JP2003173792A - CORROSION-RESISTANT Ni-GROUP ALLOY SEPARATOR BOARD FOR SOLID POLYMER FUEL CELL WITH ENOUGH STRENGTH TO ALLOW THINNING - Google Patents

CORROSION-RESISTANT Ni-GROUP ALLOY SEPARATOR BOARD FOR SOLID POLYMER FUEL CELL WITH ENOUGH STRENGTH TO ALLOW THINNING

Info

Publication number
JP2003173792A
JP2003173792A JP2001371641A JP2001371641A JP2003173792A JP 2003173792 A JP2003173792 A JP 2003173792A JP 2001371641 A JP2001371641 A JP 2001371641A JP 2001371641 A JP2001371641 A JP 2001371641A JP 2003173792 A JP2003173792 A JP 2003173792A
Authority
JP
Japan
Prior art keywords
fuel cell
solid polymer
corrosion
contact
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001371641A
Other languages
Japanese (ja)
Other versions
JP3864771B2 (en
Inventor
Koichi Kita
晃一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001371641A priority Critical patent/JP3864771B2/en
Publication of JP2003173792A publication Critical patent/JP2003173792A/en
Application granted granted Critical
Publication of JP3864771B2 publication Critical patent/JP3864771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion-resistant Ni-group alloy separator board for a solid polymer fuel cell with enough strength to allow thinning. <P>SOLUTION: The separator board for a solid polymer fuel cell made by piling, pressure-welding and assembling a plurality of single generating modules of a structure in which a separator board with a fuel gas flow path formed in contact with, and in a state of pinching, an anode on one side face of a solid polymer electrolyte membrane is arranged and another with an oxidizing gas flow path formed in contact with, and in a state pinching, a cathode on the other side face is composed of a Ni-group alloy with a composition containing in mass percent Cr by 40 to 48%, Mo and/or W by 0.1 to 2%, B by 0.01 to 1%, and the rest being Ni and inevitable impurities as well as with a constitution of metal boride distributed in dispersion on a substrate of austenite. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、高強度を有し、
かつ耐食性にもすぐれ、したがって燃料電池の軽量化お
よび小型化に不可欠の薄肉化を可能とする固体高分子形
燃料電池(以下、単に燃料電池という)の耐食性Ni基
合金製セパレータ板材に関するものである。 【0002】 【従来の技術】従来、一般に上記燃料電池が、図1,2
に示される通り、単セルと呼ばれる単一発電モジュール
を複数個重ね合わせて圧接組み立てた構造をもち、かつ
前記単セルが、固体高分子電解質膜の一方側面に、アノ
ード(水素極)を挟んでセパレータ板材が当接され、ま
た前記固体高分子電解質膜の他方側面には、カソード
(酸素極または空気極)を挟んで、同じくセパレータ板
材が当接され、さらに前記セパレータ板材における前記
アノードとの当接面には燃料ガス流路、前記カソードと
の当接面には酸化ガス流路が形成された構造をもつこと
はよく知られるところである。また、上記の燃料電池
は、セパレータ板材のアノード側に形成された燃料ガス
流路を通常約80℃の水素ガスが流れ、同カソード側の
酸化ガス流路を同じく約80℃の燃料電池の反応生成物
である水蒸気と大気との混合ガスが流れることによって
発電機能を発揮することも知られている。さらに、上記
の通り燃料電池のセパレータ板材のカソード当接面は、
約80℃の水蒸気と大気との混合ガスからなる酸化性ガ
ス流に曝されるが、このカソード当接面に酸化膜が形成
されるようになると、接面通電性が著しく低下して、電
池機能低下の原因となることから、セパレータ板材の形
成にはすぐれた耐食性を有する各種の材料が用いられて
おり、かかる材料の中で、特にすぐれた耐食性を有する
材料として、質量%(以下、%は質量%を示す)で、C
r:40〜48%、Moおよび/またはW:0.1〜2
%、を含有し、残りがNiと不可避不純物からなる組成
を有するオーステナイト単相組織のNi基合金が注目さ
れ、このNi基合金で形成された燃料電池のセパレータ
板材が提案されている。 【0003】 【発明が解決しようとする課題】一方、近年の燃料電池
の軽量化および小型化に対する要求は強く、これに伴
い、これの構造部材であるセパレータ板材にも薄肉化が
強く求められている。しかし、燃料電池は上記の通り単
セルの相互間の接触抵抗を低くする、すなわち良好な接
面通電性を確保する目的で、通常2〜3MPa程度の圧
力で締め付け圧接された状態で実用に供されているため
に、上記の耐食性にすぐれた従来Ni基合金製セパレー
タ板材の場合、これをあまり薄肉化すると、強度不足が
原因で、塑性変形してしまい、十分満足な薄肉化を図る
ことができないのが現状である。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特に耐食性のすぐれた上記の従
来Ni基合金製セパレータ板材に着目し、これの強度向
上を図るべく研究を行なった結果、前記従来Ni基合金
製セパレータ板材を構成するNi基合金に合金成分とし
てB(硼素)を含有させて、Cr:40〜48%、Mo
および/またはW:0.1〜2%、B:0.01〜1
%、を含有し、残りがNiと不可避不純物からなる組成
をもつものとしたNi基合金でセパレータ板材を構成す
ると、この結果のNi基合金製セパレータ板材は、これ
を構成するNi基合金がオーステナイトの素地に長さ方
向の径で0.5〜10μm程度の寸法を有する金属硼化
物が分散分布した組織を有することから、前記金属硼化
物の分散分布によって強度が著しく向上し、実用に際し
て付加される単セルの締め付け圧接圧力下においてもす
ぐれた耐塑性変形性を示し、さらに前記金属硼化物は素
地のオーステナイトに比して上記の酸化ガス流路雰囲気
で著しくすぐれた耐食性を発揮するので、すぐれた接面
通電性が長期に亘って確保されるようになる、という研
究結果を得たのである。 【0005】この発明は、上記の研究結果に基づいてな
されたものであって、固体高分子電解質膜の一方側面
に、アノードを挟んで、これに当接して燃料ガス流路が
形成されたセパレータ板材が、同他方側面には、カソー
ドを挟んで、これに当接して酸化ガス流路が形成された
セパレータ板材が配置された構造の単一発電モジュール
を複数個重ね合わせて圧接組み立てしてなる燃料電池に
おいて、前記セパレータ板材を、Cr:40〜48%、
Moおよび/またはW:0.1〜2%、B:0.01〜
1%、を含有し、残りがNiと不可避不純物からなる組
成、並びにオーステナイトの素地に金属硼化物が分散分
布した組織を有するNi基合金で構成してなる、薄肉化
が可能な高強度を有する燃料電池の耐食性Ni基合金製
セパレータ板材に特徴を有するものである。 【0006】つぎに、この発明のセパレータ板材におい
て、これを構成するNi基合金の組成を上記の通りに定
めた理由を説明する。 (a)Cr Cr成分には、Niと共に素地のオーステナイトを形成
し、前記素地の耐食性を向上させるほか、耐食性のすぐ
れた金属硼化物を形成して強度を向上させ、かつ素地に
分散分布することによってすぐれた接面通電性を確保す
る作用があるが、その含有量が40%未満では前記の作
用に所望の向上効果が得られず、一方その含有量が48
%を越えると加工性が急激に低下するようになることか
ら、その含有量を40〜48%と定めた。 【0007】(b)Moおよび/またはW これらの成分には、素地のオーステナイトに固溶して、
これの強度を向上させると共に、上記の通り金属硼化物
を形成して強度および接面通電性の向上に寄与する作用
があるが、その含有量が0.1%未満では前記の作用に
所望の向上効果が得られず、一方その含有量が2%を越
えると加工性が急激に低下するようになることから、そ
の含有量を0.1〜2%、望ましくは0.3〜1.5%
と定めた。 【0008】(c)B B成分には、その僅かな一部が素地に固溶して、素地の
耐食性向上に寄与するが、その大部分は上記の通り素地
に長さ方向の径で0.5〜10μmの寸法で分散分布す
る金属硼化物を形成して、強度を著しく向上させると共
に、自身のもつすぐれた耐食性によって接面通電性の経
時的低下を抑制し、長期に亘ってすぐれた発電機能を保
持する作用があるが、その含有量が0.01%未満では
金属硼化物の形成が不十分で前記の作用に所望の効果が
得られず、一方その含有量が1%を越えると、金属硼化
物の形成が多くなり過ぎて加工性が急激に低下するよう
になることから、その含有量を0.01〜1%、望まし
くは0.1〜0.9%と定めた。 【0009】 【発明の実施の形態】つぎに、この発明のセパレータ板
材を実施例により具体的に説明する。原料として、いず
れも純度が99.9%以上の高純度のNi材、Cr材、
Mo材、およびW材、さらにNi−B母合金(B:17
%含有)を用い、真空高周波誘導溶解装置で溶解し、そ
れぞれ所定の成分組成をもった溶湯を調整し、これを水
冷銅鋳型に鋳造して厚さ:5mmの板状インゴットと
し、この板状インゴットに1200℃の圧延開始温度で
の熱間圧延を繰り返し4回施して、厚さ:2mmの熱延
板とし、ついで前記熱延板に1200℃に10分間保持
後水冷の溶体化処理と500℃に10分間保持後空冷の
焼戻し処理を施した後、冷間加工にて厚さが1mmから
0.1mmづつ減少して0.1mmまでの10種類の板
材を形成し、これらの冷延板に500℃に10分間保持
後空冷の熱処理を施し、酸洗した状態で、50mm×5
0mmの板材を切り出し、この板材の中央部にプレス加
工にて燃料ガス流路および酸化ガス流路に相当する幅:
5mm×深さ:3mmの溝を5mm間隔で4本平行して
形成することによりそれぞれ表1,2に示される成分組
成をもったNi基合金で構成された本発明セパレータ板
材1〜27および従来セパレータ板材1〜21を製造し
た。 【0010】なお、この結果得られた各種のセパレータ
板材について、その組織を走査型電子顕微鏡(1000
倍)を用いて観測したところ、本発明セパレータ板材1
〜27はいずれもオーステナイトの素地に長さ方向の径
で0.5〜10μmの寸法を有する金属硼化物が分散分
布した組織を示し、また、従来セパレータ板材1〜21
はいずれもオーステナイト単相からなる組織を示した。 【0011】ついで、上記の各種セパレータ板材の強度
を評価する目的で、上記の厚さの異なる10種類のセパ
レータ板材を、それぞれ平面寸法:150mm×150
mm、厚さ:3mmのステンレス鋼板で上下方向から挟
んで水平に設置した状態で、これに上方より燃料電池を
構成する単セルの圧接組み立て圧力に相当する4MPa
の面圧を付加し、1分間保持後に取り出し、セパレータ
板材におけるプレス成形溝に塑性変形が発生する板厚
(塑性変形発生板厚)を測定した。この測定結果を表
1,2に示した。 【0012】また、上記の各種セパレータ板材の耐食性
を評価する目的で、上記の厚さ:1mmの各種セパレー
タ板材から30mm×30mmの試験片を切り出し、こ
の試験片をセパレータ板材の酸化ガス流路が曝される酸
化性雰囲気と同等の雰囲気、すなわち80度の大気飽和
水蒸気雰囲気中に3000時間放置の腐食試験を行い、
腐食試験前後の接触電気抵抗値を測定した。なお、接触
電気抵抗値は、上記試験片:2枚を1組とし、これを厚
さ:0.3mmのカーボンペーパーを挟んで重ね合わ
せ、この重ね合わせた試験片を油圧プレスにて上下面か
ら3MPaの圧力で加圧した状態で15Aの直流電流を
流し、前記試験片相互間の電位差を測定し、この測定電
位差から接触電気抵抗値を算出した。この結果も表1,
2に示した。この場合、接触電気抵抗値の低い方がセパ
レータ板材の表面における腐食試験後の接面通電性がす
ぐれていることを示し、これとは反対に腐食試験後の接
触電気抵抗値が高くなればなるほど接面通電性が低いこ
とを示すものである。 【表1】【0013】 【表2】【0014】 【発明の効果】表1,2に示される結果から、本発明セ
パレータ板材1〜27は、いずれもオーステナイトの素
地に分散分布する金属硼化物の存在によって薄肉化して
も塑性変形が発生し難い高強度を有するばかりでなく、
前記金属硼化物自体が耐食性にすぐれたものであること
から、素地のオーステナイトが酸化して、この部分での
接面通電性が低下しても、前記金属硼化物を通して良好
な接面通電性を確保することができるのに対して、前記
金属硼化物の形成がない従来セパレータ板材1〜21に
おいては、強度不足が原因で塑性変形し易く、満足な薄
肉化を図ることができないばかりでなく、オーステナイ
ト単相の酸化による全面的酸化膜の形成によって接面通
電性が低下し、接触電気抵抗値の増大は避けられないこ
とが明かである。上述のように、この発明のセパレータ
板材は、薄肉化を可能とする高強度を有し、かつ接面通
電性にもすぐれているので、燃料電池の軽量化および小
型化に大いに寄与するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high strength,
Also, the present invention relates to a corrosion-resistant Ni-based alloy separator plate material of a polymer electrolyte fuel cell (hereinafter, simply referred to as a fuel cell) which is excellent in corrosion resistance and therefore enables thinning indispensable for weight reduction and size reduction of a fuel cell. . 2. Description of the Related Art Conventionally, in general, the above-mentioned fuel cell is shown in FIGS.
As shown in the above, a single power generation module called a single cell has a structure in which a plurality of single power generation modules are stacked and pressed and assembled, and the single cell is sandwiched on one side of a solid polymer electrolyte membrane with an anode (hydrogen electrode) interposed therebetween. A separator plate is in contact with the separator, and the other side of the solid polymer electrolyte membrane is also in contact with a separator plate across a cathode (an oxygen electrode or an air electrode). It is well known that a fuel gas passage is formed on the contact surface, and an oxidizing gas passage is formed on the contact surface with the cathode. In the above fuel cell, a hydrogen gas at about 80 ° C. normally flows through a fuel gas flow path formed on the anode side of the separator plate, and a reaction gas of the fuel cell at about 80 ° C. flows through the oxidizing gas flow path on the cathode side. It is also known that a power generation function is exhibited by flowing a mixed gas of steam, which is a product, and the atmosphere. Furthermore, as described above, the cathode contact surface of the fuel cell separator plate is
The cathode is exposed to an oxidizing gas flow of a mixed gas of steam and air at about 80 ° C. When an oxide film is formed on the cathode contact surface, the contact surface conductivity is significantly reduced, and the battery Various materials having excellent corrosion resistance are used for forming the separator plate material because it causes deterioration of the function. Among such materials, a material having excellent corrosion resistance is referred to as a mass% (hereinafter,% Indicates mass%), and C
r: 40 to 48%, Mo and / or W: 0.1 to 2
%, And the austenitic single-phase Ni-based alloy having a composition consisting of Ni and inevitable impurities is attracting attention, and a separator plate material for a fuel cell formed of this Ni-based alloy has been proposed. On the other hand, there has been a strong demand for lighter and smaller fuel cells in recent years, and with this, there has been a strong demand for thinner separator plates, which are structural members of the fuel cells. I have. However, as described above, the fuel cell is put into practical use in a state where it is clamped and pressed at a pressure of usually about 2 to 3 MPa for the purpose of lowering the contact resistance between the single cells, that is, ensuring good contact surface conduction. Therefore, in the case of the conventional Ni-based alloy separator plate having excellent corrosion resistance, if the thickness is reduced too much, plastic deformation occurs due to insufficient strength, and it is possible to achieve a sufficiently satisfactory thickness. It is not possible at present. [0004] Accordingly, the present inventors have proposed:
In view of the above, the above-mentioned conventional Ni-based alloy separator plate having particularly excellent corrosion resistance was focused on, and as a result of conducting research to improve the strength thereof, the Ni which constitutes the conventional Ni-based alloy separator plate was obtained. When B (boron) is contained as an alloy component in the base alloy, Cr: 40 to 48%, Mo
And / or W: 0.1 to 2%, B: 0.01 to 1
%, And the remainder is composed of a Ni-based alloy having a composition consisting of Ni and unavoidable impurities. The resulting Ni-based alloy separator plate has an Ni-based alloy made of austenite. Since the metal has a structure in which metal boride having a size of about 0.5 to 10 μm in a length direction is dispersed and distributed in the base material, the strength is remarkably improved by the distribution of the metal boride, and is added in practical use. It exhibits excellent plastic deformation resistance even under the tightening pressure of a single cell, and the metal boride exhibits remarkably excellent corrosion resistance in the above-mentioned oxidizing gas flow path atmosphere as compared with the base austenite. The research results show that the contact surface conduction can be ensured over a long period of time. The present invention has been made based on the above research results, and has a separator in which a fuel gas channel is formed on one side of a solid polymer electrolyte membrane with an anode interposed therebetween and in contact with the anode. The plate member is formed by laminating a plurality of single power generation modules each having a structure in which a separator plate member having an oxidizing gas passage formed in contact with the cathode material is sandwiched on the other side surface, and is pressed and assembled. In the fuel cell, the separator plate is made of Cr: 40 to 48%,
Mo and / or W: 0.1 to 2%, B: 0.01 to
1%, the balance consisting of Ni and unavoidable impurities, and a Ni-based alloy having a structure in which metal boride is dispersed and distributed in an austenitic base material, and has a high strength capable of thinning. The present invention is characterized by a corrosion-resistant Ni-based alloy separator plate of a fuel cell. Next, the reason why the composition of the Ni-base alloy constituting the separator plate of the present invention is determined as described above will be described. (A) Cr In the Cr component, a base austenite is formed together with Ni to improve the corrosion resistance of the base, and a metal boride having excellent corrosion resistance is formed to improve the strength and to be dispersed and distributed in the base. However, if the content is less than 40%, a desired improvement effect cannot be obtained in the above-mentioned action, while the content is 48%.
%, The workability sharply decreases, so the content was determined to be 40 to 48%. (B) Mo and / or W These components have a solid solution in the base austenite,
While it has the effect of improving the strength and forming a metal boride as described above to contribute to the improvement of the strength and the contact surface electrical conductivity, if the content is less than 0.1%, the above-mentioned effect is desired. No improvement effect can be obtained, while if the content exceeds 2%, the workability sharply decreases, so that the content is 0.1 to 2%, preferably 0.3 to 1.5. %
It was decided. (C) BB In the B component, a small part of the B component forms a solid solution in the base material and contributes to the improvement of the corrosion resistance of the base material, but most of the B component has a diameter of 0 in the length direction as described above. A metal boride dispersed and distributed in a size of 0.5 to 10 μm is formed to significantly improve the strength, and also suppress the temporal deterioration of the contact surface electrical conductivity due to its excellent corrosion resistance, which is excellent for a long time. Although it has the function of maintaining the power generation function, if its content is less than 0.01%, the formation of metal borides is insufficient and the above-mentioned effect cannot be obtained, while its content exceeds 1%. Since the formation of metal borides becomes too large and the workability rapidly decreases, the content is determined to be 0.01 to 1%, preferably 0.1 to 0.9%. Next, the separator plate of the present invention will be specifically described with reference to examples. As raw materials, high-purity Ni and Cr materials each having a purity of 99.9% or more,
Mo material, W material, and Ni-B mother alloy (B: 17
%), And melted with a vacuum high-frequency induction melting device to prepare a melt having a predetermined component composition, and cast it into a water-cooled copper mold to form a plate-shaped ingot having a thickness of 5 mm. The ingot was repeatedly subjected to hot rolling at a rolling start temperature of 1200 ° C. four times to obtain a hot-rolled sheet having a thickness of 2 mm. The hot-rolled sheet was held at 1200 ° C. for 10 minutes, and then subjected to a water-cooled solution treatment and 500 ° C. After holding at 10 ° C. for 10 minutes and performing air-cooling tempering, 10 types of plate materials were formed by cold working to reduce the thickness from 1 mm to 0.1 mm in increments of 0.1 mm to 0.1 mm. After being kept at 500 ° C. for 10 minutes, it was subjected to an air-cooled heat treatment, and was pickled, and then was heated to
A plate material of 0 mm is cut out, and a width corresponding to the fuel gas flow path and the oxidizing gas flow path is formed in the center of the plate material by pressing.
5 mm × depth: separator plates 1 to 27 of the present invention, each formed of a Ni-based alloy having a component composition shown in Tables 1 and 2 by forming four grooves of 3 mm in parallel at intervals of 5 mm, and Separator plate materials 1 to 21 were produced. The structures of the various separator plates obtained as a result were examined with a scanning electron microscope (1000
2), the separator plate material 1 of the present invention was observed.
Nos. 27 to 27 each show a structure in which a metal boride having a size of 0.5 to 10 μm in a length direction is dispersed and distributed on an austenitic base material.
Each showed a structure consisting of an austenitic single phase. Then, for the purpose of evaluating the strength of the above-mentioned various separator plates, the above-mentioned 10 types of separator plates having different thicknesses were each subjected to a plane dimension of 150 mm × 150 mm.
mm, thickness: 4 MPa corresponding to the pressure for assembling a single cell constituting a fuel cell from above in a state where the stainless steel plate is horizontally sandwiched between 3 mm stainless steel plates from above and below.
The sheet pressure was applied, and the sheet was taken out after holding for 1 minute, and the sheet thickness at which plastic deformation occurred in the press-formed groove of the separator sheet (plastic deformation occurrence sheet thickness) was measured. The measurement results are shown in Tables 1 and 2. For the purpose of evaluating the corrosion resistance of the above-mentioned various separator plates, a 30 mm × 30 mm test piece is cut out from the above-mentioned 1 mm-thick various separator plates, and this test piece is passed through the oxidizing gas flow path of the separator plate. The corrosion test was performed for 3000 hours in an atmosphere equivalent to the oxidizing atmosphere to be exposed, that is, in an atmosphere saturated with steam at 80 ° C.
The contact electric resistance before and after the corrosion test was measured. In addition, the contact electric resistance value was set as a set of the above test pieces: two pieces, and they were superposed on each other with a 0.3 mm thick carbon paper sandwiched therebetween. A DC current of 15 A was passed in a state where the test piece was pressurized at a pressure of 3 MPa, a potential difference between the test pieces was measured, and a contact electric resistance value was calculated from the measured potential difference. Table 1 shows the results.
2 is shown. In this case, the lower the contact electric resistance value indicates that the contact surface electrical conductivity after the corrosion test on the surface of the separator plate material is excellent, and conversely, the higher the contact electric resistance value after the corrosion test, the higher the contact electric resistance value becomes. This indicates that the contact surface conductivity is low. [Table 1] [Table 2] From the results shown in Tables 1 and 2, from the results shown in Tables 1 and 2, any of the separator plates 1 to 27 of the present invention undergoes plastic deformation even if the thickness is reduced due to the presence of a metal boride dispersed and distributed in an austenitic base. In addition to having high strength that is difficult to
Since the metal boride itself is excellent in corrosion resistance, even if the austenite of the base material is oxidized and the contact surface conductivity at this portion is reduced, good contact surface conductivity through the metal boride is obtained. On the other hand, in the conventional separator plates 1 to 21 having no formation of the metal boride, it is easy to plastically deform due to insufficient strength, and it is not possible to achieve a satisfactory thickness reduction. It is clear that the entire surface oxide film formed by the oxidation of the austenitic single phase lowers the contact surface conductivity and inevitably increases the contact electric resistance. As described above, the separator plate material of the present invention has high strength that enables thinning, and also has excellent contact surface electrical conductivity, and thus greatly contributes to weight reduction and size reduction of fuel cells. is there.

【図面の簡単な説明】 【図1】燃料電池の概略斜視図である。 【図2】燃料電池の一部分解斜視図である。[Brief description of the drawings] FIG. 1 is a schematic perspective view of a fuel cell. FIG. 2 is a partially exploded perspective view of the fuel cell.

Claims (1)

【特許請求の範囲】 【請求項1】 固体高分子電解質膜の一方側面に、アノ
ードを挟んで、これに当接して燃料ガス流路が形成され
たセパレータ板材が、同他方側面には、カソードを挟ん
で、これに当接して酸化ガス流路が形成されたセパレー
タ板材が配置された構造の単一発電モジュールを複数個
重ね合わせて圧接組み立てしてなる固体高分子形燃料電
池において、上記セパレータ板材を、質量%で、 Cr:40〜48%、 Moおよび/またはW:0.1〜2%、 B:0.01〜1%、 を含有し、残りがNiと不可避不純物からなる組成、並
びにオーステナイトの素地に金属硼化物が分散分布した
組織を有するNi基合金で構成したことを特徴とする薄
肉化が可能な高強度を有する固体高分子形燃料電池の耐
食性Ni基合金製セパレータ板材。
Claims: 1. A separator plate having a fuel gas passage formed in contact with one side of an anode on one side of a solid polymer electrolyte membrane, and a cathode on the other side of the solid polymer electrolyte membrane. In a polymer electrolyte fuel cell, a plurality of single power generation modules each having a structure in which a separator plate member in which an oxidizing gas flow path is formed in contact with and sandwiching the same are superimposed and assembled by pressure welding. A composition comprising, by mass%, Cr: 40 to 48%, Mo and / or W: 0.1 to 2%, and B: 0.01 to 1%, with the balance being Ni and unavoidable impurities, And a corrosion-resistant Ni-based alloy separator for a high-strength polymer electrolyte fuel cell capable of thinning, comprising a Ni-based alloy having a structure in which metal borides are dispersed and distributed on an austenitic substrate. Wood.
JP2001371641A 2001-12-05 2001-12-05 Corrosion-resistant Ni-base alloy separator plate for high-strength polymer electrolyte fuel cells that can be thinned Expired - Fee Related JP3864771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371641A JP3864771B2 (en) 2001-12-05 2001-12-05 Corrosion-resistant Ni-base alloy separator plate for high-strength polymer electrolyte fuel cells that can be thinned

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371641A JP3864771B2 (en) 2001-12-05 2001-12-05 Corrosion-resistant Ni-base alloy separator plate for high-strength polymer electrolyte fuel cells that can be thinned

Publications (2)

Publication Number Publication Date
JP2003173792A true JP2003173792A (en) 2003-06-20
JP3864771B2 JP3864771B2 (en) 2007-01-10

Family

ID=19180659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371641A Expired - Fee Related JP3864771B2 (en) 2001-12-05 2001-12-05 Corrosion-resistant Ni-base alloy separator plate for high-strength polymer electrolyte fuel cells that can be thinned

Country Status (1)

Country Link
JP (1) JP3864771B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1595963A1 (en) * 2003-02-21 2005-11-16 Mitsubishi Materials Corporation Ni BASE ALLOY
JP2006156386A (en) * 2004-11-25 2006-06-15 Samsung Sdi Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same
US7485199B2 (en) 2002-01-08 2009-02-03 Mitsubishi Materials Corporation Ni based alloy with excellent corrosion resistance to supercritical water environments containing inorganic acids

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485199B2 (en) 2002-01-08 2009-02-03 Mitsubishi Materials Corporation Ni based alloy with excellent corrosion resistance to supercritical water environments containing inorganic acids
EP1595963A1 (en) * 2003-02-21 2005-11-16 Mitsubishi Materials Corporation Ni BASE ALLOY
EP1595963A4 (en) * 2003-02-21 2006-06-14 Mitsubishi Materials Corp Ni BASE ALLOY
EP1908854A1 (en) * 2003-02-21 2008-04-09 Mitsubishi Materials Corporation Nickel-base alloys
JP2006156386A (en) * 2004-11-25 2006-06-15 Samsung Sdi Co Ltd Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same

Also Published As

Publication number Publication date
JP3864771B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
EP1235290B1 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
JP6122589B2 (en) Fuel cell separator
WO2005090626A1 (en) Metal material for current-carrying member, separator for fuel cell utilizing the same and fuel cell including the same
WO2011013832A1 (en) Stainless steel for fuel cell separators which has excellent electrical conductivity and ductility, and process for production thereof
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP2003223904A (en) Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2007254795A (en) Solid polymer type fuel cell, and stainless steel suitable for its separator
JP2004232074A (en) Ferritic stainless steel for fuel battery separator, and production method therefor
JP4133323B2 (en) Press separator for fuel cell
JP2004124197A (en) Stainless steel for solid high polymer type fuel cell separator, its production method, and solid high polymer type fuel cell
JP2003173792A (en) CORROSION-RESISTANT Ni-GROUP ALLOY SEPARATOR BOARD FOR SOLID POLYMER FUEL CELL WITH ENOUGH STRENGTH TO ALLOW THINNING
JP4930222B2 (en) Austenitic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2007254794A (en) Solid polymer type fuel cell and stainless steel suitable for its separator
JP5217755B2 (en) Stainless steel for fuel cell separator and fuel cell separator
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP2017088931A (en) Titanium alloy for solid polymer electrolyte fuel cell, titanium material using the same and solid polymer electrolyte fuel cell using the same
JP2010189749A (en) Alloy for solid polymer type fuel cell member, clad material thereof, and battery separator thereof formed from the same
JP3867573B2 (en) High-strength Ni-based alloy separator plate material for polymer electrolyte fuel cells that exhibits excellent contact surface conductivity over a long period of time
JP2005166276A (en) Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell
JP5560533B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2006339045A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JP7172056B2 (en) Stainless steel base material, fuel cell separator and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees