WO2011049004A1 - Spatial light modulator, optical apparatus, and exposure apparatus - Google Patents

Spatial light modulator, optical apparatus, and exposure apparatus Download PDF

Info

Publication number
WO2011049004A1
WO2011049004A1 PCT/JP2010/068096 JP2010068096W WO2011049004A1 WO 2011049004 A1 WO2011049004 A1 WO 2011049004A1 JP 2010068096 W JP2010068096 W JP 2010068096W WO 2011049004 A1 WO2011049004 A1 WO 2011049004A1
Authority
WO
WIPO (PCT)
Prior art keywords
light modulator
spatial light
illumination
illumination light
pattern
Prior art date
Application number
PCT/JP2010/068096
Other languages
French (fr)
Japanese (ja)
Inventor
壮一 大和
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2011049004A1 publication Critical patent/WO2011049004A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/15Function characteristic involving resonance effects, e.g. resonantly enhanced interaction

Definitions

  • the present invention relates to a spatial light modulator that modulates the amount of illumination light for each of a plurality of regions, an optical apparatus having the spatial light modulator, an exposure apparatus having the optical apparatus, and a device manufacturing method using the exposure apparatus.
  • an exposure apparatus such as a batch exposure type such as a stepper used in a lithography process for manufacturing a device (electronic device) such as a semiconductor element or a scanning exposure type such as a scanning stepper
  • a plurality of devices to be manufactured In order to form different circuit patterns for the layers, exposure is performed by exchanging masks for each layer. As described above, when the mask is exchanged for each device and each layer, the throughput of the exposure process is lowered.
  • a beam is placed between the illumination optical system and the spatial light modulator.
  • a splitter needs to be arranged, and the optical system becomes large and the utilization efficiency of illumination light is low.
  • the beam splitter is not arranged as described above, the projection optical system becomes non-telecentric on the image plane side, so that the optical system becomes complicated as a whole.
  • the liquid crystal panel When a liquid crystal panel is used as the spatial light modulator, the liquid crystal panel can be used as a transmissive mask.
  • the liquid crystal panel has a problem that the transmittance with respect to ultraviolet light generally used as exposure light in the current exposure apparatus is low and the response speed is as low as about 1 ms.
  • the present invention provides a spatial light modulator that can be used as a transmission type with respect to ultraviolet light and has a high response speed, and an optical technique and an exposure technique using the spatial light modulator. The purpose is to do.
  • each of the spatial light modulators is disposed in a plurality of regions on the optical path of the illumination light, and is equal to or more than the wavelength of the illumination light.
  • a spatial light modulator is provided that includes a plurality of microresonators made of a conductor having a small width, and a modulation mechanism that modulates the resonance frequency of the plurality of microresonators for each of the plurality of regions.
  • the spatial light modulator according to the first aspect of the present invention a drive system for driving the modulation mechanism of the spatial light modulator, and the spatial light modulation with illumination light.
  • An optical device is provided that includes an illumination system that illuminates an illumination region that includes the plurality of regions of the instrument, and a projection system that forms an image of the plurality of regions of the spatial light modulator.
  • the optical device according to the second aspect of the present invention and the substrate disposed on the image plane of the projection system are held.
  • An exposure apparatus is provided that includes a moving stage and a control device that controls the drive system of the optical device in accordance with a pattern formed on the substrate.
  • the exposure apparatus according to the third aspect of the present invention is used to transfer the pattern to the substrate, and the substrate to which the pattern is transferred is based on the pattern. And a device manufacturing method is provided.
  • the width of the plurality of microresonators is set to about ultraviolet light
  • the resonance frequency of the microresonator is set between the frequency of the ultraviolet light and other frequencies.
  • FIG. 3A is an enlarged cross-sectional view taken along line III-III in FIG. 2B
  • FIG. 3B is a diagram illustrating an example of a resonance frequency of an SRR (split ring resonator).
  • A) is a figure which shows an example of the variable pattern of the spatial light modulator 25
  • B) is a figure which shows another example of the variable pattern of the spatial light modulator 25.
  • FIG. 8 is a diagram showing a state in which the transferred region 26M has moved.
  • (A) is a view showing a shot area of a wafer at the time of scanning exposure
  • (B) is a view showing a shot area of the wafer at the time of exposure by the step-and-repeat method. It is a flowchart which shows an example of the exposure operation
  • (A) is an enlarged sectional view showing a modified SRR 20Y and a modulating unit 19A
  • (B) is an enlarged sectional view showing a state in which the gap of the SRR 20Y is changed.
  • (A) is an enlarged sectional view showing the SRR 20YA and the modulator 19B of the second embodiment
  • (B) is an enlarged sectional view showing a state in which the gap of the SRR 20YA is changed.
  • (A) is an expanded sectional view showing the principal part of the spatial light modulator of the modification
  • (B) is an enlarged perspective view showing the SRR 20C of another modification. It is a figure which shows the principal part of the other modification of a spatial light modulator.
  • FIG. 1 shows a schematic configuration of an exposure apparatus EX of the present embodiment.
  • an exposure apparatus EX includes a light source 14 that emits pulsed light, an illumination optical system ILS that illuminates a surface to be irradiated with ultraviolet light (exposure light) IL for exposure from the light source 14, and the irradiation target.
  • a spatial light modulator 25 having a large number of pixels 5 arranged in a two-dimensional array on the surface or a surface in the vicinity thereof and each having a variable transmittance.
  • the exposure apparatus EX receives illumination light IL from a transmissive variable pattern generated by a large number of pixels 5 and projects an image of the variable pattern onto the upper surface of the wafer W (photosensitive substrate).
  • a system PL, a wafer stage WST for positioning and moving the wafer W, a main control system 30 comprising a computer for overall control of the operation of the entire apparatus, various control systems, and the like are provided.
  • the Z axis is set parallel to the optical axis AX of the projection optical system PL
  • the Y axis is set in a direction parallel to the plane of FIG. 1 in a plane perpendicular to the Z axis (substantially horizontal plane), and perpendicular to the plane of FIG.
  • the rotation directions (inclination directions) around the X axis, the Y axis, and the Z axis are referred to as a ⁇ x direction, a ⁇ y direction, and a ⁇ z direction, respectively.
  • the wafer W is scanned in the Y direction (scanning direction) during exposure.
  • a harmonic generator of a YAG laser that emits a pulse of substantially linearly polarized ultraviolet laser light with a wavelength of 355 nm composed of the third harmonic of the fundamental wave at a frequency of, for example, about 1 to 2 MHz is used.
  • an excimer laser light source such as another solid-state pulse laser light source that generates harmonics of laser light output from a semiconductor laser or the like, or a KrF excimer laser that generates ultraviolet light can also be used.
  • the light source 14 is connected to a power source unit 12 for controlling light emission timing and pulse energy (light quantity).
  • the main control system 30 supplies the power supply unit 12 with a light emission trigger pulse TP instructing the pulse light emission timing and pulse energy.
  • Illumination light IL consisting of ultraviolet laser light pulsed from the light source 14 enters the illumination optical system ILS.
  • the illumination optical system ILS includes, for example, a diffractive optical element and the like, as disclosed in, for example, US Patent Application Publication No. 2003/0025890.
  • It includes a light amount distribution setting optical system to be set, an illuminance uniformizing optical system including an optical integrator (fly eye lens, rod integrator, etc.), a reticle blind (variable field stop), a condenser optical system, and the like.
  • an optical integrator far eye lens, rod integrator, etc.
  • a reticle blind variable field stop
  • condenser optical system and the like.
  • the illumination optical system ILS has an illumination area 26 (see FIG. 4A) on a large number of pixels 5 of the spatial light modulator 25 disposed on or near the irradiated surface (surface on which the designed mask pattern is disposed). ) With a uniform illumination distribution.
  • the illumination optical system ILS and the spatial light modulator 25 are supported by a frame (not shown).
  • the spatial light modulator 25 is a rectangular flat plate elongated in the X direction, and has a large number of pixels 5 arranged between a first glass plate 6 and a second glass plate 8 that transmit the illumination light IL.
  • a thin spacer 6a is provided between the glass plates 6 and 8 to define the interval.
  • FIG. 4A is a plan view showing the spatial light modulator 25 of the present embodiment.
  • the light receiving surface of the spatial light modulator 25 has a rectangular shape elongated in the X direction, and is close to the light receiving surface at a constant pitch in the X direction and the Y direction.
  • the pixel 5 is drawn larger than the actual size.
  • the ratio of the length in the X direction and the width in the Y direction (scanning direction of the wafer W) of the light receiving surface of the spatial light modulator 25 is 4: 1, and the width in the X direction and the Y direction of each pixel 5 is The number of pixels 5 arranged in the Y direction on the light receiving surface is several thousand.
  • the illumination area 26 is set to an area slightly inside the contour of the light receiving surface of the spatial light modulator 25.
  • the light receiving surface of the spatial light modulator 25 may be substantially square.
  • the pixels 5 of the spatial light modulator 25 are each independently independent of each other with a first transmittance (transmission pattern state) having an average transmittance equal to or higher than a predetermined value and a second transmittance (less than a predetermined value). It is possible to switch at high speed with a response speed of, for example, about 1 ⁇ s. As an example, if the predetermined value is 50%, the first transmittance is approximately 60 to 80%, and the second transmittance is approximately 40 to 20%. Note that the difference between the transmission pattern and the light shielding pattern is whether or not the exposure amount of the resist applied to the wafer W exceeds a predetermined threshold, and therefore the difference between the first transmittance and the second transmittance. Does not have to be very large.
  • the main control system 30 in FIG. 1 supplies the modulation control unit 18 with information on the pattern to be exposed on the wafer W.
  • the transmittance of the pixel 5 is set to the first transmittance or the second transmittance.
  • the pixel 5 set to the first transmittance is referred to as a transmissive pixel 5P
  • the pixel 5 set to the second transmittance is referred to as a light-shielded pixel 5N.
  • a transmissive variable pattern (a part of the mask pattern) is formed by the combination of the transmissive pixel 5P and the light-shielding pixel 5N.
  • the configuration of the spatial light modulator 25 will be described later.
  • the projection optical system PL supported by a column is a double-sided telecentric reduction projection optical system.
  • the projection optical system PL uses the illumination light IL transmitted through each pixel 5 of the spatial light modulator 25 to generate an image with a predetermined reduction magnification ⁇ of the variable pattern formed by each pixel 5 in the exposure region 27 ( (Illumination area 26 and an optically conjugate area).
  • the wafer W is obtained by applying a resist (photosensitive agent) to the surface of a disk-shaped base material such as silicon.
  • the reduction magnification ⁇ of the projection optical system PL is, for example, about 1/10 to several hundredths.
  • a variable pattern with a line width of about 100 nm can be projected onto the wafer W by setting the reduction ratio ⁇ to about 1/100.
  • modified illumination such as dipole illumination is used and, as disclosed in, for example, US Patent Application Publication No. 2005/259234, a local area between the projection optical system PL and the wafer W is used.
  • An immersion method for supplying a liquid that transmits the illumination light IL to a certain region may be applied.
  • Wafer W is sucked and held on top of wafer stage WST via a wafer holder (not shown), and wafer stage WST moves stepwise in the X and Y directions on the upper surface of a wafer base (not shown) and is constant in Y direction. Move at speed.
  • the position of wafer stage WST in the X and Y directions, the rotation angle in the ⁇ z direction, and the like are formed by laser interferometer 33, and this measurement information is supplied to stage control system 32.
  • Stage control system 32 controls the position and speed of wafer stage WST via drive system 34 such as a linear motor based on control information from main control system 30 and measurement information from laser interferometer 33.
  • drive system 34 such as a linear motor based on control information from main control system 30 and measurement information from laser interferometer 33.
  • an alignment system (not shown) for detecting the position of the alignment mark on the wafer W is also provided.
  • FIG. 2A is an enlarged perspective view showing a part of the spatial light modulator 25.
  • the spatial light modulator 25 includes a first glass plate 6 and a large number of rectangular transparent conductive films elongated in the X direction and formed on the upper surface of the glass plate 6 at predetermined intervals in the Y direction.
  • a large number of electrode lines 9 made of a film.
  • the electrode lines 7 and 9 are, for example, indium tin oxide films (ITO films).
  • the pixel 5 is a substantially square area at a position P (i, j) sandwiched between the i-th electrode line 9 in the X direction and the j-th electrode line 7 in the Y direction.
  • the modulation control unit 18 in FIG. 1 controls the voltage between the electrode line 7 and the electrode line 9 that sandwich the pixel 5 at each position P (i, j).
  • split ring resonators 20X elongated in the X direction and a large number of elongated shapes in the Y direction are included.
  • the split ring resonator 20Y is formed close to each other and in a substantially uniform distribution.
  • the split ring resonator 20X has a shape obtained by rotating the split ring resonator 20Y by 90 ° around an axis parallel to the Z axis.
  • split ring resonators (Split-Ring-Resonators) 20X, 20Y, etc. are referred to as SRRs 20X, 20Y, etc.
  • the width in the longitudinal direction of the SRRs 20X and 20Y is about the wavelength of the illumination light IL (here, 355 nm) or shorter, and the width in the short side direction of the SRRs 20X and 20Y is about 1/3 of the width in the longitudinal direction. .
  • the shape of the pixel 5 is, for example, about 10 ⁇ m square, the SRRs 20X and 20Y are formed in the pixel 5 in about 50 rows ⁇ 50 columns.
  • the SRRs 20X and 20Y are each provided with a modulator 19 that changes the resonance frequency for the incident light.
  • the illumination light incident substantially perpendicularly on the surface of the pixel 5 has the electric field vector EVX oscillating in the X direction (that is, having the magnetic field vector BVY oscillating in the Y direction) and linearly polarized illumination light ILX in the X direction.
  • the transmittance of the illumination light ILX is controlled by the SRR 20X having the X direction as the longitudinal direction and the modulation unit 19.
  • the illumination light incident substantially perpendicularly on the surface of the pixel 5 is the illumination light ILY linearly polarized in the Y direction having the electric field vector EVY oscillating in the Y direction (that is, having the magnetic field vector BVX oscillating in the X direction).
  • the transmittance of the illumination light ILY is controlled by the SRR 20Y and the modulation unit 19 whose longitudinal direction is the Y direction.
  • a dielectric film 22A is formed on the upper surface of the electrode line 7 and the dielectric film 22A is opposed to the bottom surface of the electrode line 9, as shown in FIG. Thus, a dielectric film 22B is formed.
  • the dielectric films 22A and 22B (insulators) are made of a material that transmits the illumination light IL, for example, a thin film of PLZT (transparent ferroelectric ceramics).
  • PLZT transparent ferroelectric ceramics
  • the dielectric films 22A and 22B for example, a thin film in which lithium niobate (LiNbO 3 ) or the like is formed so as to transmit the illumination light IL can be used.
  • the dielectric films 22A and 22B are respectively formed on the entire surface of each pixel 5 in FIG.
  • the SRR 20Y includes a first member 20YA, a second member 20YB, a third member 20YC, and a fourth member 20YD that are obtained by dividing a ring-shaped member around an axis parallel to the X axis as a whole.
  • the members 20YA to 20YD are made of metal such as silver (Ag), gold (Au), copper (Cu), or aluminum (Al).
  • the members 20YA and 20YB are formed on the upper surface of the dielectric film 22A at a predetermined interval in the Y direction, and the members 20YD and 20YC are formed on the lower surface of the dielectric film 22B so as to face the members 20YA and 20YB, respectively. It is formed at predetermined intervals in the direction.
  • the width (height) b in the Z direction is set smaller than the width a in the Y direction of the SRR 20Y.
  • dielectrics 21A and 21B are installed in gaps in the Z direction between the members 20YA and 20YD and between the members 20YB and 20YC, respectively.
  • the dielectrics 21A and 21B are made of the same material as the dielectric films 22A and 22B, for example.
  • the dielectrics 21A and 21B may be formed of a ferroelectric material such as PZT (lead zirconate titanate) or SBT (bismuth strontium tantalate).
  • a modulation unit 19 that switches the resonance frequency of the SRR 20Y is configured by the electrode lines 7 and 9, the dielectric films 22A and 22B, and the dielectrics 21A and 21B.
  • a variable voltage is applied between the electrode lines 7 and 9 by the voltage control unit 18a in the modulation control unit 18 of FIG.
  • the electrode line 7, the dielectric film 22A, the members 20YA and 20YB, and the dielectrics 21A and 21B are first formed on the upper surface of the glass plate 6 using a lithography process.
  • the electrode line 9, the dielectric film 22B, and the members 20YC and 20YD are formed on one surface of the glass plate 8 using a lithography process, and then the glass so that the dielectrics 21A and 21B and the members 20YD and 20YC face each other.
  • a glass plate 8 may be placed on the plate 6.
  • the spacer 6a between the glass plates 6 and 8 slightly thinner than the width b (height) of the SRR 20Y
  • the dielectrics 21A and 21B and The members 20YD and 20YC can be in close contact with each other.
  • MEMS Microelectromechanical Systems
  • Reference A the imaginary part of the relative permeability of the SRR 20Y for light incident on the SRR 20Y in the Z direction with a magnetic field vector oscillating in the X direction. ⁇ Im changes as shown in FIG.
  • the horizontal axis is the frequency f [THz] of light incident on the SRR 20Y
  • the solid line characteristic B1 is obtained when the voltage between the electrode lines 7 and 9 in FIG.
  • the frequencies f1, f2, and f3 are resonance frequencies when the width a (shape) of the SRR 20Y is gradually reduced.
  • the absorption amount of the SRR 20Y with respect to the light incident on the SRR 20Y at the frequencies f1 to f3 or in the vicinity thereof is large, and the transmittance of the light Decreases. Further, as the width a of the SRR 20Y is decreased, the resonance frequency f3 and the like are increased and the corresponding wavelength is shortened.
  • the resonance frequency is f3
  • the frequency fy of the illumination light ILY supplied from the illumination optical system ILS in FIG. 1 is set to a value slightly deviating from the resonance frequency f3. Therefore, when the voltage between the electrode lines 7 and 9 is 0, the illumination light ILY transmits the SRR 20Y almost as it is.
  • the resonance frequency f3 is about 840 THz (wavelength is 350 nm)
  • the width a of the SRR 20Y is about 200 nm.
  • the resonance frequency of the SRR 20Y is set to the illumination light by controlling the voltage between the electrode lines 7 and 9, as indicated by the dotted line characteristic B2 in FIG. Move to or near the frequency fy of ILY.
  • the voltage between the electrode lines 7 and 9 at this time is VN.
  • the resonance frequency of the SRR 20Y is substantially the same as the frequency fy of the illumination light ILY, and the illumination light ILY is absorbed by the SRR 20Y. Therefore, the transmittance of the illumination light ILY in the pixel 5 to which the SRR 20Y belongs is reduced.
  • the potential between the electrode lines 7 and 9 is further increased from VN, the resonance frequency of the SRR 20Y is shifted from the frequency of the illumination light ILY, and the transmittance of the illumination light ILY is increased.
  • the potentials of all the electrode lines 7 of the spatial light modulator 25 are set to 0, and the potentials of all the electrode lines 9 are also set to 0, whereby the SRRs 20Y in all the pixels 5 are set. Since the resonance frequency is different from the frequency of the illumination light ILY, all the pixels 5 are transmissive pixels with respect to the illumination light ILY.
  • the potential of the j-th electrode line 7 to 2 ⁇ VN and setting the potential of the i-th electrode line 9 to 3 ⁇ VN, for example, only the pixel 5 at the position P (i, j) is used.
  • the pixel 5 Since the voltage between the electrode lines 7 and 9 is VN and the potential between the electrode lines 7 and 9 is 0 or 2 ⁇ VN or more in the other pixels 5, the pixel 5 only at the position P (i, j) is illuminated. It can be a light-shielded pixel with respect to the light ILY. As described above, the modulation control unit 18 controls the voltage of the multiple electrode lines 7 and 9 of the spatial light modulator 25 of FIG. 2A, thereby spatially modulating the illumination light ILY with a high response speed. Each pixel 5 in the container 25 can be set to either the transmission pixel 5P having the first transmittance (high transmittance) or the light-shielding pixel 5N having the second transmittance (low transmittance).
  • each pixel 5 in the spatial light modulator 25 can be set to either the transmissive pixel 5P or the light-shielding pixel 5N with respect to the illumination light ILX. Therefore, each pixel 5 in the spatial light modulator 25 can be set to either the transmission pixel 5P or the light-shielding pixel 5N with respect to the linearly polarized illumination light IL (or circularly polarized illumination light).
  • Mask patterns MP are line and space patterns (hereinafter referred to as L & S patterns) 40A to 40C arranged at a predetermined pitch in the X direction, L & S patterns 41A to 41D arranged at a predetermined pitch in the Y direction, and relatively L & S patterns 42A, 42B, and 43 arranged at a rough pitch are included. Note that the L & S patterns 40A to 40C and the like are enlarged and displayed. In practice, the mask pattern MP may have a different shape from the pattern projected onto the wafer W.
  • the transfer area 26M is virtually moved in the Y direction on the mask pattern MP at a constant speed in the image memory in the main control system 30, and changes in time series in the transfer area 26M.
  • a light intensity distribution corresponding to the pattern to be generated is generated by a large number of pixels 5 of the spatial light modulator 25 in FIG. 4A, and the scanning direction corresponding to the wafer W in FIG. 1 is synchronized with the movement of the transferred region 26M. Move in the Y direction.
  • a hatched portion (L & S pattern 40A, etc.) of the mask pattern MP in FIG. 5A shows a portion having a high light intensity
  • the transmissive pixel 5P in the shaded area of 25 is a portion with high light intensity.
  • the wafer W is loaded onto the wafer stage WST in FIG. As shown in FIG. 6A, the surface of the wafer W is exposed to a reduced image of the mask pattern MP of FIG. 5A (for the sake of convenience, an erect image) at a predetermined pitch in the X and Y directions. Is divided into shot areas SA.
  • the main control system 30 sets the illumination condition of the illumination optical system ILS to, for example, quadrupole illumination.
  • next step 103 after the alignment of the wafer W, in order to expose the shot areas SA21, SA22,... Arranged in a line in the Y direction on the upper surface of the wafer W in FIG. 5 is positioned at the scanning start position, scanning of the transfer area 26M in the + Y direction is virtually started on the mask pattern MP in FIG. 5A, and the wafer W is synchronized with the wafer W via the wafer stage WST. Starts scanning at a constant speed in the + Y direction.
  • An arrow in the shot area SA21 and the like in FIG. 5A indicates the relative movement direction of the exposure area 27 with respect to the wafer W.
  • the main control system 30 selects the pattern 28A composed of the L & S patterns 40A to 40C as the transfer pattern from within the transferred region 26M in FIG.
  • the same type of pattern is exposed together, but all the patterns in the transfer area 26M are simply selected as transfer patterns. May be.
  • the main control system 30 controls the transmittance of all the pixels 5 of the spatial light modulator 25 via the modulation control unit 18, and the selection is made as shown in FIG.
  • the distribution of the transmissive pixels 5P and the light shielding pixels 5N corresponding to the pattern 28A is set.
  • the main control system 30 supplies the light emission trigger pulse TP to the power supply unit 12 of FIG. 1, causes the light source 14 to emit the illumination light IL by a predetermined number of pulses, and causes the exposure region 27 on the wafer W to be emitted.
  • the image of the pattern 28A shown in FIG. 4A is exposed.
  • the predetermined number of pulses may be one pulse or a plurality of pulses such as 5 pulses or 10 pulses. Further, the predetermined number of pulses may be variable. Since the operations of step 104 and the following step 107 are performed at a very high speed, the illumination light IL is pulsed substantially continuously during the scanning exposure of the wafer W.
  • step 107 if there remains a pattern that has not been transferred in the mask pattern MP in FIG. 5A, the process returns to step 104 to select a pattern for transfer.
  • the operation of setting the transmittance of the pixel 5 of the modulator 25 and the exposure operation for a predetermined number of pulses are repeated.
  • steps 104 to 106 may be repeated a plurality of times for the same pattern (for example, the L & S pattern 40A in FIG. 5A).
  • the predetermined number of pulses is set so that the integrated exposure amount with respect to the wafer W for each pattern (for example, the L & S pattern 40A) in the mask pattern MP of FIG. Is adjusted.
  • the transfer area 26M when the transfer area 26M moves, the transfer area 26M includes an L & S pattern 41A in the Y direction in addition to the L & S patterns 40A to 40C in the X direction. ing. In this case, as an example, only the L & S patterns 40A to 40C are selected as the transfer pattern 28B.
  • FIG. 5C when the transfer area 26M moves, only the L & S patterns 41A to 41C in the Y direction are selected as the transfer pattern 28C.
  • the distribution of the transmissive pixels 5P and the light shielding pixels 5N is set as shown in FIG. 4B.
  • the transfer area 26M moves to the position 29A indicated by the two-dot chain line in FIG. 5A, only the L & S patterns 41B to 41C in the Y direction are selected as the transfer pattern 28D, and then the transfer area 26M is selected.
  • the transfer area 26M moves to the position 29B in FIG. 5B, only the L & S pattern 42A having a coarse pitch is selected as the transfer pattern 28E.
  • step 107 when there is no untransferred pattern in the mask pattern MP of FIG. 5A, the scanning exposure to one shot area SA21 of the wafer W is completed as shown in FIG. 6A. Therefore, the operation proceeds to step 108 to determine whether or not an unexposed shot area remains on the wafer W. At this point in time, as shown in FIG. 6A, since the shot area SA22 adjacent to the shot area SA21 of the wafer W is not exposed, the operation returns to step 103. In this case, while the wafer W is scanned in the same direction, the transfer region 26M is virtually moved to the end portion in the ⁇ Y direction of the mask pattern MP as shown in FIG. It is sufficient to repeat the operations of .about.107.
  • transfer area 26M is set at both ends of mask pattern MP. Then, a pattern obtained by synthesizing the patterns in the positions 29D1 and 29D2 is generated by the spatial light modulator 25 of FIG. 4A, so that the exposure can be continuously performed from the shot areas SA21 to SA22.
  • step 108 when the exposure shifts to the column including the shot areas SA31 and SA32 adjacent in the X direction of the wafer W in FIG. 6A, the process returns to step 103 to drive the wafer stage WST to drive the wafer. Step W in the X direction. Then, the scanning direction of the wafer W with respect to the exposure area at the position 27R is set to the ⁇ Y direction, and in FIG. 5A, the virtual moving direction of the transfer area 26M on the mask pattern MP is set to the ⁇ Y direction. Steps 104 to 107 may be repeated.
  • step 108 when there is no unexposed shot area on the wafer W, the process proceeds to step 109, where the wafer W is unloaded and the next wafer is exposed (step 110).
  • the exposed wafer is subjected to processing for forming a circuit pattern such as resist development, heating (curing) of the developed wafer, and etching in step 122.
  • the semiconductor is subjected to a device assembly step (including processing processes such as a dicing process, a bonding process, and a package process), thereby providing a semiconductor. Devices etc. are manufactured.
  • the exposure apparatus EX of the present embodiment includes a spatial light modulator 25 that modulates illumination light IL in the ultraviolet region.
  • the spatial light modulator 25 is disposed in each of a plurality of pixels 5 (regions) on the optical path of the illumination light IL, and a plurality of SRRs made of a conductor having a width that is the same as or smaller than the wavelength of the illumination light IL.
  • the longitudinal width a (size) of the SRRs 20X and 20Y is approximately equal to or smaller than the wavelength of the illumination light IL that is ultraviolet light, and the resonance frequencies of the SRRs 20X and 20Y. Is modulated approximately between the frequency of the illumination light IL and the other frequency, the transmittance (light quantity) of the illumination light IL transmitted through the plurality of pixels 5 can be controlled for each pixel 5. Further, the resonance frequency of the SRRs 20X and 20Y can be controlled at a high response speed. Therefore, the spatial light modulator 25 can be used as a variable pattern having a high response speed that is transmissive to ultraviolet light.
  • the SRR 20Y (the same applies to the SRR 20X) includes the members 20YA and 20YB and the members 20YD and 20YC which are arranged in a ring shape with a predetermined gap therebetween. Therefore, the resonance frequency of the SRR 20Y can be controlled by controlling the gap or the optical path length of the gap.
  • the modulation unit 19 applies illumination light IL for applying a voltage to the dielectrics 21A and 21B disposed between the members 20YA and 20YB and the members 20YD and 20YC, and the dielectrics 21A and 21B, respectively. Electrode lines 7 and 9 that pass through. Therefore, the resonance frequency (transmittance) of the SRR 20Y can be easily controlled for each pixel 5 only by controlling the voltage between the electrode lines 7 and 9.
  • the illumination light IL is pulsed light
  • the modulation unit 19 controls the plurality of SRRs 20X and 20Y each time the illumination light IL is emitted a predetermined number of pulses under the control of the modulation control unit 18.
  • the resonance frequency is modulated. Therefore, by switching the variable pattern generated by the spatial light modulator 25 during the pulse emission of the illumination light IL, exposure of an unnecessary pattern can be suppressed.
  • the exposure apparatus EX optical apparatus
  • the exposure apparatus EX includes a spatial light modulator 25, a modulation control unit 18 that drives the modulation unit 19 of the spatial light modulator 25, and spatial light modulation with illumination light IL.
  • An illumination optical system ILS illumination system
  • a projection optical system PL projection system
  • the spatial light modulator 25 can be used as a transmissive variable pattern even if the illumination light IL is ultraviolet light
  • a double-sided telecentric optical system can be used as the projection optical system PL. Therefore, the configuration of the optical system can be simplified and the arrangement of the optical system is easy as compared with the case of using a reflective projection optical system.
  • the exposure apparatus EX is an exposure apparatus that exposes the wafer W.
  • the exposure apparatus EX further includes a wafer stage WST that holds and moves the wafer W placed on the image plane of the projection optical system PL, and a wafer W
  • the main control system 30 (control apparatus) which controls the modulation control part 18 according to the pattern formed in an upper surface is provided.
  • the illumination area 26 of the illumination optical system ILS is a slit-like area having a narrow width in the Y direction (predetermined direction), and the main control system 30 corresponds to the control of the modulation control unit 18 and the Y direction of the wafer stage WST.
  • the movement in the scanning direction (Y direction) is performed in synchronization.
  • the spatial light modulator 25 is small, by scanning the wafer W with respect to the image of the variable pattern generated by the spatial light modulator 25, a desired area can be obtained over a wide area of the wafer W by a maskless method.
  • the pattern image can be scanned and exposed.
  • the pattern is transferred to the wafer W (substrate) using the exposure apparatus EX (steps 1103 to 108). And processing the wafer W based on the pattern (circuit pattern formation processing in step 122, etc.).
  • this embodiment can be modified as follows. (1) In this embodiment, the wafer W is exposed by the step-and-scan method. However, as shown in FIG. 6B, the wafer W is exposed by the step-and-repeat method. Also good. In FIG. 6B, when the shot area SA21 of the wafer W is exposed, the shot area SA21 is divided into a plurality of partial areas SB1 to SB5 with the width of the exposure area 27 as a unit.
  • a desired pattern image can be exposed on the entire surface of the shot area SA21.
  • dielectrics 21A and 21B are installed between the members 20YA and 20YB of the SRR 20Y and the members 20YD and 20YC.
  • the gap between the members 20YA and 20YB and the members 20YD and 20YC of the SRR 20Y may be a variable gap.
  • the resonance frequency of the SRR 20Y can be changed by changing the gap g between the gap portions.
  • the gap variable mechanism for this purpose is the modulation section 19A including the electrode lines 7 and 9 and the dielectric films 22A and 22B.
  • reference members 23 serving as reference heights in FIG. You may keep it.
  • the gap portions of the plurality of SRRs 20Y at different positions are accurately set to g1.
  • FIGS. 9 (A) and 9 (B) A second embodiment of the present invention will be described with reference to FIGS. 9 (A) and 9 (B).
  • the appearance of the spatial light modulator of the present embodiment is substantially the same as the shape obtained by removing the second glass plate 8 from the spatial light modulator 25 of FIG.
  • a plurality of SRRs (divided ring resonators) and modulators are arranged in a plurality of pixels in the same array as the plurality of pixels 5 in FIG.
  • FIG. 9A portions corresponding to those in FIG. 3A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 9A is an enlarged cross-sectional view showing an SRR (divided ring resonator) 24Y and a modulator 19B elongated in the Y direction according to the present embodiment.
  • electrode lines 7A and 7B made of a transparent conductive film are formed on the upper surface of the glass plate 6, and a U-shaped first member 20E made of the same metal as the member 20YA is formed on the upper surface of the electrode line 7A.
  • the electrode line 7B is disposed in the vicinity of the ⁇ Y direction of the electrode line 7A, and the first via the support member 21C made of a conductor on the electrode line 7B and the support member 21D made of an insulator on the glass plate 6.
  • a flat plate-like second member 20F made of the same metal as the member 20YA is fixed so as to face the one member 20E.
  • the SRR 24Y is formed from the first member 20E and the second member 20F as a whole and having a gap portion having a gap g2 (value in an initial state) at both ends in the Y direction.
  • a modulation unit 19B that changes the resonance frequency of the SRR 24Y by changing the gap g2 between the first member 20E and the second member 20F of the SRR 24Y is configured from the electrode lines 7A and 7B and the conductive support member 21C. Yes.
  • a variable voltage can be applied between the electrode lines 7A and 7B by the voltage controller 18a for each pixel of the spatial light modulator.
  • the SRR 24Y and the modulation unit 19B can be manufactured using, for example, MEMS technology.
  • the resonance frequency of the SRR 24Y is different from the frequency of the illumination light ILY when the voltage between the electrode lines 7A and 7B and thus the voltage between the members 20E and 20F is 0 (initial state).
  • a predetermined voltage is applied between the electrode lines 7A and 7B of the modulation unit 19B, as shown in FIG. 9B, the distance between the first member 20E and the second member 20F is narrowed due to elastic deformation, and the SRR 24Y Is assumed to be substantially equal to the frequency of the illumination light ILY.
  • the SRR 24Y absorbs the illumination light ILY, the transmittance of the pixel to which the SRR 24Y belongs becomes small. Therefore, the SRR 24Y can be used as a resonator that transmits or absorbs the illumination light ILY polarized in the Y direction in the ultraviolet region, similar to the SRR 20Y of the first embodiment.
  • an SRR (divided ring resonator) having a shape obtained by rotating the SRR 24Y and the modulation unit 19B by 90 ° is also provided (not shown). Similar to the SRR 20X of the first embodiment, this SRR can be used as a resonator that transmits or absorbs illumination light polarized in the X direction.
  • the first and second embodiments described above can be modified as follows. (1) Although the spatial light modulator 25 of the above-described embodiment is a transmission type, the spatial light modulator 25 can be used as a reflection type modulator. For example, in order to make the spatial light modulator 25 provided with the SRR 20Y and the modulation unit 19 of FIG. 3 (A) a reflection type, as shown in the first modification of FIG.
  • the first glass plate 6 A flat mirror 24 whose entire surface is a reflective surface may be provided on the bottom surface side.
  • the resonance frequency of the SRR 20Y is different from the frequency of the illumination light ILY
  • the illumination light ILY incident on the SRR 20Y is reflected by the plane mirror 24 after passing through the vicinity of the SRR 20Y and the glass plate 6, The light again passes through the vicinity of the SRR 20Y and is returned to the + Z direction.
  • the spatial light modulator in which the plane mirror is arranged on the back surface of the spatial light modulator 25 in FIG. 2A can be used as a reflective spatial light modulator.
  • the spatial light modulator in which the plane mirror is arranged on the back surface of the spatial light modulator 25 in FIG. 2A can be used as a reflective spatial light modulator.
  • SRRs 20X and 20Y in FIG. 2B for example, resonators for the illumination lights ILX and ILY polarized in the X direction and the Y direction are individually formed.
  • a U-shaped first portion 21GX along the X direction and a U-shaped second portion 21GY along the Y direction are included.
  • An SRR composed of a first cruciform member 21G and a second cruciform member 21H including a first portion 21HX and a second portion 21HY arranged to face the first portion 21GX and the second portion 21GY. (Split ring resonator) 20C may be used.
  • the SRR 20C also includes a modulation unit (not shown) similar to the modulation unit 19A of FIG. 8A, for example, a modulation unit that changes the gap between the cross-shaped members 21G and 21H.
  • the SRR 20C can change the resonance frequency for both the illumination light polarized in the X direction and the illumination light polarized in the Y direction, and thus can control the transmittance for the illumination light polarized in both directions.
  • SRRs (divided ring resonance) each having a U-shaped metal first member 20K1 and second member 20K2 facing each other. It is also possible to use 24KY.
  • the first member 20K1 and the second member 20K2 are formed on the surface of the dielectric film 22 of the glass plate 6 via the electrode lines 7A and 7B, respectively.
  • the transmittance for incident light can be controlled as in the above embodiment.
  • the spatial light modulator 25 is used as a variable mask pattern.
  • the spatial light modulator 25 may be used as a variable aperture stop in the illumination optical system ILS.
  • pulsed light is used as the illumination light IL.
  • the illumination light IL for example, light from an ultraviolet LED, or a continuous in a substantially ultraviolet range selected from a wavelength range including, for example, g-line (wavelength 436 nm), h-line (wavelength 405 nm) and i-line (wavelength 365 nm). Light may be used.
  • the present invention is not limited to the application to the manufacturing process of a semiconductor device.
  • a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS (Microelectromechanical Systems), thin-film magnetic heads, and DNA chips and other devices (electronic devices, microdevices) can be widely applied to manufacturing processes.
  • CMOS type, CCD, etc. an imaging element
  • MEMS Microelectromechanical Systems
  • thin-film magnetic heads thin-film magnetic heads
  • DNA chips and other devices electros, microdevices
  • the spatial light modulator 25 of the above embodiment can be used not only as a mask or aperture stop of an exposure apparatus but also as a variable slide of a projector (optical apparatus) that uses visible light as illumination light.
  • the present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention. It should be noted that the disclosures in the above-mentioned publications, international publication pamphlets, US patents, or US patent application publication specifications described in the present application are incorporated herein by reference. Also, the entire disclosure of Japanese Patent Application No. 2009-243927 filed on October 22, 2009, including the description, claims, drawings, and abstract, is incorporated herein by reference in its entirety. ing.
  • EX exposure apparatus, ILS ... illumination optical system, PL ... projection optical system, W ... wafer, 5 ... pixel, 6,8 ... glass plate, 7,9 ... electrode line, 14 ... light source, 18 ... modulation control unit, 19 ... Modulator, 20X, 20Y ... SRR (split ring resonator), 21A, 21B ... Dielectric, 22A, 22B ... Dielectric film, 25 ... Spatial light modulator, 30 ... Main control system

Abstract

Disclosed is a spatial light modulator (25) which modulates illuminating light. The spatial light modulator is provided with: a plurality of fine divided ring resonators (20X, 20Y), each of which is disposed in each of pixels (5) on the optical path of the illuminating light, and is composed of a conductive body having a width equivalent to or smaller than the wavelength of the illuminating light; and a modulating section (19), which modulates the resonance frequency of the divided ring resonators (20X, 20Y) for each of the pixels (5). The spatial light modulator (25) can be used as a ultraviolet transmissive modulator, and has a high response speed.

Description

空間光変調器、光学装置、及び露光装置Spatial light modulator, optical apparatus, and exposure apparatus
 本発明は、複数の領域毎に照明光の光量を変調する空間光変調器、この空間光変調器を有する光学装置、この光学装置を有する露光装置、及びこの露光装置を用いるデバイス製造方法に関する。 The present invention relates to a spatial light modulator that modulates the amount of illumination light for each of a plurality of regions, an optical apparatus having the spatial light modulator, an exposure apparatus having the optical apparatus, and a device manufacturing method using the exposure apparatus.
 例えば半導体素子等のデバイス(電子デバイス)を製造するためのリソグラフィ工程中で使用されるステッパー等の一括露光型又はスキャニングステッパー等の走査露光型等の露光装置においては、製造対象のデバイスの複数のレイヤに対して異なる回路パターンを形成するために、各レイヤ毎に、マスクを交換して露光を行っていた。このように、デバイス毎及びレイヤ毎にマスクの交換を行う場合には、露光工程のスループットが低下する。 For example, in an exposure apparatus such as a batch exposure type such as a stepper used in a lithography process for manufacturing a device (electronic device) such as a semiconductor element or a scanning exposure type such as a scanning stepper, a plurality of devices to be manufactured In order to form different circuit patterns for the layers, exposure is performed by exchanging masks for each layer. As described above, when the mask is exchanged for each device and each layer, the throughput of the exposure process is lowered.
 そこで、マスクの代わりに、それぞれアレイ状に配列された多数の可動の微小ミラーを備えた2つの反射型の空間光変調器を用い、2つの空間光変調器の各微小ミラーの反射光の方向を制御することによって、転写用のパターンに対応する光強度分布を生成するようにした露光装置が提案されている(例えば、特許文献1参照)。 Therefore, instead of the mask, two reflective spatial light modulators each having a large number of movable micromirrors arranged in an array are used, and the directions of reflected light of the micromirrors of the two spatial light modulators. There has been proposed an exposure apparatus that generates a light intensity distribution corresponding to a transfer pattern by controlling (see, for example, Patent Document 1).
特開2006-13518号公報JP 2006-13518 A
 従来の可動の微小ミラーを備えた反射型の空間光変調器をマスクとして用いる場合、投影光学系を像面側でテレセントリックにするためには、照明光学系と空間光変調器との間にビームスプリッタを配置する必要があり、光学系が大型化するとともに、照明光の利用効率が低いという問題があった。また、そのようにビームスプリッタを配置しない場合には、投影光学系が像面側で非テレセントリックになるため、光学系が全体として複雑化する。 When a reflective spatial light modulator having a conventional movable micromirror is used as a mask, in order to make the projection optical system telecentric on the image plane side, a beam is placed between the illumination optical system and the spatial light modulator. There is a problem in that a splitter needs to be arranged, and the optical system becomes large and the utilization efficiency of illumination light is low. Further, when the beam splitter is not arranged as described above, the projection optical system becomes non-telecentric on the image plane side, so that the optical system becomes complicated as a whole.
 また、空間光変調器として液晶パネルを使用する場合には、液晶パネルは透過型のマスクとして使用可能である。しかしながら、液晶パネルは、現在の露光装置で露光光として一般に使用されている紫外光に対する透過率が低いとともに、応答速度が1ms程度と遅いという問題がある。
 本発明は、このような事情に鑑み、紫外光に対して透過型として使用可能であり、かつ応答速度の速い空間光変調器、並びにこの空間光変調器を用いた光学技術及び露光技術を提供することを目的とする。
When a liquid crystal panel is used as the spatial light modulator, the liquid crystal panel can be used as a transmissive mask. However, the liquid crystal panel has a problem that the transmittance with respect to ultraviolet light generally used as exposure light in the current exposure apparatus is low and the response speed is as low as about 1 ms.
In view of such circumstances, the present invention provides a spatial light modulator that can be used as a transmission type with respect to ultraviolet light and has a high response speed, and an optical technique and an exposure technique using the spatial light modulator. The purpose is to do.
 本発明の第1の態様によれば、照明光を変調する空間光変調器において、その照明光の光路上の複数の領域内にそれぞれ配置され、その照明光の波長と同じ程度か又はこれより小さい幅を有する導電体よりなる複数の微小共振器と、その複数の領域毎に、その複数の微小共振器の共振周波数を変調する変調機構と、を備える空間光変調器が提供される。
 また、本発明の第2の態様によれば、本発明の第1の態様による空間光変調器と、その空間光変調器のその変調機構を駆動する駆動系と、照明光でその空間光変調器のその複数の領域を含む照明領域を照明する照明系と、その空間光変調器のその複数の領域の像を形成する投影系と、を備える光学装置が提供される。
According to the first aspect of the present invention, in the spatial light modulator that modulates the illumination light, each of the spatial light modulators is disposed in a plurality of regions on the optical path of the illumination light, and is equal to or more than the wavelength of the illumination light. A spatial light modulator is provided that includes a plurality of microresonators made of a conductor having a small width, and a modulation mechanism that modulates the resonance frequency of the plurality of microresonators for each of the plurality of regions.
According to the second aspect of the present invention, the spatial light modulator according to the first aspect of the present invention, a drive system for driving the modulation mechanism of the spatial light modulator, and the spatial light modulation with illumination light. An optical device is provided that includes an illumination system that illuminates an illumination region that includes the plurality of regions of the instrument, and a projection system that forms an image of the plurality of regions of the spatial light modulator.
 また、本発明の第3の態様によれば、照明光で基板を露光する露光装置において、本発明の第2の態様による光学装置と、その投影系の像面に配置されるその基板を保持して移動するステージと、その基板に形成されるパターンに応じてその光学装置のその駆動系を制御する制御装置と、を備える露光装置が提供される。
 また、本発明の第4の態様によれば、本発明の第3の態様による露光装置を用いて、基板にパターンを転写することと、そのパターンが転写されたその基板をそのパターンに基づいて加工することと、を含むデバイス製造方法が提供される。
According to the third aspect of the present invention, in the exposure apparatus that exposes the substrate with illumination light, the optical device according to the second aspect of the present invention and the substrate disposed on the image plane of the projection system are held. An exposure apparatus is provided that includes a moving stage and a control device that controls the drive system of the optical device in accordance with a pattern formed on the substrate.
According to the fourth aspect of the present invention, the exposure apparatus according to the third aspect of the present invention is used to transfer the pattern to the substrate, and the substrate to which the pattern is transferred is based on the pattern. And a device manufacturing method is provided.
 本発明の第1の態様の空間光変調器によれば、複数の微小共振器の幅を紫外光程度にして、微小共振器の共振周波数をその紫外光の周波数とそれ以外の周波数との間で変調することによって、複数の領域毎に各領域を透過する紫外光の光量を制御できる。また、微小共振器の共振周波数の制御は高い応答速度で行うことができる。従って、その空間光変調器は、紫外光に対して透過型として使用可能であり、かつ応答速度が速い。 According to the spatial light modulator of the first aspect of the present invention, the width of the plurality of microresonators is set to about ultraviolet light, and the resonance frequency of the microresonator is set between the frequency of the ultraviolet light and other frequencies. By modulating with, the amount of ultraviolet light transmitted through each region can be controlled for each of a plurality of regions. Further, the resonance frequency of the microresonator can be controlled at a high response speed. Therefore, the spatial light modulator can be used as a transmission type for ultraviolet light and has a high response speed.
第1の実施形態の露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus of 1st Embodiment. (A)は図1中の空間光変調器25の一部を示す拡大斜視図、(B)は図2(A)中の一つの画素5を示す拡大斜視図である。(A) is an enlarged perspective view showing a part of the spatial light modulator 25 in FIG. 1, and (B) is an enlarged perspective view showing one pixel 5 in FIG. 2 (A). (A)は図2(B)のIII-III線に沿う拡大断面図、(B)はSRR(分割リング共振器)の共振周波数の一例を示す図である。FIG. 3A is an enlarged cross-sectional view taken along line III-III in FIG. 2B, and FIG. 3B is a diagram illustrating an example of a resonance frequency of an SRR (split ring resonator). (A)は空間光変調器25の可変パターンの一例を示す図、(B)は空間光変調器25の可変パターンの別の例を示す図である。(A) is a figure which shows an example of the variable pattern of the spatial light modulator 25, (B) is a figure which shows another example of the variable pattern of the spatial light modulator 25. (A)はマスクパターンMPの一例を示す図、(B)は図5(A)の状態よりも被転写領域26Mが移動した状態を示す図、(C)は図5(B)の状態よりも被転写領域26Mが移動した状態を示す図である。(A) is a diagram showing an example of the mask pattern MP, (B) is a diagram showing a state in which the transfer area 26M has moved from the state of FIG. 5 (A), and (C) is from the state of FIG. 5 (B). FIG. 8 is a diagram showing a state in which the transferred region 26M has moved. (A)は走査露光時のウエハのショット領域を示す図、(B)はステップ・アンド・リピート方式で露光する際のウエハのショット領域を示す図である。(A) is a view showing a shot area of a wafer at the time of scanning exposure, and (B) is a view showing a shot area of the wafer at the time of exposure by the step-and-repeat method. 第1の実施形態の露光動作の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure operation | movement of 1st Embodiment. (A)は変形例のSRR20Y及び変調部19Aを示す拡大断面図、(B)はSRR20Yのギャップが変化した状態を示す拡大断面図である。(A) is an enlarged sectional view showing a modified SRR 20Y and a modulating unit 19A, and (B) is an enlarged sectional view showing a state in which the gap of the SRR 20Y is changed. (A)は第2の実施形態のSRR20YA及び変調部19Bを示す拡大断面図、(B)はSRR20YAのギャップが変化した状態を示す拡大断面図である。(A) is an enlarged sectional view showing the SRR 20YA and the modulator 19B of the second embodiment, and (B) is an enlarged sectional view showing a state in which the gap of the SRR 20YA is changed. (A)は変形例の空間光変調器の要部を示す拡大断面図、(B)は他の変形例のSRR20Cを示す拡大斜視図である。(A) is an expanded sectional view showing the principal part of the spatial light modulator of the modification, and (B) is an enlarged perspective view showing the SRR 20C of another modification. 空間光変調器の他の変形例の要部を示す図である。It is a figure which shows the principal part of the other modification of a spatial light modulator.
 [第1の実施形態]
 以下、本発明の第1の実施形態につき図1~図7を参照して説明する。
 図1は、本実施形態の露光装置EXの概略構成を示す。図1において、露光装置EXは、パルス発光を行う光源14と、光源14からの露光用の紫外域の照明光(露光光)ILで被照射面を照明する照明光学系ILSと、その被照射面又はその近傍の面上に二次元のアレイ状に配列されてそれぞれ透過率が可変の多数の画素5を有する空間光変調器25とを備えている。さらに、露光装置EXは、多数の画素5によって生成された透過型の可変パターンからの照明光ILを受光し、その可変パターンの像をウエハW(感光性の基板)の上面に投影する投影光学系PLと、ウエハWの位置決め及び移動を行うウエハステージWSTと、装置全体の動作を統括制御するコンピュータよりなる主制御系30と、各種制御系等とを備えている。以下、投影光学系PLの光軸AXに平行にZ軸を設定し、Z軸に垂直な平面(ほぼ水平面)内において図1の紙面に平行な方向にY軸を、図1の紙面に垂直な方向にX軸を設定して説明する。また、X軸、Y軸、及びZ軸の回りの回転方向(傾斜方向)をそれぞれθx方向、θy方向、及びθz方向という。本実施形態では、露光時にウエハWはY方向(走査方向)に走査される。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of an exposure apparatus EX of the present embodiment. In FIG. 1, an exposure apparatus EX includes a light source 14 that emits pulsed light, an illumination optical system ILS that illuminates a surface to be irradiated with ultraviolet light (exposure light) IL for exposure from the light source 14, and the irradiation target. And a spatial light modulator 25 having a large number of pixels 5 arranged in a two-dimensional array on the surface or a surface in the vicinity thereof and each having a variable transmittance. Further, the exposure apparatus EX receives illumination light IL from a transmissive variable pattern generated by a large number of pixels 5 and projects an image of the variable pattern onto the upper surface of the wafer W (photosensitive substrate). A system PL, a wafer stage WST for positioning and moving the wafer W, a main control system 30 comprising a computer for overall control of the operation of the entire apparatus, various control systems, and the like are provided. Hereinafter, the Z axis is set parallel to the optical axis AX of the projection optical system PL, the Y axis is set in a direction parallel to the plane of FIG. 1 in a plane perpendicular to the Z axis (substantially horizontal plane), and perpendicular to the plane of FIG. An explanation will be given by setting the X-axis in various directions. The rotation directions (inclination directions) around the X axis, the Y axis, and the Z axis are referred to as a θx direction, a θy direction, and a θz direction, respectively. In the present embodiment, the wafer W is scanned in the Y direction (scanning direction) during exposure.
 露光用の光源14としては、基本波の3倍高調波よりなる波長355nmでほぼ直線偏光の紫外レーザ光を例えば1~2MHz程度の周波数でパルス発光するYAGレーザの高調波発生装置を使用する。なお、光源14として、半導体レーザ等から出力されるレーザ光の高調波を生成する他の固体パルスレーザ光源又は紫外光を発生するKrFエキシマレーザ等のエキシマレーザ光源も使用できる。 As the light source 14 for exposure, a harmonic generator of a YAG laser that emits a pulse of substantially linearly polarized ultraviolet laser light with a wavelength of 355 nm composed of the third harmonic of the fundamental wave at a frequency of, for example, about 1 to 2 MHz is used. As the light source 14, an excimer laser light source such as another solid-state pulse laser light source that generates harmonics of laser light output from a semiconductor laser or the like, or a KrF excimer laser that generates ultraviolet light can also be used.
 光源14には発光タイミング及びパルスエネルギー(光量)を制御するための電源部12が連結されている。主制御系30が、パルス発光のタイミング及びパルスエネルギーを指示する発光トリガーパルスTPを電源部12に供給する。光源14からパルス発光された紫外レーザ光よりなる照明光ILは、照明光学系ILSに入射する。
 照明光学系ILSは、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、回折光学素子等を含み瞳面における光量分布を円形、輪帯状、又は複数極の領域等に設定する光量分布設定光学系、オプティカルインテグレータ(フライアイレンズ、ロッドインテグレータなど)等を含む照度均一化光学系、レチクルブラインド(可変視野絞り)、及びコンデンサ光学系等を含んで構成されている。
The light source 14 is connected to a power source unit 12 for controlling light emission timing and pulse energy (light quantity). The main control system 30 supplies the power supply unit 12 with a light emission trigger pulse TP instructing the pulse light emission timing and pulse energy. Illumination light IL consisting of ultraviolet laser light pulsed from the light source 14 enters the illumination optical system ILS.
The illumination optical system ILS includes, for example, a diffractive optical element and the like, as disclosed in, for example, US Patent Application Publication No. 2003/0025890. It includes a light amount distribution setting optical system to be set, an illuminance uniformizing optical system including an optical integrator (fly eye lens, rod integrator, etc.), a reticle blind (variable field stop), a condenser optical system, and the like.
 照明光学系ILSは、被照射面(設計上のマスクパターンが配置される面)又はその近傍に配置された空間光変調器25の多数の画素5上の照明領域26(図4(A)参照)を均一な照度分布で照明する。照明光学系ILS及び空間光変調器25は、不図示のフレームに支持されている。空間光変調器25は、それぞれX方向に細長い矩形の平板状で照明光ILを透過する第1のガラス板6及び第2のガラス板8の間に多数の画素5を配列したものである。ガラス板6,8の間には、その間隔を規定するための薄いスペーサ6aが設置されている。 The illumination optical system ILS has an illumination area 26 (see FIG. 4A) on a large number of pixels 5 of the spatial light modulator 25 disposed on or near the irradiated surface (surface on which the designed mask pattern is disposed). ) With a uniform illumination distribution. The illumination optical system ILS and the spatial light modulator 25 are supported by a frame (not shown). The spatial light modulator 25 is a rectangular flat plate elongated in the X direction, and has a large number of pixels 5 arranged between a first glass plate 6 and a second glass plate 8 that transmit the illumination light IL. A thin spacer 6a is provided between the glass plates 6 and 8 to define the interval.
 図4(A)は、本実施形態の空間光変調器25を示す平面図である。図4(A)において、空間光変調器25の受光面は、X方向に細長い矩形であり、その受光面にはX方向、Y方向に一定ピッチで近接して、ほぼ正方形の多数の画素5が配列されている。即ち、その受光面において、X方向のi番目(i=1,2,…)及びY方向のj番目(j=1,2,…)の位置P(i,j)にそれぞれ画素5が配置されている。なお、図4(A)等では、画素5は実際よりも大きく描かれている。一例として、空間光変調器25の受光面のX方向の長さとY方向(ウエハWの走査方向)の幅との比は4:1であり、各画素5のX方向及びY方向の幅は5~20μm程度であり、その受光面のY方向の画素5の配列数は数1000である。照明領域26は、空間光変調器25の受光面の輪郭の僅かに内側の領域に設定される。なお、空間光変調器25の受光面はほぼ正方形であってもよい。 FIG. 4A is a plan view showing the spatial light modulator 25 of the present embodiment. In FIG. 4A, the light receiving surface of the spatial light modulator 25 has a rectangular shape elongated in the X direction, and is close to the light receiving surface at a constant pitch in the X direction and the Y direction. Are arranged. That is, on the light receiving surface, the pixels 5 are arranged at i-th (i = 1, 2,...) In the X direction and j-th (j = 1, 2,...) Position P (i, j) in the Y direction. Has been. In FIG. 4A and the like, the pixel 5 is drawn larger than the actual size. As an example, the ratio of the length in the X direction and the width in the Y direction (scanning direction of the wafer W) of the light receiving surface of the spatial light modulator 25 is 4: 1, and the width in the X direction and the Y direction of each pixel 5 is The number of pixels 5 arranged in the Y direction on the light receiving surface is several thousand. The illumination area 26 is set to an area slightly inside the contour of the light receiving surface of the spatial light modulator 25. The light receiving surface of the spatial light modulator 25 may be substantially square.
 また、空間光変調器25の画素5は、それぞれ互いに独立にその平均的な透過率を所定値以上の第1の透過率(透過パターン状態)と、所定値よりも小さい第2の透過率(遮光パターン状態)との間で、例えば1μs程度の応答速度で高速に切り換えることが可能である。一例として、その所定値が50%である場合、その第1の透過率はほぼ60~80%であり、その第2の透過率はほぼ40~20%である。なお、透過パターンと遮光パターンとの相違は、ウエハWに塗布されるレジストに対する露光量が所定の閾値を超えるかどうかであるため、その第1の透過率とその第2の透過率との相違はそれほど大きくなくともよい。 In addition, the pixels 5 of the spatial light modulator 25 are each independently independent of each other with a first transmittance (transmission pattern state) having an average transmittance equal to or higher than a predetermined value and a second transmittance (less than a predetermined value). It is possible to switch at high speed with a response speed of, for example, about 1 μs. As an example, if the predetermined value is 50%, the first transmittance is approximately 60 to 80%, and the second transmittance is approximately 40 to 20%. Note that the difference between the transmission pattern and the light shielding pattern is whether or not the exposure amount of the resist applied to the wafer W exceeds a predetermined threshold, and therefore the difference between the first transmittance and the second transmittance. Does not have to be very large.
 後述のように、所定パルス数の発光毎に、図1の主制御系30が変調制御部18にウエハW上に露光すべきパターンの情報を供給し、これに応じて変調制御部18が各画素5の透過率をその第1の透過率又は第2の透過率に設定する。以下では、その第1の透過率に設定された画素5を透過画素5Pと呼び、その第2の透過率に設定された画素5を遮光画素5Nと呼ぶ。透過画素5P及び遮光画素5Nの組み合わせによって、透過型の可変パターン(マスクパターンの一部のパターン)が形成される。なお、空間光変調器25の構成については後述する。 As will be described later, every time a predetermined number of pulses are emitted, the main control system 30 in FIG. 1 supplies the modulation control unit 18 with information on the pattern to be exposed on the wafer W. The transmittance of the pixel 5 is set to the first transmittance or the second transmittance. Hereinafter, the pixel 5 set to the first transmittance is referred to as a transmissive pixel 5P, and the pixel 5 set to the second transmittance is referred to as a light-shielded pixel 5N. A transmissive variable pattern (a part of the mask pattern) is formed by the combination of the transmissive pixel 5P and the light-shielding pixel 5N. The configuration of the spatial light modulator 25 will be described later.
 図1に戻り、不図示のコラムに支持された投影光学系PLは、両側テレセントリックの縮小投影光学系である。投影光学系PLは、空間光変調器25の各画素5を透過した照明光ILを用いて、各画素5によって形成される可変パターンの所定の縮小倍率βの像をウエハWの露光領域27(照明領域26と光学的に共役な領域)に形成する。ウエハWは、シリコン等の円板状の基材の表面にレジスト(感光剤)を塗布したものである。投影光学系PLの縮小倍率βは、例えば1/10~数100分の1程度である。例えば、画素5の大きさが10μm角程度であれば、縮小倍率βを1/100程度にすることによって、ウエハWに線幅が100nm程度の可変パターンを投影できる。なお、照明条件として、2極照明等の変形照明を用いるとともに、例えば米国特許出願公開第2005/259234号明細書に開示されているように、投影光学系PLとウエハWとの間の局所的な領域に照明光ILを透過する液体を供給する液浸法を適用してもよい。 Referring back to FIG. 1, the projection optical system PL supported by a column (not shown) is a double-sided telecentric reduction projection optical system. The projection optical system PL uses the illumination light IL transmitted through each pixel 5 of the spatial light modulator 25 to generate an image with a predetermined reduction magnification β of the variable pattern formed by each pixel 5 in the exposure region 27 ( (Illumination area 26 and an optically conjugate area). The wafer W is obtained by applying a resist (photosensitive agent) to the surface of a disk-shaped base material such as silicon. The reduction magnification β of the projection optical system PL is, for example, about 1/10 to several hundredths. For example, if the size of the pixel 5 is about 10 μm square, a variable pattern with a line width of about 100 nm can be projected onto the wafer W by setting the reduction ratio β to about 1/100. As illumination conditions, modified illumination such as dipole illumination is used and, as disclosed in, for example, US Patent Application Publication No. 2005/259234, a local area between the projection optical system PL and the wafer W is used. An immersion method for supplying a liquid that transmits the illumination light IL to a certain region may be applied.
 ウエハWはウエハホルダ(不図示)を介してウエハステージWSTの上部に吸着保持され、ウエハステージWSTは、不図示のウエハベースの上面でX方向、Y方向にステップ移動を行うとともに、Y方向に一定速度で移動する。ウエハステージWSTのX方向、Y方向の位置、及びθz方向の回転角等はレーザ干渉計33によって形成され、この計測情報がステージ制御系32に供給されている。ステージ制御系32は、主制御系30からの制御情報及びレーザ干渉計33からの計測情報に基づいて、リニアモータ等の駆動系34を介してウエハステージWSTの位置及び速度を制御する。なお、ウエハWのアライメントを行うために、ウエハWのアライメントマークの位置を検出するアライメント系(不図示)等も備えられている。 Wafer W is sucked and held on top of wafer stage WST via a wafer holder (not shown), and wafer stage WST moves stepwise in the X and Y directions on the upper surface of a wafer base (not shown) and is constant in Y direction. Move at speed. The position of wafer stage WST in the X and Y directions, the rotation angle in the θz direction, and the like are formed by laser interferometer 33, and this measurement information is supplied to stage control system 32. Stage control system 32 controls the position and speed of wafer stage WST via drive system 34 such as a linear motor based on control information from main control system 30 and measurement information from laser interferometer 33. In order to perform alignment of the wafer W, an alignment system (not shown) for detecting the position of the alignment mark on the wafer W is also provided.
 次に、図1の空間光変調器25の構成につき説明する。
 図2(A)は、空間光変調器25の一部を示す拡大斜視図である。図2(A)において、空間光変調器25は、第1のガラス板6と、ガラス板6の上面にY方向に所定間隔で形成されたX方向に細長い矩形の透明導電膜よりなる多数の電極ライン7と、ガラス板6の上面に所定間隔を隔てて配置される第2のガラス板8と、ガラス板8の底面にX方向に所定間隔で形成されたY方向に細長い矩形の透明導電膜よりなる多数の電極ライン9とを有する。電極ライン7,9は、例えばインジウムスズ酸化物の膜(ITO膜)である。この場合、X方向にi番目の電極ライン9とY方向にj番目の電極ライン7とで挟まれた位置P(i,j)のほぼ正方形の領域が画素5である。図1の変調制御部18は、各位置P(i,j)の画素5を挟む電極ライン7と電極ライン9との間の電圧を制御する。
Next, the configuration of the spatial light modulator 25 in FIG. 1 will be described.
FIG. 2A is an enlarged perspective view showing a part of the spatial light modulator 25. In FIG. 2A, the spatial light modulator 25 includes a first glass plate 6 and a large number of rectangular transparent conductive films elongated in the X direction and formed on the upper surface of the glass plate 6 at predetermined intervals in the Y direction. An electrode line 7, a second glass plate 8 disposed on the upper surface of the glass plate 6 at a predetermined interval, and a rectangular transparent conductive film elongated in the Y direction and formed on the bottom surface of the glass plate 8 at a predetermined interval in the X direction. And a large number of electrode lines 9 made of a film. The electrode lines 7 and 9 are, for example, indium tin oxide films (ITO films). In this case, the pixel 5 is a substantially square area at a position P (i, j) sandwiched between the i-th electrode line 9 in the X direction and the j-th electrode line 7 in the Y direction. The modulation control unit 18 in FIG. 1 controls the voltage between the electrode line 7 and the electrode line 9 that sandwich the pixel 5 at each position P (i, j).
 図2(B)に拡大して示すように、位置P(i,j)の画素5内には、X方向に細長い形状の多数の分割リング共振器20Xと、Y方向に細長い形状の多数の分割リング共振器20Yとが近接して、かつ互いにほぼ均一な分布で形成されている。分割リング共振器20Xは、分割リング共振器20YをZ軸に平行な軸の回りに90°回転した形状である。以下では分割リング共振器(Split-Ring Resonator)20X,20Y等をSRR20X,20Y等と呼ぶ。SRR20X,20Yの長手方向の幅は、照明光ILの波長(ここでは355nm)程度又はこれより短いとともに、SRR20X,20Yの短辺方向の幅は、その長手方向の幅の1/3程度である。また、画素5の形状が例えば10μm角程度である場合には、画素5内には、50行×50列程度でSRR20X,20Yが形成される。 2B, in the pixel 5 at the position P (i, j), a large number of split ring resonators 20X elongated in the X direction and a large number of elongated shapes in the Y direction are included. The split ring resonator 20Y is formed close to each other and in a substantially uniform distribution. The split ring resonator 20X has a shape obtained by rotating the split ring resonator 20Y by 90 ° around an axis parallel to the Z axis. Hereinafter, split ring resonators (Split-Ring-Resonators) 20X, 20Y, etc. are referred to as SRRs 20X, 20Y, etc. The width in the longitudinal direction of the SRRs 20X and 20Y is about the wavelength of the illumination light IL (here, 355 nm) or shorter, and the width in the short side direction of the SRRs 20X and 20Y is about 1/3 of the width in the longitudinal direction. . When the shape of the pixel 5 is, for example, about 10 μm square, the SRRs 20X and 20Y are formed in the pixel 5 in about 50 rows × 50 columns.
 また、SRR20X,20Yにはそれぞれ入射する光に対する共振周波数を変化させる変調部19が付加されている。この場合、画素5の表面にほぼ垂直に入射する照明光が、X方向に振動する電場ベクトルEVXを持つ(即ち、Y方向に振動する磁場ベクトルBVYを持つ)X方向に直線偏光した照明光ILXである場合、照明光ILXは、X方向を長手方向とするSRR20X及び変調部19によって透過率が制御される。一方、画素5の表面にほぼ垂直に入射する照明光が、Y方向に振動する電場ベクトルEVYを持つ(即ち、X方向に振動する磁場ベクトルBVXを持つ)Y方向に直線偏光した照明光ILYである場合、照明光ILYは、Y方向を長手方向とするSRR20Y及び変調部19によって透過率が制御される。 Also, the SRRs 20X and 20Y are each provided with a modulator 19 that changes the resonance frequency for the incident light. In this case, the illumination light incident substantially perpendicularly on the surface of the pixel 5 has the electric field vector EVX oscillating in the X direction (that is, having the magnetic field vector BVY oscillating in the Y direction) and linearly polarized illumination light ILX in the X direction. , The transmittance of the illumination light ILX is controlled by the SRR 20X having the X direction as the longitudinal direction and the modulation unit 19. On the other hand, the illumination light incident substantially perpendicularly on the surface of the pixel 5 is the illumination light ILY linearly polarized in the Y direction having the electric field vector EVY oscillating in the Y direction (that is, having the magnetic field vector BVX oscillating in the X direction). In some cases, the transmittance of the illumination light ILY is controlled by the SRR 20Y and the modulation unit 19 whose longitudinal direction is the Y direction.
 図2のIII-III線に沿う拡大断面図である図3(A)に示すように、電極ライン7の上面に誘電体膜22Aが形成され、電極ライン9の底面に誘電体膜22Aに対向するように誘電体膜22Bが形成されている。誘電体膜22A,22B(絶縁体)は照明光ILを透過する材料、例えばPLZT(透明強誘電体セラミックス)の薄膜から形成されている。なお、誘電体膜22A,22Bとしては、例えばニオブ酸リチウム(LiNbO3)等を照明光ILを透過する程度の厚さに形成した薄膜も使用できる。さらに、誘電体膜22A,22Bは、図2(A)の各画素5の全面にそれぞれ形成されている。 A dielectric film 22A is formed on the upper surface of the electrode line 7 and the dielectric film 22A is opposed to the bottom surface of the electrode line 9, as shown in FIG. Thus, a dielectric film 22B is formed. The dielectric films 22A and 22B (insulators) are made of a material that transmits the illumination light IL, for example, a thin film of PLZT (transparent ferroelectric ceramics). As the dielectric films 22A and 22B, for example, a thin film in which lithium niobate (LiNbO 3 ) or the like is formed so as to transmit the illumination light IL can be used. Further, the dielectric films 22A and 22B are respectively formed on the entire surface of each pixel 5 in FIG.
 また、SRR20Yは、全体としてX軸に平行な軸の回りにリング状になった部材を4分割した状態の第1部材20YA、第2部材20YB、第3部材20YC、及び第4部材20YDから構成されている。部材20YA~20YDは、例えば銀(Ag)、金(Au)、銅(Cu)、又はアルミニウム(Al)などの金属製である。また、部材20YA及び20YBは誘電体膜22Aの上面にY方向に所定間隔を隔てて形成され、部材20YD及び20YCは、誘電体膜22Bの下面にそれぞれ部材20YA,20YBに対向するように、Y方向に所定間隔を隔てて形成されている。SRR20YのY方向の幅aに対して、そのZ方向の幅(高さ)bは小さく設定されている。また、部材20YA,20YD間及び部材20YB,20YC間のZ方向のギャップにそれぞれ誘電体21A及び21Bが設置されている。誘電体21A,21Bは、例えば誘電体膜22A,22Bと同じ材料から形成されている。なお、誘電体21A,21Bは、例えばPZT(チタン酸ジルコン酸鉛)又はSBT(タンタル酸ビスマスストロンチウム)等の強誘電体から形成してもよい。 The SRR 20Y includes a first member 20YA, a second member 20YB, a third member 20YC, and a fourth member 20YD that are obtained by dividing a ring-shaped member around an axis parallel to the X axis as a whole. Has been. The members 20YA to 20YD are made of metal such as silver (Ag), gold (Au), copper (Cu), or aluminum (Al). The members 20YA and 20YB are formed on the upper surface of the dielectric film 22A at a predetermined interval in the Y direction, and the members 20YD and 20YC are formed on the lower surface of the dielectric film 22B so as to face the members 20YA and 20YB, respectively. It is formed at predetermined intervals in the direction. The width (height) b in the Z direction is set smaller than the width a in the Y direction of the SRR 20Y. In addition, dielectrics 21A and 21B are installed in gaps in the Z direction between the members 20YA and 20YD and between the members 20YB and 20YC, respectively. The dielectrics 21A and 21B are made of the same material as the dielectric films 22A and 22B, for example. The dielectrics 21A and 21B may be formed of a ferroelectric material such as PZT (lead zirconate titanate) or SBT (bismuth strontium tantalate).
 電極ライン7,9、誘電体膜22A,22B、及び誘電体21A,21Bから、SRR20Yの共振周波数を切り替える変調部19が構成されている。電極ライン7,9の間には図1の変調制御部18内の電圧制御部18aによって可変の電圧が加えられる。
 SRR20Y及び変調部19を製造する方法としては、例えばまずガラス板6の上面にリソグラフィ工程を用いて電極ライン7、誘電体膜22A、部材20YA,20YB、及び誘電体21A,21Bを形成する。次に、ガラス板8の一面にリソグラフィ工程を用いて電極ライン9、誘電体膜22B、及び部材20YC,20YDを形成した後、誘電体21A,21Bと部材20YD,20YCが対向するように、ガラス板6上にガラス板8を載置すればよい。この際に、SRR20Yの幅b(高さ)に対して、ガラス板6,8間のスペーサ6a(図1参照)の厚さを僅かに薄く形成しておくことによって、誘電体21A,21Bと部材20YD,20YCとを密着できる。なお、誘電体膜22A(22B)上に部材20YA,20YB(20YC,20YD)を形成する場合に、いわゆるMEMS(Microelectromechanical Systems:微小電気機械システム)技術を使用してもよい。
A modulation unit 19 that switches the resonance frequency of the SRR 20Y is configured by the electrode lines 7 and 9, the dielectric films 22A and 22B, and the dielectrics 21A and 21B. A variable voltage is applied between the electrode lines 7 and 9 by the voltage control unit 18a in the modulation control unit 18 of FIG.
As a method of manufacturing the SRR 20Y and the modulation unit 19, for example, the electrode line 7, the dielectric film 22A, the members 20YA and 20YB, and the dielectrics 21A and 21B are first formed on the upper surface of the glass plate 6 using a lithography process. Next, the electrode line 9, the dielectric film 22B, and the members 20YC and 20YD are formed on one surface of the glass plate 8 using a lithography process, and then the glass so that the dielectrics 21A and 21B and the members 20YD and 20YC face each other. A glass plate 8 may be placed on the plate 6. At this time, by forming the spacer 6a (see FIG. 1) between the glass plates 6 and 8 slightly thinner than the width b (height) of the SRR 20Y, the dielectrics 21A and 21B and The members 20YD and 20YC can be in close contact with each other. In addition, when forming the members 20YA and 20YB (20YC and 20YD) on the dielectric film 22A (22B), a so-called MEMS (Microelectromechanical Systems) technique may be used.
 なお、SRR20Yは一つのリングを4分割した形状であるが、SRR(分割リング共振器)の分割数N(N=2,3,4,5,…)は任意であり、SRR20Yは、任意の複数の個数のL字型(又は扇形)の部材から構成することができる。この場合、文献「A. Ishikawa, T. Tanaka and S. Kawata: "Frequency dependence of the magnetic response of split-ring resonators," J. Opt. Soc. Am. B(米国), Vol. 24, No. 3, pp. 510-515 (2007)」(以下、参考文献Aという)によれば、X方向に振動する磁場ベクトルを持ってZ方向にSRR20Yに入射する光に対するSRR20Yの比透磁率の虚数部μImは、図3(B)のように変化する。 The SRR 20Y has a shape in which one ring is divided into four parts, but the number of divisions N (N = 2, 3, 4, 5,...) Of the SRR (split ring resonator) is arbitrary, and the SRR 20Y is arbitrary A plurality of L-shaped (or fan-shaped) members can be used. In this case, the document "A. Ishikawa, T. Tanaka and S. Kawata:" Frequency dependence of the magnetic response of split-ring resonators, "J. Opt. Soc. Am. B (USA), Vol. 24, No. 3, pp. 510-515 (2007) ”(hereinafter referred to as Reference A), the imaginary part of the relative permeability of the SRR 20Y for light incident on the SRR 20Y in the Z direction with a magnetic field vector oscillating in the X direction. μIm changes as shown in FIG.
 図3(B)において、横軸はSRR20Yに入射する光の周波数f[THz]であり、実線の特性B1は、図3(A)の電極ライン7,9間の電圧を0にした場合の比透磁率の虚数部μImである。特性B1において、周波数f1,f2,f3は、SRR20Yの幅a(形状)を段階的に小さくしたときの共振周波数である。周波数f1,f2,又はf3の光に対する比透磁率の虚数部μImの値が大きいため、SRR20Yに入射する周波数がf1~f3又はこの近傍の光に対するSRR20Yの吸収量が大きく、その光の透過率が低下する。また、SRR20Yの幅aを小さくするほど、共振周波数f3等は大きくなり、それに対応する波長は短くなる。 In FIG. 3B, the horizontal axis is the frequency f [THz] of light incident on the SRR 20Y, and the solid line characteristic B1 is obtained when the voltage between the electrode lines 7 and 9 in FIG. The imaginary part μIm of the relative permeability. In the characteristic B1, the frequencies f1, f2, and f3 are resonance frequencies when the width a (shape) of the SRR 20Y is gradually reduced. Since the value of the imaginary part μIm of the relative permeability with respect to the light with the frequency f1, f2, or f3 is large, the absorption amount of the SRR 20Y with respect to the light incident on the SRR 20Y at the frequencies f1 to f3 or in the vicinity thereof is large, and the transmittance of the light Decreases. Further, as the width a of the SRR 20Y is decreased, the resonance frequency f3 and the like are increased and the corresponding wavelength is shortened.
 ここでは共振周波数はf3として、図1の照明光学系ILSから供給される照明光ILYの周波数fyは、共振周波数f3から僅かに外れた値に設定されているとする。従って、電極ライン7,9間の電圧が0の状態では、照明光ILYはSRR20Yをほぼそのまま透過する。例えば共振周波数f3が840THz(波長は350nm)程度のとき、SRR20Yの幅aは200nm程度である。 Here, it is assumed that the resonance frequency is f3, and the frequency fy of the illumination light ILY supplied from the illumination optical system ILS in FIG. 1 is set to a value slightly deviating from the resonance frequency f3. Therefore, when the voltage between the electrode lines 7 and 9 is 0, the illumination light ILY transmits the SRR 20Y almost as it is. For example, when the resonance frequency f3 is about 840 THz (wavelength is 350 nm), the width a of the SRR 20Y is about 200 nm.
 さらに、図3(A)において、電極ライン7,9間の電圧を変化させると、SRR20Y中の誘電体21A,21Bの誘電分極によって、部材20YA,20YBと部材20YD,20YCとの間の光路長換算のギャップが変化し、SRR20Yの共振周波数が僅かに変化する。本実施形態では、SRR20Yによって照明光ILYを吸収したいときに、電極ライン7,9間の電圧の制御によって、図3(B)の点線の特性B2で示すように、SRR20Yの共振周波数を照明光ILYの周波数fy又はこの近傍に移動させる。このときの電極ライン7,9間の電圧をVNとする。この状態では、SRR20Yの共振周波数は照明光ILYの周波数fyとほぼ同じになり、照明光ILYはSRR20Yで吸収されるため、このSRR20Yが属する画素5における照明光ILYの透過率が低下する。なお、電極ライン7,9間の電位をVNからさらに大きくすると、SRR20Yの共振周波数は照明光ILYの周波数からずれて、照明光ILYの透過率は高くなる。 Further, in FIG. 3A, when the voltage between the electrode lines 7 and 9 is changed, the optical path length between the members 20YA and 20YB and the members 20YD and 20YC is caused by the dielectric polarization of the dielectrics 21A and 21B in the SRR 20Y. The conversion gap changes, and the resonance frequency of the SRR 20Y changes slightly. In the present embodiment, when it is desired to absorb the illumination light ILY by the SRR 20Y, the resonance frequency of the SRR 20Y is set to the illumination light by controlling the voltage between the electrode lines 7 and 9, as indicated by the dotted line characteristic B2 in FIG. Move to or near the frequency fy of ILY. The voltage between the electrode lines 7 and 9 at this time is VN. In this state, the resonance frequency of the SRR 20Y is substantially the same as the frequency fy of the illumination light ILY, and the illumination light ILY is absorbed by the SRR 20Y. Therefore, the transmittance of the illumination light ILY in the pixel 5 to which the SRR 20Y belongs is reduced. When the potential between the electrode lines 7 and 9 is further increased from VN, the resonance frequency of the SRR 20Y is shifted from the frequency of the illumination light ILY, and the transmittance of the illumination light ILY is increased.
 図3(A)において、空間光変調器25の全部の電極ライン7の電位を0に設定し、かつ全部の電極ライン9の電位も0に設定することによって、全部の画素5内のSRR20Yの共振周波数は照明光ILYの周波数と異なるため、全部の画素5は照明光ILYに対して透過画素となる。一方、j番目の電極ライン7の電位を例えば2×VNに設定し、i番目の電極ライン9の電位を例えば3×VNに設定することによって、位置P(i,j)の画素5のみで電極ライン7,9間の電圧がVNとなり、それ以外の画素5では電極ライン7,9間の電位が0又は2×VN以上になるため、位置P(i,j)のみの画素5を照明光ILYに対して遮光画素にできる。このように、変調制御部18は、図2(A)の空間光変調器25の多数の電極ライン7,9の電圧を制御することによって、高い応答速度で照明光ILYに対して空間光変調器25内の各画素5を上記の第1の透過率(高透過率)を持つ透過画素5P又は第2の透過率(低透過率)を持つ遮光画素5Nのいずれかに設定可能である。 In FIG. 3A, the potentials of all the electrode lines 7 of the spatial light modulator 25 are set to 0, and the potentials of all the electrode lines 9 are also set to 0, whereby the SRRs 20Y in all the pixels 5 are set. Since the resonance frequency is different from the frequency of the illumination light ILY, all the pixels 5 are transmissive pixels with respect to the illumination light ILY. On the other hand, by setting the potential of the j-th electrode line 7 to 2 × VN and setting the potential of the i-th electrode line 9 to 3 × VN, for example, only the pixel 5 at the position P (i, j) is used. Since the voltage between the electrode lines 7 and 9 is VN and the potential between the electrode lines 7 and 9 is 0 or 2 × VN or more in the other pixels 5, the pixel 5 only at the position P (i, j) is illuminated. It can be a light-shielded pixel with respect to the light ILY. As described above, the modulation control unit 18 controls the voltage of the multiple electrode lines 7 and 9 of the spatial light modulator 25 of FIG. 2A, thereby spatially modulating the illumination light ILY with a high response speed. Each pixel 5 in the container 25 can be set to either the transmission pixel 5P having the first transmittance (high transmittance) or the light-shielding pixel 5N having the second transmittance (low transmittance).
 同様に、図2(B)の画素5内のSRR20Xは、X方向に偏光した照明光ILXに対する吸収量、ひいては透過率を制御可能である。このため、空間光変調器25内の各画素5は、照明光ILXに対しても透過画素5P又は遮光画素5Nのいずれかに設定可能である。従って、空間光変調器25内の各画素5は、直線偏光した照明光IL(又は円偏光した照明光)に対して、透過画素5P又は遮光画素5Nのいずれかに設定可能である。 Similarly, the SRR 20X in the pixel 5 in FIG. 2B can control the amount of absorption and thus the transmittance of the illumination light ILX polarized in the X direction. Therefore, each pixel 5 in the spatial light modulator 25 can be set to either the transmissive pixel 5P or the light-shielding pixel 5N with respect to the illumination light ILX. Therefore, each pixel 5 in the spatial light modulator 25 can be set to either the transmission pixel 5P or the light-shielding pixel 5N with respect to the linearly polarized illumination light IL (or circularly polarized illumination light).
 次に、本実施形態の露光装置EXによる露光動作の一例につき図7のフローチャートを参照して説明する。この場合、一例として、図5(A)に示すマスクパターンMPの縮小像をウエハW上に露光するものとする。マスクパターンMPの情報は主制御系30の記憶部に記憶されている。マスクパターンMPは、X方向に所定ピッチで配列されたライン・アンド・スペースパターン(以下、L&Sパターンという。)40A~40C、Y方向に所定ピッチで配列されたL&Sパターン41A~41D、及び比較的粗いピッチで配列されたL&Sパターン42A,42B,43を含んでいる。なお、L&Sパターン40A~40C等は拡大して表示されている。また、実際には、マスクパターンMPは、ウエハW上に投影されるパターンと形状が異なる場合がある。 Next, an example of the exposure operation by the exposure apparatus EX of the present embodiment will be described with reference to the flowchart of FIG. In this case, as an example, a reduced image of the mask pattern MP shown in FIG. Information on the mask pattern MP is stored in the storage unit of the main control system 30. Mask patterns MP are line and space patterns (hereinafter referred to as L & S patterns) 40A to 40C arranged at a predetermined pitch in the X direction, L & S patterns 41A to 41D arranged at a predetermined pitch in the Y direction, and relatively L & S patterns 42A, 42B, and 43 arranged at a rough pitch are included. Note that the L & S patterns 40A to 40C and the like are enlarged and displayed. In practice, the mask pattern MP may have a different shape from the pattern projected onto the wafer W.
 また、図4(A)の空間光変調器25上の照明領域26に対応する図5(A)のマスクパターンMP上の領域を被転写領域26Mとする。本実施形態では、主制御系30内の画像メモリ内で仮想的に、被転写領域26MをマスクパターンMP上でY方向に一定速度で移動して、被転写領域26M内の時系列的に変化するパターンに対応する光強度分布を図4(A)の空間光変調器25の多数の画素5によって生成し、その被転写領域26Mの移動に同期して図1のウエハWを対応する走査方向であるY方向に移動する。図5(A)のマスクパターンMPの斜線を施した部分(L&Sパターン40A等)が光強度の強い部分を示し、これに応じて図4(A)及び図4(B)の空間光変調器25の斜線を施した部分の透過画素5Pが光強度の強い部分である。 Further, a region on the mask pattern MP in FIG. 5A corresponding to the illumination region 26 on the spatial light modulator 25 in FIG. In the present embodiment, the transfer area 26M is virtually moved in the Y direction on the mask pattern MP at a constant speed in the image memory in the main control system 30, and changes in time series in the transfer area 26M. A light intensity distribution corresponding to the pattern to be generated is generated by a large number of pixels 5 of the spatial light modulator 25 in FIG. 4A, and the scanning direction corresponding to the wafer W in FIG. 1 is synchronized with the movement of the transferred region 26M. Move in the Y direction. A hatched portion (L & S pattern 40A, etc.) of the mask pattern MP in FIG. 5A shows a portion having a high light intensity, and the spatial light modulators in FIG. 4A and FIG. The transmissive pixel 5P in the shaded area of 25 is a portion with high light intensity.
 先ず、図7のステップ121でウエハWにレジストを塗布した後、ステップ101でそのウエハWを図1のウエハステージWSTにロードする。図6(A)に示すように、ウエハWの表面は、X方向及びY方向に所定ピッチでそれぞれ図5(A)のマスクパターンMPの縮小像(説明の便宜上、正立像とする)が露光されるショット領域SAに区分されている。次のステップ102において、主制御系30は、照明光学系ILSの照明条件を例えば4極照明に設定する。 First, after applying a resist to the wafer W in step 121 in FIG. 7, in step 101, the wafer W is loaded onto the wafer stage WST in FIG. As shown in FIG. 6A, the surface of the wafer W is exposed to a reduced image of the mask pattern MP of FIG. 5A (for the sake of convenience, an erect image) at a predetermined pitch in the X and Y directions. Is divided into shot areas SA. In the next step 102, the main control system 30 sets the illumination condition of the illumination optical system ILS to, for example, quadrupole illumination.
 次のステップ103において、ウエハWのアライメントを行った後、図6(A)のウエハWの上面にY方向に一列に配列されたショット領域SA21,SA22,…に露光を行うために、ウエハWを走査開始位置に位置決めした後、図5(A)のマスクパターンMP上で仮想的に被転写領域26Mの+Y方向への走査を開始し、これに同期してウエハステージWSTを介してウエハWの+Y方向への一定速度での走査を開始する。なお、図5(A)のショット領域SA21等の中の矢印は、ウエハWに対する露光領域27の相対的な移動方向を示している。 In the next step 103, after the alignment of the wafer W, in order to expose the shot areas SA21, SA22,... Arranged in a line in the Y direction on the upper surface of the wafer W in FIG. 5 is positioned at the scanning start position, scanning of the transfer area 26M in the + Y direction is virtually started on the mask pattern MP in FIG. 5A, and the wafer W is synchronized with the wafer W via the wafer stage WST. Starts scanning at a constant speed in the + Y direction. An arrow in the shot area SA21 and the like in FIG. 5A indicates the relative movement direction of the exposure area 27 with respect to the wafer W.
 次のステップ104において、主制御系30は、図5(A)の被転写領域26M内から転写用パターンとしてL&Sパターン40A~40Cよりなるパターン28Aを選択する。なお、本実施形態では、一例としてパターンの種類毎に露光量を最適化するため、同じ種類のパターンをまとめて露光するが、単に被転写領域26M内の全部のパターンを転写用パターンとして選択してもよい。 In the next step 104, the main control system 30 selects the pattern 28A composed of the L & S patterns 40A to 40C as the transfer pattern from within the transferred region 26M in FIG. In this embodiment, as an example, in order to optimize the exposure amount for each type of pattern, the same type of pattern is exposed together, but all the patterns in the transfer area 26M are simply selected as transfer patterns. May be.
 次のステップ105において、主制御系30は変調制御部18を介して、空間光変調器25の全部の画素5の透過率を制御して、図4(A)に示すように、その選択されたパターン28Aに対応する透過画素5P及び遮光画素5Nの分布を設定する。次のステップ106において、主制御系30は、図1の電源部12に発光トリガーパルスTPを供給し、所定パルス数だけ光源14に照明光ILを発光させて、ウエハW上の露光領域27に図4(A)のパターン28Aの像を露光する。その所定パルス数とは、1パルスでもよく、5パルス又は10パルス等の複数パルスでもよい。また、その所定パルス数とは可変であってもよい。なお、ステップ104及び以下のステップ107の動作は極めて高速に行われるため、ウエハWの走査露光中に、照明光ILは実質的に連続してパルス発光される。 In the next step 105, the main control system 30 controls the transmittance of all the pixels 5 of the spatial light modulator 25 via the modulation control unit 18, and the selection is made as shown in FIG. The distribution of the transmissive pixels 5P and the light shielding pixels 5N corresponding to the pattern 28A is set. In the next step 106, the main control system 30 supplies the light emission trigger pulse TP to the power supply unit 12 of FIG. 1, causes the light source 14 to emit the illumination light IL by a predetermined number of pulses, and causes the exposure region 27 on the wafer W to be emitted. The image of the pattern 28A shown in FIG. 4A is exposed. The predetermined number of pulses may be one pulse or a plurality of pulses such as 5 pulses or 10 pulses. Further, the predetermined number of pulses may be variable. Since the operations of step 104 and the following step 107 are performed at a very high speed, the illumination light IL is pulsed substantially continuously during the scanning exposure of the wafer W.
 次のステップ107において、図5(A)のマスクパターンMP中で転写が完了していないパターンが残っている場合には、ステップ104に戻り、転写用のパターンの選択を行い、以下、空間光変調器25の画素5の透過率の設定及び所定パルス数の露光の動作(ステップ105,106)を繰り返す。なお、ステップ104~106は同じパターン(例えば図5(A)のL&Sパターン40A)に対して複数回繰り返される場合もある。この際に、ウエハWが走査されているため、図1の空間光変調器25によって生成されるそのパターンもY方向にシフトすることになる。そして、最終的に、図5(A)のマスクパターンMP中の各パターン(例えばL&Sパターン40A)毎のウエハWに対する積算露光量が予め設定されているレジスト感度になるように、その所定パルス数が調整される。 In the next step 107, if there remains a pattern that has not been transferred in the mask pattern MP in FIG. 5A, the process returns to step 104 to select a pattern for transfer. The operation of setting the transmittance of the pixel 5 of the modulator 25 and the exposure operation for a predetermined number of pulses (steps 105 and 106) are repeated. Note that steps 104 to 106 may be repeated a plurality of times for the same pattern (for example, the L & S pattern 40A in FIG. 5A). At this time, since the wafer W is scanned, the pattern generated by the spatial light modulator 25 in FIG. 1 is also shifted in the Y direction. Finally, the predetermined number of pulses is set so that the integrated exposure amount with respect to the wafer W for each pattern (for example, the L & S pattern 40A) in the mask pattern MP of FIG. Is adjusted.
 また、図5(B)に示すように、被転写領域26Mが移動した場合には、被転写領域26M内にはX方向のL&Sパターン40A~40Cの他にY方向のL&Sパターン41Aも含まれている。この場合には、一例として、転写用のパターン28BとしてL&Sパターン40A~40Cのみを選択する。次に図5(C)に示すように、被転写領域26Mが移動したときには、転写用のパターン28Cとして、Y方向のL&Sパターン41A~41Cのみを選択する。これに対応して空間光変調器25では、図4(B)のように透過画素5P及び遮光画素5Nの分布が設定される。 As shown in FIG. 5B, when the transfer area 26M moves, the transfer area 26M includes an L & S pattern 41A in the Y direction in addition to the L & S patterns 40A to 40C in the X direction. ing. In this case, as an example, only the L & S patterns 40A to 40C are selected as the transfer pattern 28B. Next, as shown in FIG. 5C, when the transfer area 26M moves, only the L & S patterns 41A to 41C in the Y direction are selected as the transfer pattern 28C. Correspondingly, in the spatial light modulator 25, the distribution of the transmissive pixels 5P and the light shielding pixels 5N is set as shown in FIG. 4B.
 その後、被転写領域26Mが図5(A)の2点鎖線で示す位置29Aに移動したときには、転写用のパターン28Dとしてその中のY方向のL&Sパターン41B~41Cのみを選択し、次に被転写領域26Mが図5(B)の位置29Bに移動したときには、転写用のパターン28Eとしてその中の粗いピッチのL&Sパターン42Aのみを選択する。このような転写パターンの選択によって、パターンの種類毎に露光量を最適化できる。 Thereafter, when the transfer area 26M moves to the position 29A indicated by the two-dot chain line in FIG. 5A, only the L & S patterns 41B to 41C in the Y direction are selected as the transfer pattern 28D, and then the transfer area 26M is selected. When the transfer area 26M moves to the position 29B in FIG. 5B, only the L & S pattern 42A having a coarse pitch is selected as the transfer pattern 28E. By selecting such a transfer pattern, the exposure amount can be optimized for each type of pattern.
 そして、ステップ107において、図5(A)のマスクパターンMP中で未転写のパターンがなくなったときには、図6(A)に示すように、ウエハWの1つのショット領域SA21への走査露光が完了したため、動作はステップ108に移行し、ウエハWに未露光のショット領域が残っているかどうかを判定する。この時点では、図6(A)に示すように、ウエハWのショット領域SA21に隣接するショット領域SA22が未露光であるため、動作はステップ103に戻る。この場合には、ウエハWを同じ方向に走査したまま、図5(A)に示すように、マスクパターンMPの-Y方向の端部に被転写領域26Mを仮想的に移動して、ステップ104~107の動作を繰り返せばよい。なお、ウエハWの上面の走査方向に隣接するショット領域SA21,SA22の境界部では、図5(C)の位置29D1,29D2で示すように、被転写領域26MをマスクパターンMPの両端部に設定し、その位置29D1,29D2内のパターンを合成したパターンを図4(A)の空間光変調器25で生成することによって、ショット領域SA21からSA22にかけて連続的に露光を行うことができる。 In step 107, when there is no untransferred pattern in the mask pattern MP of FIG. 5A, the scanning exposure to one shot area SA21 of the wafer W is completed as shown in FIG. 6A. Therefore, the operation proceeds to step 108 to determine whether or not an unexposed shot area remains on the wafer W. At this point in time, as shown in FIG. 6A, since the shot area SA22 adjacent to the shot area SA21 of the wafer W is not exposed, the operation returns to step 103. In this case, while the wafer W is scanned in the same direction, the transfer region 26M is virtually moved to the end portion in the −Y direction of the mask pattern MP as shown in FIG. It is sufficient to repeat the operations of .about.107. At the boundary between shot areas SA21 and SA22 adjacent to the upper surface of wafer W in the scanning direction, as shown by positions 29D1 and 29D2 in FIG. 5C, transfer area 26M is set at both ends of mask pattern MP. Then, a pattern obtained by synthesizing the patterns in the positions 29D1 and 29D2 is generated by the spatial light modulator 25 of FIG. 4A, so that the exposure can be continuously performed from the shot areas SA21 to SA22.
 また、ステップ108において、図6(A)のウエハWのX方向に隣接するショット領域SA31,SA32を含む列の露光に移行する場合には、ステップ103に戻り、ウエハステージWSTを駆動してウエハWをX方向にステップ移動する。そして、位置27Rの露光領域に対するウエハWの走査方向を-Y方向に設定し、図5(A)において、マスクパターンMP上での被転写領域26Mの仮想的な移動方向を-Y方向にして、ステップ104~107を繰り返せばよい。 In step 108, when the exposure shifts to the column including the shot areas SA31 and SA32 adjacent in the X direction of the wafer W in FIG. 6A, the process returns to step 103 to drive the wafer stage WST to drive the wafer. Step W in the X direction. Then, the scanning direction of the wafer W with respect to the exposure area at the position 27R is set to the −Y direction, and in FIG. 5A, the virtual moving direction of the transfer area 26M on the mask pattern MP is set to the −Y direction. Steps 104 to 107 may be repeated.
 そして、ステップ108において、ウエハWに未露光のショット領域がなくなったときに、ステップ109に移行してウエハWのアンロードを行い、次のウエハの露光を行う(ステップ110)。また、露光済みのウエハには、ステップ122において、レジストの現像、現像したウエハの加熱(キュア)、及びエッチング等の回路パターン形成のための処理が施される。ウエハに対して、このような露光及び現像(リソグラフィ工程)と、その処理とを繰り返した後、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)を経ることによって、半導体デバイス等が製造される。 In step 108, when there is no unexposed shot area on the wafer W, the process proceeds to step 109, where the wafer W is unloaded and the next wafer is exposed (step 110). In addition, the exposed wafer is subjected to processing for forming a circuit pattern such as resist development, heating (curing) of the developed wafer, and etching in step 122. After repeating such exposure and development (lithography process) and processing on the wafer, the semiconductor is subjected to a device assembly step (including processing processes such as a dicing process, a bonding process, and a package process), thereby providing a semiconductor. Devices etc. are manufactured.
 このように、本実施形態の露光装置EXにおいては、空間光変調器25を用いて透過型の可変パターンを生成することによって、種々の電子デバイスの複数のレイヤのパターンをそれぞれマスクレス方式でウエハWの各ショット領域に露光できる。
 本実施形態の効果等は以下の通りである。
 (1)本実施形態の露光装置EXは、紫外域の照明光ILを変調する空間光変調器25を備えている。空間光変調器25は、照明光ILの光路上の複数の画素5(領域)内にそれぞれ配置され、照明光ILの波長と同じ程度か又はこれより小さい幅を有する導電体よりなる複数のSRR(分割リング共振器)20X,20Y(微小共振器)と、複数の画素5毎に、複数のSRR20X,20Yの共振周波数を変調する変調部19とを備えている。
As described above, in the exposure apparatus EX of the present embodiment, by generating a transmissive variable pattern using the spatial light modulator 25, the patterns of a plurality of layers of various electronic devices are respectively processed in a maskless manner. Each shot area of W can be exposed.
The effects and the like of this embodiment are as follows.
(1) The exposure apparatus EX of the present embodiment includes a spatial light modulator 25 that modulates illumination light IL in the ultraviolet region. The spatial light modulator 25 is disposed in each of a plurality of pixels 5 (regions) on the optical path of the illumination light IL, and a plurality of SRRs made of a conductor having a width that is the same as or smaller than the wavelength of the illumination light IL. (Split ring resonators) 20X and 20Y (microresonators) and a modulation unit 19 that modulates the resonance frequencies of the plurality of SRRs 20X and 20Y for each of the plurality of pixels 5.
 本実施形態の空間光変調器25によれば、SRR20X,20Yの長手方向の幅a(大きさ)を紫外光である照明光ILの波長程度又はこれより小さくして、SRR20X,20Yの共振周波数をほぼ照明光ILの周波数とそれ以外の周波数との間で変調することによって、複数の画素5を透過する照明光ILの透過率(光量)を各画素5毎に制御できる。また、SRR20X,20Yの共振周波数の制御は高い応答速度で行うことができる。従って、空間光変調器25は、紫外光に対して透過型の高い応答速度の可変パターンとして使用可能である。 According to the spatial light modulator 25 of the present embodiment, the longitudinal width a (size) of the SRRs 20X and 20Y is approximately equal to or smaller than the wavelength of the illumination light IL that is ultraviolet light, and the resonance frequencies of the SRRs 20X and 20Y. Is modulated approximately between the frequency of the illumination light IL and the other frequency, the transmittance (light quantity) of the illumination light IL transmitted through the plurality of pixels 5 can be controlled for each pixel 5. Further, the resonance frequency of the SRRs 20X and 20Y can be controlled at a high response speed. Therefore, the spatial light modulator 25 can be used as a variable pattern having a high response speed that is transmissive to ultraviolet light.
 (2)また、SRR20Y(SRR20Xも同様)は、全体として環状になるとともに、所定のギャップを隔てて配置される部材20YA,20YB及び部材20YD,20YCを含んでいる。従って、そのギャップ又はそのギャップの光路長を制御することで、SRR20Yの共振周波数を制御可能である。
 (3)また、変調部19は、部材20YA,20YBと部材20YD,20YCとの間に配置される誘電体21A,21Bと、誘電体21A,21Bに電圧を印加するための、それぞれ照明光ILを透過する電極ライン7,9と、を有する。従って、電極ライン7,9間の電圧を制御するのみで、各画素5毎にSRR20Yの共振周波数(透過率)を容易に制御可能である。
(2) Further, the SRR 20Y (the same applies to the SRR 20X) includes the members 20YA and 20YB and the members 20YD and 20YC which are arranged in a ring shape with a predetermined gap therebetween. Therefore, the resonance frequency of the SRR 20Y can be controlled by controlling the gap or the optical path length of the gap.
(3) Further, the modulation unit 19 applies illumination light IL for applying a voltage to the dielectrics 21A and 21B disposed between the members 20YA and 20YB and the members 20YD and 20YC, and the dielectrics 21A and 21B, respectively. Electrode lines 7 and 9 that pass through. Therefore, the resonance frequency (transmittance) of the SRR 20Y can be easily controlled for each pixel 5 only by controlling the voltage between the electrode lines 7 and 9.
 (4)また、複数の画素5内には、複数のSRR20Yと、SRR20Yを90°回転した形状の複数のSRR20Xとが配置されている。従って、種々の方向の直線偏光の照明光に対する透過率を各画素5毎に制御可能である。
 (5)また、照明光ILはパルス光であり、変調部19は、変調制御部18の制御のもとで、照明光ILが所定のパルス数発光される毎に、複数のSRR20X,20Yの共振周波数を変調している。従って、照明光ILのパルス発光の間に空間光変調器25によって生成される可変パターンを切り替えることによって、不要なパターンの露光を抑制できる。
(4) Further, in the plurality of pixels 5, a plurality of SRRs 20Y and a plurality of SRRs 20X having a shape obtained by rotating the SRR 20Y by 90 ° are arranged. Therefore, the transmittance of linearly polarized illumination light in various directions can be controlled for each pixel 5.
(5) Further, the illumination light IL is pulsed light, and the modulation unit 19 controls the plurality of SRRs 20X and 20Y each time the illumination light IL is emitted a predetermined number of pulses under the control of the modulation control unit 18. The resonance frequency is modulated. Therefore, by switching the variable pattern generated by the spatial light modulator 25 during the pulse emission of the illumination light IL, exposure of an unnecessary pattern can be suppressed.
 (6)また、本実施形態の露光装置EX(光学装置)は、空間光変調器25と、空間光変調器25の変調部19を駆動する変調制御部18と、照明光ILで空間光変調器25の複数の画素5を含む照明領域26を照明する照明光学系ILS(照明系)と、空間光変調器25の複数の画素5の像を形成する投影光学系PL(投影系)と、を備えている。この場合、空間光変調器25は、照明光ILが紫外光であっても、透過型の可変パターンとして使用できるため、投影光学系PLとして両側テレセントリックの光学系を使用できる。従って、反射型の投影光学系を使用する場合に比べて光学系の構成が簡素化でき、光学系の配置も容易である。 (6) Further, the exposure apparatus EX (optical apparatus) of the present embodiment includes a spatial light modulator 25, a modulation control unit 18 that drives the modulation unit 19 of the spatial light modulator 25, and spatial light modulation with illumination light IL. An illumination optical system ILS (illumination system) that illuminates an illumination region 26 including a plurality of pixels 5 of the unit 25; a projection optical system PL (projection system) that forms an image of the plurality of pixels 5 of the spatial light modulator 25; It has. In this case, since the spatial light modulator 25 can be used as a transmissive variable pattern even if the illumination light IL is ultraviolet light, a double-sided telecentric optical system can be used as the projection optical system PL. Therefore, the configuration of the optical system can be simplified and the arrangement of the optical system is easy as compared with the case of using a reflective projection optical system.
 (7)また、露光装置EXは、ウエハWを露光する露光装置であって、さらに、投影光学系PLの像面に配置されるウエハWを保持して移動するウエハステージWSTと、ウエハWの上面に形成されるパターンに応じて変調制御部18を制御する主制御系30(制御装置)とを備えている。また、照明光学系ILSの照明領域26はY方向(所定方向)の幅が狭いスリット状の領域であり、主制御系30は、変調制御部18の制御とウエハステージWSTのY方向に対応する走査方向(Y方向)への移動とを同期して行う。 (7) The exposure apparatus EX is an exposure apparatus that exposes the wafer W. The exposure apparatus EX further includes a wafer stage WST that holds and moves the wafer W placed on the image plane of the projection optical system PL, and a wafer W The main control system 30 (control apparatus) which controls the modulation control part 18 according to the pattern formed in an upper surface is provided. The illumination area 26 of the illumination optical system ILS is a slit-like area having a narrow width in the Y direction (predetermined direction), and the main control system 30 corresponds to the control of the modulation control unit 18 and the Y direction of the wafer stage WST. The movement in the scanning direction (Y direction) is performed in synchronization.
 従って、空間光変調器25は小型であっても、空間光変調器25で生成される可変パターンの像に対してウエハWを走査することによって、マスクレス方式でウエハWの広い領域に所望のパターンの像を走査露光できる。
 (8)また、本実施形態の半導体デバイス(電子デバイス)の製造方法は、露光装置EXを用いてウエハW(基板)にパターンを転写すること(ステップ1103~108)と、そのパターンが転写されたウエハWをそのパターンに基づいて加工すること(ステップ122の回路パターン形成処理等)とを含んでいる。
Therefore, even if the spatial light modulator 25 is small, by scanning the wafer W with respect to the image of the variable pattern generated by the spatial light modulator 25, a desired area can be obtained over a wide area of the wafer W by a maskless method. The pattern image can be scanned and exposed.
(8) Further, in the method of manufacturing the semiconductor device (electronic device) of the present embodiment, the pattern is transferred to the wafer W (substrate) using the exposure apparatus EX (steps 1103 to 108). And processing the wafer W based on the pattern (circuit pattern formation processing in step 122, etc.).
 このデバイス製造方法によれば、異なる半導体デバイス及び異なるレイヤ毎にマスクを製造する必要がないため、種々の半導体デバイスを安価に製造できる。
 なお、本実施形態は以下のような変形が可能である。
 (1)本実施形態においては、ステップ・アンド・スキャン方式でウエハWの露光を行っているが、図6(B)に示すように、ステップ・アンド・リピート方式でウエハWの露光を行ってもよい。図6(B)において、ウエハWのショット領域SA21の露光に際して、ショット領域SA21を露光領域27の幅を単位として複数の部分領域SB1~SB5に分割する。そして、ウエハステージWSTを介して各部分領域SBi(i=1,2,…)を露光領域27にステップ移動する動作と、露光領域27に空間光変調器25で設定された可変パターンの縮小像を一括露光する動作とを繰り返すことによって、ショット領域SA21の全面に所望のパターンの像を露光できる。
According to this device manufacturing method, it is not necessary to manufacture masks for different semiconductor devices and different layers, and therefore various semiconductor devices can be manufactured at low cost.
In addition, this embodiment can be modified as follows.
(1) In this embodiment, the wafer W is exposed by the step-and-scan method. However, as shown in FIG. 6B, the wafer W is exposed by the step-and-repeat method. Also good. In FIG. 6B, when the shot area SA21 of the wafer W is exposed, the shot area SA21 is divided into a plurality of partial areas SB1 to SB5 with the width of the exposure area 27 as a unit. Then, each partial area SBi (i = 1, 2,...) Is moved stepwise to the exposure area 27 via the wafer stage WST, and a reduced image of the variable pattern set in the exposure area 27 by the spatial light modulator 25. By repeating the batch exposure operation, a desired pattern image can be exposed on the entire surface of the shot area SA21.
 (2)本実施形態では、図3(A)に示すように、SRR20Yの部材20YA,20YBと部材20YD,20YCとの間に誘電体21A,21Bを設置している。しかしながら、図8(A)の変形例で示すように、SRR20Yの部材20YA,20YBと部材20YD,20YCとの間を間隔可変のギャップ部としてもよい。この場合、ギャップ部の間隔gを変化させることによってSRR20Yの共振周波数を変化できる。このためのギャップ可変機構が、電極ライン7,9と誘電体膜22A,22Bとを含む変調部19Aである。 (2) In this embodiment, as shown in FIG. 3A, dielectrics 21A and 21B are installed between the members 20YA and 20YB of the SRR 20Y and the members 20YD and 20YC. However, as shown in the modification of FIG. 8A, the gap between the members 20YA and 20YB and the members 20YD and 20YC of the SRR 20Y may be a variable gap. In this case, the resonance frequency of the SRR 20Y can be changed by changing the gap g between the gap portions. The gap variable mechanism for this purpose is the modulation section 19A including the electrode lines 7 and 9 and the dielectric films 22A and 22B.
 この変形例では、電圧制御部18aにより電極ライン7,9間の電圧を例えば0に設定している状態では、SRR20Yの共振周波数が照明光ILYの周波数と異なるため、照明光ILYはそのままSRR20Yを透過する。一方、電圧制御部18aにより、変調部19Aの電極ライン7,9間に所定電圧を印加することによって、図8(B)に示すように、静電力によって電極ライン7,9間の距離、ひいてはSRR20Yのギャップ部の間隔がg1に減少する。この状態で、SRR20Yの共振周波数が照明光ILYの周波数にほぼ一致するようにしておくことによって、SRR20Yによる照明光ILYの吸収量が大きくなり、このSRR20Yが属する画素5が遮光画素になる。 In this modified example, when the voltage between the electrode lines 7 and 9 is set to 0 by the voltage control unit 18a, for example, the resonance frequency of the SRR 20Y is different from the frequency of the illumination light ILY. To Penetrate. On the other hand, by applying a predetermined voltage between the electrode lines 7 and 9 of the modulating unit 19A by the voltage control unit 18a, as shown in FIG. The gap portion of the SRR 20Y is reduced to g1. In this state, by making the resonance frequency of the SRR 20Y substantially coincide with the frequency of the illumination light ILY, the amount of absorption of the illumination light ILY by the SRR 20Y increases, and the pixel 5 to which the SRR 20Y belongs becomes a light-shielding pixel.
 なお、電極ライン7,9間の電圧によるSRR20Yのギャップ部の間隔のばらつきを考慮して、例えば画素5内の複数箇所に図8(B)の高さの基準となる基準部材23を形成しておいてもよい。基準部材23によって、異なる位置の複数のSRR20Yのギャップ部の間隔がそれぞれ正確にg1に設定される。 In consideration of variations in the gap of the SRR 20Y due to the voltage between the electrode lines 7 and 9, for example, reference members 23 serving as reference heights in FIG. You may keep it. By the reference member 23, the gap portions of the plurality of SRRs 20Y at different positions are accurately set to g1.
 [第2の実施形態]
 本発明の第2の実施形態につき図9(A)及び図9(B)を参照して説明する。本実施形態の空間光変調器の外観は、ほぼ図2(A)の空間光変調器25から第2のガラス板8を取り除いた形状である。さらに、図2(A)の複数の画素5と同じ配列の複数の画素内にそれぞれ複数のSRR(分割リング共振器)及び変調部が配置されている。以下、図9(A)において、図3(A)に対応する部分には同一符号を付してその詳細な説明を省略する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. 9 (A) and 9 (B). The appearance of the spatial light modulator of the present embodiment is substantially the same as the shape obtained by removing the second glass plate 8 from the spatial light modulator 25 of FIG. Further, a plurality of SRRs (divided ring resonators) and modulators are arranged in a plurality of pixels in the same array as the plurality of pixels 5 in FIG. In the following, in FIG. 9A, portions corresponding to those in FIG. 3A are denoted by the same reference numerals, and detailed description thereof is omitted.
 図9(A)は、本実施形態のY方向に細長いSRR(分割リング共振器)24Y及び変調部19Bを示す拡大断面図である。図9(A)において、ガラス板6の上面に透明導電膜よりなる電極ライン7A及び7Bが形成され、電極ライン7Aの上面に部材20YAと同じ金属製のU字型の第1部材20Eが形成されている。また、電極ライン7Aの-Y方向に近接して電極ライン7Bが配置され、電極ライン7B上の導電体よりなる支持部材21C及びガラス板6上の絶縁体よりなる支持部材21Dを介して、第1部材20Eに対向するように部材20YAと同じ金属製の平板状の第2部材20Fが固定されている。本実施形態では、第1部材20E及び第2部材20Fから、全体としてリング状で、かつY方向の両端部に間隔g2(初期状態での値)のギャップ部を有するSRR24Yが構成されている。 FIG. 9A is an enlarged cross-sectional view showing an SRR (divided ring resonator) 24Y and a modulator 19B elongated in the Y direction according to the present embodiment. 9A, electrode lines 7A and 7B made of a transparent conductive film are formed on the upper surface of the glass plate 6, and a U-shaped first member 20E made of the same metal as the member 20YA is formed on the upper surface of the electrode line 7A. Has been. In addition, the electrode line 7B is disposed in the vicinity of the −Y direction of the electrode line 7A, and the first via the support member 21C made of a conductor on the electrode line 7B and the support member 21D made of an insulator on the glass plate 6. A flat plate-like second member 20F made of the same metal as the member 20YA is fixed so as to face the one member 20E. In the present embodiment, the SRR 24Y is formed from the first member 20E and the second member 20F as a whole and having a gap portion having a gap g2 (value in an initial state) at both ends in the Y direction.
 また、電極ライン7A,7B及び導電性の支持部材21Cから、SRR24Yの第1部材20Eと第2部材20Fとの間隔g2を変化させて、SRR24Yの共振周波数を変化させる変調部19Bが構成されている。電極ライン7A,7B間には、空間光変調器の各画素毎に電圧制御部18aによって可変電圧を与えることができる。SRR24Y及び変調部19Bは、例えばMEMS技術を用いて製造可能である。 In addition, a modulation unit 19B that changes the resonance frequency of the SRR 24Y by changing the gap g2 between the first member 20E and the second member 20F of the SRR 24Y is configured from the electrode lines 7A and 7B and the conductive support member 21C. Yes. A variable voltage can be applied between the electrode lines 7A and 7B by the voltage controller 18a for each pixel of the spatial light modulator. The SRR 24Y and the modulation unit 19B can be manufactured using, for example, MEMS technology.
 この場合、電極ライン7A,7B間の電圧、ひいては部材20E,20F間の電圧が0の状態(初期状態)では、SRR24Yの共振周波数は照明光ILYの周波数と異なっているとする。一方、変調部19Bの電極ライン7A,7B間に所定電圧を与えた場合、図9(B)に示すように、弾性変形によって第1部材20Eと第2部材20Fとの間隔が狭くなり、SRR24Yの共振周波数が照明光ILYの周波数にほぼ等しくなるものとする。この状態において、SRR24Yは照明光ILYを吸収するため、このSRR24Yが属する画素の透過率は小さくなる。従って、SRR24Yは、第1の実施形態のSRR20Yと同様に紫外域のY方向に偏光した照明光ILYを透過又は吸収する共振器として使用できる。 In this case, it is assumed that the resonance frequency of the SRR 24Y is different from the frequency of the illumination light ILY when the voltage between the electrode lines 7A and 7B and thus the voltage between the members 20E and 20F is 0 (initial state). On the other hand, when a predetermined voltage is applied between the electrode lines 7A and 7B of the modulation unit 19B, as shown in FIG. 9B, the distance between the first member 20E and the second member 20F is narrowed due to elastic deformation, and the SRR 24Y Is assumed to be substantially equal to the frequency of the illumination light ILY. In this state, since the SRR 24Y absorbs the illumination light ILY, the transmittance of the pixel to which the SRR 24Y belongs becomes small. Therefore, the SRR 24Y can be used as a resonator that transmits or absorbs the illumination light ILY polarized in the Y direction in the ultraviolet region, similar to the SRR 20Y of the first embodiment.
 さらに、SRR24Y及び変調部19Bを90°回転した形状のSRR(分割リング共振器)も設けられている(不図示)。このSRRは、第1の実施形態のSRR20Xと同様に、X方向に偏光した照明光を透過又は吸収する共振器として使用できる。
 なお、上記の第1及び第2の実施形態では以下のような変形が可能である。
 (1)上記の実施形態の空間光変調器25は透過型であるが、空間光変調器25を反射型の変調器として使用することも可能である。例えば図3(A)のSRR20Y及び変調部19を備えた空間光変調器25を反射型にするには、図10(A)の第1変形例に示すように、第1のガラス板6の底面側に全面が反射面の平面ミラー24を設置すればよい。図10(A)において、SRR20Yの共振周波数が照明光ILYの周波数と異なる場合、SRR20Yに入射した照明光ILYは、SRR20Yの近傍及びガラス板6を透過した後、平面ミラー24で反射されて、再びSRR20Yの近傍を透過して+Z方向に戻される。
Further, an SRR (divided ring resonator) having a shape obtained by rotating the SRR 24Y and the modulation unit 19B by 90 ° is also provided (not shown). Similar to the SRR 20X of the first embodiment, this SRR can be used as a resonator that transmits or absorbs illumination light polarized in the X direction.
The first and second embodiments described above can be modified as follows.
(1) Although the spatial light modulator 25 of the above-described embodiment is a transmission type, the spatial light modulator 25 can be used as a reflection type modulator. For example, in order to make the spatial light modulator 25 provided with the SRR 20Y and the modulation unit 19 of FIG. 3 (A) a reflection type, as shown in the first modification of FIG. 10 (A), the first glass plate 6 A flat mirror 24 whose entire surface is a reflective surface may be provided on the bottom surface side. In FIG. 10A, when the resonance frequency of the SRR 20Y is different from the frequency of the illumination light ILY, the illumination light ILY incident on the SRR 20Y is reflected by the plane mirror 24 after passing through the vicinity of the SRR 20Y and the glass plate 6, The light again passes through the vicinity of the SRR 20Y and is returned to the + Z direction.
 一方、SRR20Yの共振周波数が照明光ILYの周波数にほぼ一致している場合、SRR20Yに入射した照明光ILYはSRR20Yで吸収され、その照明光ILYは+Z方向には反射されない。従って、図2(A)の空間光変調器25の裏面に平面ミラーを配置した空間光変調器は、反射型の空間光変調器として使用可能である。
 同様に、図9(A)の実施形態においても、ガラス板6の裏面に平面ミラーを配置することによって、反射型の空間光変調器として使用できる。
On the other hand, when the resonance frequency of the SRR 20Y substantially matches the frequency of the illumination light ILY, the illumination light ILY incident on the SRR 20Y is absorbed by the SRR 20Y, and the illumination light ILY is not reflected in the + Z direction. Therefore, the spatial light modulator in which the plane mirror is arranged on the back surface of the spatial light modulator 25 in FIG. 2A can be used as a reflective spatial light modulator.
Similarly, also in the embodiment of FIG. 9A, by arranging a plane mirror on the back surface of the glass plate 6, it can be used as a reflective spatial light modulator.
 (2)また、上記の実施形態では、例えば図2(B)のSRR20X,20Yで示すように、X方向及びY方向に偏光した照明光ILX,ILYに対する共振器が個別に形成されている。これに対して、図10(B)の第2変形例で示すように、X方向に沿ったU字型の第1部分21GXとY方向に沿ったU字型の第2部分21GYとを含む第1の十字型部材21Gと、第1部分21GX及び第2部分21GYに対向するように配置される第1部分21HX及び第2部分21HYを含む第2の十字型部材21Hとから構成されるSRR(分割リング共振器)20Cを使用してもよい。このSRR20Cには、十字型部材21G,21Hのギャップ部の間隔を変化させる変調部、例えば図8(A)の変調部19Aと同様の変調部(不図示)も備えられている。 (2) In the above embodiment, as shown by SRRs 20X and 20Y in FIG. 2B, for example, resonators for the illumination lights ILX and ILY polarized in the X direction and the Y direction are individually formed. On the other hand, as shown in the second modification of FIG. 10B, a U-shaped first portion 21GX along the X direction and a U-shaped second portion 21GY along the Y direction are included. An SRR composed of a first cruciform member 21G and a second cruciform member 21H including a first portion 21HX and a second portion 21HY arranged to face the first portion 21GX and the second portion 21GY. (Split ring resonator) 20C may be used. The SRR 20C also includes a modulation unit (not shown) similar to the modulation unit 19A of FIG. 8A, for example, a modulation unit that changes the gap between the cross-shaped members 21G and 21H.
 SRR20Cは、X方向に偏光した照明光及びY方向に偏光した照明光の両方に対する共振周波数を変化させることができ、ひいてはその両方向に偏光した照明光に対する透過率を制御できる。
 (3)また、図11に示すように、空間光変調器の多数の素子として、それぞれU字型の金属製の第1部材20K1及び第2部材20K2を対向させた形状のSRR(分割リング共振器)24KYを使用することも可能である。この変形例では、ガラス板6の誘電体膜22の表面にそれぞれ電極ライン7A及び7Bを介して第1部材20K1及び第2部材20K2が形成されている。この変形例では、電極ライン7A,7B間に所定の電圧を印加することによって、部材20K1及び20K2の上端のギャップが変化して、入射する光に対するSRR24KYの共振周波数が変化する。従って、上記の実施形態と同様に、入射する光に対する透過率を制御できる。
The SRR 20C can change the resonance frequency for both the illumination light polarized in the X direction and the illumination light polarized in the Y direction, and thus can control the transmittance for the illumination light polarized in both directions.
(3) Further, as shown in FIG. 11, as a large number of elements of the spatial light modulator, SRRs (divided ring resonance) each having a U-shaped metal first member 20K1 and second member 20K2 facing each other. It is also possible to use 24KY. In this modification, the first member 20K1 and the second member 20K2 are formed on the surface of the dielectric film 22 of the glass plate 6 via the electrode lines 7A and 7B, respectively. In this modification, by applying a predetermined voltage between the electrode lines 7A and 7B, the gap between the upper ends of the members 20K1 and 20K2 changes, and the resonance frequency of the SRR 24KY with respect to incident light changes. Therefore, the transmittance for incident light can be controlled as in the above embodiment.
 (4)なお、上記の実施形態では、例えば空間光変調器25は可変のマスクパターンとして使用されているが、空間光変調器25は、照明光学系ILS内の可変開口絞りとして使用することも可能である。
 (5)上記の実施形態では、照明光ILとしてパルス光が使用されている。しかしながら、照明光ILとしては、例えば紫外LEDからの光、又は例えばg線(波長436nm)、h線(波長405nm)及びi線(波長365nm)を含む波長域から選択されたほぼ紫外域の連続光を使用してもよい。
 また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、液晶表示素子、プラズマディスプレイ等の製造プロセスや、撮像素子(CMOS型、CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイス(電子デバイス、マイクロデバイス)の製造プロセスにも広く適用できる。
(4) In the above embodiment, for example, the spatial light modulator 25 is used as a variable mask pattern. However, the spatial light modulator 25 may be used as a variable aperture stop in the illumination optical system ILS. Is possible.
(5) In the above embodiment, pulsed light is used as the illumination light IL. However, as the illumination light IL, for example, light from an ultraviolet LED, or a continuous in a substantially ultraviolet range selected from a wavelength range including, for example, g-line (wavelength 436 nm), h-line (wavelength 405 nm) and i-line (wavelength 365 nm). Light may be used.
Further, the present invention is not limited to the application to the manufacturing process of a semiconductor device. For example, a manufacturing process such as a liquid crystal display element and a plasma display, an imaging element (CMOS type, CCD, etc.), a micromachine, a MEMS ( (Microelectromechanical Systems), thin-film magnetic heads, and DNA chips and other devices (electronic devices, microdevices) can be widely applied to manufacturing processes.
 なお、上記の実施形態の空間光変調器25は、露光装置のマスク又は開口絞りとしてのみならず、照明光として可視光が使用されるプロジェクター(光学装置)の可変スライドとしても使用可能である。
 このように本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
 なお、本願に記載した上記公報、各国際公開パンフレット、米国特許、又は米国特許出願公開明細書における開示を援用して本明細書の記載の一部とする。また、明細書、特許請求の範囲、図面、及び要約を含む2009年10月22日付け提出の日本国特許出願第2009-243927号の全ての開示内容は、そっくりそのまま引用して本願に組み込まれている。
The spatial light modulator 25 of the above embodiment can be used not only as a mask or aperture stop of an exposure apparatus but also as a variable slide of a projector (optical apparatus) that uses visible light as illumination light.
As described above, the present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention.
It should be noted that the disclosures in the above-mentioned publications, international publication pamphlets, US patents, or US patent application publication specifications described in the present application are incorporated herein by reference. Also, the entire disclosure of Japanese Patent Application No. 2009-243927 filed on October 22, 2009, including the description, claims, drawings, and abstract, is incorporated herein by reference in its entirety. ing.
 EX…露光装置、ILS…照明光学系、PL…投影光学系、W…ウエハ、5…画素、6,8…ガラス板、7,9…電極ライン、14…光源、18…変調制御部、19…変調部、20X,20Y…SRR(分割リング共振器)、21A,21B…誘電体、22A,22B…誘電体膜、25…空間光変調器、30…主制御系 EX ... exposure apparatus, ILS ... illumination optical system, PL ... projection optical system, W ... wafer, 5 ... pixel, 6,8 ... glass plate, 7,9 ... electrode line, 14 ... light source, 18 ... modulation control unit, 19 ... Modulator, 20X, 20Y ... SRR (split ring resonator), 21A, 21B ... Dielectric, 22A, 22B ... Dielectric film, 25 ... Spatial light modulator, 30 ... Main control system

Claims (12)

  1.  照明光を変調する空間光変調器において、
     前記照明光の光路上の複数の領域内にそれぞれ配置され、前記照明光の波長と同じ程度か又はこれより小さい幅を有する導電体よりなる複数の微小共振器と、
     前記複数の領域毎に、前記複数の微小共振器の共振周波数を変調する変調機構と、
    を備えることを特徴とする空間光変調器。
    In a spatial light modulator that modulates illumination light,
    A plurality of microresonators made of a conductor each disposed in a plurality of regions on the optical path of the illumination light and having a width that is the same as or smaller than the wavelength of the illumination light;
    A modulation mechanism for modulating the resonance frequency of the plurality of microresonators for each of the plurality of regions;
    A spatial light modulator comprising:
  2.  前記変調機構は、前記微小共振器の共振周波数を、前記照明光の周波数と異なる周波数と、前記照明光の周波数とほぼ同じ周波数との間で切り替えることを特徴とする請求項1に記載の空間光変調器。 The space according to claim 1, wherein the modulation mechanism switches the resonance frequency of the microresonator between a frequency different from the frequency of the illumination light and a frequency substantially the same as the frequency of the illumination light. Light modulator.
  3.  前記微小共振器は、全体として環状になるとともに、所定のギャップを隔てて配置される第1部材及び第2部材を含むことを特徴とする請求項1又は2に記載の空間光変調器。 3. The spatial light modulator according to claim 1, wherein the microresonator has a ring shape as a whole and includes a first member and a second member arranged with a predetermined gap therebetween.
  4.  前記変調機構は、
     前記第1部材と前記第2部材との間に配置される誘電体素子と、
     前記誘電体素子に電圧を付与するための、それぞれ前記照明光を透過する第1電極ライン及び第2電極ラインと、
    を有することを特徴とする請求項3に記載の空間光変調器。
    The modulation mechanism is
    A dielectric element disposed between the first member and the second member;
    A first electrode line and a second electrode line that transmit the illumination light, respectively, for applying a voltage to the dielectric element;
    The spatial light modulator according to claim 3, wherein
  5.  前記変調機構は、前記第1部材と前記第2部材との間のギャップを変化させるギャップ可変機構であることを特徴とする請求項3に記載の空間光変調器。 The spatial light modulator according to claim 3, wherein the modulation mechanism is a gap variable mechanism that changes a gap between the first member and the second member.
  6.  前記ギャップ可変機構は、
     前記第1部材と前記第2部材とを挟むように配置され、それぞれ前記照明光を透過する第1電極ライン及び第2電極ラインを有することを特徴とする請求項5に記載の空間光変調器。
    The gap variable mechanism is
    6. The spatial light modulator according to claim 5, further comprising a first electrode line and a second electrode line that are arranged so as to sandwich the first member and the second member and each transmit the illumination light. .
  7.  前記複数の領域内の前記複数の微小共振器は、複数の第1の微小共振器と、それぞれ前記第1の微小共振器を90°回転した形状の複数の第2の微小共振器とを含むことを特徴とする請求項1~6のいずれか一項に記載の空間光変調器。 The plurality of microresonators in the plurality of regions include a plurality of first microresonators and a plurality of second microresonators each having a shape obtained by rotating the first microresonator by 90 °. The spatial light modulator according to any one of claims 1 to 6, wherein:
  8.  前記照明光はパルス光であり、
     前記変調機構は、前記照明光が所定のパルス数発光される毎に、前記複数の微小共振器の共振周波数を変調することを特徴とする請求項1~7のいずれか一項に記載の空間光変調器。
    The illumination light is pulsed light,
    The space according to any one of claims 1 to 7, wherein the modulation mechanism modulates resonance frequencies of the plurality of microresonators each time the illumination light is emitted by a predetermined number of pulses. Light modulator.
  9.  請求項1~8のいずれか一項に記載の空間光変調器と、
     前記空間光変調器の前記変調機構を駆動する駆動系と、
     照明光で前記空間光変調器の前記複数の領域を含む照明領域を照明する照明系と、
     前記空間光変調器の前記複数の領域の像を形成する投影系と、
    を備えることを特徴とする光学装置。
    A spatial light modulator according to any one of claims 1 to 8,
    A drive system for driving the modulation mechanism of the spatial light modulator;
    An illumination system that illuminates an illumination area including the plurality of areas of the spatial light modulator with illumination light;
    A projection system for forming an image of the plurality of regions of the spatial light modulator;
    An optical device comprising:
  10.  照明光で基板を露光する露光装置において、
     請求項9に記載の光学装置と、
     前記投影系の像面に配置される前記基板を保持して移動するステージと、
     前記基板に形成されるパターンに応じて前記光学装置の前記駆動系を制御する制御装置と、
    を備えることを特徴とする露光装置。
    In an exposure apparatus that exposes a substrate with illumination light,
    An optical device according to claim 9;
    A stage that holds and moves the substrate disposed on the image plane of the projection system;
    A control device for controlling the drive system of the optical device according to a pattern formed on the substrate;
    An exposure apparatus comprising:
  11.  前記光学装置の前記照明領域は所定方向の幅が狭いスリット状の領域であり、
     前記制御装置は、前記駆動系の制御と前記ステージの前記所定方向に対応する方向への移動とを同期して行うことを特徴とする請求項10に記載の露光装置。
    The illumination area of the optical device is a slit-like area having a narrow width in a predetermined direction,
    The exposure apparatus according to claim 10, wherein the control device performs control of the drive system and movement of the stage in a direction corresponding to the predetermined direction in synchronization.
  12.  請求項10又は11に記載の露光装置を用いて、基板にパターンを転写することと、
     前記パターンが転写された前記基板を前記パターンに基づいて加工することと、
    を含むデバイス製造方法。
    Using the exposure apparatus according to claim 10 or 11 to transfer a pattern to the substrate;
    Processing the substrate on which the pattern is transferred based on the pattern;
    A device manufacturing method including:
PCT/JP2010/068096 2009-10-22 2010-10-14 Spatial light modulator, optical apparatus, and exposure apparatus WO2011049004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009243927A JP2011090165A (en) 2009-10-22 2009-10-22 Spatial light modulator, optical device, and exposure device
JP2009-243927 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011049004A1 true WO2011049004A1 (en) 2011-04-28

Family

ID=43900231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068096 WO2011049004A1 (en) 2009-10-22 2010-10-14 Spatial light modulator, optical apparatus, and exposure apparatus

Country Status (2)

Country Link
JP (1) JP2011090165A (en)
WO (1) WO2011049004A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6783701B2 (en) * 2017-05-22 2020-11-11 日本電信電話株式会社 Sensing element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303951A (en) * 2003-03-31 2004-10-28 Nikon Corp Aligner and exposure method
WO2008121159A2 (en) * 2006-10-19 2008-10-09 Los Alamos National Security Llc Active terahertz metamaterial devices
US20090206963A1 (en) * 2008-02-15 2009-08-20 Toyota Motor Engineering & Manufacturing North America, Inc. Tunable metamaterials using microelectromechanical structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303951A (en) * 2003-03-31 2004-10-28 Nikon Corp Aligner and exposure method
WO2008121159A2 (en) * 2006-10-19 2008-10-09 Los Alamos National Security Llc Active terahertz metamaterial devices
US20090206963A1 (en) * 2008-02-15 2009-08-20 Toyota Motor Engineering & Manufacturing North America, Inc. Tunable metamaterials using microelectromechanical structures

Also Published As

Publication number Publication date
JP2011090165A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US7948606B2 (en) Moving beam with respect to diffractive optics in order to reduce interference patterns
JP5418230B2 (en) Exposure method and exposure apparatus
TWI298825B (en) Lithographic apparatus and device manufacturing method
US8164740B2 (en) Illumination system coherence remover with two sets of stepped mirrors
JP6756989B2 (en) Exposure method and equipment, and device manufacturing method
JP4860674B2 (en) Lithographic apparatus, individually controllable element array and device manufacturing method
US20070009146A1 (en) Lithographic apparatus and device manufacturing method utilizing a datapath having a balanced calculation load
JP4463244B2 (en) Lithographic apparatus, device manufacturing method, and device with increased depth of focus manufactured by this method
JP2008070866A (en) Patterning device utilizing set of stepped mirror and method of using the same
TWI243968B (en) Lithographic apparatus and device manufacturing method
JP4023541B2 (en) Lithographic projection apparatus and device manufacturing method
JP4658469B2 (en) Lithographic projection apparatus and device manufacturing method
JP2007258716A (en) Exposure system, radiation supply, and device manufacturing method
JP2005025186A (en) Spatial light modulator, lithographic apparatus and method of manufacturing device
JP2009152607A (en) Device control method and device
JP4847936B2 (en) Exposure equipment
JP2007103941A (en) System and method for compensating thermal expansion of lithography apparatus or substrate
US20080304034A1 (en) Dose control for optical maskless lithography
JP4754544B2 (en) System, lithography system, method, laser, and illuminator
WO2011049004A1 (en) Spatial light modulator, optical apparatus, and exposure apparatus
US7649676B2 (en) System and method to form unpolarized light
CN110431486B (en) Control device and control method, exposure device and exposure method, device manufacturing method, data generation method, and computer-readable medium
KR100773665B1 (en) Method and apparatus for printing patterns with improved cd uniformity
US20080002174A1 (en) Control system for pattern generator in maskless lithography
JP6558529B2 (en) Spatial light modulator and method of using the same, modulation method, exposure method and apparatus, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824853

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824853

Country of ref document: EP

Kind code of ref document: A1