JP2003177336A - Optical modulating element, optical modulating element array, and exposure device using the same - Google Patents

Optical modulating element, optical modulating element array, and exposure device using the same

Info

Publication number
JP2003177336A
JP2003177336A JP2001377046A JP2001377046A JP2003177336A JP 2003177336 A JP2003177336 A JP 2003177336A JP 2001377046 A JP2001377046 A JP 2001377046A JP 2001377046 A JP2001377046 A JP 2001377046A JP 2003177336 A JP2003177336 A JP 2003177336A
Authority
JP
Japan
Prior art keywords
thin film
light
movable thin
modulation element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001377046A
Other languages
Japanese (ja)
Inventor
Mitsuru Sawano
充 沢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001377046A priority Critical patent/JP2003177336A/en
Publication of JP2003177336A publication Critical patent/JP2003177336A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-output and long-life optical modulating element which absorbs less light by itself and can be driven fast, an optical modulating element array, and an exposure device using it. <P>SOLUTION: The optical modulating element 100 which varies the quantity of light transmitted through a movable thin film 27 by displacing the movable thin film 27 over a plane substrate 23 with an electrostatic force is characterized by that the movable thin film 27 is formed rectangularly and supported at both lengthwise ends, a movable thin film non-electrode part 41 which does not have no plane electrode is formed at the lengthwise center part of the movable thin film 27, and a substrate-side non-electrode part 43 which has no plane electrode is formed at a position facing the movable thin film side non-electrode part 41 on the plane substrate 23. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、静電気力で可動薄
膜を変位させることにより、可動薄膜を透過又は反射す
る光の量を変化させて、光を変調する光変調素子及び光
変調素子アレイ並びにそれを用いた露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light modulation element and a light modulation element array for modulating light by displacing the movable thin film by electrostatic force to change the amount of light transmitted or reflected by the movable thin film. An exposure apparatus using the same.

【0002】[0002]

【従来の技術】光の振幅、位相、周波数を時間的に変化
させる制御素子に光変調素子がある。光変調素子は、光
を透過させる物質の屈折率を、物質に印加する外場によ
って変化させ、屈折、回折、吸収、散乱等等の光学現象
を介して、最終的にこの物質を透過又は反射する光の強
度を制御する。この一つに、マイクロマシニングにより
作製された可動薄膜を、静電気力により機械的動作させ
ることで光変調する電気機械的な光変調素子が知られて
いる。この光変調素子としては、例えば図17に示すよ
うに、透明な電極1とダイヤフラム3からなる可動薄膜
5を、支持部7を介して、固定電極9を有する平面基板
11上に架設したものがある。
2. Description of the Related Art An optical modulator is a control element that temporally changes the amplitude, phase, and frequency of light. The light modulation element changes the refractive index of a substance that transmits light according to an external field applied to the substance, and finally transmits or reflects this substance through optical phenomena such as refraction, diffraction, absorption, and scattering. Control the intensity of light. As one of them, an electromechanical light modulation element is known in which a movable thin film produced by micromachining is mechanically operated by electrostatic force to perform light modulation. As the light modulation element, for example, as shown in FIG. 17, one in which a movable thin film 5 composed of a transparent electrode 1 and a diaphragm 3 is laid on a flat substrate 11 having a fixed electrode 9 via a support portion 7 is used. is there.

【0003】この光変調素子では、両電極1,9間に所
定の電圧を印加することで電極1,9間に静電気力を発
生させ、可動薄膜5を固定電極9に向かって撓ませる。
これに伴って素子自体の光学的特性が変化し(例えばフ
ァブリペロー干渉を利用して光変調部から出射される光
の強度を制御し)、光変調素子は光を透過する透過状態
となる。一方、印加電圧をゼロにすることで可動薄膜5
が弾性復帰し、光変調素子は光を遮光する遮光状態とな
る。このようにして光変調が行われる。この種の光変調
素子によれば、静電誘導により可動薄膜5を駆動するの
で、従来の液晶型光変調器に比べ、高速な応答が可能に
なる。
In this light modulating element, an electrostatic force is generated between the electrodes 1 and 9 by applying a predetermined voltage between the electrodes 1 and 9 to bend the movable thin film 5 toward the fixed electrode 9.
Along with this, the optical characteristics of the element itself change (for example, the intensity of the light emitted from the light modulator is controlled by using Fabry-Perot interference), and the light modulator is in a transmissive state in which light is transmitted. On the other hand, by setting the applied voltage to zero, the movable thin film 5
Is elastically restored, and the light modulation element enters a light blocking state that blocks light. Light modulation is performed in this way. According to this type of optical modulator, the movable thin film 5 is driven by electrostatic induction, so that a faster response is possible compared to the conventional liquid crystal optical modulator.

【0004】[0004]

【発明が解決しようとする課題】上記した従来の光変調
素子は、可動薄膜に静電気力を発生させるため、一般的
に可動薄膜と平面基板との重合部の全面に透明導電膜を
設けている。しかしながら、透明導電膜は、導電率が金
属に比べて2桁ほど小さい。このため、応答性よく静電
気力を発生できず、高速駆動の障害となった。また、わ
ずかながら光を吸収するため、光強度が強い場合には透
明導電膜が発熱して変形・破壊等を起こす問題がある。
一方、K.W.Goossen, etal., IEEE Photonics Tech. Let
ters Vol.6, No.9, P.1119, (1994).に、可動薄膜の光
透過部に電極を設けない光変調素子の構成が開示されて
いるが、この構造は反射で使用するために、平面基板が
不透明であり、透過による光変調には使用することがで
きない。また、この光変調素子は、可動薄膜を正方形で
形成し、その四辺に電極を配設するため、複数の光変調
素子を一次元や二次元に配列した場合、隣接する光変調
素子の光透過部同士の間に二つの電極が介在することに
なり、露光装置や表示装置等に用いた場合には画素が粗
くなる問題を有していた。
In the above-mentioned conventional optical modulator, a transparent conductive film is generally provided on the entire surface of the overlapping portion of the movable thin film and the flat substrate in order to generate an electrostatic force in the movable thin film. . However, the conductivity of the transparent conductive film is smaller than that of metal by about two digits. Therefore, the electrostatic force cannot be generated with good responsiveness, which is an obstacle to high-speed driving. Further, since it absorbs a slight amount of light, there is a problem that when the light intensity is high, the transparent conductive film generates heat and is deformed or destroyed.
Meanwhile, KWGoossen, et al., IEEE Photonics Tech. Let
ters Vol.6, No.9, P.1119, (1994). discloses the structure of a light modulation element in which an electrode is not provided in the light transmission part of the movable thin film, but this structure is used for reflection. In addition, the flat substrate is opaque and cannot be used for light modulation by transmission. Further, in this light modulation element, since the movable thin film is formed in a square shape and the electrodes are arranged on the four sides thereof, when a plurality of light modulation elements are arranged in one dimension or two dimensions, the light transmission of the adjacent light modulation elements is reduced. Since two electrodes are interposed between the parts, there is a problem that the pixel becomes rough when used in an exposure device, a display device, or the like.

【0005】本発明は上記状況に鑑みてなされたもの
で、素子自体の光吸収が少なく、高速駆動が可能な高出
力、長寿命の光変調素子及び光変調素子アレイ並びにそ
れを用いた露光装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has a high output and long life optical modulator and optical modulator array, in which light absorption by the element itself is small, and which can be driven at high speed, and an exposure apparatus using the same. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る請求項1記載の静電駆動素子は、平面基
板に間隔を有して可動薄膜を対向配置すると共に、前記
基板と前記可動薄膜の双方に平面電極を設け、前記各平
面電極への電圧印加により発生する静電気力によって前
記可動薄膜を前記平面基板に対して変位させ、前記可動
薄膜を透過する光量を変化させる透過型の光変調素子で
あって、前記可動薄膜は、矩形状に形成され長手方向両
端で支持されると共に、前記可動薄膜の長手方向中央部
に前記平面電極を有しない可動薄膜側非電極部が形成さ
れ、前記平面基板は、前記可動薄膜側非電極部と対面す
る位置に前記平面電極を有しない基板側非電極部が形成
されていることを特徴とする。
In order to achieve the above object, the electrostatic drive element according to claim 1 of the present invention is characterized in that the movable thin films are arranged facing each other with a space on a flat substrate, and Flat electrodes are provided on both of the movable thin films, and the movable thin film is displaced with respect to the flat substrate by an electrostatic force generated by applying a voltage to each of the flat electrodes to change the amount of light transmitted through the movable thin films. In the light modulation element, the movable thin film is formed in a rectangular shape and is supported at both ends in the longitudinal direction, and a movable thin film side non-electrode portion having no planar electrode is formed at a central portion in the longitudinal direction of the movable thin film. The planar substrate is characterized in that a substrate-side non-electrode portion having no planar electrode is formed at a position facing the movable thin film-side non-electrode portion.

【0007】この光変調素子では、可動薄膜を矩形状に
形成し、この可動薄膜の長手方向中央部に電極を形成し
ない可動薄膜側非電極部を設けると共に、平面基板に
も、この可動薄膜側非電極部に対面する基板側非電極部
を設けることで、可動薄膜及び平面基板の光透過部位に
透明電極を設ける必要がなくなため、透明電極による光
の吸収を皆無にできる。これにより、光強度が強い場合
に生じる透明電極の発熱による変形・破壊等が防止で
き、高出力化と長寿命化を実現することができる。ま
た、可動薄膜の構成の簡略化によって光変調素子の高速
駆動が可能になる。
In this light modulating element, the movable thin film is formed in a rectangular shape, and the movable thin film side non-electrode portion in which no electrode is formed is provided at the central portion in the longitudinal direction of the movable thin film. By providing the substrate-side non-electrode portion facing the non-electrode portion, it is not necessary to provide the transparent electrode in the light-transmitting portion of the movable thin film and the flat substrate, so that light absorption by the transparent electrode can be eliminated. As a result, it is possible to prevent deformation and destruction of the transparent electrode due to heat generation when the light intensity is high, and it is possible to realize high output and long life. Further, the simplified structure of the movable thin film enables high speed driving of the light modulation element.

【0008】請求項2記載の光変調素子は、平面基板に
間隔を有して可動薄膜を対向配置すると共に、前記基板
と前記可動薄膜の双方に平面電極を設け、前記各平面電
極への電圧印加により発生する静電気力によって前記可
動薄膜を前記平面基板に対して変位させ、前記可動薄膜
を反射する光量を変化させる反射型の光変調素子であっ
て、前記可動薄膜は、矩形状に形成され長手方向両端で
支持されると共に、前記可動薄膜の長手方向中央部に前
記平面電極を有しない可動薄膜側非電極部が形成されて
いることを特徴とする。
According to a second aspect of the present invention, there is provided a light modulation element, in which a movable thin film is opposed to a planar substrate with a space therebetween, and planar electrodes are provided on both the substrate and the movable thin film, and a voltage to each planar electrode is applied. A reflective light modulation element that displaces the movable thin film with respect to the flat substrate by an electrostatic force generated by application and changes the amount of light reflected by the movable thin film, wherein the movable thin film is formed in a rectangular shape. A movable thin film side non-electrode portion, which is supported by both ends in the longitudinal direction and has no planar electrode, is formed at the central portion in the longitudinal direction of the movable thin film.

【0009】この光変調素子では、可動薄膜を矩形状に
形成し、この可動薄膜の長手方向中央部に電極を形成し
ない可動薄膜側非電極部を設けることで、可動薄膜の光
反射部位に透明電極を設ける必要がなくなため、透明電
極による光の吸収を皆無にできる。これにより、光強度
が強い場合に生じる透明電極の発熱による変形・破壊等
が防止でき、高出力化と長寿命化を実現することができ
る。また、可動薄膜の構成の簡略化によって光変調素子
の高速駆動が可能になる。
In this light modulating element, the movable thin film is formed in a rectangular shape, and the non-electrode portion on the movable thin film side where no electrode is formed is provided in the central portion in the longitudinal direction of the movable thin film, so that the light reflecting portion of the movable thin film is transparent. Since it is not necessary to provide an electrode, absorption of light by the transparent electrode can be eliminated. As a result, it is possible to prevent deformation and destruction of the transparent electrode due to heat generation when the light intensity is high, and it is possible to realize high output and long life. Further, the simplified structure of the movable thin film enables high speed driving of the light modulation element.

【0010】なお、請求項1及び請求項2記載の光変調
素子において、前記可動薄膜側非電極部の領域内の一部
又は全域に入射光を照射するようにすれば、電極のない
可動薄膜側非電極部の領域内の一部又は全域に入射光を
照射するので、光利用効率を高めた構成にできる。ま
た、請求項1〜2の光変調素子の光変調を、前記平面電
極への電圧印加により可動薄膜を変位させるようにすれ
ば、光学的な干渉効果を発生させることができる。この
光変調素子では、可動薄膜の電極と平面基板の電極に対
して電圧印加することにより、可動薄膜の電極と平面基
板の電極との間に作用する静電気力により可動薄膜が変
位する。この際、例えばファブリペロー干渉の場合で
は、可動薄膜と平面基板との間で繰り返し反射と透過が
繰り返され、平面基板と可動薄膜との間隔の略整数倍の
波長のみが光変調素子を透過する、所謂多層膜干渉効果
が得られる。この透過光が変調光として利用される。
In the light modulator according to the first and second aspects, if the incident light is applied to a part or the whole of the region of the movable thin film side non-electrode part, the movable thin film without electrodes. Since the incident light is radiated onto a part or the whole area of the side non-electrode portion, it is possible to obtain a structure with improved light utilization efficiency. Further, if the movable thin film is displaced by applying a voltage to the planar electrode for optical modulation of the optical modulators according to the first and second aspects, an optical interference effect can be generated. In this light modulation element, when a voltage is applied to the electrode of the movable thin film and the electrode of the flat substrate, the movable thin film is displaced by the electrostatic force acting between the electrode of the movable thin film and the electrode of the flat substrate. In this case, for example, in the case of Fabry-Perot interference, reflection and transmission are repeated between the movable thin film and the flat substrate, and only the wavelength of an integer multiple of the distance between the flat substrate and the movable thin film passes through the light modulation element. A so-called multilayer interference effect can be obtained. This transmitted light is used as modulated light.

【0011】さらに、請求項1〜2の光変調素子の光変
調を、前記平面電極への電圧印加により可動薄膜を前記
平面基板に対して近接させることで、前記平面基板の全
反射面における全反射条件を変化させ、前記平面基板か
ら前記可動薄膜に光を取り出すことができる。この光変
調素子では、可動薄膜の電極と平面基板の電極に対して
電圧印加することにより、可動薄膜の電極と平面基板の
電極との間に作用する静電気力により可動薄膜が変位す
る。この際、例えば平面基板に入射した光は全反射界面
における全反射条件が変化して可動薄膜に導光されて光
が取り出される。一方、電圧が印加されなくなると、可
動薄膜が元の位置に弾性復帰して非変位状態となり、平
面基板に入射した光は全反射面で全反射し、可動薄膜に
は導光されず、反射光となって再び平面基板から出射す
る。
Further, in the optical modulation of the optical modulator according to any one of claims 1 to 2, the movable thin film is brought close to the plane substrate by applying a voltage to the plane electrode, so that the total reflection surface of the plane substrate is totally reflected. Light can be extracted from the planar substrate to the movable thin film by changing the reflection condition. In this light modulation element, when a voltage is applied to the electrode of the movable thin film and the electrode of the flat substrate, the movable thin film is displaced by the electrostatic force acting between the electrode of the movable thin film and the electrode of the flat substrate. At this time, for example, the light incident on the flat substrate is guided to the movable thin film due to a change in the total reflection condition at the total reflection interface, and the light is extracted. On the other hand, when no voltage is applied, the movable thin film elastically returns to its original position and is in a non-displaced state, and the light incident on the flat substrate is totally reflected by the total reflection surface and is not guided to the movable thin film and reflected. The light is emitted again from the flat substrate.

【0012】そして、請求項1及び請求項2の光変調素
子を、前記可動薄膜の長手方向両端近傍に、可動薄膜中
央部の幅より狭い狭小部を形成すれば、この狭小部が変
形することにより、均一幅の可動薄膜を変形させる場合
に比べ、可動薄膜の駆動力が低減し、駆動速度の高速化
が可能になる。
If the narrow portion narrower than the width of the central portion of the movable thin film is formed near both ends of the movable thin film in the longitudinal direction, the narrow portion is deformed. As a result, the driving force of the movable thin film is reduced as compared with the case of deforming the movable thin film having a uniform width, and the driving speed can be increased.

【0013】請求項3記載の光変調素子アレイは、請求
項1又は請求項2記載の光変調素子を、同一平面上で、
前記可動薄膜の長手方向に対して直交する方向に複数近
接させて並設したことを特徴とする。
According to a third aspect of the present invention, there is provided a light modulation element array in which the light modulation elements according to the first or second aspects are arranged on the same plane.
It is characterized in that a plurality of the movable thin films are arranged close to each other in a direction orthogonal to the longitudinal direction.

【0014】この光変調素子アレイでは、光変調素子を
同一平面上で、可動薄膜の長手方向に直行する方向に複
数近接させて並設することで、光変調素子の並設数と同
数の画素数で、1ライン分を同時に光変調することがで
きる。
In this light modulation element array, a plurality of light modulation elements are arranged side by side in the direction orthogonal to the longitudinal direction of the movable thin film on the same plane, so that the same number of pixels as the light modulation elements are arranged. With a number, one line can be optically modulated at the same time.

【0015】請求項4記載の露光装置は、請求項3記載
の光変調素子アレイと、前記光変調素子アレイに光ビー
ムを照射するレーザ光源と、前記光ビームに感光する感
光材料に対して、前記光変調素子アレイからの出射光を
主走査方向及びこれと直交する副走査方向に相対移動さ
せる移動手段とを備えたことを特徴とする。
According to a fourth aspect of the present invention, there is provided an exposure apparatus for the light modulation element array according to the third aspect, a laser light source for irradiating the light modulation element array with a light beam, and a photosensitive material sensitive to the light beam. It is characterized by comprising a moving means for relatively moving the light emitted from the light modulation element array in the main scanning direction and the sub scanning direction orthogonal to the main scanning direction.

【0016】この露光装置では、請求項3記載の光変調
素子アレイを用い、この光変調素子アレイにレーザ光源
からの光を照射し、光変調素子から出射される光を移動
手段によって感光材料に対して相対移動させつつ感光材
料に照射することで、感光材料を直接走査露光すること
ができる。
In this exposure apparatus, the light modulating element array according to the third aspect is used, the light modulating element array is irradiated with light from the laser light source, and the light emitted from the light modulating element is transferred to the photosensitive material by the moving means. The photosensitive material can be directly scanned and exposed by irradiating the photosensitive material while relatively moving it.

【0017】請求項5記載の露光装置は、請求項3記載
の光変調素子アレイと、前記光変調素子アレイに光ビー
ムを照射するレーザ光源と、前記光変調素子アレイから
の出射光を集光する集光レンズと、前記光ビームに感光
する感光材料に対して、前記集光レンズにより集光され
た出射光を、主走査方向及び該主走査方向に直交する副
走査方向へ相対移動させる移動手段とを備えたことを特
徴とする。
An exposure apparatus according to a fifth aspect of the present invention is a light modulation element array according to the third aspect, a laser light source for irradiating the light modulation element array with a light beam, and light emitted from the light modulation element array. With respect to the condensing lens and the light-sensitive material that is sensitive to the light beam, the light emitted from the condensing lens is moved relative to the main scanning direction and the sub-scanning direction orthogonal to the main scanning direction. And means.

【0018】この露光装置では、請求項3記載の光変調
素子アレイを用い、この光変調素子アレイにレーザ光源
からの光を照射し、光変調素子から出射される光を集光
レンズにより集光させて、この出射光を移動手段によっ
て感光材料に対して相対移動させつつ感光材料へ照射す
ることで、感光材料を直接走査露光することができ、ほ
ぼ密着露光に近い光学系を構成できる。
In this exposure apparatus, the light modulation element array according to the third aspect is used, the light modulation element array is irradiated with light from a laser light source, and the light emitted from the light modulation element is condensed by a condenser lens. Then, by irradiating the photosensitive material with the emitted light while moving the emitted light relative to the photosensitive material by the moving means, the photosensitive material can be directly subjected to scanning exposure, and an optical system almost similar to contact exposure can be configured.

【0019】[0019]

【発明の実施の形態】以下、本発明に係る光変調素子及
び光変調素子アレイ並びにそれを用いた露光装置の好適
な実施の形態を、図面を参照して詳細に説明する。図1
は本発明に係る光変調素子の構成を示す断面図、図2は
図1に示した光変調素子の平面図、図3は図1に示した
光透過部の層構成を示す断面図、図4は図1に示した光
変調素子の動作状態を説明する断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a light modulator, a light modulator array, and an exposure apparatus using the same according to the present invention will be described in detail below with reference to the drawings. Figure 1
2 is a cross-sectional view showing the structure of the light modulation element according to the present invention, FIG. 2 is a plan view of the light modulation element shown in FIG. 1, and FIG. 3 is a cross-sectional view showing the layer structure of the light transmission part shown in FIG. 4 is a cross-sectional view illustrating an operating state of the light modulation element shown in FIG.

【0020】図1に示すように、光変調素子100は、
透過型の光変調素子であって、変調する光に対して透明
な平面基板23と、この平面基板23の上面に、犠牲層
の形成・除去等の方法によって形成された間隔(空隙)
25を隔てて平行に対向配置される可動薄膜27とを基
本構成として有している。可動薄膜27は、弾性を有
し、矩形状に形成され、長手方向両端部が平面基板23
上に支持部29を介して支持される。光変調素子100
は、図2に示すように複数の可動薄膜27が例えば同一
平面上で長手方向に直行する方向に近接して、1次元の
アレイ状に形成される。
As shown in FIG. 1, the light modulation element 100 includes
A transmissive optical modulator, which is transparent to the light to be modulated, and a space (gap) formed on the upper surface of the planar substrate 23 by a method such as formation / removal of a sacrificial layer.
The movable thin film 27 is arranged in parallel with the movable thin film 27 in parallel with each other. The movable thin film 27 has elasticity and is formed in a rectangular shape.
It is supported above via a support portion 29. Light modulator 100
As shown in FIG. 2, a plurality of movable thin films 27 are formed in a one-dimensional array shape, for example, on the same plane in the vicinity of a direction orthogonal to the longitudinal direction.

【0021】平面基板23上に立設された支持部29
は、例えばシリコン酸化物、シリコン窒化物、セラミッ
ク、樹脂等からなる。支持部29の上端は、上記の可動
薄膜27と接合される。可動薄膜27は、平面電極(可
動電極)31、ダイヤフラム33を順次積層した構造と
なっている。可動電極31は、金属或いは導電性を有す
る金属化合物で構成される。この金属としては、金、
銀、パラジウム、亜鉛、アルミニウム、銅等を用いるこ
とができ、金属化合物としては、これらの化合物を用い
ることができる。ダイヤフラム33には、セラミック、
樹脂等の他、ポリシリコン等の半導体、絶縁性のシリコ
ン酸化物、シリコン窒化物、各種酸化物、窒化物等を用
いることができる。
A supporting portion 29 erected on the flat substrate 23.
Is made of, for example, silicon oxide, silicon nitride, ceramic, resin, or the like. The upper end of the support portion 29 is joined to the movable thin film 27. The movable thin film 27 has a structure in which a plane electrode (movable electrode) 31 and a diaphragm 33 are sequentially laminated. The movable electrode 31 is made of a metal or a metal compound having conductivity. This metal is gold,
Silver, palladium, zinc, aluminum, copper or the like can be used, and as the metal compound, these compounds can be used. The diaphragm 33 is made of ceramic,
In addition to resins and the like, semiconductors such as polysilicon, insulating silicon oxides, silicon nitrides, various oxides, and nitrides can be used.

【0022】一方、平面基板23は、ガラス基板35、
平面電極(固定電極)37、絶縁膜39を順次積層した
構造となっている。この固定電極37としても、可動電
極31と同様なアルミ等の金属薄膜を用いることができ
る。絶縁膜39には、ダイヤフラム33と同様なセラミ
ック、樹脂等を用いることができる。また、ガラス基板
35は、この他にも例えばポリエチレンテレフタレー
ト、ポリカーボネート等の樹脂等を用いることができ
る。
On the other hand, the flat substrate 23 is a glass substrate 35,
It has a structure in which a planar electrode (fixed electrode) 37 and an insulating film 39 are sequentially laminated. As the fixed electrode 37, a metal thin film such as aluminum similar to the movable electrode 31 can be used. For the insulating film 39, the same ceramic, resin, or the like as the diaphragm 33 can be used. In addition to this, for the glass substrate 35, a resin such as polyethylene terephthalate or polycarbonate can be used.

【0023】ところで、可動薄膜27の長手方向中央部
には、この可動薄膜27に形成した可動電極31を長手
方向両端に分断する可動薄膜側非電極部41を設けてい
る。また、平面基板23にも、この可動薄膜側非電極部
41に対面して基板側非電極部43を設けている。基板
側非電極部43の可動薄膜27側は絶縁膜39で形成さ
れるが、特にこの部分には、変調する光に対して透明な
材料で形成することが好ましい。これら可動薄膜側非電
極部41及び基板側非電極部43は、図2に示すよう
に、電極が除去されている。光変調素子100は、この
可動薄膜側非電極部41及び基板側非電極部43が光透
過部となって光変調を行う。なお、図2中の各部位にお
ける寸法は、例えばa=150μm、b=20μm、c
=50μm程度で形成される。
By the way, a movable thin film side non-electrode portion 41 that divides the movable electrode 31 formed on the movable thin film 27 into both ends in the longitudinal direction is provided at the central portion in the longitudinal direction of the movable thin film 27. Further, the flat substrate 23 is also provided with a substrate-side non-electrode portion 43 facing the movable thin film-side non-electrode portion 41. The movable thin film 27 side of the substrate-side non-electrode portion 43 is formed of the insulating film 39, and it is particularly preferable that this portion is formed of a material transparent to the modulated light. As shown in FIG. 2, the electrodes of the movable thin film side non-electrode part 41 and the substrate side non-electrode part 43 are removed. In the light modulation element 100, the movable thin film side non-electrode part 41 and the substrate side non-electrode part 43 serve as a light transmission part to perform light modulation. Note that the dimensions at each part in FIG. 2 are, for example, a = 150 μm, b = 20 μm, c
= About 50 μm.

【0024】また、本実施形態の光変調素子100にお
いては、可動電極31の可動薄膜側非電極部41には可
動反射膜45が形成され、平面基板23の基板側非電極
部43には固定反射膜47が形成される。これら可動反
射膜45及び固定反射膜47は、図3に示すように、蒸
着により形成したZnO2 /SiO2 の多層膜(例えば
各7層の多層膜)からなる。これら可動反射膜45及び
固定反射膜47は、多層膜干渉効果により所謂ハーフミ
ラーとしての機能を有する。
Further, in the light modulation element 100 of the present embodiment, the movable reflection film 45 is formed on the movable thin film side non-electrode part 41 of the movable electrode 31, and is fixed to the substrate side non-electrode part 43 of the flat substrate 23. The reflective film 47 is formed. As shown in FIG. 3, the movable reflection film 45 and the fixed reflection film 47 are formed of a ZnO 2 / SiO 2 multilayer film (for example, a multilayer film of 7 layers each). The movable reflective film 45 and the fixed reflective film 47 have a function as a so-called half mirror due to the multilayer interference effect.

【0025】上記光変調素子100では、図4に示すよ
うに、可動薄膜27の可動電極31と、平面基板23の
固定電極37とに駆動電圧VONが印加されることによ
り、可動薄膜27の可動電極31と平面基板23の固定
電極37との間に作用する静電気力により、可動薄膜2
7は平面基板23側への吸引力によって弾性変形され、
平面基板23上面に近接するように変位する。一方、静
電気力による吸引力がなくなると、可動薄膜27の弾性
復帰力によって再び中央部が空隙25を隔てた位置に浮
上して配置される。光変調素子100は、この可動薄膜
27の変位又は弾性復帰により、特定の波長域の光を可
干渉性により透過又は反射させる。
In the above light modulation element 100, as shown in FIG. 4, the drive voltage V ON is applied to the movable electrode 31 of the movable thin film 27 and the fixed electrode 37 of the flat substrate 23, so that the movable thin film 27 is moved. Due to the electrostatic force acting between the movable electrode 31 and the fixed electrode 37 of the flat substrate 23, the movable thin film 2
7 is elastically deformed by the suction force to the side of the flat substrate 23,
It is displaced so as to be close to the upper surface of the planar substrate 23. On the other hand, when the attraction force due to the electrostatic force disappears, the elastic thin film 27 returns to the center with the elastic restoring force of the movable thin film 27 at a position separated by the gap 25. The light modulation element 100 allows the light in a specific wavelength range to be transmitted or reflected by coherence by the displacement or elastic return of the movable thin film 27.

【0026】ここで、本実施形態の光変調素子100の
可動反射膜45と固定反射膜47について詳細に説明す
る。光変調素子100は、可動薄膜27の変位により、
可動反射膜45,47からなる平行ミラー間の距離を異
ならせ、平行ミラー間で繰り返し反射させた合成波の強
度を変化させることによって、光を透過又は反射させて
いる。即ち、ファブリペロー干渉を利用した光変調を行
っている。平行ミラー間で反射と透過が繰り返されるフ
ァブリペロー干渉においては、空隙の略整数倍の波長の
みが光変調素子100を透過するようになる。
Here, the movable reflection film 45 and the fixed reflection film 47 of the light modulation element 100 of this embodiment will be described in detail. The light modulation element 100 is
Light is transmitted or reflected by changing the distance between the parallel mirrors composed of the movable reflection films 45 and 47 and changing the intensity of the composite wave repeatedly reflected between the parallel mirrors. That is, optical modulation using Fabry-Perot interference is performed. In Fabry-Perot interference in which reflection and transmission are repeated between parallel mirrors, only wavelengths that are approximately integral multiples of the air gap are transmitted through the light modulation element 100.

【0027】ファブリペロー干渉では、入射光線が、反
射と透過を繰り返して多数の光線に分割され、これらは
互いに平行となる。透過光線は、無限遠において重なり
合い干渉する。面の垂線と入射光線のなす角をθとすれ
ば、隣り合う二光線間の光路差はx=nt・cosθで与
えられる。但し、nは二面間の屈折率、tは間隔であ
る。光路差xが波長λの整数倍であれば透過線は互いに
強め合い、半波長の奇数倍であれば互いに打ち消し合
う。即ち、反射の際の位相変化がなければ、 2nt・cosθ=mλ …(1) で
透過光最大となり、 2nt・cosθ=(2m+1)λ/2 …(2) で
透過光最小となる。但し、mは整数である。
In Fabry-Perot interference, an incident light ray is repeatedly reflected and transmitted to be divided into a large number of light rays, which are parallel to each other. The transmitted rays overlap and interfere at infinity. If the angle formed by the perpendicular of the surface and the incident light ray is θ, the optical path difference between two adjacent light rays is given by x = nt · cos θ. However, n is the refractive index between the two surfaces, and t is the distance. If the optical path difference x is an integral multiple of the wavelength λ, the transmission lines reinforce each other, and if they are an odd multiple of the half wavelength, they cancel each other out. That is, if there is no phase change upon reflection, the transmitted light becomes maximum at 2nt · cos θ = mλ (1) and the transmitted light becomes minimum at 2nt · cos θ = (2m + 1) λ / 2 (2). However, m is an integer.

【0028】ここで、光変調素子100を用い、例えば
ブラックライト用紫外線ランプ(低圧水銀ランプ)から
の出射光を光変調する場合について説明する。図5はブ
ラックライト用低圧水銀ランプの分光特性を示す説明
図、図6は光変調素子の光強度透過率を示す説明図であ
る。
Here, a case will be described in which the light modulation element 100 is used to optically modulate light emitted from, for example, an ultraviolet lamp for black light (low-pressure mercury lamp). FIG. 5 is an explanatory diagram showing the spectral characteristics of the low-pressure mercury lamp for black light, and FIG. 6 is an explanatory diagram showing the light intensity transmittance of the light modulation element.

【0029】低圧水銀ランプの内壁にブラックライト用
の蛍光体を塗布した場合、その発光紫外線の分光特性
は、図5のようになる。即ち、360nm付近に中心波
長λ0を持つ。この紫外線をバックライト光として使用
する。
When a phosphor for black light is applied to the inner wall of the low-pressure mercury lamp, the spectral characteristic of the emitted ultraviolet light is as shown in FIG. That is, it has a central wavelength λ 0 near 360 nm. This ultraviolet ray is used as the backlight light.

【0030】ここで、光変調素子100において、非駆
動電圧VOFFを印加したときの空隙25の間隔をtOFF
とする(図1の状態)。また、駆動電圧VONを印加した
ときの空隙25の間隔をtONとする(図4の状態)。更
に、tON、tOFF を下記のように設定する。 tON =1/2×λ0=180nm tOFF =3/4×λ0=270nm 但し、 m=1 λ0:紫外線の中心波長 とする。
Here, in the light modulator 100, the interval of the air gap 25 when the non-driving voltage V OFF is applied is t OFF.
(State of FIG. 1). Further, the interval of the gap 25 when the drive voltage V ON is applied is set to t ON (state of FIG. 4). Further, t ON and t OFF are set as follows. t ON = 1/2 × λ 0 = 180 nm t OFF = 3/4 × λ 0 = 270 nm However, m = 1 λ 0 : The central wavelength of ultraviolet rays.

【0031】また、可動反射膜45及び固定反射膜47
は、その光強度反射率をR=0.85とする。空隙25
は空気又は希ガスとし、その屈折率はn=1とする。紫
外線は、コリメートされているので光変調素子100に
入射する入射角θは、略ゼロとする。このときの光変調
素子100の光強度透過率は図6のようになる。即ち、
光変調素子100は、可動電極31と固定電極37との
間に非駆動電圧VOFFを印加するとき、空隙25の間隔
はtOFF =270nmとなり、図5に示す360nm付
近に中心波長λ0を持つ紫外線をほとんど透過させな
い。一方、駆動電圧VONを印加して空隙25の間隙がt
ON=180nmとなると、360nm付近に中心波長λ
0を持つ紫外線を透過させる。
Further, the movable reflection film 45 and the fixed reflection film 47.
Sets its light intensity reflectance to R = 0.85. Void 25
Is air or a noble gas, and its refractive index is n = 1. Since the ultraviolet rays are collimated, the incident angle θ that enters the light modulation element 100 is substantially zero. The light intensity transmittance of the light modulator 100 at this time is as shown in FIG. That is,
In the light modulation element 100, when the non-driving voltage V OFF is applied between the movable electrode 31 and the fixed electrode 37, the gap 25 has an interval of t OFF = 270 nm, and the center wavelength λ 0 is around 360 nm shown in FIG. It hardly transmits the ultraviolet light it has. On the other hand, when the driving voltage V ON is applied, the gap of the gap 25 becomes t
When ON = 180 nm, the center wavelength λ is around 360 nm.
Allows transmission of ultraviolet rays having 0 .

【0032】この光変調素子100によれば、このよう
に可動薄膜27を変位させ、干渉モードで光変調を行う
ことができる。そして、光透過部に電極が存在しないた
め、光変調素子自体の光吸収が少なく、高効率で光変調
が行える。また、高速駆動が可能で高出力、長寿命の光
変調素子を得ることができる。また、低い駆動電圧(数
V〜数十V)で、数十〔nsec〕の高速動作が可能に
なる。なお、干渉の条件を満たせば、空隙25の間隔
t、屈折率n、可動反射膜45、固定反射膜47の光強
度反射率R等はいずれの組合せでも良い。また、電圧の
値により、間隔tを連続的に変化させると、透過スペク
トルの中心波長を任意に変化させることが可能である。
これにより透過光量を連続的に制御することも可能であ
る。即ち、印加電圧による階調制御が可能となる。ま
た、この光変調素子100は、可動薄膜27側から平面
基板23側へ透過させる透過型の光変調素子として構成
しているが、これに限らず、入射した光を入射光導入側
に反射して戻す、反射型の光変調素子として用いてもよ
い。この場合にも前述と同様の作用効果が奏される。
According to the light modulation element 100, the movable thin film 27 can be displaced in this way to perform light modulation in the interference mode. Further, since there is no electrode in the light transmitting portion, light absorption by the light modulation element itself is small, and light modulation can be performed with high efficiency. Further, it is possible to obtain an optical modulator that can be driven at high speed, has high output, and has a long life. Further, high speed operation of several tens [nsec] is possible with a low drive voltage (several V to several tens of V). It should be noted that, as long as the condition of interference is satisfied, the interval t of the void 25, the refractive index n, the light intensity reflectance R of the movable reflective film 45, the fixed reflective film 47, and the like may be any combination. Further, the center wavelength of the transmission spectrum can be arbitrarily changed by continuously changing the interval t according to the voltage value.
This makes it possible to continuously control the amount of transmitted light. That is, gradation control by the applied voltage becomes possible. The light modulation element 100 is configured as a transmissive light modulation element that transmits light from the movable thin film 27 side to the flat substrate 23 side, but is not limited to this, and reflects incident light to the incident light introduction side. It may be used as a reflection type light modulation element which is returned by returning. In this case as well, the same operational effects as described above are achieved.

【0033】次に、本発明に係る光変調素子の第2実施
形態を説明する。図7は本発明に係る光変調素子の第2
実施形態における構成を示す断面図、図8は図7に示し
た光変調素子の動作状態を説明する断面図である。な
お、以降の説明は、図1〜4に示した部材と同一の部材
には同一の符号を付し、重複する説明は省略するものと
する。本実施形態の光変調素子200は、全反射を利用
した光変調素子であって、基台55上に支持部29を介
して可動薄膜27を懸架している。詳細には、基台55
上に設けられ可動薄膜27の長手方向両端に分断された
固定電極37、可動薄膜27の上層に設けられ可動薄膜
27の長手方向両端に分断された可動電極31、可動薄
膜27の可動薄膜側非電極部41に設けた拡散部53を
備えている。
Next, a second embodiment of the optical modulator according to the present invention will be described. FIG. 7 shows a second optical modulator according to the present invention.
FIG. 8 is a cross-sectional view showing the configuration of the embodiment, and FIG. 8 is a cross-sectional view explaining the operating state of the light modulation element shown in FIG. In the following description, the same members as those shown in FIGS. 1 to 4 are designated by the same reference numerals, and the duplicated description will be omitted. The light modulation element 200 of the present embodiment is a light modulation element utilizing total reflection, and the movable thin film 27 is suspended on the base 55 via the support portion 29. Specifically, the base 55
The fixed electrode 37 provided on the upper side of the movable thin film 27 and divided at both ends in the longitudinal direction of the movable thin film 27, the movable electrode 31 provided on the upper layer of the movable thin film 27 and divided at both ends in the longitudinal direction of the movable thin film 27, The diffusion part 53 provided in the electrode part 41 is provided.

【0034】可動薄膜側非電極部41の表面に設けられ
た光拡散部53は、例えば、無機、有機透明材料の表面
に凹凸を形成したもの、マイクロプリズム、マイクロレ
ンズを形成したものや、無機、有機多孔質材料、又は屈
折率の異なる微粒子を透明基材に分散したもの等により
形成されている。また、支持部29は変調する光に対し
て透明な基台55上に設けられている。基台55は、平
行でない2つの端面を有し、光線の方向を変える偏角プ
リズムとしての作用を有する。
The light diffusing portion 53 provided on the surface of the movable thin film side non-electrode portion 41 is, for example, one in which unevenness is formed on the surface of an inorganic or organic transparent material, one in which microprisms or microlenses are formed, or inorganic. , An organic porous material, or fine particles having different refractive indexes dispersed in a transparent substrate. The support portion 29 is provided on a base 55 that is transparent to the modulated light. The base 55 has two end faces that are not parallel to each other and acts as a deflection prism that changes the direction of a light beam.

【0035】この光変調素子200では、図8に示すよ
うに、可動薄膜27の可動電極31と、基台55の固定
電極37との間に駆動電圧VONが印加されることによ
り、可動薄膜27の可動電極31と基台55の固定電極
37との間に作用する静電気力によって、可動薄膜27
は基台55側へ吸引されて弾性変形し、基台55上面に
近接するように変位する。一方、静電気力による吸引力
がなくなると、可動薄膜27の弾性復帰力によって再び
可動薄膜27の中央部が空隙25を隔てた位置に浮上し
て配置される。
In this light modulation element 200, as shown in FIG. 8, by applying the drive voltage V ON between the movable electrode 31 of the movable thin film 27 and the fixed electrode 37 of the base 55, the movable thin film 27 is moved. The movable thin film 27 is moved by the electrostatic force acting between the movable electrode 31 of 27 and the fixed electrode 37 of the base 55.
Is attracted to the base 55 side and elastically deformed, and is displaced so as to approach the upper surface of the base 55. On the other hand, when the attractive force due to the electrostatic force disappears, the elastic restoring force of the movable thin film 27 causes the central portion of the movable thin film 27 to float again at a position separated by the gap 25.

【0036】この光変調素子200においては、非駆動
電圧VOFFの印加時、可動薄膜側非電極部41と基板側
非電極部43との間に空隙25(例えば空気、希ガス
等)が存在する。この場合、基台55の屈折率をnwと
すると、空気との界面における全反射臨界角θcは、 θc=sin-1(nw) となる。従って、入射光
は、界面への入射角θが、θ>θcのとき、図7に示す
ように、基台55内を全反射しながら進む。
In this light modulation element 200, when the non-driving voltage V OFF is applied, a gap 25 (for example, air, rare gas, etc.) exists between the movable thin film side non-electrode section 41 and the substrate side non-electrode section 43. To do. In this case, when the refractive index of the base 55 is nw, the total reflection critical angle θc at the interface with air is θc = sin −1 (nw). Therefore, when the incident angle θ on the interface is θ> θc, the incident light travels while being totally reflected inside the base 55, as shown in FIG. 7.

【0037】一方、駆動電圧VONの印加時、可動薄膜2
7と基台55とを接触又は十分な距離に近づけた場合、
図8に示すように、入射光は、可動薄膜27側に伝搬透
過し、更に光拡散部53により拡散されて表面側に出射
する。このように、光変調素子200によれば、駆動電
圧VON印加による可動薄膜27の変位により光変調を行
うことができる。なお、この場合では、変調光は可動薄
膜27を透過する透過光、又は非駆動電圧VOFF印加時
に、全反射して基台55から出射する反射光のいずれを
利用するものであってもよい。
On the other hand, when the drive voltage V ON is applied, the movable thin film 2
When 7 and the base 55 are contacted or brought close to each other,
As shown in FIG. 8, the incident light is propagated and transmitted to the movable thin film 27 side, further diffused by the light diffusing section 53, and emitted to the front surface side. As described above, according to the light modulation element 200, the light modulation can be performed by the displacement of the movable thin film 27 due to the application of the drive voltage V ON . In this case, the modulated light may be either transmitted light that passes through the movable thin film 27 or total reflected light that is emitted from the base 55 when the non-driving voltage V OFF is applied. .

【0038】次に、本発明に係る光変調素子の第3実施
形態を説明する。図9は本発明に係る光変調素子の第3
実施形態における構成と動作状態を示す断面図である。
本実施形態の光変調素子300は、反射型の光変調素子
であって、その構成は第1実施形態の光変調素子100
と同様である。但し、可動電極31と固定電極37との
間に非駆動電圧VOFFを印加したときの空隙25の間隔
OFFは、(2m+1)λ/(4cosθ)、駆動電圧VON
を印加したときの空隙25の間隔tONは、(2m)λ/
(4cosθ)に設定している。ここで、θは入射光の光
変調素子300への入射角で、可動薄膜27の法線方向
と入射光とのなす角を表す。
Next, a third embodiment of the optical modulator according to the present invention will be described. FIG. 9 shows a third optical modulator according to the present invention.
It is sectional drawing which shows the structure and operation state in embodiment.
The light modulation element 300 of this embodiment is a reflection-type light modulation element, and the configuration thereof is the light modulation element 100 of the first embodiment.
Is the same as. However, when the non-driving voltage V OFF is applied between the movable electrode 31 and the fixed electrode 37, the interval t OFF of the gap 25 is (2m + 1) λ / (4cosθ), and the driving voltage V ON
The interval t ON of the air gap 25 when is applied is (2 m) λ /
It is set to (4 cosθ). Here, θ is the angle of incidence of the incident light on the light modulation element 300, and represents the angle between the normal direction of the movable thin film 27 and the incident light.

【0039】この光変調素子300では、図9(a)に
示すように、可動薄膜27の可動電極31と、平面基板
23の固定電極37との間に非駆動電圧VOFFが印加さ
れるときには、可動薄膜27の可動薄膜側非電極部41
に導入された入射光は、可動反射膜45及び固定反射膜
47の光干渉作用によって入射光導入側へ反射される。
一方、駆動電圧VONが印加されると、図9(b)に示す
ように、可動薄膜27の可動電極31と平面基板23の
固定電極37との間に作用する静電気力により、可動薄
膜27は平面基板23側への吸引力によって弾性変形さ
れ、平面基板23上面に近接するように変位する。これ
により、導入された入射光は、可動反射膜45及び固定
反射膜47の光干渉作用によって可動反射膜45及び固
定反射膜47を透過して、入射光導入側へは反射されな
い。
In this light modulation element 300, when the non-driving voltage V OFF is applied between the movable electrode 31 of the movable thin film 27 and the fixed electrode 37 of the flat substrate 23, as shown in FIG. 9A. , The movable thin film side non-electrode portion 41 of the movable thin film 27
The incident light introduced into is reflected by the movable reflection film 45 and the fixed reflection film 47 toward the incident light introduction side by the optical interference effect.
On the other hand, when the drive voltage V ON is applied, the movable thin film 27 is moved by the electrostatic force acting between the movable electrode 31 of the movable thin film 27 and the fixed electrode 37 of the flat substrate 23, as shown in FIG. 9B. Is elastically deformed by the suction force to the plane substrate 23 side, and is displaced so as to be close to the upper surface of the plane substrate 23. Thereby, the introduced incident light is transmitted through the movable reflective film 45 and the fixed reflective film 47 by the optical interference effect of the movable reflective film 45 and the fixed reflective film 47, and is not reflected to the incident light introduction side.

【0040】従って、光変調素子300の入射光導入側
においては、非駆動電圧VOFFの印加時に明となり、駆
動電圧VONの印加時に暗となる反射型の光変調が実現さ
れる。
Therefore, on the incident light introduction side of the light modulation element 300, a reflection type light modulation is realized which becomes bright when the non-driving voltage V OFF is applied and becomes dark when the driving voltage V ON is applied.

【0041】次に、本発明に係る光変調素子の第4実施
形態を説明する。図10は本発明に係る光変調素子の第
4実施形態における構成と動作状態を示す断面図であ
る。本実施形態の光変調素子400は、反射型の光変調
素子であって、その構成は、平面基板がシリコン基板1
3からなり、このシリコン基板13の表面には、不純物
をドーピングさせた固定電極としてのドープ層16を形
成している。このドープ層16は、前述の固定電極15
と同様に、可動薄膜27の長手方向両端に分断して形成
されている。また、基板側非電極部43には、このドー
プ層15の厚みより若干高くシリコン基板が盛り上がっ
ている。一方、可動薄膜27は、可動薄膜側非電極部4
1を単層のダイヤフラム33で形成し、入射光を可動薄
膜27側からシリコン基板13側へ導入、又は反射させ
る構成となっている。
Next, a fourth embodiment of the optical modulator according to the present invention will be described. FIG. 10 is a cross-sectional view showing the configuration and operating state of the optical modulator according to the fourth embodiment of the present invention. The light modulation element 400 of this embodiment is a reflection-type light modulation element, and its configuration is such that the flat substrate is the silicon substrate 1.
On the surface of the silicon substrate 13, a doped layer 16 as a fixed electrode doped with impurities is formed. This doped layer 16 is the fixed electrode 15 described above.
Similarly, the movable thin film 27 is divided and formed at both ends in the longitudinal direction. Further, in the substrate-side non-electrode portion 43, the silicon substrate rises slightly higher than the thickness of the doped layer 15. On the other hand, the movable thin film 27 includes the movable thin film side non-electrode portion 4
1 is formed by a single-layer diaphragm 33, and incident light is introduced or reflected from the movable thin film 27 side to the silicon substrate 13 side.

【0042】ここで、可動電極31とドープ層16との
間に非駆動電圧VOFFを印加したときの空隙25の間隔
OFFは(2m+1)λ/(4cosθ)、駆動電圧VON
印加したときの空隙25の間隔tONは(2m)λ/(4
cosθ)としている。なお、図10は、m=0、θ=4
5゜とした一例である。
Here, when the non-driving voltage V OFF is applied between the movable electrode 31 and the doped layer 16, the interval t OFF of the gap 25 is (2m + 1) λ / (4 cos θ), and the driving voltage V ON is applied. At this time, the interval t ON of the air gap 25 is (2 m) λ / (4
cos θ). Note that in FIG. 10, m = 0, θ = 4
This is an example of 5 °.

【0043】また、この可動薄膜27の屈折率nは、シ
リコン基板13の屈折率をns(ns=3.89)とす
ると、n≒√nsなる関係を有することが望ましく、可
動薄膜27に反射防止機能を付加させることができる。
具体的には、可動薄膜27のダイヤフラム33としては
ZrO2(n=1.97)がよく、その場合には、ダイ
ヤフラム33の膜厚を53.4nmとする。このときの
シリコン基板13と可動薄膜27との間の空隙と、素子
の反射率との関係を図11に示した。なお、可動薄膜2
7と平面基板の屈折率の関係は、上述の各実施形態につ
いても同様に設定することが好ましい。
The refractive index n of the movable thin film 27 preferably has a relationship of n≈√ns when the refractive index of the silicon substrate 13 is ns (ns = 3.89). A preventive function can be added.
Specifically, the diaphragm 33 of the movable thin film 27 is preferably ZrO 2 (n = 1.97), and in that case, the film thickness of the diaphragm 33 is 53.4 nm. FIG. 11 shows the relationship between the gap between the silicon substrate 13 and the movable thin film 27 and the reflectance of the device at this time. The movable thin film 2
The relationship between 7 and the refractive index of the flat substrate is preferably set similarly in each of the above-described embodiments.

【0044】この光変調素子400では、図10(a)
に示すように、可動薄膜27の可動電極31と、シリコ
ン基板13のドープ層16との間に非駆動電圧VOFF
印加したとき、空隙25の間隔がtOFFとなり、外部か
ら可動薄膜27の可動薄膜側非電極部41に導入された
入射光は、可動薄膜27による光干渉作用によって入射
光導入側へ反射される。このときの可動薄膜27の反射
率は図11に示すように90%以上の高い反射率となっ
ている。一方、駆動電圧VONを印加すると、可動薄膜2
7の可動電極31とシリコン基板13のドープ層16と
の間に作用する静電気力により、可動薄膜27はシリコ
ン基板13側への吸引力によって弾性変形され、シリコ
ン基板13上面に近接するように変位する。これによ
り、空隙の間隔は略0となり、tOFFとなる。従って、
導入された入射光は可動薄膜側非電極部41を透過して
シリコン基板13側に吸収され、入射光導入側には反射
されない。
In this light modulation element 400, FIG.
As shown in, when the non-driving voltage V OFF is applied between the movable electrode 31 of the movable thin film 27 and the doped layer 16 of the silicon substrate 13, the gap 25 becomes t OFF , and the movable thin film 27 is exposed from the outside. The incident light introduced into the movable thin film side non-electrode portion 41 is reflected to the incident light introduction side by the optical interference effect of the movable thin film 27. At this time, the reflectance of the movable thin film 27 is as high as 90% or more as shown in FIG. On the other hand, when the drive voltage V ON is applied, the movable thin film 2
The movable thin film 27 is elastically deformed by the attractive force to the silicon substrate 13 side by the electrostatic force acting between the movable electrode 31 of No. 7 and the doped layer 16 of the silicon substrate 13, and is displaced so as to be close to the upper surface of the silicon substrate 13. To do. As a result, the space between the voids becomes approximately 0 and t OFF . Therefore,
The incident light introduced is transmitted through the non-electrode portion 41 on the movable thin film side, absorbed by the silicon substrate 13 side, and is not reflected by the incident light introduction side.

【0045】これにより、光変調素子400の入射光導
入側においては、非駆動電圧VOFFの印加時に明とな
り、駆動電圧VONの印加時に暗となる反射型の光変調が
実現される。また、シリコン基板13には、駆動回路等
の回路を形成することもでき、種々の付加機能を素子に
持たせることが可能となり設計の自由度を向上できる。
As a result, on the incident light introduction side of the light modulation element 400, a reflection type light modulation is realized which becomes bright when the non-driving voltage V OFF is applied and becomes dark when the driving voltage V ON is applied. Further, circuits such as a drive circuit can be formed on the silicon substrate 13, and various additional functions can be given to the element, and the degree of freedom in design can be improved.

【0046】次に、本実施形態の光変調素子の変形例を
説明する。図12は本実施形態の変形例としての光変調
素子の構成と動作状態を示す断面図である。この変形例
の光変調素子500は、平面基板として誘電体基板を使
用した構成としている。他の構成は前述と同様であるた
め重複する説明は省略する。誘電体基板19は、可動薄
膜27のダイヤフラム33をSiO2(屈折率n=1.
46)を用いた場合、例えばZnO(屈折率ns=2.
1)を好適に用いることができる。また、可動薄膜27
をNdF3(屈折率n=1.62)を用いた場合、例え
ばTiO2(屈折率ns=2.62)を好適に用いるこ
とができる。このように、n=√nsの関係を保つこと
により、層の反射を防止する反射防止膜とすることがで
き、素子の光透過率を向上できる。また、誘電体基板1
9と可動薄膜27のダイヤフラム33は、屈折率の組み
合わせを適宜選択すればよいため、誘電体基板19とし
ては、この他にも、半導体(例えばGaAs、Ga
N)、誘電体、或いは金属で形成してもよい。
Next, a modification of the light modulation element of this embodiment will be described. FIG. 12 is a cross-sectional view showing a configuration and an operating state of a light modulation element as a modified example of this embodiment. The light modulation element 500 of this modified example has a configuration in which a dielectric substrate is used as a planar substrate. Other configurations are the same as those described above, and redundant description will be omitted. In the dielectric substrate 19, the diaphragm 33 of the movable thin film 27 is covered with SiO 2 (refractive index n = 1.
46), ZnO (refractive index ns = 2.
1) can be preferably used. In addition, the movable thin film 27
When NdF 3 (refractive index n = 1.62) is used, for example, TiO 2 (refractive index ns = 2.62) can be preferably used. In this way, by maintaining the relationship of n = √ns, it is possible to form an antireflection film that prevents the reflection of layers, and the light transmittance of the device can be improved. Also, the dielectric substrate 1
9 and the diaphragm 33 of the movable thin film 27 may be formed by appropriately selecting a combination of refractive indexes, and therefore, as the dielectric substrate 19, other than this, a semiconductor (for example, GaAs, Ga) may be used.
N), a dielectric material, or a metal.

【0047】この光変調素子500によれば、前述の光
変調素子の動作と同様に、可動電極31と固定電極15
との間に駆動電圧VOFFを印加すると、外部から可動薄
膜27の可動薄膜側非電極部41に導入された入射光
は、可動薄膜27による光干渉作用によって入射光導入
側へ反射される。一方、駆動電圧VONが印加されると、
可動薄膜27が静電気力によって誘電体基板19上面に
近接するように変位する。これにより、導入された入射
光は可動薄膜27による光干渉作用によって誘電体基板
19側に透過されて吸収され、入射光導入側へは反射さ
れない。従って、光変調素子500の入射光導入側にお
いては、非駆動電圧VOFFの印加時に明となり、駆動電
圧VONの印加時に暗となる反射型の光変調が実現され
る。
According to the light modulation element 500, the movable electrode 31 and the fixed electrode 15 are similar to the operation of the light modulation element described above.
When a drive voltage V OFF is applied between the movable thin film 27 and the movable thin film 27, the incident light introduced from the outside to the movable thin film side non-electrode portion 41 of the movable thin film 27 is reflected by the movable thin film 27 to the incident light introduction side. On the other hand, when the drive voltage V ON is applied,
The movable thin film 27 is displaced by electrostatic force so as to approach the upper surface of the dielectric substrate 19. As a result, the incident light introduced is transmitted to the dielectric substrate 19 side and absorbed by the optical interference effect of the movable thin film 27, and is not reflected to the incident light introduction side. Therefore, on the incident light introduction side of the light modulation element 500, a reflection type light modulation is realized in which the light becomes bright when the non-driving voltage V OFF is applied and becomes dark when the driving voltage V ON is applied.

【0048】以上説明した各光変調素子の構成では、可
動薄膜27を矩形状で形成し、長手方向の任意の位置に
おける幅が等しい場合を説明したが、各光変調素子は、
図13に示すように、可動薄膜27の長手方向両端近傍
に、中央部の幅より狭い狭小部59を形成するものであ
ってもよい。なお、図13中の各部位における寸法は、
例えばa=150μm、b=20μm、c=50μm、
d=10μm、e=100μm程度で形成される。この
ような狭小部59を設けることで、この狭小部59が特
に大きく変形することにより、均一幅の可動薄膜27を
変形させる場合に比べ、可動薄膜27の駆動力が低減で
き、低電圧駆動と駆動速度の高速化が可能になる。
In the configuration of each light modulation element described above, the case where the movable thin film 27 is formed in a rectangular shape and the widths at the arbitrary positions in the longitudinal direction are equal has been described.
As shown in FIG. 13, narrow portions 59 narrower than the width of the central portion may be formed in the vicinity of both ends in the longitudinal direction of the movable thin film 27. The dimensions of each part in FIG.
For example, a = 150 μm, b = 20 μm, c = 50 μm,
It is formed with d = 10 μm and e = 100 μm. By providing such a narrow portion 59, the narrow portion 59 is particularly greatly deformed, so that the driving force of the movable thin film 27 can be reduced as compared with the case where the movable thin film 27 having a uniform width is deformed, and low voltage driving is performed. The drive speed can be increased.

【0049】上記した光変調素子によれば、可動薄膜2
7を矩形状に形成し、この可動薄膜27の長手方向中央
部に電極を形成しない可動薄膜側非電極部41を設ける
と共に、平面基板23又は基台55にも、この可動薄膜
側非電極部41に対面する基板側非電極部43を設けた
ので、光透過部位に透明電極が存在しない構成にでき
る。これにより、透明電極による光の吸収を皆無にで
き、光強度が強い場合に生じる透明電極の発熱による変
形・破壊等が防止できる。また、可動薄膜の構成の簡略
化によって光変調素子の高速駆動が可能になり、かつ長
寿命化が実現できる。
According to the above light modulator, the movable thin film 2
7 is formed in a rectangular shape, the movable thin film side non-electrode portion 41 in which no electrode is formed is provided in the central portion in the longitudinal direction of the movable thin film 27, and the flat substrate 23 or the base 55 also has this movable thin film side non-electrode portion. Since the substrate-side non-electrode portion 43 that faces 41 is provided, the transparent electrode does not exist in the light transmitting portion. This makes it possible to eliminate the absorption of light by the transparent electrode and prevent the transparent electrode from being deformed or destroyed due to heat generation when the light intensity is high. In addition, by simplifying the structure of the movable thin film, it is possible to drive the light modulation element at high speed and to extend the life of the light modulation element.

【0050】さらに、光の吸収がなくなるので、透過光
の強度を増大させることができ、高出力化が図られる。
また、可動薄膜を矩形状に形成し、その中央部の全てを
可動薄膜側非電極部41として電極を除去したので、複
数の光変調素子を一次元に配列した光変調素子アレイと
した場合、隣接する光変調素子の光透過部同士の間に電
極が介在せず、露光装置、表示装置に用いた場合の画素
密度を高精細にできる。
Furthermore, since the absorption of light is eliminated, the intensity of transmitted light can be increased and higher output can be achieved.
Further, since the movable thin film is formed in a rectangular shape and the electrode is removed as the movable thin film side non-electrode portion 41 in the entire central portion thereof, in the case of a light modulation element array in which a plurality of light modulation elements are arranged one-dimensionally, Since no electrodes are provided between the light transmitting portions of the adjacent light modulation elements, the pixel density when used in an exposure device or a display device can be made high definition.

【0051】次に、上記の光変調素子100からなる光
変調素子アレイを利用した露光装置について説明する。
図14は本発明に係る露光装置の要部構成の概略を表し
た斜視図、図15は図14に示した露光ヘッドの拡大斜
視図、図16は上記の光変調素子100を用いて構成し
た他の露光部の拡大斜視図である。この実施の形態で
は、光変調素子100を用いて構成した光変調素子アレ
イを、液晶カラーフィルタ製造工程に使用するフォトレ
ジスト用の露光装置61に適用した一例を説明する。
Next, an exposure apparatus using the light modulation element array composed of the above light modulation element 100 will be described.
FIG. 14 is a perspective view showing an outline of a main part configuration of an exposure apparatus according to the present invention, FIG. 15 is an enlarged perspective view of the exposure head shown in FIG. 14, and FIG. 16 is formed using the light modulation element 100 described above. It is an expansion perspective view of another exposure part. In this embodiment, an example will be described in which the light modulation element array configured using the light modulation element 100 is applied to an exposure device 61 for photoresist used in a liquid crystal color filter manufacturing process.

【0052】この露光装置61は、図14に示すよう
に、露光対象物63を側面に吸着して保持する縦型のフ
ラットステージ65と、画像データ67に応じて変調さ
れた光ビーム(紫外レーザ光)69で露光対象物63を
走査露光する露光ヘッド71とを備えている。フラット
ステージ65は、図示しないガイドによって、X軸方向
に移動可能に支持されており、露光ヘッド71は、図示
しないガイトによって、Y軸方向に移動可能に支持され
ている。
As shown in FIG. 14, the exposure apparatus 61 includes a vertical flat stage 65 for adsorbing and holding the exposure object 63 on its side surface, and a light beam (ultraviolet laser) modulated in accordance with image data 67. An exposure head 71 for scanning and exposing the exposure object 63 with (light) 69. The flat stage 65 is movably supported in the X-axis direction by a guide (not shown), and the exposure head 71 is movably supported in the Y-axis direction by a guide (not shown).

【0053】フラットステージ65の裏面角部には一対
のナット73が固定されており、ナット73の雌ねじ部
75にはリードスクリュー77が螺合されている。リー
ドスクリュー77の一方の端部にはリードスクリュー7
7を回転させる駆動モータ79が取り付けられており、
駆動モータ79はモータコントローラ81に接続されて
いる。そして、この駆動モータ79によるリードスクリ
ュー77の回転に伴い、フラットステージ65がX軸方
向にステップ状に移動される。
A pair of nuts 73 are fixed to the corners of the back surface of the flat stage 65, and a lead screw 77 is screwed into the female thread portion 75 of the nut 73. The lead screw 7 is attached to one end of the lead screw 77.
A drive motor 79 for rotating 7 is attached,
The drive motor 79 is connected to the motor controller 81. Then, with the rotation of the lead screw 77 by the drive motor 79, the flat stage 65 is moved stepwise in the X-axis direction.

【0054】露光ヘッド71の下部には一対のナット8
3が固定されており、ナット83の雌ねじ部85にはリ
ードスクリュー87が螺合されている。リードスクリュ
ー87の一方の端部にはリードスクリュー87を回転さ
せる駆動モータ89がベルトを介して連結されており、
駆動モータ89はモータコントローラ81に接続されて
いる。そして、この駆動モータ89によるリードスクリ
ュー87の回転に伴い、露光ヘッド71がY軸方向に往
復移動される。ナット83、リードスクリュー87、駆
動モータ89は、露光ヘッド71の移動手段90を構成
する。
A pair of nuts 8 is provided below the exposure head 71.
3 is fixed, and a lead screw 87 is screwed into the female thread portion 85 of the nut 83. A drive motor 89 for rotating the lead screw 87 is connected to one end of the lead screw 87 via a belt,
The drive motor 89 is connected to the motor controller 81. The exposure head 71 is reciprocally moved in the Y-axis direction as the lead screw 87 is rotated by the drive motor 89. The nut 83, the lead screw 87, and the drive motor 89 form a moving unit 90 of the exposure head 71.

【0055】この場合の露光対象物63は、ブラックマ
トリックスが形成されたガラス基板上に、例えばR色の
顔料を紫外線硬化樹脂に分散させたカラーレジスト膜を
形成したものとする。この露光対象物63に紫外レーザ
光69を照射すると、カラーレジスト膜の紫外レーザ光
69が照射された部分だけが硬化してR色のカラーフィ
ルタ部が形成される。
In this case, the exposure target 63 is formed by forming a color resist film in which an R color pigment is dispersed in an ultraviolet curable resin on a glass substrate on which a black matrix is formed. When the exposure object 63 is irradiated with the ultraviolet laser light 69, only the portion of the color resist film irradiated with the ultraviolet laser light 69 is cured to form an R color filter portion.

【0056】露光ヘッド71は、図15に示すように、
高出力な紫外レーザ光源91、紫外レーザ光源91から
入射されたレーザ光をX軸方向に平行光化すると共にX
Y平面と直交する方向に収束させるレンズ93、入射さ
れたレーザ光を画像データ67に応じて各画素毎に変調
する光変調素子アレイ95、及び光変調素子アレイ95
で変調されたレーザ光を露光対象物63の表面に倍率を
変えて結像させるズームレンズ97で構成された露光ユ
ニットを備えている。
The exposure head 71, as shown in FIG.
The high-power ultraviolet laser light source 91 and the laser light incident from the ultraviolet laser light source 91 are collimated in the X-axis direction and X
A lens 93 that converges in a direction orthogonal to the Y plane, a light modulation element array 95 that modulates the incident laser light for each pixel according to the image data 67, and a light modulation element array 95.
The exposure unit includes a zoom lens 97 for forming an image on the surface of the exposure object 63 by changing the magnification of the laser light modulated by.

【0057】この露光ユニットを構成する各部材はケー
シング99内に収納されており、ズームレンズ97から
出射された紫外レーザ光69は、ケーシング99に設け
られた図示しない開口を通過して露光対象物63の表面
に照射される。ズームレンズ97は、図示しない駆動モ
ータによって、光軸に沿って移動され結像倍率の調整を
行う。なお、通常、ズームレンズは組合せレンズで構成
されるが、図示を簡単にするため1枚のレンズのみ示し
た。
Each member constituting this exposure unit is housed in a casing 99, and the ultraviolet laser light 69 emitted from the zoom lens 97 passes through an opening (not shown) provided in the casing 99 and the exposure target object. The surface of 63 is irradiated. The zoom lens 97 is moved along the optical axis by a drive motor (not shown) to adjust the imaging magnification. Although the zoom lens is usually composed of a combination lens, only one lens is shown for simplicity of illustration.

【0058】紫外レーザ光源91、レンズ93、光変調
素子アレイ95、及びズームレンズ97は、図示しない
固定部材によってケーシング99に固定されており、ズ
ームレンズ97は、図示しないガイドによって光軸方向
に移動可能に支持されている。また、紫外レーザ光源9
1及び光変調素子アレイ95は、各々図示しないドライ
バを介してこれらを制御する図示しないコントローラに
接続されている。
The ultraviolet laser light source 91, the lens 93, the light modulation element array 95, and the zoom lens 97 are fixed to the casing 99 by a fixing member (not shown), and the zoom lens 97 is moved in the optical axis direction by a guide (not shown). Supported as possible. In addition, the ultraviolet laser light source 9
1 and the light modulation element array 95 are respectively connected to a controller (not shown) that controls them via a driver (not shown).

【0059】紫外レーザ光源91は、例えば窒化ガリウ
ム系半導体レーザを用いる。なお、ブロードエリアの発
光領域を有する窒化ガリウム系半導体レーザを用いる
と、波長約405nmの紫外領域の光が高出力で得ら
れ、高速での走査に有利になる。
The ultraviolet laser light source 91 uses, for example, a gallium nitride based semiconductor laser. If a gallium nitride based semiconductor laser having a broad area light emitting region is used, light in the ultraviolet region with a wavelength of about 405 nm can be obtained with high output, which is advantageous for high-speed scanning.

【0060】感光材料としては、液晶カラーフィルタ形
成用感光材料、プリント配線基板製造用のフォトレジス
ト、印刷用感光性シリンダー、印刷用感光性材料を塗布
したシリンダー、及び印刷用刷版を挙げることができ
る。これら感光材料は、縦型の平板ステージに保持する
ことができる。感光材料を縦型の平板ステージに保持す
ることにより、感光材料のたわみを最小限に抑えられる
ため、露光の高精度化が図られる。
Examples of the photosensitive material include a photosensitive material for forming a liquid crystal color filter, a photoresist for manufacturing a printed wiring board, a photosensitive cylinder for printing, a cylinder coated with a photosensitive material for printing, and a printing plate for printing. it can. These photosensitive materials can be held on a vertical flat plate stage. By holding the photosensitive material on the vertical flat plate stage, the deflection of the photosensitive material can be minimized, so that the precision of exposure can be improved.

【0061】光変調素子アレイ95は、上記の光変調素
子100を、同一平面上で、可動薄膜27の長手方向に
直行する方向に複数近接させて並設している。この実施
の形態では、並設方向が図15の上下方向(X方向)と
なる。従って、この並設方向に直行する方向(Y方向)
で露光対象物63と露光ヘッド71とを相対移動させる
と、光変調素子100の並設数と同数の画素数で、1ラ
イン分を露光対象物63に露光することができ、この場
合においても、光変調素子100の有する特性により、
高速の露光が可能になり、かつ長寿命化が実現できる。
なお、図15中の各部位における寸法は、例えばf=2
mm(1000ch)、g=20μm程度で形成され
る。
In the light modulation element array 95, a plurality of the light modulation elements 100 are arranged side by side on the same plane in the direction orthogonal to the longitudinal direction of the movable thin film 27. In this embodiment, the juxtaposed direction is the vertical direction (X direction) in FIG. Therefore, the direction (Y direction) orthogonal to this juxtaposed direction
When the exposure target 63 and the exposure head 71 are moved relative to each other, one line of the exposure target 63 can be exposed with the same number of pixels as the number of the light modulation elements 100 arranged in parallel. By the characteristics of the light modulation element 100,
High-speed exposure is possible and long life can be realized.
The size of each part in FIG. 15 is, for example, f = 2.
mm (1000 ch) and g = 20 μm.

【0062】次に、本実施の形態の露光装置の動作を説
明する。露光対象物63に紫外レーザ光69を照射して
露光するために、画像データ67が、光変調素子アレイ
95のコントローラ(図示せず)に入力され、コントロ
ーラ内のフレームメモリに一旦記憶される。この画像デ
ータ67は、画像を構成する各画素の濃度を2値(即ち
ドットの記録の有無)で表したデータである。
Next, the operation of the exposure apparatus of this embodiment will be described. The image data 67 is input to a controller (not shown) of the light modulation element array 95 to irradiate the exposure object 63 with the ultraviolet laser light 69 to be exposed, and is temporarily stored in a frame memory in the controller. The image data 67 is data in which the densities of the pixels forming the image are represented by binary values (that is, the presence or absence of dot recording).

【0063】露光ヘッド71の紫外レーザ光源91から
出射されたレーザ光は、レンズ93によりX軸方向に平
行光化されると共にXY平面と直交する方向に収束され
て、光変調素子アレイ95に入射される。入射されたレ
ーザ光は、光変調素子アレイ95によって同時に変調さ
れる。変調されたレーザ光がズームレンズ97により露
光対象物63の表面に結像される。
The laser light emitted from the ultraviolet laser light source 91 of the exposure head 71 is collimated in the X-axis direction by the lens 93, converged in the direction orthogonal to the XY plane, and incident on the light modulation element array 95. To be done. The incident laser light is simultaneously modulated by the light modulation element array 95. The modulated laser light is imaged on the surface of the exposure object 63 by the zoom lens 97.

【0064】露光開始時には、露光ヘッド71が露光開
始位置(X軸方向及びY軸方向の原点)に移動される。
モータコントローラ81が駆動モータ89を一定速度で
回転させると、リードスクリュー87も一定速度で回転
し、リードスクリュー87の回転に伴い、露光ヘッド7
1がY軸方向に一定速度で移動される。
At the start of exposure, the exposure head 71 is moved to the exposure start position (origin in the X-axis direction and the Y-axis direction).
When the motor controller 81 rotates the drive motor 89 at a constant speed, the lead screw 87 also rotates at a constant speed, and with the rotation of the lead screw 87, the exposure head 7 is rotated.
1 is moved in the Y-axis direction at a constant speed.

【0065】露光ヘッド71のY軸方向への移動と共
に、フレームメモリに記憶されている画像データ67
が、1ライン分、光変調素子アレイ95の光変調素子1
00の数と略同数の画素単位で順に読み出され、読み出
された画像データ67に応じて光変調素子100の各々
がオンオフ制御される。これにより露光ヘッド71から
出射される紫外レーザ光69がオンオフされて、露光対
象物63が、X軸方向に光変調素子100の数と略同数
の画素単位で露光されると共に、Y軸方向に1ライン分
走査露光される。
The image data 67 stored in the frame memory is moved along with the movement of the exposure head 71 in the Y-axis direction.
However, the light modulator 1 of the light modulator array 95 for one line
The number of pixels 00 is sequentially read in pixel units, and each of the light modulation elements 100 is ON / OFF controlled according to the read image data 67. As a result, the ultraviolet laser light 69 emitted from the exposure head 71 is turned on and off, and the exposure object 63 is exposed in the X axis direction in pixel units of substantially the same number as the number of the light modulation elements 100, and in the Y axis direction. Scanning exposure for one line is performed.

【0066】露光ヘッド71が露光対象物63の端部に
達すると、露光ヘッド71はY軸方向の原点に復帰す
る。そして、モータコントローラ81が駆動モータ79
を一定速度で回転させると、リードスクリュー77も一
定速度で回転し、リードスクリュー77の回転に伴い、
フラットステージ65がX軸方向に1ステップ移動され
る。以上の主走査及び副走査を繰り返し、露光対象物6
3が画像様に露光される。なお、上記では露光ヘッド7
1を原点に復帰させて往路でのみ露光する例について説
明したが、復路においても露光するようにしてもよい。
これにより更に露光時間を短縮できる。
When the exposure head 71 reaches the end of the exposure object 63, the exposure head 71 returns to the origin in the Y-axis direction. Then, the motor controller 81 causes the drive motor 79
When the lead screw 77 rotates at a constant speed, the lead screw 77 also rotates at a constant speed, and as the lead screw 77 rotates,
The flat stage 65 is moved one step in the X-axis direction. The main scan and the sub scan described above are repeated to expose the exposure target 6
3 is imagewise exposed. In the above, the exposure head 7
Although the example in which 1 is returned to the origin and the exposure is performed only on the outward path has been described, the exposure may be performed on the return path.
Thereby, the exposure time can be further shortened.

【0067】この露光装置61によれば、光変調素子ア
レイ95における光変調素子の並設方向に直行する方向
で、光変調素子アレイ95を移動手段によって感光材料
に対し相対移動させることで、紫外線領域に感度を有す
る感光材料を、デジタルデータに基づいて直接走査露光
することができ、この場合においても、高速の露光を可
能にし、かつ長寿命化を実現できる。
According to the exposure device 61, the light modulating element array 95 is moved by the moving means in the direction orthogonal to the direction in which the light modulating elements are arranged in parallel in the light modulating element array 95. A light-sensitive material having sensitivity in a region can be directly scanned and exposed based on digital data, and even in this case, high-speed exposure is possible and a long life can be realized.

【0068】また、高出力の紫外レーザ光源を用いてい
るので、紫外領域に感度を有する露光対象物を,デジタ
ルデータに基づいて直接走査露光することができる。こ
れにより、プロキシミティ方式の露光装置と比べると、
(1)マスクが不要でコストが削減できる。これにより
生産性が向上する他、少量多品種の生産にも好適であ
る、(2)デジタルデータに基づいて直接走査露光する
ので適宜データを補正することができ、高精度な保持機
構、アライメント機構、及び温度安定化機構が不要にな
り、装置のコストダウンを図ることができる、(3)紫
外レーザ光源は超高圧水銀ランプに比べ安価で耐久性に
優れており、ランニングコストを低減することができ
る、(4)紫外レーザ光源は駆動電圧が低く消費電力を
低減できる、という利点がある。
Further, since the high-power ultraviolet laser light source is used, the exposure object having sensitivity in the ultraviolet region can be directly scanned and exposed based on the digital data. As a result, compared to the exposure system of the proximity method,
(1) The cost can be reduced because a mask is unnecessary. As a result, productivity is improved, and it is also suitable for small-lot production of a wide variety of products. (2) Direct scanning exposure is performed based on digital data, so data can be appropriately corrected, and a highly accurate holding mechanism and alignment mechanism are provided. , And the temperature stabilization mechanism is not required, and the cost of the device can be reduced. (3) The ultraviolet laser light source is cheaper and more durable than the ultra-high pressure mercury lamp, and the running cost can be reduced. Yes, (4) the ultraviolet laser light source has an advantage that the driving voltage is low and the power consumption can be reduced.

【0069】更に、可動薄膜側非電極部41及び基板側
非電極部43を有する光変調素子100を用いているた
め、従来の透過光を変調する光学素子(PLZT素子)
や液晶光シャッタ(FLC)を用いる構成に比べて、入
射光の吸収性を格段に少なくすることができ、紫外レー
ザ光に対する耐久性を高めることができる。この結果、
高出力紫外レーザを光源に用い露光を行う場合であって
も、露光装置の信頼性を大幅に向上させることができ
る。また、光変調素子アレイ95は、静電気力を利用し
た電気機械動作により駆動されるため、低い駆動電圧
(数V〜数十V)で、動作速度が数十〔nsec〕程度
まで得られ、上述の耐久性が向上するという効果に加
え、高速露光も可能になる。
Further, since the optical modulator 100 having the movable thin film side non-electrode part 41 and the substrate side non-electrode part 43 is used, the conventional optical element for modulating transmitted light (PLZT element).
Compared with the configuration using a liquid crystal light shutter (FLC) or the like, the absorption of incident light can be significantly reduced, and the durability against ultraviolet laser light can be improved. As a result,
Even when exposure is performed using a high-power ultraviolet laser as a light source, the reliability of the exposure apparatus can be significantly improved. Further, since the light modulation element array 95 is driven by an electromechanical operation utilizing electrostatic force, it is possible to obtain an operation speed up to about several tens [nsec] with a low driving voltage (several V to several tens of V). In addition to the effect that the durability of is improved, high-speed exposure is also possible.

【0070】なお、この実施の形態では、高出力レーザ
光源を、GaN系半導体レーザと合波光学系とで構成し
た紫外レーザ光源とする例について説明したが、高出力
レーザ光源を、以下の(1)〜(5)のいずれかで構成
してもよい。(1)窒化ガリウム系半導体レーザ。好ま
しくは、ブロードエリアの発光領域を有する窒化ガリウ
ム系半導体レーザ。(2)半導体レーザで固体レーザ結
晶を励起して得られたレーザビームを光波長変換素子で
波長変換して出射する半導体レーザ励起固体レーザ。
(3)半導体レーザでファイバを励起して得られたレー
ザビームを光波長変換素子で波長変換して出射するファ
イバレーザ。(4)上記(1)〜(3)のいずれかのレ
ーザ光源又はランプ光源と合波光学系とで構成された高
出力レーザ光源。また、本実施の形態では光源の発光波
長を紫外としたが、赤外、可視、紫外のいずれの波長で
あってもよい。
In this embodiment, an example in which the high power laser light source is an ultraviolet laser light source composed of a GaN semiconductor laser and a multiplexing optical system has been described. You may comprise by any one of 1)-(5). (1) Gallium nitride semiconductor laser. Preferably, a gallium nitride based semiconductor laser having a broad area light emitting region. (2) A semiconductor laser-excited solid-state laser that emits a laser beam obtained by exciting a solid-state laser crystal with a semiconductor laser after wavelength conversion with an optical wavelength conversion element.
(3) A fiber laser in which a laser beam obtained by exciting a fiber with a semiconductor laser is wavelength-converted by an optical wavelength conversion element and emitted. (4) A high-power laser light source including the laser light source or lamp light source according to any one of the above (1) to (3) and a multiplexing optical system. Further, although the emission wavelength of the light source is ultraviolet in the present embodiment, any wavelength of infrared, visible, and ultraviolet may be used.

【0071】また、上記の実施の形態では、光変調素子
アレイ95を通過させた変調光を、ズームレンズ97に
よって焦点調整して露光対象物63に照射する構成を説
明したが、露光装置61は、図16に示すように、光変
調素子アレイ95と感光ドラム111との間に、ロッド
レンズ等の集光レンズ113を配設し、光変調素子アレ
イ95からの変調光をこの集光レンズ113で集光させ
て、露光対象物に露光するものであってもよい。
Further, in the above-mentioned embodiment, the structure in which the modulated light which has passed through the light modulation element array 95 is adjusted in focus by the zoom lens 97 and is irradiated on the exposure object 63, is explained. As shown in FIG. 16, a condenser lens 113 such as a rod lens is arranged between the light modulation element array 95 and the photosensitive drum 111, and the modulated light from the light modulation element array 95 is supplied to this condenser lens 113. Alternatively, the light may be condensed by the above method to expose the object to be exposed.

【0072】このような構成によれば、光変調素子アレ
イ95からの変調光を集光レンズ113で集光して感光
材料に直接露光するので、ほぼ密着露光に近い光学系を
構成できる利点がある。なお、ここでは、移動手段とし
てアウタードラムである感光ドラムを用いる例について
説明したが、これに限らずインナードラム、フラットベ
ッド等の他の移動手段を用いる構成としてもよい。
According to this structure, the modulated light from the light modulation element array 95 is condensed by the condenser lens 113 and is directly exposed on the photosensitive material, so that there is an advantage that an optical system close to contact exposure can be constituted. is there. Here, an example in which the photosensitive drum which is the outer drum is used as the moving means has been described, but the present invention is not limited to this, and another moving means such as an inner drum or a flat bed may be used.

【0073】以上説明した本発明の光変調素子、光変調
素子アレイ、露光装置の好ましい実施形態をまとめる
と、次のようになる。 (1)平面基板に間隔を有して可動薄膜を対向配置する
と共に、前記基板と前記可動薄膜の双方に平面電極を設
け、前記各平面電極への電圧印加により発生する静電気
力によって前記可動薄膜を前記平面基板に対して変位さ
せ、前記可動薄膜を透過する光量を変化させる透過型の
光変調素子であって、前記可動薄膜は、矩形状に形成さ
れ長手方向両端で支持されると共に、前記可動薄膜の長
手方向中央部に前記平面電極を有しない可動薄膜側非電
極部が形成され、前記平面基板は、前記可動薄膜側非電
極部と対面する位置に前記平面電極を有しない基板側非
電極部が形成されていることを特徴とする光変調素子。 (2)平面基板に間隔を有して可動薄膜を対向配置する
と共に、前記基板と前記可動薄膜の双方に平面電極を設
け、前記各平面電極への電圧印加により発生する静電気
力によって前記可動薄膜を前記平面基板に対して変位さ
せ、前記可動薄膜を反射する光量を変化させる反射型の
光変調素子であって、前記可動薄膜は、矩形状に形成さ
れ長手方向両端で支持されると共に、前記可動薄膜の長
手方向中央部に前記平面電極を有しない可動薄膜側非電
極部が形成されていることを特徴とする光変調素子。 (3)前記可動薄膜側非電極部の領域内の一部又は全域
に入射光を照射することを特徴とする前記(1)又は
(2)記載の光変調素子。
The preferred embodiments of the light modulator, the light modulator array, and the exposure apparatus of the present invention described above are summarized as follows. (1) The movable thin films are arranged facing each other with a space on the planar substrate, and planar electrodes are provided on both the substrate and the movable thin film, and the movable thin film is generated by an electrostatic force generated by applying a voltage to each of the planar electrodes. Is a transmissive light modulation element that displaces relative to the planar substrate to change the amount of light transmitted through the movable thin film, wherein the movable thin film is formed in a rectangular shape and is supported at both longitudinal ends, and A movable thin film side non-electrode portion not having the planar electrode is formed at a central portion in the longitudinal direction of the movable thin film, and the planar substrate is a substrate side not having the planar electrode at a position facing the movable thin film side non-electrode portion. An optical modulation element having an electrode portion formed. (2) The movable thin films are arranged facing each other with a space on the planar substrate, and planar electrodes are provided on both the substrate and the movable thin film, and the movable thin film is generated by electrostatic force generated by applying a voltage to each of the planar electrodes. Is a reflection-type light modulation element that displaces with respect to the planar substrate to change the amount of light reflected by the movable thin film, wherein the movable thin film is formed in a rectangular shape and is supported at both longitudinal ends, and An optical modulation element, wherein a movable thin film side non-electrode portion having no plane electrode is formed at a central portion in the longitudinal direction of the movable thin film. (3) The light modulator according to the above (1) or (2), wherein incident light is applied to a part or the whole area of the movable thin film side non-electrode portion.

【0074】(4)前記光変調が、前記平面電極への電
圧印加により可動薄膜を変位させることで、光学的な干
渉効果を発生させるものであることを特徴とする前記
(1)〜(3)のいずれか1つに記載の光変調素子。 (5)前記光変調が、前記平面電極への電圧印加により
可動薄膜を前記平面基板に対して近接させることで、前
記平面基板の全反射面における全反射条件を変化させ、
前記平面基板から前記可動薄膜に光を取り出すものであ
ることを特徴とする前記(1)〜(3)のいずれか1つ
に記載の光変調素子。 (6)前記可動薄膜の長手方向両端近傍に、可動薄膜中
央部の幅より狭い狭小部を形成してなることを特徴とす
る前記(1)〜(5)のいずれか1つに記載の光変調素
子。 (7)前記(1)〜(6)のいずれか1つに記載の光変
調素子を、同一平面上で、前記可動薄膜の長手方向に対
して直交する方向に複数近接させて並設したことを特徴
とする光変調素子アレイ。
(4) The optical modulation is to generate an optical interference effect by displacing the movable thin film by applying a voltage to the planar electrode. The optical modulation element according to any one of 1). (5) The light modulation causes the movable thin film to approach the planar substrate by applying a voltage to the planar electrode, thereby changing the total reflection condition on the total reflection surface of the planar substrate,
The light modulation element according to any one of (1) to (3), wherein light is extracted from the flat substrate to the movable thin film. (6) The light according to any one of (1) to (5), characterized in that a narrow portion narrower than the width of the central portion of the movable thin film is formed near both ends in the longitudinal direction of the movable thin film. Modulation element. (7) A plurality of the light modulation elements according to any one of (1) to (6) are arranged side by side on the same plane in a direction orthogonal to the longitudinal direction of the movable thin film. An optical modulator array characterized by:

【0075】(8)前記(7)の光変調素子アレイと、
前記光変調素子アレイに光ビームを照射するレーザ光源
と、前記光ビームに感光する感光材料に対して、前記光
変調素子アレイからの出射光を、主走査方向及び該主走
査方向に直交する副走査方向へ相対移動させる移動手段
とを備えたことを特徴とする露光装置。 (9)前記(7)の光変調素子アレイと、前記光変調素
子アレイに光ビームを照射するレーザ光源と、前記光変
調素子アレイからの出射光を集光する集光レンズと、前
記光ビームに感光する感光材料に対して、前記集光レン
ズにより集光された出射光を、主走査方向及び該主走査
方向に直交する副走査方向へ相対移動させる移動手段と
を備えたことを特徴とする露光装置。
(8) The light modulation element array of (7) above,
A laser light source that irradiates the light modulation element array with a light beam, and a light-sensitive material that is sensitive to the light beam, emits light from the light modulation element array in a main scanning direction and a sub-direction that is orthogonal to the main scanning direction. An exposure apparatus comprising: a moving unit that relatively moves in the scanning direction. (9) The light modulation element array according to (7), a laser light source that irradiates the light modulation element array with a light beam, a condenser lens that condenses light emitted from the light modulation element array, and the light beam. And a moving unit that relatively moves the emitted light condensed by the condenser lens in the main scanning direction and in the sub-scanning direction orthogonal to the main scanning direction with respect to the photosensitive material that is sensitive to. Exposure equipment.

【0076】[0076]

【発明の効果】以上詳細に説明したように、本発明に係
る光変調素子によれば、可動薄膜を矩形状に形成し、か
つこの可動薄膜の長手方向中央部に、電極を形成しない
可動薄膜側非電極部を設け、透過型の場合は、平面基板
にも、この可動薄膜側非電極部に対面する位置に基板側
非電極部を設け、これら可動薄膜側非電極部及び基板側
非電極部において光変調を行うようにしたので、可動薄
膜及び平面基板の光透過部位又は光反射部位に透明電極
が存在しない構成となり、透明電極を設けた場合に生じ
る光の吸収を皆無にできる。これにより、光強度が強い
場合に生じる透明電極の発熱による変形・破壊等を防止
でき、光変調素子の高速駆動を可能にし、かつ光変調素
子の長寿命化を実現できる。また、反射型の場合は、可
動薄膜に電極を形成しない可動薄膜側非電極部を設ける
ことで、光の吸収を皆無にできる。また、本発明に係る
光変調素子アレイによれば、光変調素子を、同一平面上
で、可動薄膜の長手方向に直行する方向に複数近接させ
て並設したので、光変調素子の並設数と同数の画素数
で、1ライン分を同時に光変調することができる。ま
た、本発明に係る露光装置によれば、光変調素子アレイ
と、光ビームを出射する高出力レーザ光源と、光変調素
子アレイからの出射光を相対移動させる移動手段とを設
けたので、感光材料を直接走査露光することができる。
As described in detail above, according to the optical modulator of the present invention, the movable thin film is formed in a rectangular shape, and no electrode is formed at the center of the movable thin film in the longitudinal direction. Side non-electrode part is provided, and in the case of a transmissive type, a substrate side non-electrode part is also provided on a flat substrate at a position facing the movable thin film side non-electrode part. Since the light modulation is performed in the portion, the transparent electrode does not exist in the light transmitting portion or the light reflecting portion of the movable thin film and the flat substrate, and light absorption that occurs when the transparent electrode is provided can be eliminated. As a result, it is possible to prevent deformation and destruction of the transparent electrode due to heat generation that occurs when the light intensity is high, enable high-speed driving of the light modulation element, and realize a long life of the light modulation element. Further, in the case of the reflection type, by providing the movable thin film side non-electrode portion in which no electrode is formed on the movable thin film, it is possible to eliminate light absorption. Further, according to the optical modulation element array of the present invention, since the plurality of optical modulation elements are arranged side by side in the direction orthogonal to the longitudinal direction of the movable thin film on the same plane, the number of optical modulation elements arranged in parallel is set. With the same number of pixels, it is possible to simultaneously perform optical modulation for one line. Further, according to the exposure apparatus of the present invention, since the light modulation element array, the high-power laser light source for emitting the light beam, and the moving means for relatively moving the light emitted from the light modulation element array are provided, The material can be directly scan exposed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光変調素子の構成を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a configuration of an optical modulator according to the present invention.

【図2】図1に示した光変調素子の平面図である。FIG. 2 is a plan view of the light modulation element shown in FIG.

【図3】図1に示した光変調素子の光透過部の層構成を
示す断面図である。
FIG. 3 is a cross-sectional view showing a layer structure of a light transmitting portion of the light modulation element shown in FIG.

【図4】図1に示した光変調素子の動作状態を説明する
断面図である。
FIG. 4 is a sectional view illustrating an operating state of the light modulation element shown in FIG.

【図5】ブラックライト用低圧水銀ランプの分光特性を
示す説明図である。
FIG. 5 is an explanatory diagram showing spectral characteristics of a low-pressure mercury lamp for black light.

【図6】光変調素子の光強度透過率を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a light intensity transmittance of a light modulation element.

【図7】本発明に係る光変調素子の第2実施形態におけ
る構成を示す断面図である。
FIG. 7 is a sectional view showing a configuration of a light modulation element according to a second embodiment of the present invention.

【図8】図7に示した光変調素子の動作状態を説明する
断面図である。
FIG. 8 is a cross-sectional view explaining an operating state of the light modulation element shown in FIG.

【図9】本発明に係る光変調素子の第3実施形態におけ
る構成と動作状態を示す断面図である。
FIG. 9 is a cross-sectional view showing a configuration and an operating state of a light modulation element according to a third embodiment of the present invention.

【図10】本発明に係る光変調素子の第4実施形態にお
ける構成と動作状態を示す断面図である。
FIG. 10 is a cross-sectional view showing a configuration and an operating state of a light modulator according to a fourth embodiment of the present invention.

【図11】シリコン基板と可動薄膜との間の空隙と、素
子の反射率との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the gap between the silicon substrate and the movable thin film and the reflectance of the element.

【図12】第4実施形態における光変調素子の変形例の
構成と動作状態を示す断面図である。
FIG. 12 is a cross-sectional view showing a configuration and an operating state of a modified example of the light modulation element according to the fourth embodiment.

【図13】可動薄膜に狭小部を設けた光変調素子の変形
例を表す平面図である。
FIG. 13 is a plan view showing a modified example of a light modulation element in which a movable thin film is provided with a narrow portion.

【図14】本発明に係る露光装置の要部構成の概略を表
した斜視図である。
FIG. 14 is a perspective view showing an outline of a main part configuration of an exposure apparatus according to the present invention.

【図15】図14に示した光変調素子アレイの拡大斜視
図である。
15 is an enlarged perspective view of the light modulation element array shown in FIG.

【図16】本発明に係る光変調素子を用いて構成した他
の露光部の拡大斜視図である。
FIG. 16 is an enlarged perspective view of another exposure unit configured using the light modulation element according to the present invention.

【図17】従来の光変調素子の断面図である。FIG. 17 is a cross-sectional view of a conventional light modulation element.

【符号の説明】[Explanation of symbols]

13…シリコン基板 16…ドープ層 15…平面電極 23…平面基板 25…空隙(間隔) 27…可動薄膜 55…基台 31…可動電極(平面電極) 37…固定電極(平面電極) 41…可動薄膜側非電極部 43…基板側非電極部 59…狭小部 61…露光装置 63…露光対象物(感光材料) 69…紫外レーザ光(光ビーム) 90…移動手段 91…紫外レーザ光源(高出力レーザ光源) 95…光変調素子アレイ 100,200,300,400,500…光変調素子 113…集光レンズ 13 ... Silicon substrate 16 ... Dope layer 15 ... Planar electrode 23 ... Planar substrate 25 ... Void (spacing) 27 ... Movable thin film 55 ... base 31 ... Movable electrode (planar electrode) 37 ... Fixed electrode (planar electrode) 41 ... Movable thin film side non-electrode part 43 ... Non-electrode part on substrate side 59 ... Narrow part 61 ... Exposure device 63 ... Object to be exposed (photosensitive material) 69 ... Ultraviolet laser light (light beam) 90 ... Transportation means 91 ... Ultraviolet laser light source (high power laser light source) 95. Light modulation element array 100, 200, 300, 400, 500 ... Optical modulator 113 ... Condensing lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 1/036 H01L 21/30 516D 5F046 1/04 B41J 3/21 V 1/113 H04N 1/04 104Z B Fターム(参考) 2C162 AE28 AE40 AE47 FA06 FA09 FA10 2H041 AA13 AB40 AC06 AZ01 AZ05 AZ08 2H097 AA03 BB01 CA12 CA17 LA10 5C051 AA02 CA07 DA02 DB02 DB04 DB06 DB07 DB22 DB30 DC04 DC07 DE05 5C072 AA03 BA03 HA02 HA11 HB15 XA04 5F046 BA05 CA03 CB19 CB23 CB27─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H04N 1/036 H01L 21/30 516D 5F046 1/04 B41J 3/21 V 1/113 H04N 1/04 104Z B F-term (reference) 2C162 AE28 AE40 AE47 FA06 FA09 FA10 2H041 AA13 AB40 AC06 AZ01 AZ05 AZ08 2H097 AA03 BB01 CA12 CA17 LA10 5C051 AA02 CA07 DA02 DB02 DB04 DB06 DB07 DB22 DB30 DB04 DC07 DE05 5C072 A01 BA03 HA02 A03 BA05 HA02A05 BA03HA02 CB27

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平面基板に間隔を有して可動薄膜を対向
配置すると共に、前記基板と前記可動薄膜の双方に平面
電極を設け、前記各平面電極への電圧印加により発生す
る静電気力によって前記可動薄膜を前記平面基板に対し
て変位させ、前記可動薄膜を透過する光量を変化させる
透過型の光変調素子であって、 前記可動薄膜は、矩形状に形成され長手方向両端で支持
されると共に、前記可動薄膜の長手方向中央部に前記平
面電極を有しない可動薄膜側非電極部が形成され、 前記平面基板は、前記可動薄膜側非電極部と対面する位
置に前記平面電極を有しない基板側非電極部が形成され
ていることを特徴とする光変調素子。
1. A planar thin film is provided with a movable thin film facing each other with a space therebetween, and a flat electrode is provided on both of the substrate and the movable thin film. A transmissive light modulation element that displaces a movable thin film with respect to the flat substrate to change the amount of light transmitted through the movable thin film, wherein the movable thin film is formed in a rectangular shape and is supported at both ends in the longitudinal direction. A movable thin film side non-electrode portion having no planar electrode is formed at a central portion in the longitudinal direction of the movable thin film, and the planar substrate does not have the planar electrode at a position facing the movable thin film side non-electrode portion. An optical modulation element having a side non-electrode portion formed.
【請求項2】 平面基板に間隔を有して可動薄膜を対向
配置すると共に、前記基板と前記可動薄膜の双方に平面
電極を設け、前記各平面電極への電圧印加により発生す
る静電気力によって前記可動薄膜を前記平面基板に対し
て変位させ、前記可動薄膜を反射する光量を変化させる
反射型の光変調素子であって、 前記可動薄膜は、矩形状に形成され長手方向両端で支持
されると共に、前記可動薄膜の長手方向中央部に前記平
面電極を有しない可動薄膜側非電極部が形成されている
ことを特徴とする光変調素子。
2. The movable thin films are arranged opposite to each other with a space on the planar substrate, and planar electrodes are provided on both the substrate and the movable thin film, and the electrostatic force generated by applying a voltage to each of the planar electrodes causes the movable thin films to face each other. A reflective light modulation element that displaces a movable thin film with respect to the flat substrate to change the amount of light reflected by the movable thin film, wherein the movable thin film is formed in a rectangular shape and is supported at both longitudinal ends. A light modulating element characterized in that a movable thin film side non-electrode portion having no planar electrode is formed at a central portion in the longitudinal direction of the movable thin film.
【請求項3】 請求項1又は請求項2記載の光変調素子
を、同一平面上で、前記可動薄膜の長手方向に対して直
交する方向に複数近接させて並設したことを特徴とする
光変調素子アレイ。
3. A light comprising a plurality of the light modulation elements according to claim 1 or 2 arranged in parallel on a same plane in a direction orthogonal to a longitudinal direction of the movable thin film. Modulator array.
【請求項4】 請求項3記載の光変調素子アレイと、 前記光変調素子アレイに光ビームを照射するレーザ光源
と、 前記光ビームに感光する感光材料に対して、前記光変調
素子アレイからの出射光を、主走査方向及び該主走査方
向に直交する副走査方向へ相対移動させる移動手段とを
備えたことを特徴とする露光装置。
4. The light modulation element array according to claim 3, a laser light source that irradiates the light modulation element array with a light beam, and a photosensitive material that is sensitive to the light beam. An exposure apparatus comprising: a moving unit that relatively moves emitted light in a main scanning direction and a sub-scanning direction orthogonal to the main scanning direction.
【請求項5】 請求項3記載の光変調素子アレイと、 前記光変調素子アレイに光ビームを照射するレーザ光源
と、 前記光変調素子アレイからの出射光を集光する集光レン
ズと、 前記光ビームに感光する感光材料に対して、前記集光レ
ンズにより集光された出射光を、主走査方向及び該主走
査方向に直交する副走査方向へ相対移動させる移動手段
とを備えたことを特徴とする露光装置。
5. The light modulation element array according to claim 3, a laser light source that irradiates the light modulation element array with a light beam, a condenser lens that condenses light emitted from the light modulation element array, A moving means for moving the emitted light condensed by the condenser lens in the main scanning direction and in the sub-scanning direction orthogonal to the main scanning direction with respect to the photosensitive material sensitive to the light beam. Characteristic exposure equipment.
JP2001377046A 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same Pending JP2003177336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377046A JP2003177336A (en) 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377046A JP2003177336A (en) 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same

Publications (1)

Publication Number Publication Date
JP2003177336A true JP2003177336A (en) 2003-06-27

Family

ID=19185109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377046A Pending JP2003177336A (en) 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same

Country Status (1)

Country Link
JP (1) JP2003177336A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099061A (en) * 2004-09-27 2006-04-13 Idc Llc System and method of reducing color shift in display
JP2006167985A (en) * 2004-12-13 2006-06-29 Samsung Yokohama Research Institute Co Ltd Optical recording head and image forming apparatus
US7190523B2 (en) 2003-07-07 2007-03-13 Seiko Epson Corporation Wavelength-tunable optical filter
JP2009505162A (en) * 2005-08-19 2009-02-05 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド MEMS device having support structure configured to minimize deformation due to stress, and method of manufacturing the same
US7710636B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Systems and methods using interferometric optical modulators and diffusers
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8040589B2 (en) 2008-02-12 2011-10-18 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8059326B2 (en) 1994-05-05 2011-11-15 Qualcomm Mems Technologies Inc. Display devices comprising of interferometric modulator and sensor
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8111446B2 (en) 2004-09-27 2012-02-07 Qualcomm Mems Technologies, Inc. Optical films for controlling angular characteristics of displays
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
JP2012212158A (en) * 2007-07-02 2012-11-01 Qualcomm Mems Technologies Inc Micro electromechanical device with optical function separated from mechanical and electrical function
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8670171B2 (en) 2010-10-18 2014-03-11 Qualcomm Mems Technologies, Inc. Display having an embedded microlens array
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
WO2014153281A1 (en) * 2013-03-18 2014-09-25 Pixtronix, Inc. Display device
US8861071B2 (en) 2004-09-27 2014-10-14 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8059326B2 (en) 1994-05-05 2011-11-15 Qualcomm Mems Technologies Inc. Display devices comprising of interferometric modulator and sensor
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US7190523B2 (en) 2003-07-07 2007-03-13 Seiko Epson Corporation Wavelength-tunable optical filter
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8111445B2 (en) 2004-02-03 2012-02-07 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8243360B2 (en) 2004-09-27 2012-08-14 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7813026B2 (en) 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US8861071B2 (en) 2004-09-27 2014-10-14 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
JP2006099061A (en) * 2004-09-27 2006-04-13 Idc Llc System and method of reducing color shift in display
US7710636B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Systems and methods using interferometric optical modulators and diffusers
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US8390547B2 (en) 2004-09-27 2013-03-05 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8111446B2 (en) 2004-09-27 2012-02-07 Qualcomm Mems Technologies, Inc. Optical films for controlling angular characteristics of displays
JP2006167985A (en) * 2004-12-13 2006-06-29 Samsung Yokohama Research Institute Co Ltd Optical recording head and image forming apparatus
JP4559838B2 (en) * 2004-12-13 2010-10-13 株式会社サムスン横浜研究所 Optical recording head and image forming apparatus
JP2009505162A (en) * 2005-08-19 2009-02-05 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド MEMS device having support structure configured to minimize deformation due to stress, and method of manufacturing the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US8368997B2 (en) 2007-07-02 2013-02-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
JP2012212159A (en) * 2007-07-02 2012-11-01 Qualcomm Mems Technologies Inc Micro electromechanical device with optical function separated from mechanical and electrical function
JP2012212158A (en) * 2007-07-02 2012-11-01 Qualcomm Mems Technologies Inc Micro electromechanical device with optical function separated from mechanical and electrical function
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8040589B2 (en) 2008-02-12 2011-10-18 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US8670171B2 (en) 2010-10-18 2014-03-11 Qualcomm Mems Technologies, Inc. Display having an embedded microlens array
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
WO2014153281A1 (en) * 2013-03-18 2014-09-25 Pixtronix, Inc. Display device

Similar Documents

Publication Publication Date Title
JP2003177336A (en) Optical modulating element, optical modulating element array, and exposure device using the same
JP3893421B2 (en) Light modulation element, light modulation element array, and exposure apparatus using the same
US6930816B2 (en) Spatial light modulator, spatial light modulator array, image forming device and flat panel display
US6900901B2 (en) Image recording device
US6953268B2 (en) Light modulating device and exposure apparatus using the same
US20020180944A1 (en) Exposure device
KR100280832B1 (en) Programmable mask for lithography
US20060066820A1 (en) Reflection-type light modulation array device and image forming apparatus
US7199772B2 (en) Optical switching element, and switching device and image display apparatus each using the optical switching element
US7564610B2 (en) Light control device and light control system using same
US9039201B2 (en) Display element, display device, and projection display device
US7253882B2 (en) Exposure method and exposure system
JPH11254752A (en) Exposing element
US5140653A (en) Optical head for a laser printer
US6873401B2 (en) Reflective liquid crystal display lithography system
US6907183B1 (en) Display device and display method
KR19990043694A (en) Actuated Mirror Array Optics
JP3101245B2 (en) Light head
JP2006285191A (en) Optical scanner, image forming apparatus using the same, and printer
JPH06347785A (en) Optical waveguide member and liquid crystal display device using optical waveguide member
WO2011049004A1 (en) Spatial light modulator, optical apparatus, and exposure apparatus
JPH11174392A (en) Optical modulating element
JP2001056506A (en) Photographic printer and photographic processor provided with the same
JPH08192531A (en) Use of optical head for laser printer
JPH08160625A (en) Photolithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070307