding resin interposed in the initial pressing step is at least the thickness of the electrode of the component. And the total thickness of the electrodes of the substrate, which is greater than the total dimensions of the thickness of the electrodes of the component and the thickness of the electrodes of the substrate at the end of the thermocompression bonding step, and the electrodes The component joining method according to any one of claims 1 to 6, which has a particle size larger than that of the corrosion promoting substance.
【請求項8】 上記電極腐食促進物質はCN基の物質で
あり、上記部品の上記電極と上記基板の上記電極とのう
ち少なくとも一方の電極は金である請求項1〜7のいず
れか1つに記載の部品接合方法。
8. The electrode corrosion accelerating substance is a CN-based substance, and at least one of the electrode of the component and the electrode of the substrate is gold. The method of joining parts according to.
【請求項9】 請求項1〜8のいずれか1つに記載の部
品接合方法により上記部品と上記基板とが接合されて形
成された部品接合体。
9. A component joined body formed by joining the component and the substrate by the component joining method according to claim 1. Description:
JP2001378486A 2001-12-12 2001-12-12 Component joining method and device Pending JP2003179331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001378486A JP2003179331A (en) 2001-12-12 2001-12-12 Component joining method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378486A JP2003179331A (en) 2001-12-12 2001-12-12 Component joining method and device

Publications (1)

Publication Number Publication Date
JP2003179331A true JP2003179331A (en) 2003-06-27

Family

ID=19186198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378486A Pending JP2003179331A (en) 2001-12-12 2001-12-12 Component joining method and device

Country Status (1)

Country Link
JP (1) JP2003179331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051770A1 (en) * 2009-01-06 2011-03-03 Masao Kawaguchi Semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051770A1 (en) * 2009-01-06 2011-03-03 Masao Kawaguchi Semiconductor laser device
US8472491B2 (en) * 2009-01-06 2013-06-25 Panasonic Corporation Semiconductor laser device

Similar Documents

Publication Publication Date Title
JP4830744B2 (en) Electronic component mounting adhesive and electronic component mounting structure
JP6899166B2 (en) Manufacturing method of anisotropic conductive adhesive including gapper and mounting method of parts using gapper
JP2004260131A (en) Connection method between terminals, and packaging method of semiconductor device
KR101196722B1 (en) Method of mounting electronic components
US6209196B1 (en) Method of mounting bumped electronic components
US20090161328A1 (en) Electronic components mounting adhesive, manufacturing method of an electronic components mounting adhesive, electronic components mounted structure, and manufacturing method of an electronic components mounted structure
JP2001332583A (en) Method of mounting semiconductor chip
JP2002190497A (en) Sealing resin for flip-chip mounting
JP2009099669A (en) Mounting structure of electronic component, and mounting method thereof
JP2003179331A (en) Component joining method and device
JPH10294337A (en) Semiconductor device and manufacture thereof
JP3929909B2 (en) Electronic component mounting method
JP2007142232A (en) Method for packaging electronic component with bump
JP2009049115A (en) Semiconductor device, and manufacturing method thereof
JP2006265411A (en) Adhesive in sheet form or paste form, method for producing electronic component device and electronic component device
JP2004153113A (en) Circuit wiring board, manufacturing method thereof, and sealing resin composition
JPS6232636B2 (en)
JP5608504B2 (en) Connection method and connection structure
JPH09219579A (en) Connecting method and device of electronic part
JP4159556B2 (en) Manufacturing method of semiconductor device and adhesive
JP2000058597A (en) Method of mounting electronic component
JP2008147473A (en) Electrode connection method and electrode connection structure
JP4976929B2 (en) Electrode bonding structure, electrode bonding method, and electrode bonding unit
JP2004303874A (en) Semiconductor device and manufacturing method therefor
JPH08139138A (en) Connection method of electronic device