JP2003177336A - Optical modulating element, optical modulating element array, and exposure device using the same - Google Patents

Optical modulating element, optical modulating element array, and exposure device using the same

Info

Publication number
JP2003177336A
JP2003177336A JP2001377046A JP2001377046A JP2003177336A JP 2003177336 A JP2003177336 A JP 2003177336A JP 2001377046 A JP2001377046 A JP 2001377046A JP 2001377046 A JP2001377046 A JP 2001377046A JP 2003177336 A JP2003177336 A JP 2003177336A
Authority
JP
Japan
Prior art keywords
light
movable
electrode
modulation element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001377046A
Other languages
Japanese (ja)
Inventor
Mitsuru Sawano
充 沢野
Original Assignee
Fuji Photo Film Co Ltd
富士写真フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd, 富士写真フイルム株式会社 filed Critical Fuji Photo Film Co Ltd
Priority to JP2001377046A priority Critical patent/JP2003177336A/en
Publication of JP2003177336A publication Critical patent/JP2003177336A/en
Application status is Pending legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-output and long-life optical modulating element which absorbs less light by itself and can be driven fast, an optical modulating element array, and an exposure device using it. <P>SOLUTION: The optical modulating element 100 which varies the quantity of light transmitted through a movable thin film 27 by displacing the movable thin film 27 over a plane substrate 23 with an electrostatic force is characterized by that the movable thin film 27 is formed rectangularly and supported at both lengthwise ends, a movable thin film non-electrode part 41 which does not have no plane electrode is formed at the lengthwise center part of the movable thin film 27, and a substrate-side non-electrode part 43 which has no plane electrode is formed at a position facing the movable thin film side non-electrode part 41 on the plane substrate 23. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、静電気力で可動薄膜を変位させることにより、可動薄膜を透過又は反射する光の量を変化させて、光を変調する光変調素子及び光変調素子アレイ並びにそれを用いた露光装置に関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention is, by displacing the movable film by electrostatic force, by changing the amount of light transmitted through or reflected movable film, modulating the light optical modulation elements and the light modulation element arrays as well as to an exposure apparatus using the same. 【0002】 【従来の技術】光の振幅、位相、周波数を時間的に変化させる制御素子に光変調素子がある。 [0002] The amplitude of the Prior Art Optical phase, there is an optical modulation element to the control element to the time-varying frequency. 光変調素子は、光を透過させる物質の屈折率を、物質に印加する外場によって変化させ、屈折、回折、吸収、散乱等等の光学現象を介して、最終的にこの物質を透過又は反射する光の強度を制御する。 Light modulation element, the refractive index of a material that transmits light, is changed by an external field applied to the material, refraction, diffraction, absorption, via the optical phenomena such as scattering, etc., finally transmit or reflect the substance to control the intensity of the light. この一つに、マイクロマシニングにより作製された可動薄膜を、静電気力により機械的動作させることで光変調する電気機械的な光変調素子が知られている。 This one, the movable thin film fabricated by micromachining, electro-mechanical optical modulation element is known that optical modulation by mechanically operated by an electrostatic force. この光変調素子としては、例えば図17に示すように、透明な電極1とダイヤフラム3からなる可動薄膜5を、支持部7を介して、固定電極9を有する平面基板11上に架設したものがある。 As the optical modulation element, for example, as shown in FIG. 17, the movable thin film 5 made of a transparent electrode 1 and the diaphragm 3, through the support part 7, is those laid on a planar substrate 11 having a fixed electrode 9 is there. 【0003】この光変調素子では、両電極1,9間に所定の電圧を印加することで電極1,9間に静電気力を発生させ、可動薄膜5を固定電極9に向かって撓ませる。 [0003] In this optical modulation device generates an electrostatic force between the electrodes 1,9 by applying a predetermined voltage between the electrodes 1,9, to deflect toward the movable thin film 5 on the fixed electrode 9.
これに伴って素子自体の光学的特性が変化し(例えばファブリペロー干渉を利用して光変調部から出射される光の強度を制御し)、光変調素子は光を透過する透過状態となる。 This optical properties of the element itself changes with (for example, using a Fabry-Perot interferometer to control the intensity of the light emitted from the light modulating section), the light modulating element is a transmissive state that transmits light. 一方、印加電圧をゼロにすることで可動薄膜5 On the other hand, the movable thin film 5 by the applied voltage to zero
が弾性復帰し、光変調素子は光を遮光する遮光状態となる。 There elastically restored, the light modulating element is a light blocking state for blocking light. このようにして光変調が行われる。 In this way, the light modulation is performed. この種の光変調素子によれば、静電誘導により可動薄膜5を駆動するので、従来の液晶型光変調器に比べ、高速な応答が可能になる。 According to this type of optical modulation element, since driving the movable film 5 by electrostatic induction, compared with the conventional liquid crystal optical modulator, allowing fast response. 【0004】 【発明が解決しようとする課題】上記した従来の光変調素子は、可動薄膜に静電気力を発生させるため、一般的に可動薄膜と平面基板との重合部の全面に透明導電膜を設けている。 Conventional optical modulation element described above for [SUMMARY OF THE INVENTION] In order to generate an electrostatic force to the movable film, generally transparent conductive layer on the entire surface of the overlapping portion between the movable film and the planar substrate It is provided. しかしながら、透明導電膜は、導電率が金属に比べて2桁ほど小さい。 However, the transparent conductive film, conductivity about two orders of magnitude smaller than that of metal. このため、応答性よく静電気力を発生できず、高速駆動の障害となった。 Therefore, it can not generate a good responsiveness electrostatic force, and an obstacle to high-speed driving. また、わずかながら光を吸収するため、光強度が強い場合には透明導電膜が発熱して変形・破壊等を起こす問題がある。 Further, in order to slightly absorb light, when the light intensity is high, there is a problem of causing deformation and destruction by heating the transparent conductive film.
一方、KWGoossen, etal., IEEE Photonics Tech. Let On the other hand, KWGoossen, etal., IEEE Photonics Tech. Let
ters Vol.6, No.9, P.1119, (1994).に、可動薄膜の光透過部に電極を設けない光変調素子の構成が開示されているが、この構造は反射で使用するために、平面基板が不透明であり、透過による光変調には使用することができない。 ters Vol.6, No.9, P.1119, (1994)., because although configuration of the light modulation element is not provided with an electrode on the light transmitting portion of the movable film is disclosed, this structure is used in reflection in a non-transparent planar substrate, the optical modulation by transmission can not be used. また、この光変調素子は、可動薄膜を正方形で形成し、その四辺に電極を配設するため、複数の光変調素子を一次元や二次元に配列した場合、隣接する光変調素子の光透過部同士の間に二つの電極が介在することになり、露光装置や表示装置等に用いた場合には画素が粗くなる問題を有していた。 Further, the light modulation element forms a movable film in a square, for disposing the electrodes on the four sides, when arranging a plurality of light modulator elements in a one-dimensional or two-dimensional, light transmission of the adjacent light modulating elements will be two electrodes is interposed between the parts to each other, when used in an exposure apparatus or a display apparatus or the like has a problem in which the pixel becomes rough. 【0005】本発明は上記状況に鑑みてなされたもので、素子自体の光吸収が少なく、高速駆動が可能な高出力、長寿命の光変調素子及び光変調素子アレイ並びにそれを用いた露光装置を提供することを目的とする。 [0005] The present invention has been made in view of the above circumstances, there is little light absorption element itself, high-speed driving is possible high power, long life light modulation element and the optical modulation element array and an exposure apparatus using the same an object of the present invention is to provide a. 【0006】 【課題を解決するための手段】上記目的を達成するための本発明に係る請求項1記載の静電駆動素子は、平面基板に間隔を有して可動薄膜を対向配置すると共に、前記基板と前記可動薄膜の双方に平面電極を設け、前記各平面電極への電圧印加により発生する静電気力によって前記可動薄膜を前記平面基板に対して変位させ、前記可動薄膜を透過する光量を変化させる透過型の光変調素子であって、前記可動薄膜は、矩形状に形成され長手方向両端で支持されると共に、前記可動薄膜の長手方向中央部に前記平面電極を有しない可動薄膜側非電極部が形成され、前記平面基板は、前記可動薄膜側非電極部と対面する位置に前記平面電極を有しない基板側非電極部が形成されていることを特徴とする。 [0006] Means for Solving the Problems An electrostatic driving device according to claim 1, wherein according to the present invention for achieving the above object, the movable film while opposed at a distance to the flat substrate, the planar electrode provided on both of the movable thin film and the substrate, the said movable film by the electrostatic force generated by applying a voltage to each of the planar electrode is displaced relative to the planar substrate, it changes the amount of light transmitted through the movable film a transmission type optical modulation element for the movable thin film, with a rectangular shape and is supported at both longitudinal ends, a longitudinal central portion movable thin film side non-electrode not having plane electrodes of said movable film parts are formed, the planar substrate, wherein said substrate-side non-electrode portion not having planar electrode at a position facing the movable thin film side non-electrode portion is formed. 【0007】この光変調素子では、可動薄膜を矩形状に形成し、この可動薄膜の長手方向中央部に電極を形成しない可動薄膜側非電極部を設けると共に、平面基板にも、この可動薄膜側非電極部に対面する基板側非電極部を設けることで、可動薄膜及び平面基板の光透過部位に透明電極を設ける必要がなくなため、透明電極による光の吸収を皆無にできる。 [0007] In this optical modulation element forms a movable film in a rectangular shape, the electrode provided with a movable thin film side non-electrode portion that does not form in the longitudinal center of the movable thin film, in a planar substrate, the movable membrane side by providing the substrate-side non-electrode portion facing the non-electrode portion, because it is not necessary to provide a transparent electrode on the light transmitting portion of the movable film and the planar substrate can be nil absorption of light by the transparent electrode. これにより、光強度が強い場合に生じる透明電極の発熱による変形・破壊等が防止でき、高出力化と長寿命化を実現することができる。 Thus, such deformation and damage caused by heat of the transparent electrodes caused when the light intensity is high can prevent, it is possible to realize a high output and a long service life. また、可動薄膜の構成の簡略化によって光変調素子の高速駆動が可能になる。 Further, it is possible to high-speed driving of the optical modulator by simplifying the movable thin film structure. 【0008】請求項2記載の光変調素子は、平面基板に間隔を有して可動薄膜を対向配置すると共に、前記基板と前記可動薄膜の双方に平面電極を設け、前記各平面電極への電圧印加により発生する静電気力によって前記可動薄膜を前記平面基板に対して変位させ、前記可動薄膜を反射する光量を変化させる反射型の光変調素子であって、前記可動薄膜は、矩形状に形成され長手方向両端で支持されると共に、前記可動薄膜の長手方向中央部に前記平面電極を有しない可動薄膜側非電極部が形成されていることを特徴とする。 [0008] Light modulation element according to claim 2, the movable film while opposed at a distance to the flat substrate, a planar electrode provided on both of the movable thin film and the substrate, the voltage to each planar electrode by an electrostatic force generated by applying to displace the movable thin film with respect to the planar substrate, an optical modulation element of the reflection type for changing the amount of light that reflects the movable film, the movable film is formed in a rectangular shape while being supported by the longitudinal ends, characterized in that no movable thin film side non-electrode portion said flat electrode in a longitudinal direction central portion of the movable thin film is formed. 【0009】この光変調素子では、可動薄膜を矩形状に形成し、この可動薄膜の長手方向中央部に電極を形成しない可動薄膜側非電極部を設けることで、可動薄膜の光反射部位に透明電極を設ける必要がなくなため、透明電極による光の吸収を皆無にできる。 [0009] In this optical modulation element forms a movable film in a rectangular shape, by providing the movable thin film side non-electrode part not forming an electrode at the center in the longitudinal direction of the movable film, transparent to the light reflecting portion of the movable film because it is not necessary to provide the electrode can nil absorption of light by the transparent electrode. これにより、光強度が強い場合に生じる透明電極の発熱による変形・破壊等が防止でき、高出力化と長寿命化を実現することができる。 Thus, such deformation and damage caused by heat of the transparent electrodes caused when the light intensity is high can prevent, it is possible to realize a high output and a long service life. また、可動薄膜の構成の簡略化によって光変調素子の高速駆動が可能になる。 Further, it is possible to high-speed driving of the optical modulator by simplifying the movable thin film structure. 【0010】なお、請求項1及び請求項2記載の光変調素子において、前記可動薄膜側非電極部の領域内の一部又は全域に入射光を照射するようにすれば、電極のない可動薄膜側非電極部の領域内の一部又は全域に入射光を照射するので、光利用効率を高めた構成にできる。 [0010] In the optical modulation device according to claim 1 and claim 2, wherein, when to irradiate the incident light to a part or the whole of the area of ​​the movable thin film side non-electrode portions, no electrode moving film since irradiation with incident light in a part or the whole of the area of ​​the side non-electrode portions, can the configuration with enhanced light use efficiency. また、請求項1〜2の光変調素子の光変調を、前記平面電極への電圧印加により可動薄膜を変位させるようにすれば、光学的な干渉効果を発生させることができる。 Further, the optical modulation of the optical modulator according to claim 1 or 2, by applying voltage to the planar electrode be caused to displace the movable thin film, it is possible to generate optical interference effects. この光変調素子では、可動薄膜の電極と平面基板の電極に対して電圧印加することにより、可動薄膜の電極と平面基板の電極との間に作用する静電気力により可動薄膜が変位する。 In this optical modulation element, by applying a voltage to the electrode and the planar substrate electrode of the movable film, the movable film is displaced by an electrostatic force acting between the electrode and the planar substrate electrode of the movable film. この際、例えばファブリペロー干渉の場合では、可動薄膜と平面基板との間で繰り返し反射と透過が繰り返され、平面基板と可動薄膜との間隔の略整数倍の波長のみが光変調素子を透過する、所謂多層膜干渉効果が得られる。 At this time, in the case of, for example, the Fabry-Perot interferometer, repeating reflection and transmission between the movable film and the planar substrate is repeated, only the wavelength of approximately an integral multiple of the distance between the planar substrate and the movable film is transmitted through the light modulation element , resulting so-called multi-layer film interference effects. この透過光が変調光として利用される。 The transmitted light is utilized as modulated light. 【0011】さらに、請求項1〜2の光変調素子の光変調を、前記平面電極への電圧印加により可動薄膜を前記平面基板に対して近接させることで、前記平面基板の全反射面における全反射条件を変化させ、前記平面基板から前記可動薄膜に光を取り出すことができる。 Furthermore, the optical modulation of the optical modulator according to claim 1 or 2, by applying voltage to the planar electrode that is closer to the movable film relative to the planar substrate, the total in the total reflection surface of the planar substrate the reflection condition is changed, it is possible to extract light from the planar substrate to the movable film. この光変調素子では、可動薄膜の電極と平面基板の電極に対して電圧印加することにより、可動薄膜の電極と平面基板の電極との間に作用する静電気力により可動薄膜が変位する。 In this optical modulation element, by applying a voltage to the electrode and the planar substrate electrode of the movable film, the movable film is displaced by an electrostatic force acting between the electrode and the planar substrate electrode of the movable film. この際、例えば平面基板に入射した光は全反射界面における全反射条件が変化して可動薄膜に導光されて光が取り出される。 In this case, for example, light incident on the planar substrate the total reflection condition in the total reflection interface is guided is changed to the movable film light is taken out. 一方、電圧が印加されなくなると、可動薄膜が元の位置に弾性復帰して非変位状態となり、平面基板に入射した光は全反射面で全反射し、可動薄膜には導光されず、反射光となって再び平面基板から出射する。 On the other hand, when the voltage is not applied, in a non-displacement state the movable film is elastically restored to the original position, and the total reflection light incident on the planar substrate in the total reflection surface is not guided to the movable film, the reflection again emitted from the planar substrate becomes light. 【0012】そして、請求項1及び請求項2の光変調素子を、前記可動薄膜の長手方向両端近傍に、可動薄膜中央部の幅より狭い狭小部を形成すれば、この狭小部が変形することにより、均一幅の可動薄膜を変形させる場合に比べ、可動薄膜の駆動力が低減し、駆動速度の高速化が可能になる。 [0012] Then, a light modulation element according to claim 1 and claim 2, near both longitudinal ends of the movable film, by forming the narrower narrow portion than the width of the movable film center portion, that the narrow portion is deformed Accordingly, compared with the case of deforming the movable film of uniform width, it reduces the driving force of the movable thin film allows faster driving speed. 【0013】請求項3記載の光変調素子アレイは、請求項1又は請求項2記載の光変調素子を、同一平面上で、 [0013] Light modulation element array according to claim 3, wherein the light modulation element according to claim 1 or claim 2, wherein, on the same plane,
前記可動薄膜の長手方向に対して直交する方向に複数近接させて並設したことを特徴とする。 Characterized by being arranged by a plurality close to a direction perpendicular to the longitudinal direction of the movable film. 【0014】この光変調素子アレイでは、光変調素子を同一平面上で、可動薄膜の長手方向に直行する方向に複数近接させて並設することで、光変調素子の並設数と同数の画素数で、1ライン分を同時に光変調することができる。 [0014] In this optical modulation element array, the light modulation elements on the same plane, by juxtaposed by more close to the direction perpendicular to the longitudinal direction of the movable film, parallel 設数 same number of pixels of the light modulation element by the number, it is possible to simultaneously optically modulating the one line. 【0015】請求項4記載の露光装置は、請求項3記載の光変調素子アレイと、前記光変調素子アレイに光ビームを照射するレーザ光源と、前記光ビームに感光する感光材料に対して、前記光変調素子アレイからの出射光を主走査方向及びこれと直交する副走査方向に相対移動させる移動手段とを備えたことを特徴とする。 The exposure apparatus according to claim 4 is an optical modulation element array according to claim 3 wherein a laser light source for irradiating a light beam to the light modulator array, the photosensitive material sensitive to the light beam, characterized by comprising a moving means for relatively moving in the sub-scanning direction perpendicular to light emitted from the light modulator array and the main scanning direction and which. 【0016】この露光装置では、請求項3記載の光変調素子アレイを用い、この光変調素子アレイにレーザ光源からの光を照射し、光変調素子から出射される光を移動手段によって感光材料に対して相対移動させつつ感光材料に照射することで、感光材料を直接走査露光することができる。 [0016] In this exposure apparatus, using an optical modulation element array according to claim 3, wherein irradiated light from a laser light source to the optical modulation element array, the light emitted from the optical modulation element to the photosensitive material by moving means by irradiating the photosensitive material while relatively moving against, it is possible to scan and expose the photosensitive material directly. 【0017】請求項5記載の露光装置は、請求項3記載の光変調素子アレイと、前記光変調素子アレイに光ビームを照射するレーザ光源と、前記光変調素子アレイからの出射光を集光する集光レンズと、前記光ビームに感光する感光材料に対して、前記集光レンズにより集光された出射光を、主走査方向及び該主走査方向に直交する副走査方向へ相対移動させる移動手段とを備えたことを特徴とする。 The exposure apparatus according to claim 5, wherein includes a light modulation element array according to claim 3 wherein a laser light source for irradiating a light beam to the light modulator array, condensing the light emitted from the light modulator array moving the condenser lens, the photosensitive material sensitive to the light beam, the emitted light collected by the condenser lens, are relatively moved in the sub-scanning direction perpendicular to the main scanning direction and the main scanning direction characterized by comprising a means. 【0018】この露光装置では、請求項3記載の光変調素子アレイを用い、この光変調素子アレイにレーザ光源からの光を照射し、光変調素子から出射される光を集光レンズにより集光させて、この出射光を移動手段によって感光材料に対して相対移動させつつ感光材料へ照射することで、感光材料を直接走査露光することができ、ほぼ密着露光に近い光学系を構成できる。 [0018] In this exposure apparatus, using an optical modulation element array according to claim 3, wherein the the optical modulation element array is irradiated with light from a laser light source, condensing the light emitted from the light modulating device by the condenser lens by, by irradiating the photosensitive material by moving means of this emitted light onto the photosensitive material while relatively moving the photosensitive material can be scanned and exposed directly to, it is configured optical system nearly contact exposure. 【0019】 【発明の実施の形態】以下、本発明に係る光変調素子及び光変調素子アレイ並びにそれを用いた露光装置の好適な実施の形態を、図面を参照して詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, a preferred embodiment of the optical modulation element and the optical modulation element array and an exposure apparatus using the same according to the present invention will be described in detail with reference to the drawings. 図1 Figure 1
は本発明に係る光変調素子の構成を示す断面図、図2は図1に示した光変調素子の平面図、図3は図1に示した光透過部の層構成を示す断面図、図4は図1に示した光変調素子の動作状態を説明する断面図である。 Sectional view illustrating the construction of an optical modulation device according to the present invention, FIG. 2 is a plan view of the optical modulator shown in FIG. 1, FIG. 3 is a sectional view showing the layer structure of the light transmitting unit shown in FIG. 1, FIG. 4 is a sectional view illustrating the operation state of the light modulation element shown in FIG. 【0020】図1に示すように、光変調素子100は、 As shown in FIG. 1, the optical modulation element 100,
透過型の光変調素子であって、変調する光に対して透明な平面基板23と、この平面基板23の上面に、犠牲層の形成・除去等の方法によって形成された間隔(空隙) A transmission type optical modulation element, a transparent planar substrate 23 the modulated light, the upper surface of the planar substrate 23, which is formed by a method such as formation and removal of the sacrificial layer spacing (gap)
25を隔てて平行に対向配置される可動薄膜27とを基本構成として有している。 And a movable thin film 27 as a basic configuration in parallel to face each other across a 25. 可動薄膜27は、弾性を有し、矩形状に形成され、長手方向両端部が平面基板23 Movable film 27 has elasticity, is formed in a rectangular shape, both longitudinal end portions planar substrate 23
上に支持部29を介して支持される。 It is supported via a support section 29 above. 光変調素子100 Light modulation element 100
は、図2に示すように複数の可動薄膜27が例えば同一平面上で長手方向に直行する方向に近接して、1次元のアレイ状に形成される。 Is close to the direction perpendicular to the longitudinal direction by a plurality of the movable film 27 is, for example, in the same plane as shown in FIG. 2, is formed in the shape one-dimensional array. 【0021】平面基板23上に立設された支持部29 The support portion 29 erected on the planar substrate 23
は、例えばシリコン酸化物、シリコン窒化物、セラミック、樹脂等からなる。 Is, for example, silicon oxide, silicon nitride, ceramics, made of a resin or the like. 支持部29の上端は、上記の可動薄膜27と接合される。 Upper end of the support portion 29 is joined with the movable film 27. 可動薄膜27は、平面電極(可動電極)31、ダイヤフラム33を順次積層した構造となっている。 Movable film 27 is flat electrode (movable electrode) 31, and has a stacked sequentially diaphragm 33. 可動電極31は、金属或いは導電性を有する金属化合物で構成される。 Movable electrode 31 is composed of a metal compound having a metal or conductive. この金属としては、金、 As the metal, gold,
銀、パラジウム、亜鉛、アルミニウム、銅等を用いることができ、金属化合物としては、これらの化合物を用いることができる。 Silver, palladium, zinc, can be used aluminum, copper or the like, the metal compound can be used those compounds. ダイヤフラム33には、セラミック、 To the diaphragm 33, ceramic,
樹脂等の他、ポリシリコン等の半導体、絶縁性のシリコン酸化物、シリコン窒化物、各種酸化物、窒化物等を用いることができる。 Other resins such as, semiconductor such as polysilicon, insulating silicon oxide, silicon nitride, various oxides, may be a nitride or the like. 【0022】一方、平面基板23は、ガラス基板35、 [0022] On the other hand, a planar substrate 23, glass substrate 35,
平面電極(固定電極)37、絶縁膜39を順次積層した構造となっている。 Flat electrode (fixed electrode) 37, and has a stacked sequentially the insulating film 39. この固定電極37としても、可動電極31と同様なアルミ等の金属薄膜を用いることができる。 Even the fixed electrode 37 may be made of a metal thin film such as similar aluminum with the movable electrode 31. 絶縁膜39には、ダイヤフラム33と同様なセラミック、樹脂等を用いることができる。 The insulating film 39, the same ceramic as the diaphragm 33, it is possible to use a resin or the like. また、ガラス基板35は、この他にも例えばポリエチレンテレフタレート、ポリカーボネート等の樹脂等を用いることができる。 Further, the glass substrate 35, In addition, for example polyethylene terephthalate, it is possible to use a resin such as polycarbonate or the like. 【0023】ところで、可動薄膜27の長手方向中央部には、この可動薄膜27に形成した可動電極31を長手方向両端に分断する可動薄膜側非電極部41を設けている。 By the way, in the longitudinal center of the movable thin film 27, and a movable thin film side non-electrode portion 41 that divides the movable electrode 31 formed on the movable film 27 at both ends in the longitudinal direction thereof. また、平面基板23にも、この可動薄膜側非電極部41に対面して基板側非電極部43を設けている。 Also, the planar substrate 23 is provided with a substrate-side non-electrode portion 43 facing to the movable thin film side non-electrode portion 41. 基板側非電極部43の可動薄膜27側は絶縁膜39で形成されるが、特にこの部分には、変調する光に対して透明な材料で形成することが好ましい。 Although the movable film 27 side of the substrate-side non-electrode portions 43 are formed in the insulating film 39, particularly in this portion, it is preferably formed of a material transparent to modulation light. これら可動薄膜側非電極部41及び基板側非電極部43は、図2に示すように、電極が除去されている。 These movable film side non-electrode portions 41 and the substrate-side non-electrode portion 43, as shown in FIG. 2, the electrodes are removed. 光変調素子100は、この可動薄膜側非電極部41及び基板側非電極部43が光透過部となって光変調を行う。 Light modulation element 100 performs light modulation movable thin film side non-electrode portions 41 and the substrate-side non-electrode portion 43 becomes the light transmitting unit. なお、図2中の各部位における寸法は、例えばa=150μm、b=20μm、c The size of each part in FIG. 2, for example, a = 150μm, b = 20μm, c
=50μm程度で形成される。 = A thickness of about 50 [mu] m. 【0024】また、本実施形態の光変調素子100においては、可動電極31の可動薄膜側非電極部41には可動反射膜45が形成され、平面基板23の基板側非電極部43には固定反射膜47が形成される。 [0024] In the optical modulator device 100 of this embodiment, the movable reflective layer 45 is formed on the movable thin film side non-electrode portion 41 of the movable electrode 31, fixed to the substrate side non-electrode portions 43 of the flat substrate 23 reflective film 47 is formed. これら可動反射膜45及び固定反射膜47は、図3に示すように、蒸着により形成したZnO 2 /SiO 2の多層膜(例えば各7層の多層膜)からなる。 These movable reflection film 45 and the fixed reflection film 47, as shown in FIG. 3, consisting of ZnO 2 / SiO 2 multilayer film formed by vapor deposition (for example, each seven layers of the multilayer film). これら可動反射膜45及び固定反射膜47は、多層膜干渉効果により所謂ハーフミラーとしての機能を有する。 These movable reflection film 45 and the fixed reflection film 47 has a function as a so-called half-mirror of a multilayer film interference effects. 【0025】上記光変調素子100では、図4に示すように、可動薄膜27の可動電極31と、平面基板23の固定電極37とに駆動電圧V ONが印加されることにより、可動薄膜27の可動電極31と平面基板23の固定電極37との間に作用する静電気力により、可動薄膜2 [0025] In the optical modulator device 100, as shown in FIG. 4, the movable electrode 31 of the movable film 27, by the driving voltage V ON to the fixed electrode 37 of the planar substrate 23 is applied, the movable film 27 by an electrostatic force acting between the fixed electrode 37 of the movable electrode 31 and the flat substrate 23, the movable film 2
7は平面基板23側への吸引力によって弾性変形され、 7 is elastically deformed by the suction force to the planar substrate 23 side,
平面基板23上面に近接するように変位する。 It displaced so as to approach the planar substrate 23 upper surface. 一方、静電気力による吸引力がなくなると、可動薄膜27の弾性復帰力によって再び中央部が空隙25を隔てた位置に浮上して配置される。 On the other hand, when the suction force due to the electrostatic force is eliminated, is arranged emerged in a position central again across the air gap 25 by an elastic restoring force of the movable film 27. 光変調素子100は、この可動薄膜27の変位又は弾性復帰により、特定の波長域の光を可干渉性により透過又は反射させる。 Light modulation element 100, the displacement or elastic return of the movable film 27, transmitted or is reflected by the coherence light of a specific wavelength range. 【0026】ここで、本実施形態の光変調素子100の可動反射膜45と固定反射膜47について詳細に説明する。 [0026] Here, the movable reflective layer 45 of the optical modulator 100 of this embodiment for a fixed reflection film 47 will be described in detail. 光変調素子100は、可動薄膜27の変位により、 Light modulation element 100, the displacement of the movable film 27,
可動反射膜45,47からなる平行ミラー間の距離を異ならせ、平行ミラー間で繰り返し反射させた合成波の強度を変化させることによって、光を透過又は反射させている。 At different distances between the parallel mirrors consisting of the movable reflective layer 45 and 47, and by varying the intensity of the composite wave is repeatedly reflected between the parallel mirrors, to transmit or reflect light. 即ち、ファブリペロー干渉を利用した光変調を行っている。 In other words, doing a light modulation using a Fabry-Perot interferometer. 平行ミラー間で反射と透過が繰り返されるファブリペロー干渉においては、空隙の略整数倍の波長のみが光変調素子100を透過するようになる。 In Fabry-Perot interference is repeated reflection and transmission between the parallel mirrors, only the wavelength of approximately an integral multiple of the gap is to transmit light modulation element 100. 【0027】ファブリペロー干渉では、入射光線が、反射と透過を繰り返して多数の光線に分割され、これらは互いに平行となる。 [0027] In the Fabry-Perot interferometer, incident light is divided into a number of beams by repeating transmission and reflection, they are parallel to each other. 透過光線は、無限遠において重なり合い干渉する。 Transmitted light interferes overlap in infinity. 面の垂線と入射光線のなす角をθとすれば、隣り合う二光線間の光路差はx=nt・cosθで与えられる。 If the angle of the perpendicular line and the incident light surface as theta, the optical path difference between two adjacent beams is given by x = nt · cosθ. 但し、nは二面間の屈折率、tは間隔である。 Here, n is the refractive index between the two surfaces, t is the spacing. 光路差xが波長λの整数倍であれば透過線は互いに強め合い、半波長の奇数倍であれば互いに打ち消し合う。 Transmission line if the integral multiple of the optical path difference x is the wavelength λ is mutually reinforce each other cancel each other if an odd multiple of a half wavelength. 即ち、反射の際の位相変化がなければ、 2nt・cosθ=mλ …(1) で透過光最大となり、 2nt・cosθ=(2m+1)λ/2 …(2) で透過光最小となる。 That is, if there is no phase change upon reflection, becomes transmitted light up to 2nt · cosθ = mλ ... (1), the transmitted light minimum 2nt · cosθ = (2m + 1) λ / 2 ... (2). 但し、mは整数である。 However, m is an integer. 【0028】ここで、光変調素子100を用い、例えばブラックライト用紫外線ランプ(低圧水銀ランプ)からの出射光を光変調する場合について説明する。 [0028] Here, using the light modulation element 100, for example, light emitted from the black light ultraviolet ray lamps (low-pressure mercury lamp) is described for the case of optical modulation. 図5はブラックライト用低圧水銀ランプの分光特性を示す説明図、図6は光変調素子の光強度透過率を示す説明図である。 Figure 5 is an explanatory view showing the spectral characteristics of the low-pressure mercury lamp black light, FIG. 6 is an explanatory view showing a light intensity transmittance of the light modulation element. 【0029】低圧水銀ランプの内壁にブラックライト用の蛍光体を塗布した場合、その発光紫外線の分光特性は、図5のようになる。 [0029] When coated with phosphor for black light on the inner wall of the low-pressure mercury lamp, the spectral characteristics of the light-emitting ultraviolet is as shown in FIG. 即ち、360nm付近に中心波長λ 0を持つ。 In other words, having a central wavelength λ 0 in the vicinity of 360nm. この紫外線をバックライト光として使用する。 Using this ultraviolet as backlight light. 【0030】ここで、光変調素子100において、非駆動電圧V OFFを印加したときの空隙25の間隔をt OFF [0030] Here, in the optical modulation element 100, t OFF the spacing gap 25 upon application of the non-driving voltage V OFF
とする(図1の状態)。 To (the state of FIG. 1). また、駆動電圧V ONを印加したときの空隙25の間隔をt ONとする(図4の状態)。 Further, the distance of the gap 25 and t ON upon application of the driving voltage V ON (the state of FIG. 4). 更に、t ON 、t OFFを下記のように設定する。 In addition, it sets t ON, the t OFF as follows. ON =1/2×λ 0 =180nm t OFF =3/4×λ 0 =270nm 但し、 m=1 λ 0 :紫外線の中心波長とする。 t ON = 1/2 × λ 0 = 180nm t OFF = 3/4 × λ 0 = 270nm where, m = 1 λ 0: the central wavelength of ultraviolet light. 【0031】また、可動反射膜45及び固定反射膜47 Further, the movable reflective layer 45 and the fixed reflection film 47
は、その光強度反射率をR=0.85とする。 Is the light intensity reflectance R = 0.85. 空隙25 Gap 25
は空気又は希ガスとし、その屈折率はn=1とする。 Is air or a noble gas, the refractive index is set to n = 1. 紫外線は、コリメートされているので光変調素子100に入射する入射角θは、略ゼロとする。 UV, the angle of incidence θ which is incident on the light modulating device 100 because it is collimated to substantially zero. このときの光変調素子100の光強度透過率は図6のようになる。 Light intensity transmittance of the light modulation element 100 at this time is as shown in FIG. 即ち、 In other words,
光変調素子100は、可動電極31と固定電極37との間に非駆動電圧V OFFを印加するとき、空隙25の間隔はt OFF =270nmとなり、図5に示す360nm付近に中心波長λ 0を持つ紫外線をほとんど透過させない。 The light modulation element 100, when applying the non-driving voltage V OFF between the movable electrode 31 and the fixed electrode 37, the void spacing 25 t OFF = 270 nm, and the central wavelength lambda 0 in the vicinity of 360nm as shown in FIG. 5 It does not substantially transmit ultraviolet rays with. 一方、駆動電圧V ONを印加して空隙25の間隙がt On the other hand, the gap of the gap 25 by applying a driving voltage V ON is t
ON =180nmとなると、360nm付近に中心波長λ When it comes to ON = 180nm, center wavelength λ in the vicinity of 360nm
0を持つ紫外線を透過させる。 And it transmits the ultraviolet rays having a 0. 【0032】この光変調素子100によれば、このように可動薄膜27を変位させ、干渉モードで光変調を行うことができる。 According to the optical modulation element 100, thus displacing the movable film 27, it is possible to perform light modulation in the interference mode. そして、光透過部に電極が存在しないため、光変調素子自体の光吸収が少なく、高効率で光変調が行える。 Then, since the electrode on the light transmitting portion is not present, less light absorption of the optical modulator itself can be performed light modulation with high efficiency. また、高速駆動が可能で高出力、長寿命の光変調素子を得ることができる。 Also, high output can operate at high speed, it is possible to obtain a light modulation element having a long lifetime. また、低い駆動電圧(数V〜数十V)で、数十〔nsec〕の高速動作が可能になる。 Further, a low driving voltage (several V~ tens V), allowing high-speed operation of several tens of [nsec]. なお、干渉の条件を満たせば、空隙25の間隔t、屈折率n、可動反射膜45、固定反射膜47の光強度反射率R等はいずれの組合せでも良い。 Note that satisfies the condition of interference, the interval t of the gap 25, the refractive index n, the movable reflective layer 45 may be any combination light intensity reflectance R and the like of the fixed reflection film 47. また、電圧の値により、間隔tを連続的に変化させると、透過スペクトルの中心波長を任意に変化させることが可能である。 Further, the value of the voltage, when continuously changing the interval t, it is possible to arbitrarily change the center wavelength of the transmission spectrum.
これにより透過光量を連続的に制御することも可能である。 It is also possible thereby continuously controlling the quantity of transmitted light. 即ち、印加電圧による階調制御が可能となる。 In other words, it is possible to gradation control by the applied voltage. また、この光変調素子100は、可動薄膜27側から平面基板23側へ透過させる透過型の光変調素子として構成しているが、これに限らず、入射した光を入射光導入側に反射して戻す、反射型の光変調素子として用いてもよい。 Further, the light modulation element 100 is constitutes a transmission type light modulation device for transmitting from the movable film 27 side to the planar substrate 23 side, not limited to this, and reflected on the incident light introduction side incident light back Te, it may be used as a reflection type optical modulation element. この場合にも前述と同様の作用効果が奏される。 The operational effect similar to that described above is achieved even when. 【0033】次に、本発明に係る光変調素子の第2実施形態を説明する。 Next, a description will be given of a second embodiment of the optical modulation device according to the present invention. 図7は本発明に係る光変調素子の第2 Figure 7 is a second optical modulation element according to the present invention
実施形態における構成を示す断面図、図8は図7に示した光変調素子の動作状態を説明する断面図である。 Sectional view illustrating the construction of the embodiment, FIG. 8 is a sectional view illustrating the operation state of the light modulation element shown in FIG. なお、以降の説明は、図1〜4に示した部材と同一の部材には同一の符号を付し、重複する説明は省略するものとする。 Incidentally, the following description of, the same members as those shown in Figures 1-4 are denoted by the same reference numerals, and redundant description will be omitted. 本実施形態の光変調素子200は、全反射を利用した光変調素子であって、基台55上に支持部29を介して可動薄膜27を懸架している。 Light modulation element 200 of the present embodiment is a light modulation element using a total reflection, and suspend the movable film 27 via the supporting portion 29 on a base 55. 詳細には、基台55 In particular, the base 55
上に設けられ可動薄膜27の長手方向両端に分断された固定電極37、可動薄膜27の上層に設けられ可動薄膜27の長手方向両端に分断された可動電極31、可動薄膜27の可動薄膜側非電極部41に設けた拡散部53を備えている。 Fixed electrode 37 is divided in the longitudinal ends of the movable film 27 is provided on the upper, movable electrode 31 is divided in the longitudinal ends of the movable film 27 is provided on an upper layer of the movable film 27, the movable thin film side non movable film 27 and a diffusing portion 53 provided on the electrode portion 41. 【0034】可動薄膜側非電極部41の表面に設けられた光拡散部53は、例えば、無機、有機透明材料の表面に凹凸を形成したもの、マイクロプリズム、マイクロレンズを形成したものや、無機、有機多孔質材料、又は屈折率の異なる微粒子を透明基材に分散したもの等により形成されている。 The light diffusing portion 53 provided on the surface of the movable thin film side non-electrode portions 41 is, for example, inorganic, obtained by forming irregularities on the surface of the organic transparent material, or obtained by forming a microprism, micro lens, inorganic , it is formed by such as those dispersed in an organic porous material, or a transparent substrate fine particles with different refractive index. また、支持部29は変調する光に対して透明な基台55上に設けられている。 The support portion 29 is provided on a transparent base 55 for light modulation. 基台55は、平行でない2つの端面を有し、光線の方向を変える偏角プリズムとしての作用を有する。 Base 55 has two end faces not parallel, has an action as deflecting prism for changing a direction of a light ray. 【0035】この光変調素子200では、図8に示すように、可動薄膜27の可動電極31と、基台55の固定電極37との間に駆動電圧V ONが印加されることにより、可動薄膜27の可動電極31と基台55の固定電極37との間に作用する静電気力によって、可動薄膜27 [0035] In the optical modulator device 200, as shown in FIG. 8, the movable electrode 31 of the movable film 27, by the driving voltage V ON between the fixed electrode 37 of the base 55 is applied, the movable film by an electrostatic force acting between the fixed electrode 37 of the movable electrode 31 and the base 55 of 27, the movable film 27
は基台55側へ吸引されて弾性変形し、基台55上面に近接するように変位する。 Is drawn into the base 55 side is elastically deformed, it is displaced so as to approach the base 55 top surface. 一方、静電気力による吸引力がなくなると、可動薄膜27の弾性復帰力によって再び可動薄膜27の中央部が空隙25を隔てた位置に浮上して配置される。 On the other hand, when the suction force due to the electrostatic force is eliminated, the central portion of the movable film 27 again by the elastic restoring force of the movable film 27 is disposed emerged in a position across the gap 25. 【0036】この光変調素子200においては、非駆動電圧V OFFの印加時、可動薄膜側非電極部41と基板側非電極部43との間に空隙25(例えば空気、希ガス等)が存在する。 [0036] In this optical modulation element 200, upon application of a non-driving voltage V OFF, the gap 25 (e.g., air, noble gases, etc.) is present between the movable thin film side non-electrode portions 41 and the board-side non-electrode portions 43 to. この場合、基台55の屈折率をnwとすると、空気との界面における全反射臨界角θcは、 θc=sin -1 (nw) となる。 In this case, when the refractive index of the base 55 and nw, total reflection critical angle .theta.c at the interface with the air becomes θc = sin -1 (nw). 従って、入射光は、界面への入射角θが、θ>θcのとき、図7に示すように、基台55内を全反射しながら進む。 Thus, incident light, the incident angle to the interface theta is, when theta> .theta.c, as shown in FIG. 7, the flow proceeds while being totally reflected inside the base 55. 【0037】一方、駆動電圧V ONの印加時、可動薄膜2 On the other hand, upon application of a driving voltage V ON, the movable film 2
7と基台55とを接触又は十分な距離に近づけた場合、 7 the case is brought close to the base 55 in contact with or a sufficient distance,
図8に示すように、入射光は、可動薄膜27側に伝搬透過し、更に光拡散部53により拡散されて表面側に出射する。 As shown in FIG. 8, the incident light propagates transmitted to the movable film 27 side, further emitted to the surface side is diffused by the light diffusing portion 53. このように、光変調素子200によれば、駆動電圧V ON印加による可動薄膜27の変位により光変調を行うことができる。 Thus, according to the optical modulation element 200, it is possible to perform the optical modulation by the displacement of the movable film 27 by the driving voltage V ON is applied. なお、この場合では、変調光は可動薄膜27を透過する透過光、又は非駆動電圧V OFF印加時に、全反射して基台55から出射する反射光のいずれを利用するものであってもよい。 In this case, the transmitted light modulated light transmitted through the movable film 27, or when the non-driving voltage V OFF is applied, may be configured to use any of the reflected light emitted from the base 55 is totally reflected . 【0038】次に、本発明に係る光変調素子の第3実施形態を説明する。 Next, a description will be given of a third embodiment of light modulation element according to the present invention. 図9は本発明に係る光変調素子の第3 Figure 9 is a third light modulation element according to the present invention
実施形態における構成と動作状態を示す断面図である。 It is a cross-sectional view showing the structure and operation state in the embodiment.
本実施形態の光変調素子300は、反射型の光変調素子であって、その構成は第1実施形態の光変調素子100 Light modulation element 300 of this embodiment is a reflection-type light modulation element, the arrangement of light modulating elements of the first embodiment 100
と同様である。 Is the same as that. 但し、可動電極31と固定電極37との間に非駆動電圧V OFFを印加したときの空隙25の間隔t OFFは、(2m+1)λ/(4cosθ)、駆動電圧V ON However, the interval t OFF of the gap 25 upon application of the non-driving voltage V OFF between the fixed electrode 37 and movable electrode 31, (2m + 1) λ / (4cosθ), the driving voltage V ON
を印加したときの空隙25の間隔t ONは、(2m)λ/ Interval t ON of the gap 25 upon application of the, (2m) λ /
(4cosθ)に設定している。 It is set to (4cosθ). ここで、θは入射光の光変調素子300への入射角で、可動薄膜27の法線方向と入射光とのなす角を表す。 Here, theta is the angle of incidence on the light modulation element 300 of the incident light represents the angle between the normal direction of the movable film 27 incident light. 【0039】この光変調素子300では、図9(a)に示すように、可動薄膜27の可動電極31と、平面基板23の固定電極37との間に非駆動電圧V OFFが印加されるときには、可動薄膜27の可動薄膜側非電極部41 [0039] In the light modulation element 300, as shown in FIG. 9 (a), when the movable electrode 31 of the movable film 27, the non-driving voltage V OFF between the fixed electrode 37 of the planar substrate 23 is applied , the movable thin film side non-electrode portion 41 of the movable film 27
に導入された入射光は、可動反射膜45及び固定反射膜47の光干渉作用によって入射光導入側へ反射される。 Incident light introduced into the is reflected to the incident light introduction side by the light interference of the movable reflective layer 45 and the fixed reflection film 47.
一方、駆動電圧V ONが印加されると、図9(b)に示すように、可動薄膜27の可動電極31と平面基板23の固定電極37との間に作用する静電気力により、可動薄膜27は平面基板23側への吸引力によって弾性変形され、平面基板23上面に近接するように変位する。 On the other hand, when the driving voltage V ON is applied, as shown in FIG. 9 (b), the electrostatic force acting between the fixed electrode 37 of the movable electrode 31 and the planar substrate 23 of the movable film 27, the movable film 27 is elastically deformed by the suction force to the planar substrate 23 side, it is displaced so as to approach the planar substrate 23 upper surface. これにより、導入された入射光は、可動反射膜45及び固定反射膜47の光干渉作用によって可動反射膜45及び固定反射膜47を透過して、入射光導入側へは反射されない。 Thus, the incident light introduced passes through the movable reflective layer 45 and the fixed reflection film 47 by the optical interference of the movable reflective layer 45 and the fixed reflection film 47, not reflected to the incident light introduction side. 【0040】従って、光変調素子300の入射光導入側においては、非駆動電圧V OFFの印加時に明となり、駆動電圧V ONの印加時に暗となる反射型の光変調が実現される。 [0040] Accordingly, the incident light introduction side of the light modulation element 300 becomes a light upon application of the non-driving voltage V OFF, the reflection type optical modulation is realized as a dark upon application of the driving voltage V ON. 【0041】次に、本発明に係る光変調素子の第4実施形態を説明する。 Next, a description will be given of a fourth embodiment of the optical modulation device according to the present invention. 図10は本発明に係る光変調素子の第4実施形態における構成と動作状態を示す断面図である。 Figure 10 is a sectional view showing the configuration and operating states of the fourth embodiment of the optical modulation device according to the present invention. 本実施形態の光変調素子400は、反射型の光変調素子であって、その構成は、平面基板がシリコン基板1 Light modulation element 400 of this embodiment is a reflection-type light modulation element, the arrangement, the silicon planar substrate board 1
3からなり、このシリコン基板13の表面には、不純物をドーピングさせた固定電極としてのドープ層16を形成している。 Consists of three, on the surface of the silicon substrate 13 to form a doped layer 16 of a fixed electrode is doped with an impurity. このドープ層16は、前述の固定電極15 The doped layer 16, the above-described fixed electrode 15
と同様に、可動薄膜27の長手方向両端に分断して形成されている。 Similar to, and is formed by cutting both ends in the longitudinal direction of the movable film 27. また、基板側非電極部43には、このドープ層15の厚みより若干高くシリコン基板が盛り上がっている。 Moreover, a board-side non-electrode portions 43, slightly higher silicon substrate is raised than the thickness of the doped layer 15. 一方、可動薄膜27は、可動薄膜側非電極部4 On the other hand, the movable film 27 is movable thin film side non-electrode portions 4
1を単層のダイヤフラム33で形成し、入射光を可動薄膜27側からシリコン基板13側へ導入、又は反射させる構成となっている。 Form 1 at diaphragm 33 of a single layer, which is the incident light from the movable film 27 side introduced into the silicon substrate 13 side, or a configuration to reflect. 【0042】ここで、可動電極31とドープ層16との間に非駆動電圧V OFFを印加したときの空隙25の間隔t OFFは(2m+1)λ/(4cosθ)、駆動電圧V ONを印加したときの空隙25の間隔t ONは(2m)λ/(4 [0042] Here, the interval t OFF of the gap 25 upon application of the non-driving voltage V OFF between the movable electrode 31 and the doped layer 16 is applied to (2m + 1) λ / ( 4cosθ), the driving voltage V ON the interval t ON of the gap 25 when (2m) λ / (4
cosθ)としている。 It is a cosθ). なお、図10は、m=0、θ=4 Incidentally, FIG. 10, m = 0, θ = 4
5゜とした一例である。 5 is an example in which degrees. 【0043】また、この可動薄膜27の屈折率nは、シリコン基板13の屈折率をns(ns=3.89)とすると、n≒√nsなる関係を有することが望ましく、可動薄膜27に反射防止機能を付加させることができる。 [0043] The refractive index n of the movable film 27, when the refractive index of the silicon substrate 13 and ns (ns = 3.89), it is desirable to have n ≒ √Ns the relationship, reflected on the movable membrane 27 it can be added protection.
具体的には、可動薄膜27のダイヤフラム33としてはZrO 2 (n=1.97)がよく、その場合には、ダイヤフラム33の膜厚を53.4nmとする。 Specifically, the diaphragm 33 of the movable film 27 ZrO 2 (n = 1.97) C., in that case, a 53.4nm thickness of the diaphragm 33. このときのシリコン基板13と可動薄膜27との間の空隙と、素子の反射率との関係を図11に示した。 And the gap between the silicon substrate 13 and the movable film 27 at this time, the relationship between the reflectance of the device shown in FIG. 11. なお、可動薄膜2 The movable film 2
7と平面基板の屈折率の関係は、上述の各実施形態についても同様に設定することが好ましい。 Relationship 7 and the plane refractive index of the substrate is preferably set in the same manner for each of the above embodiments. 【0044】この光変調素子400では、図10(a) [0044] In the light modulation element 400, FIG. 10 (a)
に示すように、可動薄膜27の可動電極31と、シリコン基板13のドープ層16との間に非駆動電圧V OFFを印加したとき、空隙25の間隔がt OFFとなり、外部から可動薄膜27の可動薄膜側非電極部41に導入された入射光は、可動薄膜27による光干渉作用によって入射光導入側へ反射される。 As shown in, the movable electrode 31 of the movable film 27, when the non-driving voltage V OFF is applied between the doped layer 16 of silicon substrate 13, the interval of the gap 25 is t OFF, and the external of the movable film 27 incident light introduced to the movable thin film side non-electrode portions 41 is reflected to the incident light introduction side by optical interference action by the movable film 27. このときの可動薄膜27の反射率は図11に示すように90%以上の高い反射率となっている。 Reflectivity of the movable film 27 at this time is 90% or more of high reflectivity as shown in FIG. 11. 一方、駆動電圧V ONを印加すると、可動薄膜2 On the other hand, upon application of a driving voltage V ON, the movable film 2
7の可動電極31とシリコン基板13のドープ層16との間に作用する静電気力により、可動薄膜27はシリコン基板13側への吸引力によって弾性変形され、シリコン基板13上面に近接するように変位する。 By an electrostatic force acting between the doped layer 16 of the movable electrode 31 and the silicon substrate 13 of 7, the movable film 27 is elastically deformed by the suction force of the silicon substrate 13 side, the displacement so as to approach the silicon substrate 13 upper surface to. これにより、空隙の間隔は略0となり、t OFFとなる。 Thus, the interval of the gap becomes substantially zero, and t OFF. 従って、 Therefore,
導入された入射光は可動薄膜側非電極部41を透過してシリコン基板13側に吸収され、入射光導入側には反射されない。 Introduced incident light is absorbed in the silicon substrate 13 side passes through the movable thin film side non-electrode portions 41 are not reflected on the incident light introduction side. 【0045】これにより、光変調素子400の入射光導入側においては、非駆動電圧V OFFの印加時に明となり、駆動電圧V ONの印加時に暗となる反射型の光変調が実現される。 [0045] Thus, the incident light introduction side of the light modulation element 400 becomes a light upon application of the non-driving voltage V OFF, the reflection type optical modulation becomes dark when application of the driving voltage V ON can be realized. また、シリコン基板13には、駆動回路等の回路を形成することもでき、種々の付加機能を素子に持たせることが可能となり設計の自由度を向上できる。 Further, the silicon substrate 13, can also form a circuit such as a driving circuit, it is possible to improve the degree of freedom it becomes design is possible to provide the device a variety of additional functions. 【0046】次に、本実施形態の光変調素子の変形例を説明する。 Next, a modified example of the optical modulator of this embodiment. 図12は本実施形態の変形例としての光変調素子の構成と動作状態を示す断面図である。 Figure 12 is a sectional view showing the configuration and operation state of the optical modulation element as a modification of this embodiment. この変形例の光変調素子500は、平面基板として誘電体基板を使用した構成としている。 Light modulation element 500 of this modified example has a structure using a dielectric substrate as a planar substrate. 他の構成は前述と同様であるため重複する説明は省略する。 Other configurations are the descriptions thereof will be omitted since it is the same as described above. 誘電体基板19は、可動薄膜27のダイヤフラム33をSiO 2 (屈折率n=1. The dielectric substrate 19, the diaphragm 33 of the movable film 27 SiO 2 (refractive index n = 1.
46)を用いた場合、例えばZnO(屈折率ns=2. When using the 46), for example, ZnO (refractive index ns = 2.
1)を好適に用いることができる。 1) it can be suitably used. また、可動薄膜27 The movable film 27
をNdF 3 (屈折率n=1.62)を用いた場合、例えばTiO 2 (屈折率ns=2.62)を好適に用いることができる。 The case of using the NdF 3 (refractive index n = 1.62), can be suitably used, for example, TiO 2 (refractive index ns = 2.62). このように、n=√nsの関係を保つことにより、層の反射を防止する反射防止膜とすることができ、素子の光透過率を向上できる。 Thus, by maintaining the relationship of n = √ns, it can be a anti-reflection film that prevents reflection layer can improve the light transmittance of the device. また、誘電体基板1 The dielectric substrate 1
9と可動薄膜27のダイヤフラム33は、屈折率の組み合わせを適宜選択すればよいため、誘電体基板19としては、この他にも、半導体(例えばGaAs、Ga 9 and the diaphragm 33 of the movable film 27, since the combination of the refractive index may be appropriately selected, as the dielectric substrate 19, in addition to this, a semiconductor (e.g. GaAs, Ga
N)、誘電体、或いは金属で形成してもよい。 N), may be formed of a dielectric, or metal. 【0047】この光変調素子500によれば、前述の光変調素子の動作と同様に、可動電極31と固定電極15 [0047] According to the light modulation element 500, similar to the operation of the above-described light modulation elements, the fixed electrode 15 and movable electrode 31
との間に駆動電圧V OFFを印加すると、外部から可動薄膜27の可動薄膜側非電極部41に導入された入射光は、可動薄膜27による光干渉作用によって入射光導入側へ反射される。 By applying a driving voltage V OFF between the incident light introduced from the outside to the movable thin film side non-electrode portion 41 of the movable film 27 is reflected to the incident light introduction side by optical interference action by the movable film 27. 一方、駆動電圧V ONが印加されると、 On the other hand, when the driving voltage V ON is applied,
可動薄膜27が静電気力によって誘電体基板19上面に近接するように変位する。 Movable film 27 is displaced so as to approach the dielectric substrate 19 upper surface by an electrostatic force. これにより、導入された入射光は可動薄膜27による光干渉作用によって誘電体基板19側に透過されて吸収され、入射光導入側へは反射されない。 Thus, the incident light introduced is absorbed is transmitted in the dielectric substrate 19 side by the optical interference action by the movable membrane 27, not reflected to the incident light introduction side. 従って、光変調素子500の入射光導入側においては、非駆動電圧V OFFの印加時に明となり、駆動電圧V ONの印加時に暗となる反射型の光変調が実現される。 Accordingly, the incident light introduction side of the light modulation element 500 becomes a light upon application of the non-driving voltage V OFF, the reflection type optical modulation is realized as a dark upon application of the driving voltage V ON. 【0048】以上説明した各光変調素子の構成では、可動薄膜27を矩形状で形成し、長手方向の任意の位置における幅が等しい場合を説明したが、各光変調素子は、 [0048] In the configuration of the light modulation elements as described above, to form the movable film 27 in a rectangular shape, a case has been described width at an arbitrary position in the longitudinal direction are equal, each light modulating element,
図13に示すように、可動薄膜27の長手方向両端近傍に、中央部の幅より狭い狭小部59を形成するものであってもよい。 As shown in FIG. 13, near both longitudinal ends of the movable film 27 may be one which forms a narrow narrow portion 59 than the width of the central portion. なお、図13中の各部位における寸法は、 The size of each part in FIG. 13,
例えばa=150μm、b=20μm、c=50μm、 For example a = 150μm, b = 20μm, c = 50μm,
d=10μm、e=100μm程度で形成される。 d = 10 [mu] m, a thickness of about e = 100 [mu] m. このような狭小部59を設けることで、この狭小部59が特に大きく変形することにより、均一幅の可動薄膜27を変形させる場合に比べ、可動薄膜27の駆動力が低減でき、低電圧駆動と駆動速度の高速化が可能になる。 By providing such a narrow portion 59, by the narrow portion 59 is particularly largely deformed, compared with the case of deforming the movable film 27 having a uniform width, can be reduced driving force of the movable film 27 is a low voltage drive faster drive speed becomes possible. 【0049】上記した光変調素子によれば、可動薄膜2 [0049] According to the optical modulation element described above, the movable film 2
7を矩形状に形成し、この可動薄膜27の長手方向中央部に電極を形成しない可動薄膜側非電極部41を設けると共に、平面基板23又は基台55にも、この可動薄膜側非電極部41に対面する基板側非電極部43を設けたので、光透過部位に透明電極が存在しない構成にできる。 Forming a 7 in a rectangular shape, the longitudinal direction center portion not forming the electrode provided with a movable thin film side non-electrode portion 41, in the planar substrate 23 or base 55, the movable thin film side non-electrode portion of the movable film 27 41 is provided with the substrate-side non-electrode portion 43 facing the can to the structure there is no transparent electrode on the light transmitting portion. これにより、透明電極による光の吸収を皆無にでき、光強度が強い場合に生じる透明電極の発熱による変形・破壊等が防止できる。 This can nil absorption of light by the transparent electrode, deformation and destruction by heat generation of the transparent electrodes caused when the light intensity is high can be prevented. また、可動薄膜の構成の簡略化によって光変調素子の高速駆動が可能になり、かつ長寿命化が実現できる。 Further, it enables high-speed driving of the optical modulator by simplifying the movable thin film structure, and long life can be realized. 【0050】さらに、光の吸収がなくなるので、透過光の強度を増大させることができ、高出力化が図られる。 [0050] Further, since the light absorption is eliminated, the intensity of the transmitted light can be increased, high output can be achieved.
また、可動薄膜を矩形状に形成し、その中央部の全てを可動薄膜側非電極部41として電極を除去したので、複数の光変調素子を一次元に配列した光変調素子アレイとした場合、隣接する光変調素子の光透過部同士の間に電極が介在せず、露光装置、表示装置に用いた場合の画素密度を高精細にできる。 Further, when the movable film is formed in a rectangular shape, which is its so all of the central portion to remove the electrodes as movable thin film side non-electrode portion 41, the light modulation element array in which a plurality of light modulation elements in one dimension, without electrode interposed between the light transmitting portions of the adjacent light modulation element, an exposure apparatus, it can be a pixel density in the case of using a display device with high resolution. 【0051】次に、上記の光変調素子100からなる光変調素子アレイを利用した露光装置について説明する。 Next, a description will be given of an exposure apparatus using an optical modulation element array of said light modulation element 100.
図14は本発明に係る露光装置の要部構成の概略を表した斜視図、図15は図14に示した露光ヘッドの拡大斜視図、図16は上記の光変調素子100を用いて構成した他の露光部の拡大斜視図である。 Figure 14 is a perspective view showing an outline of a main configuration of an exposure apparatus according to the present invention, FIG 15 is an enlarged perspective view of the exposure head shown in FIG. 14, FIG. 16 is constructed by using the above-described light modulation elements 100 it is an enlarged perspective view of another exposure unit. この実施の形態では、光変調素子100を用いて構成した光変調素子アレイを、液晶カラーフィルタ製造工程に使用するフォトレジスト用の露光装置61に適用した一例を説明する。 In this embodiment, the light modulating element array constructed using the light modulation element 100, an example of application to an exposure apparatus 61 for photoresists for use in a liquid crystal color filter manufacturing process. 【0052】この露光装置61は、図14に示すように、露光対象物63を側面に吸着して保持する縦型のフラットステージ65と、画像データ67に応じて変調された光ビーム(紫外レーザ光)69で露光対象物63を走査露光する露光ヘッド71とを備えている。 [0052] The exposure device 61, as shown in FIG. 14, a vertical flat stage 65, the light beam (an ultraviolet laser which is modulated in accordance with image data 67 for holding by suction the object to be exposed 63 to the side surface and a exposure head 71 which scans and exposes the exposure object 63 with light) 69. フラットステージ65は、図示しないガイドによって、X軸方向に移動可能に支持されており、露光ヘッド71は、図示しないガイトによって、Y軸方向に移動可能に支持されている。 Flat stage 65, by a guide (not shown), which is movably supported in the X axis direction, the exposure head 71, by Gaito not shown, is movably supported in the Y axis direction. 【0053】フラットステージ65の裏面角部には一対のナット73が固定されており、ナット73の雌ねじ部75にはリードスクリュー77が螺合されている。 [0053] On the back corner of the flat stage 65 has a pair of nuts 73 is fixed to the female thread portion 75 of the nut 73 are engaged lead screw 77 is threadedly. リードスクリュー77の一方の端部にはリードスクリュー7 Lead screw 7 at one end of the lead screw 77
7を回転させる駆動モータ79が取り付けられており、 7 and the drive motor 79 is mounted to rotate, and
駆動モータ79はモータコントローラ81に接続されている。 Drive motor 79 is connected to the motor controller 81. そして、この駆動モータ79によるリードスクリュー77の回転に伴い、フラットステージ65がX軸方向にステップ状に移動される。 Then, with by the drive motor 79 to the rotation of the lead screw 77, the flat stage 65 is moved stepwise in the X-axis direction. 【0054】露光ヘッド71の下部には一対のナット8 [0054] The lower portion of the exposure head 71 of a pair nuts 8
3が固定されており、ナット83の雌ねじ部85にはリードスクリュー87が螺合されている。 3 is fixed, the internal thread portion 85 of the nut 83 are engaged lead screw 87 is threadedly. リードスクリュー87の一方の端部にはリードスクリュー87を回転させる駆動モータ89がベルトを介して連結されており、 At one end of the lead screw 87 and drive motor 89 for rotating the lead screw 87 is coupled via a belt,
駆動モータ89はモータコントローラ81に接続されている。 Drive motor 89 is connected to the motor controller 81. そして、この駆動モータ89によるリードスクリュー87の回転に伴い、露光ヘッド71がY軸方向に往復移動される。 Then, with by the drive motor 89 to the rotation of the lead screw 87, the exposure head 71 is reciprocally moved in the Y-axis direction. ナット83、リードスクリュー87、駆動モータ89は、露光ヘッド71の移動手段90を構成する。 Nut 83, the lead screw 87, the driving motor 89 constitute the moving means 90 of the exposure head 71. 【0055】この場合の露光対象物63は、ブラックマトリックスが形成されたガラス基板上に、例えばR色の顔料を紫外線硬化樹脂に分散させたカラーレジスト膜を形成したものとする。 [0055] exposure object 63 in this case, on the glass substrate on which the black matrix is ​​formed, for example, a pigment R-color and that forms a color resist film dispersed in an ultraviolet-curing resin. この露光対象物63に紫外レーザ光69を照射すると、カラーレジスト膜の紫外レーザ光69が照射された部分だけが硬化してR色のカラーフィルタ部が形成される。 When irradiated with ultraviolet laser light 69 on the exposure object 63, the color filter of R color is formed only the portion ultraviolet laser beam 69 of the color resist film is irradiated is cured. 【0056】露光ヘッド71は、図15に示すように、 [0056] exposure head 71, as shown in FIG. 15,
高出力な紫外レーザ光源91、紫外レーザ光源91から入射されたレーザ光をX軸方向に平行光化すると共にX High-power ultraviolet laser light source 91, X as well as parallel light in the X-axis direction has been the laser beam incident from the ultraviolet laser source 91
Y平面と直交する方向に収束させるレンズ93、入射されたレーザ光を画像データ67に応じて各画素毎に変調する光変調素子アレイ95、及び光変調素子アレイ95 Lens 93 for converging in a direction perpendicular to the Y plane, an optical modulation element array 95 is modulated for each pixel in accordance with image data 67 incident laser light and the light modulating element array 95,
で変調されたレーザ光を露光対象物63の表面に倍率を変えて結像させるズームレンズ97で構成された露光ユニットを備えている。 In and a exposure unit configured to modulated laser light in the zoom lens 97 for imaging by changing the magnification on the surface of the object to be exposed 63. 【0057】この露光ユニットを構成する各部材はケーシング99内に収納されており、ズームレンズ97から出射された紫外レーザ光69は、ケーシング99に設けられた図示しない開口を通過して露光対象物63の表面に照射される。 [0057] The members constituting the exposure unit is housed in the casing 99 in an ultraviolet laser beam 69 emitted from the zoom lens 97, exposure object through an opening (not shown) provided in the casing 99 It is applied to the 63 surface. ズームレンズ97は、図示しない駆動モータによって、光軸に沿って移動され結像倍率の調整を行う。 The zoom lens 97 by a driving motor (not shown) adjusts the moved imaging magnification along the optical axis. なお、通常、ズームレンズは組合せレンズで構成されるが、図示を簡単にするため1枚のレンズのみ示した。 Normally, the zoom lens is composed of a combination lens, shown only one lens for ease of illustration. 【0058】紫外レーザ光源91、レンズ93、光変調素子アレイ95、及びズームレンズ97は、図示しない固定部材によってケーシング99に固定されており、ズームレンズ97は、図示しないガイドによって光軸方向に移動可能に支持されている。 [0058] ultraviolet laser light source 91, a lens 93, an optical modulation element array 95 and the zoom lens 97, is moved and fixed to the casing 99 by a fixing member (not shown), a zoom lens 97, the optical axis direction by a guide (not shown) and it is rotatably supported. また、紫外レーザ光源9 Further, the ultraviolet laser light source 9
1及び光変調素子アレイ95は、各々図示しないドライバを介してこれらを制御する図示しないコントローラに接続されている。 1 and the optical modulation element array 95 is connected to a controller (not shown) for controlling them through each driver (not shown). 【0059】紫外レーザ光源91は、例えば窒化ガリウム系半導体レーザを用いる。 [0059] ultraviolet laser light source 91, for example, a gallium nitride-based semiconductor laser. なお、ブロードエリアの発光領域を有する窒化ガリウム系半導体レーザを用いると、波長約405nmの紫外領域の光が高出力で得られ、高速での走査に有利になる。 Note that a gallium nitride-based semiconductor laser having a light emission region of the broad area, the light in the ultraviolet region with a wavelength of approximately 405nm was obtained at a high output, which is advantageous in scanning at high speed. 【0060】感光材料としては、液晶カラーフィルタ形成用感光材料、プリント配線基板製造用のフォトレジスト、印刷用感光性シリンダー、印刷用感光性材料を塗布したシリンダー、及び印刷用刷版を挙げることができる。 [0060] As the photosensitive material, liquid crystal color filter for forming a photosensitive material, a photoresist for printed wiring board production, printing photosensitive cylinder, the cylinder was coated printing photosensitive material, and be given printing plate it can. これら感光材料は、縦型の平板ステージに保持することができる。 These light-sensitive materials can be held in a vertical flat stage. 感光材料を縦型の平板ステージに保持することにより、感光材料のたわみを最小限に抑えられるため、露光の高精度化が図られる。 By holding the light-sensitive material into vertical flat stage for minimizing the deflection of the light-sensitive material, high accuracy of the exposure can be achieved. 【0061】光変調素子アレイ95は、上記の光変調素子100を、同一平面上で、可動薄膜27の長手方向に直行する方向に複数近接させて並設している。 [0061] Light modulation element array 95, the light modulation element 100, on the same plane, are juxtaposed plurality proximity to the direction perpendicular to the longitudinal direction of the movable film 27. この実施の形態では、並設方向が図15の上下方向(X方向)となる。 In this embodiment, the arrangement direction a vertical direction (X direction) in FIG. 15. 従って、この並設方向に直行する方向(Y方向) Therefore, a direction orthogonal to the arrangement direction (Y-direction)
で露光対象物63と露光ヘッド71とを相対移動させると、光変調素子100の並設数と同数の画素数で、1ライン分を露光対象物63に露光することができ、この場合においても、光変調素子100の有する特性により、 In the relatively moving the exposure object 63 and the exposure head 71, the same number of pixel number and parallel 設数 light modulation element 100, can be exposed to one line in the exposure object 63, in this case by the properties possessed by the optical modulation element 100,
高速の露光が可能になり、かつ長寿命化が実現できる。 Fast exposure becomes possible, and long life can be realized.
なお、図15中の各部位における寸法は、例えばf=2 The size of each part in FIG. 15, for example, f = 2
mm(1000ch)、g=20μm程度で形成される。 mm (1,000 channels), a thickness of about g = 20 [mu] m. 【0062】次に、本実施の形態の露光装置の動作を説明する。 Next, the operation of the exposure apparatus of this embodiment. 露光対象物63に紫外レーザ光69を照射して露光するために、画像データ67が、光変調素子アレイ95のコントローラ(図示せず)に入力され、コントローラ内のフレームメモリに一旦記憶される。 In order to expose and irradiated with ultraviolet laser light 69 in the exposure object 63, image data 67 is input to the controller of the optical modulation element array 95 (not shown) is temporarily stored in a frame memory in the controller. この画像データ67は、画像を構成する各画素の濃度を2値(即ちドットの記録の有無)で表したデータである。 The image data 67 is data representing the density of each pixel constituting an image with binary (i.e. presence or absence of the recording of dots). 【0063】露光ヘッド71の紫外レーザ光源91から出射されたレーザ光は、レンズ93によりX軸方向に平行光化されると共にXY平面と直交する方向に収束されて、光変調素子アレイ95に入射される。 [0063] The laser beam emitted from the ultraviolet laser source 91 of the exposure head 71, is converged in a direction perpendicular to the XY plane while being collimated in the X-axis direction by the lens 93, enters the light modulation element array 95 It is. 入射されたレーザ光は、光変調素子アレイ95によって同時に変調される。 Laser beam incident are modulated simultaneously by the light modulating element array 95. 変調されたレーザ光がズームレンズ97により露光対象物63の表面に結像される。 Modulated laser beam is focused on the surface of the exposure object 63 by the zoom lens 97. 【0064】露光開始時には、露光ヘッド71が露光開始位置(X軸方向及びY軸方向の原点)に移動される。 [0064] At the start of exposure, the exposure head 71 is moved to the exposure start position (origin of the X-axis direction and the Y-axis direction).
モータコントローラ81が駆動モータ89を一定速度で回転させると、リードスクリュー87も一定速度で回転し、リードスクリュー87の回転に伴い、露光ヘッド7 When the motor controller 81 rotates the drive motor 89 at a constant speed, the lead screw 87 also rotates at a constant speed, with the rotation of the lead screw 87, the exposure head 7
1がY軸方向に一定速度で移動される。 1 is moved at a constant speed in the Y-axis direction. 【0065】露光ヘッド71のY軸方向への移動と共に、フレームメモリに記憶されている画像データ67 [0065] with the movement of the Y-axis direction of the exposure head 71, image data 67 stored in the frame memory
が、1ライン分、光変調素子アレイ95の光変調素子1 But one line, an optical modulation element 1 of the optical modulation element array 95
00の数と略同数の画素単位で順に読み出され、読み出された画像データ67に応じて光変調素子100の各々がオンオフ制御される。 The number and substantially the same number of pixels 00 are read in this order, each of the light modulation element 100 is on-off controlled according to the image data 67 read out. これにより露光ヘッド71から出射される紫外レーザ光69がオンオフされて、露光対象物63が、X軸方向に光変調素子100の数と略同数の画素単位で露光されると共に、Y軸方向に1ライン分走査露光される。 Thus is ultraviolet laser light 69 is off, which is emitted from the exposure head 71, exposure object 63, while being exposed in a few substantially the same number of pixel units of the light modulation element 100 in the X axis direction, the Y-axis direction It is one line scanning exposure. 【0066】露光ヘッド71が露光対象物63の端部に達すると、露光ヘッド71はY軸方向の原点に復帰する。 [0066] When the exposure head 71 reaches the end of the exposure object 63, the exposure head 71 is returned to the origin of the Y-axis direction. そして、モータコントローラ81が駆動モータ79 Then, the motor controller 81 drives the motor 79
を一定速度で回転させると、リードスクリュー77も一定速度で回転し、リードスクリュー77の回転に伴い、 When the rotation at a constant speed, also rotates at a constant speed lead screw 77, with the rotation of the lead screw 77,
フラットステージ65がX軸方向に1ステップ移動される。 Flat stage 65 is moved one step in X-axis direction. 以上の主走査及び副走査を繰り返し、露光対象物6 Repeat the above main scanning and sub-scanning, an exposure object 6
3が画像様に露光される。 3 is exposed to an image-like. なお、上記では露光ヘッド7 It should be noted that, in the above-described exposure head 7
1を原点に復帰させて往路でのみ露光する例について説明したが、復路においても露光するようにしてもよい。 1 example has been described in which only exposed in the forward by returning to the origin, it may be exposed even in the return path.
これにより更に露光時間を短縮できる。 Thereby further shorten the exposure time. 【0067】この露光装置61によれば、光変調素子アレイ95における光変調素子の並設方向に直行する方向で、光変調素子アレイ95を移動手段によって感光材料に対し相対移動させることで、紫外線領域に感度を有する感光材料を、デジタルデータに基づいて直接走査露光することができ、この場合においても、高速の露光を可能にし、かつ長寿命化を実現できる。 [0067] According to the exposure apparatus 61, in a direction perpendicular to the arrangement direction of the optical modulator in the optical modulator element array 95, by relatively moving the photosensitive material by moving means light modulation element array 95, ultraviolet a photosensitive material having sensitivity in the region, can be scanned and exposed directly on the basis of the digital data, in this case, to enable high-speed exposure, and can realize a long life. 【0068】また、高出力の紫外レーザ光源を用いているので、紫外領域に感度を有する露光対象物を,デジタルデータに基づいて直接走査露光することができる。 [0068] Also, because of the use of ultraviolet laser light source of a high output, the object to be exposed having a sensitivity in the ultraviolet region, can be scanned and exposed directly on the basis of the digital data. これにより、プロキシミティ方式の露光装置と比べると、 Thus, as compared with a proximity type exposure apparatus,
(1)マスクが不要でコストが削減できる。 (1) mask can be reduced unnecessary cost. これにより生産性が向上する他、少量多品種の生産にも好適である、(2)デジタルデータに基づいて直接走査露光するので適宜データを補正することができ、高精度な保持機構、アライメント機構、及び温度安定化機構が不要になり、装置のコストダウンを図ることができる、(3)紫外レーザ光源は超高圧水銀ランプに比べ安価で耐久性に優れており、ランニングコストを低減することができる、(4)紫外レーザ光源は駆動電圧が低く消費電力を低減できる、という利点がある。 Thus addition to improving the productivity, it is also suitable for the production of high-mix low-volume, (2) properly so scanning exposure directly on the basis of the digital data the data can be corrected, highly accurate holding mechanism, alignment mechanism and temperature stabilization mechanism becomes unnecessary, it is possible to reduce the cost of the apparatus, (3) an ultraviolet laser light source is excellent in durability at a low cost compared with the ultra-high pressure mercury lamp, it is possible to reduce the running costs possible, (4) an ultraviolet laser light source can reduce the power consumption low driving voltage, there is an advantage that. 【0069】更に、可動薄膜側非電極部41及び基板側非電極部43を有する光変調素子100を用いているため、従来の透過光を変調する光学素子(PLZT素子) [0069] Furthermore, due to the use of the optical modulation device 100 having a movable thin film side non-electrode portions 41 and the substrate-side non-electrode portion 43, an optical element for modulating a conventional transmitted light (PLZT element)
や液晶光シャッタ(FLC)を用いる構成に比べて、入射光の吸収性を格段に少なくすることができ、紫外レーザ光に対する耐久性を高めることができる。 And as compared with the configuration using the liquid crystal light shutter (FLC), the absorption of the incident light can be remarkably reduced, thereby enhancing the durability against ultraviolet laser beam. この結果、 As a result,
高出力紫外レーザを光源に用い露光を行う場合であっても、露光装置の信頼性を大幅に向上させることができる。 Even a high power ultraviolet laser in a case of performing exposure using a light source, it is possible to greatly improve the reliability of the exposure device. また、光変調素子アレイ95は、静電気力を利用した電気機械動作により駆動されるため、低い駆動電圧(数V〜数十V)で、動作速度が数十〔nsec〕程度まで得られ、上述の耐久性が向上するという効果に加え、高速露光も可能になる。 Further, the light modulation element array 95 is to be driven by electromechanical operation utilizing electrostatic force, low driving voltage (several V~ tens V), the operating speed is obtained up to several tens of [nsec] degree, above in addition to the effect of durability is improved, high-speed exposure becomes possible. 【0070】なお、この実施の形態では、高出力レーザ光源を、GaN系半導体レーザと合波光学系とで構成した紫外レーザ光源とする例について説明したが、高出力レーザ光源を、以下の(1)〜(5)のいずれかで構成してもよい。 [0070] Incidentally, in this embodiment, a high-power laser light source, an example has been described in which the ultraviolet laser light source composed of a GaN-based semiconductor laser and multiplexing optical system, a high-power laser light source, the following ( 1) may be configured in one of the - (5). (1)窒化ガリウム系半導体レーザ。 (1) a gallium nitride-based semiconductor laser. 好ましくは、ブロードエリアの発光領域を有する窒化ガリウム系半導体レーザ。 Preferably, a gallium nitride-based semiconductor laser having a light emission region of the broad area. (2)半導体レーザで固体レーザ結晶を励起して得られたレーザビームを光波長変換素子で波長変換して出射する半導体レーザ励起固体レーザ。 (2) laser-diode pumped solid-state laser a laser beam obtained by exciting a solid-state laser crystal with a semiconductor laser and emits the wavelength-converted by the light wavelength conversion device.
(3)半導体レーザでファイバを励起して得られたレーザビームを光波長変換素子で波長変換して出射するファイバレーザ。 (3) a fiber laser for emitting wavelength conversion laser beam obtained by exciting the fiber in the semiconductor laser in the optical wavelength conversion device. (4)上記(1)〜(3)のいずれかのレーザ光源又はランプ光源と合波光学系とで構成された高出力レーザ光源。 (4) above (1) to (3) either laser light or lamp light source and multiplexing optical system and the high power laser light sources constructed by the. また、本実施の形態では光源の発光波長を紫外としたが、赤外、可視、紫外のいずれの波長であってもよい。 Further, the emission wavelength of the light source in this embodiment was the ultraviolet, infrared, visible, may be any wavelength in the ultraviolet. 【0071】また、上記の実施の形態では、光変調素子アレイ95を通過させた変調光を、ズームレンズ97によって焦点調整して露光対象物63に照射する構成を説明したが、露光装置61は、図16に示すように、光変調素子アレイ95と感光ドラム111との間に、ロッドレンズ等の集光レンズ113を配設し、光変調素子アレイ95からの変調光をこの集光レンズ113で集光させて、露光対象物に露光するものであってもよい。 [0071] Further, in the above embodiment, the modulated light passed through the light modulation element array 95 has been described a configuration for irradiating the object of exposure 63 by focusing the zoom lens 97, exposure device 61 as shown in FIG. 16, between the optical modulation element array 95 and the photosensitive drum 111, arranged condenser lens 113 such as a rod lens, an optical modulation element condenser lens modulated light from the array 95 113 in by focusing, or may be exposed to the exposure object. 【0072】このような構成によれば、光変調素子アレイ95からの変調光を集光レンズ113で集光して感光材料に直接露光するので、ほぼ密着露光に近い光学系を構成できる利点がある。 [0072] According to this structure, since the modulated light from the optical modulation element array 95 is condensed by the condenser lens 113 is exposed directly to the light-sensitive material, the advantage of constituting an optical system to nearly contact exposure is there. なお、ここでは、移動手段としてアウタードラムである感光ドラムを用いる例について説明したが、これに限らずインナードラム、フラットベッド等の他の移動手段を用いる構成としてもよい。 Here, an example has been described using a photosensitive drum which is an outer drum as the moving means, the inner drum is not limited to this and may be configured to use other moving means such as a flat bed. 【0073】以上説明した本発明の光変調素子、光変調素子アレイ、露光装置の好ましい実施形態をまとめると、次のようになる。 [0073] Light modulation element of the present invention described above, the optical modulation element array, summarized preferred embodiment of the exposure apparatus is as follows. (1)平面基板に間隔を有して可動薄膜を対向配置すると共に、前記基板と前記可動薄膜の双方に平面電極を設け、前記各平面電極への電圧印加により発生する静電気力によって前記可動薄膜を前記平面基板に対して変位させ、前記可動薄膜を透過する光量を変化させる透過型の光変調素子であって、前記可動薄膜は、矩形状に形成され長手方向両端で支持されると共に、前記可動薄膜の長手方向中央部に前記平面電極を有しない可動薄膜側非電極部が形成され、前記平面基板は、前記可動薄膜側非電極部と対面する位置に前記平面電極を有しない基板側非電極部が形成されていることを特徴とする光変調素子。 (1) in a planar substrate at a distance with a movable thin film opposed, planar electrodes provided on both of the movable thin film and the substrate, the movable membrane by the electrostatic force generated by the voltage applied to each of the planar electrode the displaced relative to a flat substrate, a transmission type optical modulation element for changing the amount of light passing through the movable film, said movable thin film, with a rectangular shape and is supported at both longitudinal ends, wherein It is the longitudinal center does not have the movable thin film side non-electrode portion said flat electrode portion of the movable film is formed, the planar substrate, the movable membrane side substrate-side non-not having planar electrode at a position facing the non-electrode portion light modulation element, characterized in that the electrode portions are formed. (2)平面基板に間隔を有して可動薄膜を対向配置すると共に、前記基板と前記可動薄膜の双方に平面電極を設け、前記各平面電極への電圧印加により発生する静電気力によって前記可動薄膜を前記平面基板に対して変位させ、前記可動薄膜を反射する光量を変化させる反射型の光変調素子であって、前記可動薄膜は、矩形状に形成され長手方向両端で支持されると共に、前記可動薄膜の長手方向中央部に前記平面電極を有しない可動薄膜側非電極部が形成されていることを特徴とする光変調素子。 (2) a planar substrate at a distance with a movable thin film opposed, planar electrodes provided on both of the movable thin film and the substrate, the movable membrane by the electrostatic force generated by the voltage applied to each of the planar electrode the displaced relative to a flat substrate, a light modulation device of a reflection type that changes the amount of light that reflects the movable thin film, said movable thin film, with a rectangular shape and is supported at both longitudinal ends, wherein light modulation element, characterized in that the longitudinal center does not have the movable thin film side non-electrode portion said flat electrode portion of the movable thin film is formed. (3)前記可動薄膜側非電極部の領域内の一部又は全域に入射光を照射することを特徴とする前記(1)又は(2)記載の光変調素子。 (3) above, wherein the irradiating the incident light to a part or the whole of the movable thin film side non-electrode portion in the region (1) or (2) an optical modulation element as claimed. 【0074】(4)前記光変調が、前記平面電極への電圧印加により可動薄膜を変位させることで、光学的な干渉効果を発生させるものであることを特徴とする前記(1)〜(3)のいずれか1つに記載の光変調素子。 [0074] (4) the light modulation, by displacing the movable thin film by applying voltage to the planar electrode, said to characterized in that to generate optical interference effects (1) - (3 light modulation element according to any one of). (5)前記光変調が、前記平面電極への電圧印加により可動薄膜を前記平面基板に対して近接させることで、前記平面基板の全反射面における全反射条件を変化させ、 (5) the light modulation, said by applying voltage to the planar electrode that is closer to the movable film relative to the planar substrate, changing the total reflection condition in the total reflection surface of the planar substrate,
前記平面基板から前記可動薄膜に光を取り出すものであることを特徴とする前記(1)〜(3)のいずれか1つに記載の光変調素子。 Light modulation element according to any one of (1) to (3), characterized in that from the planar substrate in which light is extracted to the movable film. (6)前記可動薄膜の長手方向両端近傍に、可動薄膜中央部の幅より狭い狭小部を形成してなることを特徴とする前記(1)〜(5)のいずれか1つに記載の光変調素子。 (6) near both longitudinal ends of the movable film, the light of any one of the preceding, characterized in that by forming a narrow narrow portion than the width of the movable film center part (1) to (5) modulation element. (7)前記(1)〜(6)のいずれか1つに記載の光変調素子を、同一平面上で、前記可動薄膜の長手方向に対して直交する方向に複数近接させて並設したことを特徴とする光変調素子アレイ。 (7) to the light modulation element according to any one of (1) to (6), on the same plane, and arranged by a plurality close to a direction perpendicular to the longitudinal direction of the movable film light modulation element array according to claim. 【0075】(8)前記(7)の光変調素子アレイと、 [0075] and the optical modulation element array (8) (7),
前記光変調素子アレイに光ビームを照射するレーザ光源と、前記光ビームに感光する感光材料に対して、前記光変調素子アレイからの出射光を、主走査方向及び該主走査方向に直交する副走査方向へ相対移動させる移動手段とを備えたことを特徴とする露光装置。 A laser light source for irradiating a light beam to the light modulator array, the photosensitive material sensitive to the light beam, sub orthogonal to light emitted from the light modulating element array in the main scanning direction and the main scanning direction exposure apparatus characterized by comprising a moving means for relatively moving the scanning direction. (9)前記(7)の光変調素子アレイと、前記光変調素子アレイに光ビームを照射するレーザ光源と、前記光変調素子アレイからの出射光を集光する集光レンズと、前記光ビームに感光する感光材料に対して、前記集光レンズにより集光された出射光を、主走査方向及び該主走査方向に直交する副走査方向へ相対移動させる移動手段とを備えたことを特徴とする露光装置。 (9) and the optical modulation element array of (7), a laser light source for irradiating a light beam to the light modulator array, a focusing lens for focusing the light emitted from the light modulator array, the light beam the photosensitive material sensitive to, and further comprising a moving means for relatively moving the emitted light collected by the condenser lens, the sub-scanning direction perpendicular to the main scanning direction and the main scanning direction exposure apparatus that. 【0076】 【発明の効果】以上詳細に説明したように、本発明に係る光変調素子によれば、可動薄膜を矩形状に形成し、かつこの可動薄膜の長手方向中央部に、電極を形成しない可動薄膜側非電極部を設け、透過型の場合は、平面基板にも、この可動薄膜側非電極部に対面する位置に基板側非電極部を設け、これら可動薄膜側非電極部及び基板側非電極部において光変調を行うようにしたので、可動薄膜及び平面基板の光透過部位又は光反射部位に透明電極が存在しない構成となり、透明電極を設けた場合に生じる光の吸収を皆無にできる。 [0076] As described [Effect Invention above in detail, according to the optical modulation device according to the present invention, to form the movable film in a rectangular shape, and the longitudinal center of the movable thin film, forming an electrode the movable thin film side non-electrode portion is provided which does not, in the case of transmissive type, in the planar substrate, the substrate-side non-electrode portion is provided at a position facing to the movable thin film side non-electrode portions, these movable thin film side non-electrode portion and the substrate since to perform optical modulation on the side non-electrode portions, becomes a configuration in which a transparent electrode on the light transmitting portions or light reflecting portions of the movable film and the planar substrate is not present, none in the absorption of the light generated in the case of providing the transparent electrode it can. これにより、光強度が強い場合に生じる透明電極の発熱による変形・破壊等を防止でき、光変調素子の高速駆動を可能にし、かつ光変調素子の長寿命化を実現できる。 This prevents the deformation or destruction by heat generation of the transparent electrodes caused when the light intensity is high, enabling high-speed driving of the optical modulator, and can be realized a long life of the optical modulator. また、反射型の場合は、可動薄膜に電極を形成しない可動薄膜側非電極部を設けることで、光の吸収を皆無にできる。 In addition, in the case of the reflection type, by providing a movable thin film side non-electrode part not forming an electrode on the movable film can be light absorption nil. また、本発明に係る光変調素子アレイによれば、光変調素子を、同一平面上で、可動薄膜の長手方向に直行する方向に複数近接させて並設したので、光変調素子の並設数と同数の画素数で、1ライン分を同時に光変調することができる。 Further, according to the optical modulation element array according to the present invention, the light modulation element, on the same plane, so juxtaposed by more close to the direction perpendicular to the longitudinal direction of the movable film, parallel light modulation element 設数and the same number of number of pixels can be simultaneously optically modulating the one line. また、本発明に係る露光装置によれば、光変調素子アレイと、光ビームを出射する高出力レーザ光源と、光変調素子アレイからの出射光を相対移動させる移動手段とを設けたので、感光材料を直接走査露光することができる。 Further, according to exposure apparatus according to the present invention, a light modulation array, and a high-power laser light source for emitting a light beam, since the light emitted from the light modulating element array provided with a moving means for relatively moving the photosensitive it can be scanned exposing the material directly.

【図面の簡単な説明】 【図1】本発明に係る光変調素子の構成を示す断面図である。 It is a sectional view of an optical modulation device according to the BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] present invention. 【図2】図1に示した光変調素子の平面図である。 2 is a plan view of the light modulation element shown in FIG. 【図3】図1に示した光変調素子の光透過部の層構成を示す断面図である。 3 is a cross-sectional view showing the layer structure of the light transmitting portion of the light modulation element shown in FIG. 【図4】図1に示した光変調素子の動作状態を説明する断面図である。 It is a cross-sectional view illustrating the operation state of the light modulation element shown in FIG. 1; FIG. 【図5】ブラックライト用低圧水銀ランプの分光特性を示す説明図である。 5 is an explanatory diagram showing spectral characteristics of the low-pressure mercury lamp black light. 【図6】光変調素子の光強度透過率を示す説明図である。 6 is an explanatory view showing a light intensity transmittance of the light modulation element. 【図7】本発明に係る光変調素子の第2実施形態における構成を示す断面図である。 7 is a cross-sectional view illustrating the construction of a second embodiment of light modulation element according to the present invention. 【図8】図7に示した光変調素子の動作状態を説明する断面図である。 8 is a cross-sectional view illustrating the operation state of the light modulation element shown in FIG. 【図9】本発明に係る光変調素子の第3実施形態における構成と動作状態を示す断面図である。 It is a cross-sectional view showing the configuration and operation state in the third embodiment of light modulation element according to the present invention; FIG. 【図10】本発明に係る光変調素子の第4実施形態における構成と動作状態を示す断面図である。 It is a cross-sectional view showing the configuration and operating states of the fourth embodiment of the optical modulation device according to the invention; FIG. 【図11】シリコン基板と可動薄膜との間の空隙と、素子の反射率との関係を示す図である。 [11] and the gap between the silicon substrate and the movable film is a diagram showing the relationship between the reflectance of the element. 【図12】第4実施形態における光変調素子の変形例の構成と動作状態を示す断面図である。 12 is a sectional view showing the structure and operation state of the modification of the optical modulation device according to the fourth embodiment. 【図13】可動薄膜に狭小部を設けた光変調素子の変形例を表す平面図である。 13 is a plan view showing a modification of the optical modulation device having a narrow portion to the movable film. 【図14】本発明に係る露光装置の要部構成の概略を表した斜視図である。 14 is a perspective view showing an outline of a main configuration of an exposure apparatus according to the present invention. 【図15】図14に示した光変調素子アレイの拡大斜視図である。 15 is an enlarged perspective view of the optical modulation element array shown in FIG. 14. 【図16】本発明に係る光変調素子を用いて構成した他の露光部の拡大斜視図である。 16 is an enlarged perspective view of another exposure unit which is configured using an optical modulation device according to the present invention. 【図17】従来の光変調素子の断面図である。 17 is a cross-sectional view of a conventional optical modulation element. 【符号の説明】 13…シリコン基板16…ドープ層15…平面電極23…平面基板25…空隙(間隔) 27…可動薄膜55…基台31…可動電極(平面電極) 37…固定電極(平面電極) 41…可動薄膜側非電極部43…基板側非電極部59…狭小部61…露光装置63…露光対象物(感光材料) 69…紫外レーザ光(光ビーム) 90…移動手段91…紫外レーザ光源(高出力レーザ光源) 95…光変調素子アレイ100,200,300,400,500…光変調素子113…集光レンズ [Reference Numerals] 13 ... silicon substrate 16 ... doped layer 15 ... planar electrode 23 ... planar substrate 25 ... gap (interval) 27 ... movable film 55 ... base 31 ... movable electrode (flat electrode) 37 ... fixed electrode (flat electrode ) 41 ... movable film side non-electrode portions 43 ... substrate side non-electrode portions 59 ... narrow portion 61 ... exposure device 63 ... object of exposure (photosensitive material) 69 ... ultraviolet laser beam (light beam) 90 ... moving means 91 ... ultraviolet laser source (high-power laser light source) 95 ... optical modulation element array 100,200,300,400,500 ... light modulator elements 113 ... converging lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H04N 1/036 H01L 21/30 516D 5F046 1/04 B41J 3/21 V 1/113 H04N 1/04 104Z B Fターム(参考) 2C162 AE28 AE40 AE47 FA06 FA09 FA10 2H041 AA13 AB40 AC06 AZ01 AZ05 AZ08 2H097 AA03 BB01 CA12 CA17 LA10 5C051 AA02 CA07 DA02 DB02 DB04 DB06 DB07 DB22 DB30 DC04 DC07 DE05 5C072 AA03 BA03 HA02 HA11 HB15 XA04 5F046 BA05 CA03 CB19 CB23 CB27 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) H04N 1/036 H01L 21/30 516D 5F046 1/04 B41J 3/21 V 1/113 H04N 1/04 104Z B F-term (reference) 2C162 AE28 AE40 AE47 FA06 FA09 FA10 2H041 AA13 AB40 AC06 AZ01 AZ05 AZ08 2H097 AA03 BB01 CA12 CA17 LA10 5C051 AA02 CA07 DA02 DB02 DB04 DB06 DB07 DB22 DB30 DC04 DC07 DE05 5C072 AA03 BA03 HA02 HA11 HB15 XA04 5F046 BA05 CA03 CB19 CB23 CB27

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 平面基板に間隔を有して可動薄膜を対向配置すると共に、前記基板と前記可動薄膜の双方に平面電極を設け、前記各平面電極への電圧印加により発生する静電気力によって前記可動薄膜を前記平面基板に対して変位させ、前記可動薄膜を透過する光量を変化させる透過型の光変調素子であって、 前記可動薄膜は、矩形状に形成され長手方向両端で支持されると共に、前記可動薄膜の長手方向中央部に前記平面電極を有しない可動薄膜側非電極部が形成され、 前記平面基板は、前記可動薄膜側非電極部と対面する位置に前記平面電極を有しない基板側非電極部が形成されていることを特徴とする光変調素子。 With the Patent Claims 1. A movable film at a distance to the flat substrate disposed oppositely, a flat electrode to both of said movable thin film and the substrate is provided, by the voltage application to the planar electrode said movable film is displaced with respect to the planar substrate by an electrostatic force generated, a transmission type optical modulation element for changing the amount of light transmitted through the movable film, the movable film in the longitudinal direction is formed in a rectangular shape while being supported at both ends, the longitudinal center does not have the movable thin film side non-electrode portion said flat electrode portion of the movable film is formed, the planar substrate, said at a position facing the movable thin film side non-electrode portions light modulation element, characterized in that the substrate-side non-electrode portion having no flat electrodes are formed. 【請求項2】 平面基板に間隔を有して可動薄膜を対向配置すると共に、前記基板と前記可動薄膜の双方に平面電極を設け、前記各平面電極への電圧印加により発生する静電気力によって前記可動薄膜を前記平面基板に対して変位させ、前記可動薄膜を反射する光量を変化させる反射型の光変調素子であって、 前記可動薄膜は、矩形状に形成され長手方向両端で支持されると共に、前記可動薄膜の長手方向中央部に前記平面電極を有しない可動薄膜側非電極部が形成されていることを特徴とする光変調素子。 2. A with a distance to the flat substrate disposed oppositely movable film, a planar electrode provided on both of the movable thin film and the substrate, wherein the electrostatic force generated by the voltage applied to each of the planar electrode displacing the movable thin film with respect to the planar substrate, wherein a light modulation device of a reflection type that changes the amount of light that reflects movable film, the movable film is supported by the longitudinal ends is formed in a rectangular shape the light modulation element, characterized in that no movable thin film side non-electrode portion said flat electrode in a longitudinal direction central portion of the movable thin film is formed. 【請求項3】 請求項1又は請求項2記載の光変調素子を、同一平面上で、前記可動薄膜の長手方向に対して直交する方向に複数近接させて並設したことを特徴とする光変調素子アレイ。 The light modulation element 3. A process according to claim 1 or claim 2, wherein, on the same plane, the light, characterized in that juxtaposed by more close to the direction perpendicular to the longitudinal direction of the movable film modulation element array. 【請求項4】 請求項3記載の光変調素子アレイと、 前記光変調素子アレイに光ビームを照射するレーザ光源と、 前記光ビームに感光する感光材料に対して、前記光変調素子アレイからの出射光を、主走査方向及び該主走査方向に直交する副走査方向へ相対移動させる移動手段とを備えたことを特徴とする露光装置。 4. A light modulation element array according to claim 3 wherein a laser light source for irradiating a light beam to the light modulator array, the photosensitive material sensitive to the light beam, from the optical modulation element array the emitted light, an exposure apparatus characterized by comprising a moving means for relatively moving the sub-scanning direction perpendicular to the main scanning direction and the main scanning direction. 【請求項5】 請求項3記載の光変調素子アレイと、 前記光変調素子アレイに光ビームを照射するレーザ光源と、 前記光変調素子アレイからの出射光を集光する集光レンズと、 前記光ビームに感光する感光材料に対して、前記集光レンズにより集光された出射光を、主走査方向及び該主走査方向に直交する副走査方向へ相対移動させる移動手段とを備えたことを特徴とする露光装置。 A light modulation element array 5. The method of claim 3 wherein a laser light source for irradiating a light beam to the light modulator array, a focusing lens for focusing the light emitted from the light modulator array, the the photosensitive material sensitive to the light beams, further comprising a moving means for relatively moving the emitted light collected by the condenser lens, the sub-scanning direction perpendicular to the main scanning direction and the main scanning direction exposure apparatus according to claim.
JP2001377046A 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same Pending JP2003177336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377046A JP2003177336A (en) 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377046A JP2003177336A (en) 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same

Publications (1)

Publication Number Publication Date
JP2003177336A true JP2003177336A (en) 2003-06-27

Family

ID=19185109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377046A Pending JP2003177336A (en) 2001-12-11 2001-12-11 Optical modulating element, optical modulating element array, and exposure device using the same

Country Status (1)

Country Link
JP (1) JP2003177336A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099061A (en) * 2004-09-27 2006-04-13 Idc Llc System and method of reducing color shift in display
JP2006167985A (en) * 2004-12-13 2006-06-29 Samsung Yokohama Research Institute Co Ltd Optical recording head and image forming apparatus
US7190523B2 (en) 2003-07-07 2007-03-13 Seiko Epson Corporation Wavelength-tunable optical filter
JP2009505162A (en) * 2005-08-19 2009-02-05 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド mems device having a support structure configured to minimize deformation due to stress, and a manufacturing method thereof
US7710636B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Systems and methods using interferometric optical modulators and diffusers
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8040589B2 (en) 2008-02-12 2011-10-18 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8059326B2 (en) 1994-05-05 2011-11-15 Qualcomm Mems Technologies Inc. Display devices comprising of interferometric modulator and sensor
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8111446B2 (en) 2004-09-27 2012-02-07 Qualcomm Mems Technologies, Inc. Optical films for controlling angular characteristics of displays
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
JP2012212159A (en) * 2007-07-02 2012-11-01 Qualcomm Mems Technologies Inc Micro electromechanical device with optical function separated from mechanical and electrical function
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8670171B2 (en) 2010-10-18 2014-03-11 Qualcomm Mems Technologies, Inc. Display having an embedded microlens array
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
WO2014153281A1 (en) * 2013-03-18 2014-09-25 Pixtronix, Inc. Display device
US8861071B2 (en) 2004-09-27 2014-10-14 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8059326B2 (en) 1994-05-05 2011-11-15 Qualcomm Mems Technologies Inc. Display devices comprising of interferometric modulator and sensor
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US7190523B2 (en) 2003-07-07 2007-03-13 Seiko Epson Corporation Wavelength-tunable optical filter
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8111445B2 (en) 2004-02-03 2012-02-07 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7813026B2 (en) 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7710636B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Systems and methods using interferometric optical modulators and diffusers
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US8390547B2 (en) 2004-09-27 2013-03-05 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
JP2006099061A (en) * 2004-09-27 2006-04-13 Idc Llc System and method of reducing color shift in display
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8243360B2 (en) 2004-09-27 2012-08-14 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8111446B2 (en) 2004-09-27 2012-02-07 Qualcomm Mems Technologies, Inc. Optical films for controlling angular characteristics of displays
US8861071B2 (en) 2004-09-27 2014-10-14 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
JP4559838B2 (en) * 2004-12-13 2010-10-13 株式会社サムスン横浜研究所 The optical recording head and an image forming apparatus
JP2006167985A (en) * 2004-12-13 2006-06-29 Samsung Yokohama Research Institute Co Ltd Optical recording head and image forming apparatus
JP2009505162A (en) * 2005-08-19 2009-02-05 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド mems device having a support structure configured to minimize deformation due to stress, and a manufacturing method thereof
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
JP2012212158A (en) * 2007-07-02 2012-11-01 Qualcomm Mems Technologies Inc Micro electromechanical device with optical function separated from mechanical and electrical function
JP2012212159A (en) * 2007-07-02 2012-11-01 Qualcomm Mems Technologies Inc Micro electromechanical device with optical function separated from mechanical and electrical function
US8368997B2 (en) 2007-07-02 2013-02-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8040589B2 (en) 2008-02-12 2011-10-18 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US8670171B2 (en) 2010-10-18 2014-03-11 Qualcomm Mems Technologies, Inc. Display having an embedded microlens array
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
WO2014153281A1 (en) * 2013-03-18 2014-09-25 Pixtronix, Inc. Display device

Similar Documents

Publication Publication Date Title
US7321349B2 (en) Display element, display device, and microlens array
EP1278093B9 (en) Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer
US8096668B2 (en) Illumination systems utilizing wavelength conversion materials
US6219074B1 (en) Light-emitting device and recording device using the same
JP4757974B2 (en) A light source for a projection display
EP0756334A2 (en) Light emitting device, electric device provided with the light emitting device, and method of producing the light emitting device
US20110044046A1 (en) High brightness light source and illumination system using same
JP5528469B2 (en) Having at least one projector illuminating means and the illumination means
CN1295525C (en) Optical waveguide and optical information processing device
US20100202129A1 (en) Illumination system utilizing wavelength conversion materials and light recycling
KR100853131B1 (en) Method and apparatus for driving electronic device
US6687040B2 (en) Light modulating element array and method of driving the light modulating element array
CA2113645C (en) Pixel intensity modulator
JP4996029B2 (en) Waveguide display
US7046422B2 (en) Reflection-type light modulating array element and exposure apparatus
US6876494B2 (en) Imaging forming apparatus
US5808657A (en) Laser printer with low fill modulator array and high pixel fill at a media plane
EP2484955A1 (en) Optical element, light source device, and projection display device
JP4731787B2 (en) Exposure head and the exposure apparatus
US7369268B2 (en) Light source using large area LEDs
KR101644762B1 (en) Illumination apparatus, illumination method, exposure apparatus, exposure method and device manufacturing method
US7722194B2 (en) Optical element having a reflected light diffusing function and a polarization separation function and a projection display device
EP1406109B1 (en) Optical multilayer structure and its production method, optical switching device, and image display
US6930816B2 (en) Spatial light modulator, spatial light modulator array, image forming device and flat panel display
JP3093244B2 (en) Lighting system improved photoelectric conversion device and equipped with the information processing apparatus the device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070307