JP2006339045A - Metal separator for fuel cell, manufacturing method of the same, and fuel cell - Google Patents

Metal separator for fuel cell, manufacturing method of the same, and fuel cell Download PDF

Info

Publication number
JP2006339045A
JP2006339045A JP2005162955A JP2005162955A JP2006339045A JP 2006339045 A JP2006339045 A JP 2006339045A JP 2005162955 A JP2005162955 A JP 2005162955A JP 2005162955 A JP2005162955 A JP 2005162955A JP 2006339045 A JP2006339045 A JP 2006339045A
Authority
JP
Japan
Prior art keywords
fuel cell
atomic
electrode layer
separator
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162955A
Other languages
Japanese (ja)
Inventor
Takasumi Shimizu
孝純 清水
Yuichiro Fujita
雄一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005162955A priority Critical patent/JP2006339045A/en
Publication of JP2006339045A publication Critical patent/JP2006339045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal separator for a fuel cell having sufficient corrosion resistant property, easy to manufacture, capable of maintaining low surface contact resistance. <P>SOLUTION: Crystallization temperature of the metal separator for the fuel cell 10a, 10b is 500°C or higher. Indented parts 21, formed into plate-shape by using composite amorphous material made of Ni base amorphous phase with glass transition temperature of lower than crystallization temperature, having a constitution of dispersing TiN particles in a matrix, forming a gas diffusion layer between electrode layers when the plate face at one side is laminated on an electrode layer covering a polymeric solid electrolyte film of the fuel cell, is formed on the electrode layer. The metal separator for the fuel cell 10a, 10b are assembled in the fuel cell in a state of contacting the electrode layer. The TiN particles in the matrix reduce the contact resistance between the electrode layer and itself. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池用金属部材とその製造方法及び燃料電池に関する。   The present invention relates to a metal member for a fuel cell, a manufacturing method thereof, and a fuel cell.

特開2001−68129号公報JP 2001-68129 A 特開2000−021418号公報JP 2000-021418 A 特開平10−228914号公報JP-A-10-228914 特開2002−373673号公報JP 2002-373673 A 特開2004−273314号公報JP 2004-273314 A

従来、固体高分子形燃料電池、リン酸形燃料電池及び溶融炭酸塩形燃料電池等、種々の燃料電池が提案されている。これらのうち固体高分子形燃料電池は高分子固体電解質膜を使用するものであり、低温動作が可能であり、小型化及び軽量化も容易なので、燃料電池自動車等への搭載用として検討されている。具体的には、プロトンを輸送するための高分子固体電解質膜を一対の電極層により挟んで単位電池を形成するとともに、該電極層の表面に燃料ガス(水素ガス)あるいは酸化剤ガス(空気)の拡散層を形成するためのセパレータを積層配置する。該セパレータの板面には、電極層との間にガス拡散層を形成する凹部が形成される。また、セパレータは、単位電池の電極層から出力を取り出す導電経路を兼ねるため、全体が導電性の材料で構成される必要がある。具体的には、加工性と導電性及び強度を両立させるために、セパレータを金属にて形成する燃料電池構造が種々提案されている(例えば特許文献1〜4)。   Conventionally, various fuel cells such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, and a molten carbonate fuel cell have been proposed. Among these, the polymer electrolyte fuel cell uses a polymer solid electrolyte membrane and can be operated at a low temperature, and can be easily reduced in size and weight. Yes. Specifically, a unit cell is formed by sandwiching a solid polymer electrolyte membrane for transporting protons between a pair of electrode layers, and a fuel gas (hydrogen gas) or an oxidant gas (air) is formed on the surface of the electrode layer. A separator for forming a diffusion layer is laminated. On the plate surface of the separator, a recess for forming a gas diffusion layer is formed between the electrode layer and the electrode layer. Further, since the separator also serves as a conductive path for taking out the output from the electrode layer of the unit cell, the separator needs to be entirely made of a conductive material. Specifically, various fuel cell structures in which a separator is formed of metal have been proposed in order to achieve both workability, conductivity, and strength (for example, Patent Documents 1 to 4).

高分子固体電解質膜を用いる燃料電池においては、プロトン導電性を示す高分子固体電解質として、スルホン酸基など強酸性を示す官能基を有した高分子材料が使用されており、高分子材料に含浸されている水分とともに酸性成分が染み出して、セパレータを酸アタックする問題がある。上記特許文献に例示された金属セパレータは、例えば特許文献1〜3に開示されたものは、SUS316等のステンレス鋼を用いるものであり、強酸性環境、特に硫酸酸性環境での耐食性が十分でなく、セパレータの腐食進行に伴い内部抵抗が経時的に増加しやすい問題がある。上記特許文献1〜3では、ステンレス鋼製の板材にさらにAu等の貴金属メッキを施して、耐食性を補う工夫がなされているが、効果は必ずしも十分ではなく、当然、メッキ工程が必要な分だけ製造コストが高騰しやすい難点がある。他方、特許文献4に開示された金属セパレータはMo板で構成されているが、加工が困難である上、耐食性もMo板単体では不十分であるため、表面にMo窒化膜の形成が必須になるなど、構造の複雑化と製造コストの高騰が避け難い。   In a fuel cell using a polymer solid electrolyte membrane, a polymer material having a functional group exhibiting strong acidity such as a sulfonic acid group is used as a polymer solid electrolyte exhibiting proton conductivity, and the polymer material is impregnated. There is a problem that an acidic component oozes out together with the moisture, and the separator is subjected to an acid attack. The metal separators exemplified in the above-mentioned patent documents, for example, disclosed in Patent Documents 1 to 3 use stainless steel such as SUS316, and are not sufficiently resistant to corrosion in a strongly acidic environment, particularly in a sulfuric acid acidic environment. There is a problem that the internal resistance tends to increase with time as the corrosion of the separator progresses. In Patent Documents 1 to 3, the stainless steel plate material is further plated with a precious metal such as Au to make up for corrosion resistance. However, the effect is not always sufficient, and of course, only the plating process is necessary. There is a difficulty that the manufacturing cost is likely to rise. On the other hand, although the metal separator disclosed in Patent Document 4 is composed of a Mo plate, it is difficult to process, and the corrosion resistance is insufficient with a single Mo plate, so it is essential to form a Mo nitride film on the surface. It is difficult to avoid complication of the structure and soaring manufacturing costs.

そこで、本発明者らは、燃料電池用の金属セパレータを、結晶化温度が500℃以上であって、該結晶化温度Txよりも低温側にガラス遷移温度Tgを有したNi基アモルファス金属材料により構成することを提案した(特許文献5)。アモルファス材料は室温では一般に変形抵抗が高く、また延性にも乏しいので、塑性加工には不向きと考えられている。しかし、上記Ni基アモルファス金属材料を採用すれば、該ガラス遷移温度Tgと結晶化温度Txとの間の温度域(過冷却液体領域)において材料の変形抵抗が大幅に下がり、塑性流動性が良好となる。その結果、薄板で複雑な凹凸形状を有した燃料電池用金属セパレータであっても、塑性加工により極めて能率的に製造することができる。   Therefore, the present inventors made a metal separator for a fuel cell using a Ni-based amorphous metal material having a crystallization temperature of 500 ° C. or higher and a glass transition temperature Tg on the lower temperature side than the crystallization temperature Tx. It was proposed to configure (Patent Document 5). Amorphous materials are generally considered to be unsuitable for plastic working because of their high deformation resistance at room temperature and poor ductility. However, if the Ni-based amorphous metal material is used, the deformation resistance of the material is greatly reduced in the temperature region (supercooled liquid region) between the glass transition temperature Tg and the crystallization temperature Tx, and the plastic fluidity is good. It becomes. As a result, even a metal separator for a fuel cell that is a thin plate and has a complicated uneven shape can be manufactured very efficiently by plastic working.

Ni系非晶質合金は、表面に形成される不働態酸化皮膜により非常に良好な耐食性を示す。また、非晶質合金には結晶粒界が存在しないため表面欠陥が少なく、不働態皮膜がより緻密で安定することも、高耐食性が良好であることの一因である。しかし、不働態酸化皮膜が緻密で強固になるほど被膜の絶縁性が著しくなり、電気伝導性は著しく悪くなる。そのため、上記のような燃料電池の金属セパレータに適用した場合、電極層と金属セパレータとの接触抵抗が高くなり、電池の内部抵抗が上昇しやすい問題がある。   The Ni-based amorphous alloy exhibits very good corrosion resistance due to the passive oxide film formed on the surface. In addition, since there are no crystal grain boundaries in the amorphous alloy, there are few surface defects, and the passive film is denser and more stable, which is one of the reasons why the high corrosion resistance is good. However, the denser and stronger the passive oxide film is, the more insulative the film is, and the electrical conductivity is remarkably deteriorated. Therefore, when applied to the metal separator of a fuel cell as described above, there is a problem that the contact resistance between the electrode layer and the metal separator becomes high, and the internal resistance of the battery tends to increase.

本発明の課題は、十分な耐食性を有し、かつ製造が容易で、かつ表面の接触抵抗も低く留めることができる燃料電池用金属セパレータとその製造方法、及びそれを用いた燃料電池を提供することにある。   An object of the present invention is to provide a metal separator for a fuel cell that has sufficient corrosion resistance, is easy to manufacture, and can keep the surface contact resistance low, a method for manufacturing the same, and a fuel cell using the same. There is.

課題を解決するための手段及び作用・効果Means and actions / effects for solving the problem

上記の課題を解決するために本発明の燃料電池用金属セパレータは、
結晶化温度が500℃以上であって、該結晶化温度よりも低温側にガラス遷移温度を有したNi基アモルファス相からなるマトリックス中にTiN粒子を分散させた組織を有してなる複合アモルファス材料により板状に形成され、燃料電池の高分子固体電解質膜を覆う電極層上に片側の板面を積層したとき、電極層との間にガス拡散層を形成する凹部が当該板面に形成されてなることを特徴とする。
In order to solve the above problems, the fuel cell metal separator of the present invention is
A composite amorphous material having a structure in which TiN particles are dispersed in a matrix composed of a Ni-based amorphous phase having a crystallization temperature of 500 ° C. or higher and a glass transition temperature lower than the crystallization temperature. When a plate surface on one side is laminated on the electrode layer that covers the polymer solid electrolyte membrane of the fuel cell, a recess for forming a gas diffusion layer is formed between the electrode layer and the electrode layer. It is characterized by.

また、本発明の燃料電池は、
高分子固体電解質膜と、その第一主表面を覆う第一電極層と、同じく第二主表面を覆う第二電極層と、上記本発明の燃料電池用金属セパレータとして構成され、第一電極層上に積層されるとともに、凹部により燃料ガス用のガス拡散層を形成する第一セパレータと、上記本発明の燃料電池用金属セパレータとして構成され、第二電極層上に積層されるとともに、凹部により酸化剤ガス用のガス拡散層を形成する第二セパレータと、を有することを特徴とする。
The fuel cell of the present invention is
The polymer solid electrolyte membrane, the first electrode layer covering the first main surface, the second electrode layer covering the second main surface, and the metal separator for a fuel cell of the present invention, the first electrode layer A first separator that forms a gas diffusion layer for fuel gas by a recess and a metal separator for a fuel cell according to the present invention, and is stacked on the second electrode layer and And a second separator that forms a gas diffusion layer for the oxidant gas.

さらに、本発明の燃料電池用金属セパレータの製造方法は、
結晶化温度が500℃以上であって、該結晶化温度よりも低温側にガラス遷移温度を有したNi基アモルファス相からなるマトリックス中にTiN粒子を分散させた組織を有してなる複合アモルファス材料により板状に形成された金属素材に、ガラス遷移温度以上であって結晶化温度よりも低い過冷却液体温度域にて塑性加工を施すことにより、燃料電池の高分子固体電解質膜を覆う電極層上に片側の板面を積層したとき、電極層との間にガス拡散層を形成する凹部を素材の板面に形成することを特徴とする。
Furthermore, the manufacturing method of the metal separator for fuel cells of the present invention includes:
A composite amorphous material having a structure in which TiN particles are dispersed in a matrix composed of a Ni-based amorphous phase having a crystallization temperature of 500 ° C. or higher and a glass transition temperature lower than the crystallization temperature. The electrode layer that covers the polymer solid electrolyte membrane of the fuel cell by subjecting the metal material formed in a plate shape to plastic processing in a supercooled liquid temperature range that is higher than the glass transition temperature and lower than the crystallization temperature. When the plate surface on one side is laminated on top, a recess for forming a gas diffusion layer between the electrode layers is formed on the plate surface of the material.

なお、本発明において「Ni基アモルファス相」とは、材料組織の基質をなす相であって、その最も重量含有率の高い金属元素がNiであり、かつ、非晶質(アモルファス)の占める割合が50体積%以上である相をいう。また、複合アモルファス材料のガラス遷移温度は、JIS:H7101に規定された示差走査熱量測定(Differential Scanning Calorimetry:DSC、加熱速度:毎分40℃)による加熱曲線に現れる最初の吸熱ピークにより、また、結晶化温度は、同じく最初の発熱ピークにより、それぞれ、測定により得られるDSC曲線のベースラインの延長線と、ピークの最大傾斜線の延長との交点として決定する。   In the present invention, the “Ni-based amorphous phase” is a phase that forms a matrix of a material structure, and the metal element having the highest weight content is Ni and the proportion of amorphous (amorphous) Refers to a phase of 50% by volume or more. The glass transition temperature of the composite amorphous material is determined by the first endothermic peak appearing in the heating curve obtained by differential scanning calorimetry (DSC, heating rate: 40 ° C./min) defined in JIS: H7101, The crystallization temperature is determined by the first exothermic peak as the intersection of the DSC curve base line extension obtained by the measurement and the peak maximum slope line extension, respectively.

上記本発明によると、燃料電池用の金属セパレータを、金属結晶化温度が500℃以上であって、該結晶化温度Txよりも低温側にガラス遷移温度Tgを有したNi基アモルファス相にてマトリックスが形成された複合アモルファス材料により板状に形成する。Ni基アモルファス相は、室温では一般に変形抵抗が高く、また延性にも乏しいので、塑性加工には不向きと考えられている。しかし、本発明で採用する複合アモルファス材料は、マトリックスの結晶化温度が500℃以上と比較的高く、その結晶化温度よりも低温域にガラス遷移温度Tgが存することで、該ガラス遷移温度Tgと結晶化温度Txとの間の温度域(以下、過冷却液体領域という)において材料の変形抵抗が大幅に下がり、塑性流動性が良好となる。その結果、薄板で複雑な凹凸形状を有した燃料電池用金属セパレータであっても、塑性加工により極めて能率的に製造することができる。さらに、上記マトリックス中にTiN粒子を分散させているので、該複合アモルファス材料で構成した金属セパレータは、電極層との接触抵抗が低減され、電池の内部抵抗の上昇を抑制することができ、電池負荷が大きくなった場合にも出力電圧の低下を生じにくくなる。   According to the present invention, a metal separator for a fuel cell is matrixed with a Ni-based amorphous phase having a metal crystallization temperature of 500 ° C. or higher and a glass transition temperature Tg on the lower temperature side than the crystallization temperature Tx. It is formed in a plate shape by the composite amorphous material formed. The Ni-based amorphous phase generally has high deformation resistance at room temperature and is poor in ductility, and thus is considered unsuitable for plastic working. However, the composite amorphous material adopted in the present invention has a relatively high matrix crystallization temperature of 500 ° C. or higher, and the glass transition temperature Tg exists in a lower temperature range than the crystallization temperature. In a temperature range between the crystallization temperature Tx (hereinafter referred to as a supercooled liquid region), the deformation resistance of the material is greatly reduced, and the plastic fluidity is improved. As a result, even a metal separator for a fuel cell that is a thin plate and has a complicated uneven shape can be manufactured very efficiently by plastic working. Furthermore, since TiN particles are dispersed in the matrix, the metal separator made of the composite amorphous material can reduce the contact resistance with the electrode layer and suppress the increase in the internal resistance of the battery. Even when the load increases, the output voltage is less likely to decrease.

上記Ni基アモルファス相の変形抵抗が上記過冷却液体領域において低減される理由は、該過冷却液体領域において、材料が結晶相へ移行するための前駆現象として金属原子間の結合が緩まり、非晶質相の粘性が低下することが考えられる。そして、本発明においては、材料のマトリックスをなすアモルファス相をNi基として構成するため、従来のステンレス鋼(例えばJIS:SUS316)やMo系金属材料と比較して耐食性も極めて良好であり、特に硫酸酸性下においても腐食が進行しにくくなるので、セパレータの耐久性が高められ、電池の内部抵抗の経時的な増加を効果的に抑制できる。また、TiN粒子は、マトリックス中に一様に分散形成されることで、材料最表層部に存在するものが表面の不働態酸化被膜を突き破って材料表面に露出する。TiN粒子は導電性が良好であり、不働態酸化被膜を突き破ったTiN粒子は、セパレータに接触配置される電極層と、セパレータ内部の金属マトリックスとの導通経路として機能する。その結果、接触抵抗が低減されるものと考えられる。   The reason why the deformation resistance of the Ni-based amorphous phase is reduced in the supercooled liquid region is that, in the supercooled liquid region, the bonding between metal atoms is loosened as a precursor phenomenon for the material to move to the crystalline phase, and the amorphous phase is amorphous. It is considered that the viscosity of the mass phase decreases. In the present invention, since the amorphous phase that forms the matrix of the material is composed of Ni, the corrosion resistance is extremely good as compared with conventional stainless steel (for example, JIS: SUS316) and Mo-based metal materials. Since corrosion does not easily proceed even under acidic conditions, the durability of the separator is improved, and the increase in internal resistance of the battery over time can be effectively suppressed. Further, the TiN particles are uniformly dispersed in the matrix, so that those existing in the outermost layer portion of the material penetrate the surface passive oxide film and are exposed on the material surface. The TiN particles have good conductivity, and the TiN particles that have broken through the passive oxide film function as a conduction path between the electrode layer disposed in contact with the separator and the metal matrix inside the separator. As a result, it is considered that the contact resistance is reduced.

次に、本発明の製造方法においては、上記の複合アモルファス材料により板状に形成された金属素材に、ガラス遷移温度以上であって結晶化温度よりも低い過冷却液体温度域にて、一種の温間塑性加工を施す。加工形態としては、金型プレス加工を板状の固体素材に施す方法を例示できる。また、別法としては、溶湯を鍛造用金型に流し込み、金型との接触により溶湯を急冷凝固してアモルファス化しつつ、さらに、凝固後のアモルファス相の温度が過冷却液体温度域にある間に、その場で鍛造加工を施して所望のセパレータ形状を得る溶湯鍛造加工を適用することもできる。いずれも、切削などの除去加工を伴わないため材料歩留まりが高く、しかも、冷却液体温度域にて流動性を増した材料を金型面形状に良好に追従させることができる。その結果、深い凹凸形状を形成する際にも応力集中等による加工欠陥が生じにくく、また、金型面を平滑化しておくことで、仮に板素材の段階で面荒れしていた材料であっても、研磨等の面倒な後処理なしに平滑な加工面を簡単に得られる利点もある。この場合、平滑な面とは、例えばJIS:B0601に規定の方法により測定される算術平均粗さRaが1μm以下の面のことである。   Next, in the production method of the present invention, the metal material formed into a plate shape by the composite amorphous material is a kind of supercooled liquid temperature range that is higher than the glass transition temperature and lower than the crystallization temperature. Warm plastic working. Examples of the processing form include a method of performing die press processing on a plate-shaped solid material. As another method, the molten metal is poured into a forging die, and the molten metal is rapidly solidified by contact with the die to become amorphous, while the amorphous phase after solidification is in the supercooled liquid temperature range. In addition, it is possible to apply a molten metal forging process in which a forging process is performed on the spot to obtain a desired separator shape. In any case, since the removal process such as cutting is not involved, the material yield is high, and the material having increased fluidity in the cooling liquid temperature range can be made to follow the mold surface shape well. As a result, processing defects due to stress concentration are less likely to occur when forming deep irregularities, and by smoothing the mold surface, the material has been rough at the stage of the plate material. However, there is also an advantage that a smooth processed surface can be easily obtained without troublesome post-treatment such as polishing. In this case, the smooth surface is a surface having an arithmetic average roughness Ra of 1 μm or less measured by a method defined in JIS: B0601, for example.

特に、凹部を、上記複合アモルファス材料からなる板材の板厚方向の屈曲に基づいて形成するセパレータの構成を採用すれば、急冷薄帯等として得られた材料板材に上記のような金型プレス加工や溶湯鍛造加工を施すことにより、簡単に製造することができる。   In particular, if the separator is formed by forming the recesses based on the bending in the thickness direction of the plate material made of the composite amorphous material, the above-described die press processing is performed on the material plate material obtained as a quenched ribbon or the like. It can be easily manufactured by applying forging or molten metal forging.

また、本発明のセパレータは、構成材料のマトリックスがNi基アモルファス相からなるので、カーボン製の従来のセパレータと比較して高強度であり、カーボン製セパレータよりも薄肉に加工することも容易である。この場合、セパレータに用いる板材の板厚は、0.02mm以上0.2mm以下とすることが望ましい。板厚が0.02mm未満ではピンホール等の発生のためにセパレータのガス遮断機能が不十分となる場合があり、0.2mmを超える厚さを採用した場合は、材料コストが高くなり、コスト低減の観点において既存技術(例えば従来のカーボン系のセパレータ)に対するメリットが乏しくなることがある。   Further, since the matrix of the constituent material of the separator of the present invention is made of a Ni-based amorphous phase, it has higher strength than a conventional separator made of carbon, and can be easily processed to be thinner than a separator made of carbon. . In this case, the plate thickness of the plate used for the separator is desirably 0.02 mm or more and 0.2 mm or less. If the plate thickness is less than 0.02 mm, the gas barrier function of the separator may be insufficient due to the occurrence of pinholes, etc. If a thickness exceeding 0.2 mm is used, the material cost will increase, and the cost In terms of reduction, the advantages over existing technologies (for example, conventional carbon separators) may be poor.

次に、本発明にて採用する複合アモルファス材料(ニッケル基マトリックス相)は、結晶化温度とガラス遷移温度との差が30℃以上であるものを用いることが望ましい。また、これを用いてセパレータを塑性加工により製造する場合、該塑性加工を過冷却液体温度域であって結晶化温度よりも20℃以上低い温度にて実施することが望ましい。   Next, it is desirable to use a composite amorphous material (nickel-based matrix phase) employed in the present invention in which the difference between the crystallization temperature and the glass transition temperature is 30 ° C. or more. Moreover, when manufacturing a separator by plastic working using this, it is desirable to carry out the plastic working at a temperature that is at least 20 ° C. lower than the crystallization temperature in the supercooled liquid temperature region.

アモルファス相は、高温での液体的な構造を、急冷により室温下でも維持できるようにしたものであるが、その構造はあくまで準安定的なものであり、特に、過冷却液体温度域では、材料を該過冷却液体温度域のある温度に保持した場合、一定の潜伏期間を経て安定相である結晶相に転移を起こす。この潜伏期間は、温度が結晶化温度に近づくほど短くなる。従って、過冷却液体温度域で温間加工を行なう場合、加工温度が結晶化温度に近づきすぎると、必要な加工が完了する前に材料が結晶化してしまい、変形抵抗が増大したり延性の低下が引き起こされたりし、加工割れやクラックなどの不具合を生じやすくなる。   The amorphous phase is a liquid structure at high temperature that can be maintained at room temperature by rapid cooling, but the structure is metastable to the end, especially in the supercooled liquid temperature range. Is maintained at a certain temperature in the supercooled liquid temperature range, it undergoes a transition to a stable crystalline phase after a certain incubation period. This incubation period becomes shorter as the temperature approaches the crystallization temperature. Therefore, when performing warm processing in the supercooled liquid temperature range, if the processing temperature is too close to the crystallization temperature, the material will crystallize before the necessary processing is completed, increasing the deformation resistance or reducing the ductility. Or cause defects such as processing cracks and cracks.

本発明者らはNi基アモルファス相について鋭意検討した結果、過冷却液体温度域にて加工温度を結晶化温度よりも少なくとも20℃以上(望ましくは30℃以上)低温側に設定すれば、結晶化に至る潜伏期間が十分長くなり、加工に適した低粘性のアモルファス相状態を加工完了に至るまで余裕を持って確保することができるようになる。また、該過冷却液体温度域が過度に狭い材料は、結局のところ急冷時の冷却速度を相当大きく設定しなければアモルファス相が安定に得られないということにもつながる。冷却速度を極度に大きく設定するためには、得られる材料も薄帯あるいは薄片状(例えば、厚さ50μm未満)としなければならず、燃料電池用金属セパレータに適したバルク金属板材をそもそも得ることができなくなる。以上の観点から、材料加熱の温度制御の誤差を考慮して、結晶化温度とガラス遷移温度との差を30℃以上確保することが望ましい。   As a result of intensive studies on the Ni-based amorphous phase, the present inventors have found that if the processing temperature is set at least 20 ° C. or more (preferably 30 ° C. or more) lower than the crystallization temperature in the supercooled liquid temperature range, crystallization will occur. Thus, the low-viscosity amorphous phase suitable for processing can be secured with sufficient margin until the processing is completed. Further, the material having an excessively narrow temperature range of the supercooled liquid eventually leads to an amorphous phase that cannot be stably obtained unless the cooling rate at the time of rapid cooling is set to be considerably large. In order to set the cooling rate to extremely high, the obtained material must also be in the form of a ribbon or flake (for example, less than 50 μm thick), and in the first place a bulk metal plate suitable for a fuel cell metal separator can be obtained in the first place. Can not be. From the above viewpoint, it is desirable to secure a difference of 30 ° C. or more between the crystallization temperature and the glass transition temperature in consideration of an error in temperature control of material heating.

燃料電池用金属セパレータを構成する複合アモルファス材料は、具体的には、
Ni含有率が40原子%以上60原子%以下、
Nb含有率が15原子%以上25原子%以下、
Ti含有率が10原子%以上30原子%以下、
N含有率が0.05原子%以上5原子%以下、
Zr、Co、Cu、Al、Fe、Si及びCrから選ばれる1種又は2種以上からなる任意金属成分Mの合計含有率が0原子%以上20原子%以下であり、
かつ、Nb、Ti、N及びMの合計含有率が40原子%以上60原子%以下とされてなるものを採用できる。該合金は、強酸性雰囲気、特に硫酸酸性雰囲気下での耐食性に優れ、燃料電池用のセパレータ材料として極めて好適である。
Specifically, the composite amorphous material constituting the metal separator for fuel cells is
Ni content is 40 atomic% or more and 60 atomic% or less,
Nb content is 15 atomic% or more and 25 atomic% or less,
Ti content is 10 atomic% or more and 30 atomic% or less,
N content is 0.05 atomic% or more and 5 atomic% or less,
The total content of the optional metal component M composed of one or more selected from Zr, Co, Cu, Al, Fe, Si and Cr is 0 atomic% or more and 20 atomic% or less,
And what is made into the total content rate of Nb, Ti, N, and M being 40 atomic% or more and 60 atomic% or less is employable. The alloy has excellent corrosion resistance in a strong acid atmosphere, particularly in a sulfuric acid atmosphere, and is extremely suitable as a separator material for a fuel cell.

上記材料において、Nb及びTiは、Niに対する副成分の基幹をなすものであり、これらの元素の含有により過冷却液体領域を十分大きく設定でき、安定なNi基アモルファス相を、セパレータ用板材の形成に適したバルクにて得ることができる。このうちNbは、耐食性にも大きく影響する元素であり、Nb含有率が15原子%未満では耐食性が十分に確保できなくなる場合がある。他方、Nb含有率が25原子%を超えると、前述の過冷却液体領域が狭くなりすぎ(例えば、その幅を30℃以上に確保できなくなる)、アモルファス相の安定性が悪化する場合がある。Nb含有率は、より望ましくは15原子%以上20原子%以下とするのがよい。   In the above materials, Nb and Ti form the basis of subcomponents with respect to Ni, and by containing these elements, the supercooled liquid region can be set sufficiently large, and a stable Ni-based amorphous phase can be formed into a separator plate material. Can be obtained in a suitable bulk. Among these, Nb is an element that greatly affects the corrosion resistance. If the Nb content is less than 15 atomic%, the corrosion resistance may not be sufficiently secured. On the other hand, when the Nb content exceeds 25 atomic%, the above-described supercooled liquid region becomes too narrow (for example, the width cannot be secured at 30 ° C. or more), and the stability of the amorphous phase may deteriorate. The Nb content is more preferably 15 atomic% or more and 20 atomic% or less.

また、Tiは過冷却液体領域の拡大、ひいてはアモルファス相の安定形成を図る上で必須となるばかりでなく、金属セパレータの表面抵抗低減効果を担う基本相であるTiNの必須構成元素としても機能する。換言すれば、過冷却液体領域を拡大する目的で含有させたTiを、表面抵抗の低減という別の目的にも利用する形になっているのである。Ti含有率が10原子%未満となるか、30原子%を超えると、過冷却液体領域が狭くなりすぎ、アモルファス相の安定性が悪化する場合がある。Ti含有率は、より望ましくは13原子%以上25原子%以下とするのがよい。   Ti is not only indispensable for expanding the supercooled liquid region and, in turn, stable formation of the amorphous phase, but also functions as an essential constituent element of TiN, which is a basic phase responsible for reducing the surface resistance of the metal separator. . In other words, Ti contained for the purpose of expanding the supercooled liquid region is used for another purpose of reducing the surface resistance. If the Ti content is less than 10 atomic% or exceeds 30 atomic%, the supercooled liquid region becomes too narrow, and the stability of the amorphous phase may deteriorate. The Ti content is more preferably 13 atomic% or more and 25 atomic% or less.

そして、Nは、上記Tiと結合して、TiNという形でマトリックス中に分散形成され、表面抵抗の低減に寄与する。また、TiN粒子がマトリックス中に微細に分散することで、複合アモルファス材料の強度向上に寄与する場合もある。Nを積極添加しない合金組成では、マトリックス中には何も見られず、結晶粒界も無いのっぺりした組織を示す。この時のN含有率は、0.015原子%〜0.025原子%程度である。これ以上に、Nを添加すると明らかにマトリックス中にTiN粒子が認められるようになる。N含有率が0.05原子%未満ではTiN粒子の形成量が不十分となり、得られるセパレータの表面抵抗を十分に低減できなくなる場合がある。他方、N含有率が5原子%を超えると、TiN粒子の形成量が過剰となり、複合アモルファス材料の製造が困難になるほか、複合アモルファス材料の加工性も悪化し、所望のセパレータ形状を得ることが困難となる。   N combines with Ti and is dispersedly formed in the matrix in the form of TiN, contributing to the reduction of surface resistance. Further, when the TiN particles are finely dispersed in the matrix, the strength of the composite amorphous material may be improved. In the alloy composition in which N is not positively added, nothing is observed in the matrix, and there is no crystal grain boundary and a soft structure is shown. The N content at this time is about 0.015 atomic% to 0.025 atomic%. More than this, the addition of N clearly reveals TiN particles in the matrix. When the N content is less than 0.05 atomic%, the amount of TiN particles formed becomes insufficient, and the surface resistance of the resulting separator may not be sufficiently reduced. On the other hand, if the N content exceeds 5 atomic%, the amount of TiN particles formed becomes excessive, making it difficult to produce the composite amorphous material, and the workability of the composite amorphous material is also deteriorated to obtain a desired separator shape. It becomes difficult.

また、TiN粒子が過不足なく形成されるためには、複合アモルファス材料中のTi含有率がN含有率の3倍以上100倍以下であることが望ましい。Ti含有率がN含有率の3倍未満となるか、又は100倍を超えるとTiN粒子の形成量が不十分となることがある。   Further, in order to form TiN particles without excess or deficiency, it is desirable that the Ti content in the composite amorphous material is 3 to 100 times the N content. If the Ti content is less than 3 times the N content or exceeds 100 times, the amount of TiN particles formed may be insufficient.

マトリックス中に形成されるTiN粒子の平均粒径(粒径は、組織断面中に換算される粒子と同面積の円の直径にて表す)は、10μm以下であることが望ましい。TiN粒子の平均粒径が10μmを超えると、TiN粒子が組織中に一様に分布しなくなり、表面抵抗低減の効果が薄れる場合があり、また、複合アモルファス材料の加工性も悪化させる場合がある。他方、TiN粒子の平均粒径の下限値は、技術的には1μm程度である。また、組織中に観察されるTiN粒子の面積率は3%以上30%以下であることが望ましい。該面積率が3%未満では表面抵抗低減の効果が薄れる場合があり、30%を超えると、TiN粒子形成量が過剰となる場合の前述の不具合が発生する。また、TiN粒子の平均粒径を上記のごとく1μm以上10μm以下に調整する場合、組織観察視野中にて観察される粒径1μm以上10μm以下のTiN粒子の数形成密度は500個/mm以上3000個/mm以下であるのがよい。該数形成密度が500個/mm未満では表面抵抗低減の効果が薄れる場合があり、3000個/mmを超えると、TiN粒子形成量が過剰となる場合の前述の不具合が発生する。 The average particle size of the TiN particles formed in the matrix (the particle size is represented by the diameter of a circle having the same area as the particles converted in the tissue cross section) is desirably 10 μm or less. When the average particle diameter of TiN particles exceeds 10 μm, TiN particles may not be uniformly distributed in the structure, the effect of reducing surface resistance may be reduced, and the workability of the composite amorphous material may be deteriorated. . On the other hand, the lower limit of the average particle size of TiN particles is technically about 1 μm. The area ratio of TiN particles observed in the structure is desirably 3% or more and 30% or less. If the area ratio is less than 3%, the effect of reducing the surface resistance may be diminished, and if it exceeds 30%, the above-described problem occurs when the TiN particle formation amount becomes excessive. Further, when the average particle size of TiN particles is adjusted to 1 μm or more and 10 μm or less as described above, the number formation density of TiN particles having a particle size of 1 μm or more and 10 μm or less observed in the structure observation field is 500 particles / mm 2 or more. It is good that it is 3000 pieces / mm 2 or less. When the number formation density is less than 500 / mm 2 , the effect of reducing the surface resistance may be reduced. When the number formation density exceeds 3000 / mm 2 , the above-described problem occurs when the TiN particle formation amount becomes excessive.

また、Zr、Co、Cu、Al、Fe、Si及びCrから選ばれる1種又は2種以上からなる任意金属成分Mは、Ni−Nb系合金の非晶質形成能をより高める効果を有する(ただし、必須の成分というわけではない)。しかし、これら任意金属成分Mの合計含有率が20原子%を超えると、非晶質形成能が逆に低下し、過冷却液体領域の幅も不十分となる場合がある。   Moreover, the arbitrary metal component M which consists of 1 type (s) or 2 or more types chosen from Zr, Co, Cu, Al, Fe, Si, and Cr has the effect which improves the amorphous formation ability of a Ni-Nb type alloy more ( However, it is not an essential ingredient). However, if the total content of these optional metal components M exceeds 20 atomic%, the amorphous forming ability may be lowered, and the width of the supercooled liquid region may be insufficient.

また、Nb、Ti、N及びMの合計含有率は40原子%以上60原子%以下とするのがよい。該合計含有率が60原子%を超えると、30℃以上の過冷却液体温度域が得られなくなり、燃料電池用の複雑形状のセパレータを温間塑性加工により形成することが困難になる場合がある。一方、該合計含有率が40原子%未満になると、非晶質形成が困難になる場合がある。   The total content of Nb, Ti, N, and M is preferably 40 atomic percent or more and 60 atomic percent or less. When the total content exceeds 60 atomic%, a supercooled liquid temperature range of 30 ° C. or higher cannot be obtained, and it may be difficult to form a complex shaped separator for a fuel cell by warm plastic working. . On the other hand, if the total content is less than 40 atomic%, amorphous formation may be difficult.

本発明にて使用する複合アモルファス材料は、溶融状態から公知の単ロール法あるいは双ロール法により板状(薄帯状)の素材を得ることができる。この場合、冷却速度は、例えば10℃/秒〜10℃/秒程度の範囲で設定することが望ましく、ロールの冷却能(水冷銅ロールが特に望ましい)と回転速度に応じて、周知の方法により調整が可能である。なお、急冷薄帯を得る代わりに、前述の溶湯鍛造法を用いることもできる。 The composite amorphous material used in the present invention can obtain a plate-like (strip-like) material from a molten state by a known single roll method or twin roll method. In this case, the cooling rate is desirably set in the range of, for example, about 10 4 ° C / second to 10 6 ° C / second, and is well-known depending on the cooling capacity of the roll (water-cooled copper roll is particularly desirable) and the rotation speed. Adjustment is possible by the method. In addition, the above-mentioned molten metal forging method can also be used instead of obtaining the quenching ribbon.

本発明の燃料電池においては、プロトン導電性を高めるために、高分子固体電解質膜を、スルホン酸基を有する高分子材料により構成することが望ましい。特に、高分子固体電解質膜自体の耐薬品性を向上させる観点から、スルホン酸基を有するフッ素樹脂を採用するとなお望ましい。この場合、スルホン酸基の由来した硫酸酸性成分が水分とともに溶出しやすくなるが、前述の組成の複合アモルファス材料は、硫酸酸性雰囲気下での耐食性が非常に良好であり、金属セパレータに適用した場合に、腐食による内部抵抗の経時的増加も十分に抑制され、長期にわたって良好な発電能力を維持できるので、例えば自動車用電源としても好適に採用可能である。なお、スルホン酸基を有する高分子材料としては、市販品であればNAFION(商標名)を代表的なものとして例示でき、また、特開2002−313355号、特開平10−40737号あるいは特開平9−102322号に開示されたものも使用できる。   In the fuel cell of the present invention, it is desirable that the polymer solid electrolyte membrane is made of a polymer material having a sulfonic acid group in order to increase proton conductivity. In particular, from the viewpoint of improving the chemical resistance of the polymer solid electrolyte membrane itself, it is more desirable to employ a fluororesin having a sulfonic acid group. In this case, the sulfuric acid component derived from the sulfonic acid group is likely to elute together with moisture, but the composite amorphous material having the above composition has very good corrosion resistance in a sulfuric acid atmosphere, and is applied to a metal separator. In addition, an increase in internal resistance over time due to corrosion is sufficiently suppressed, and a good power generation capacity can be maintained over a long period of time. As a polymer material having a sulfonic acid group, NAFION (trade name) can be exemplified as a representative if it is a commercial product, and JP-A No. 2002-313355, JP-A No. 10-40737 or JP-A No. The thing disclosed by 9-102322 can also be used.

以下、図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の燃料電池の一例を積層形態にて模式的に説明するものである。該燃料電池1は、高分子固体電解質膜3を採用した固体高分子形燃料電池である。具体的に、高分子固体電解質膜3はスルホン酸基を含むフッ素樹脂にて形成され、これを挟む形で一対の電極層2,4を有し、該高分子固体電解質膜3と電極2,4とによりなる単位電池本体5を有する。具体的には、高分子固体電解質膜3の第一主表面3aを覆う第一電極層2と、同じく第二主表面3bを覆う第二電極層4と、本発明の燃料電池用金属セパレータとして構成され、第一電極層2上に積層されるとともに、凹部21により燃料ガス用のガス拡散層を形成する第一セパレータ10aと、本発明の燃料電池用金属セパレータとして構成され、第二電極層4上に積層されるとともに、凹部21により酸化剤ガス用のガス拡散層を形成する第二セパレータ10bとを有する。なお、単位電池本体5とセパレータ10との間に、燃料ガス及び酸化剤ガスのリークを防止するために、ガスケットが配置されるが、図1では省略している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 schematically illustrates an example of a fuel cell according to the present invention in a stacked form. The fuel cell 1 is a polymer electrolyte fuel cell employing a polymer solid electrolyte membrane 3. Specifically, the polymer solid electrolyte membrane 3 is formed of a fluororesin containing a sulfonic acid group, and has a pair of electrode layers 2 and 4 sandwiching the polymer resin electrolyte membrane 3. 4 has a unit battery body 5. Specifically, the first electrode layer 2 that covers the first main surface 3a of the polymer solid electrolyte membrane 3, the second electrode layer 4 that also covers the second main surface 3b, and the metal separator for a fuel cell of the present invention. And a first separator 10a that is stacked on the first electrode layer 2 and forms a gas diffusion layer for fuel gas by the recess 21; and a metal separator for a fuel cell of the present invention, and the second electrode layer 4, and a second separator 10 b that forms a gas diffusion layer for the oxidant gas by the recess 21. A gasket is disposed between the unit cell main body 5 and the separator 10 in order to prevent leakage of fuel gas and oxidant gas, but is omitted in FIG.

図2は、セパレータ10a,10bの概略を示すものである。図2(a)に示すように、セパレータ10a,10bは板状に形成され、その主表面に、凸凹が形成されており、凸部14の先端側が電極に接触する形態となっている。他方、凹部21は電極層2,4(図1)との間にガス流通路を兼ねたガス拡散層を形成する。本実施形態では、凹部21は、凸部14に挟まれた蛇行溝形態で二形成され、その両端がガス入口22及びガス出口23とされる。   FIG. 2 schematically shows the separators 10a and 10b. As shown to Fig.2 (a), the separators 10a and 10b are formed in plate shape, the unevenness | corrugation is formed in the main surface, and it has the form which the front end side of the convex part 14 contacts an electrode. On the other hand, the recess 21 forms a gas diffusion layer that also serves as a gas flow path between the electrode layers 2 and 4 (FIG. 1). In the present embodiment, the recess 21 is formed in two in the form of a meandering groove sandwiched between the protrusions 14, and both ends thereof serve as a gas inlet 22 and a gas outlet 23.

図1に戻り、単位電池本体5とセパレータ10とを単位セルUとして、この単位セルUが、カーボン等の導電体からなる冷却水流通基板11を介して、複数積層されて燃料電池スタック1とされる。単位セルUはたとえば50〜400個程度積層され、その積層体の両端に、単位セルUと接触する側から、導電性シート9、集電板8、絶縁シート7及び締め付け板6がそれぞれ配置されて、燃料電池スタック1とされる。集電板8と複数のセパレータ10とは直列に接続され、複数の単位電池本体5からの電流が集められることになる。   Returning to FIG. 1, a unit cell body 5 and a separator 10 are used as a unit cell U, and a plurality of unit cells U are stacked via a cooling water circulation substrate 11 made of a conductor such as carbon. Is done. About 50 to 400 unit cells U are stacked, for example, and conductive sheets 9, current collecting plates 8, insulating sheets 7 and clamping plates 6 are arranged on both ends of the stacked body from the side in contact with the unit cells U, respectively. Thus, the fuel cell stack 1 is obtained. The current collector plate 8 and the plurality of separators 10 are connected in series, and currents from the plurality of unit battery bodies 5 are collected.

セパレータ10a,10bは、結晶化温度が500℃以上であって、該結晶化温度よりも低温側にガラス遷移温度を有したNi基アモルファス相からなるマトリックス中にTiN粒子を分散させた組織を有してなる複合アモルファス材料により板状に形成されている。電極層2,4との間にガス拡散層を形成する凹部21は、上記の複合アモルファス材料からなる板材の板厚方向の屈曲に基づいて形成されたものである。板材の板厚は0.02mm以上0.2mm以下である。   The separators 10a and 10b have a structure in which TiN particles are dispersed in a matrix made of a Ni-based amorphous phase having a crystallization temperature of 500 ° C. or higher and a glass transition temperature lower than the crystallization temperature. The composite amorphous material is formed into a plate shape. The recess 21 for forming the gas diffusion layer between the electrode layers 2 and 4 is formed based on the bending in the thickness direction of the plate material made of the composite amorphous material. The plate thickness of the plate material is 0.02 mm or more and 0.2 mm or less.

本実施形態において、セパレータ10a,10bに用いる複合アモルファス材料は、結晶化温度とガラス遷移温度との差が30℃以上のものが使用され、例えば、Ni含有率が40原子%以上60原子%以下、Nb含有率が15原子%以上25原子%以下、Ti含有率が10原子%以上30原子%以下、N含有率が0.05原子%以上5原子%以下、Zr、Co、Cu、Al、Fe、Si及びCrから選ばれる1種又は2種以上からなる任意金属成分Mの合計含有率が0原子%以上20原子%以下であり、かつ、Nb、Ti、N及びMの合計含有率が40原子%以上60原子%以下とされてなるものを採用できる。   In the present embodiment, the composite amorphous material used for the separators 10a and 10b is such that the difference between the crystallization temperature and the glass transition temperature is 30 ° C. or higher. For example, the Ni content is 40 atomic% or more and 60 atomic% or less. Nb content is 15 atomic% to 25 atomic%, Ti content is 10 atomic% to 30 atomic%, N content is 0.05 atomic% to 5 atomic%, Zr, Co, Cu, Al, The total content of one or more arbitrary metal components M selected from Fe, Si and Cr is 0 atomic% or more and 20 atomic% or less, and the total content of Nb, Ti, N and M is What is made into 40 atomic% or more and 60 atomic% or less is employable.

以下、セパレータ10a(10b)の製造方法について説明する。
図3に示すように、所期の組成となるように合金原料を配合し、ルツボ41を用いて高周波誘導溶解炉等の溶解炉40内にて原料を溶解することにより溶湯42とする。次に、図3の下方左側に示すように、この溶湯42を、溶湯供給ノズル43を経て、回転する急冷ロール44の上に直接噴出させ、急冷凝固して複合アモルファス材料からなる薄帯45を得る(単ロール法:ロールは例えばCu製)。他方、図3の下方右側に示すように、2つの急冷ロール44,44間の隙間に溶湯42を噴出して薄帯45を得る双ロール法を採用してもよい。
Hereinafter, the manufacturing method of separator 10a (10b) is demonstrated.
As shown in FIG. 3, alloy raw materials are blended so as to have the desired composition, and the raw material is melted in a melting furnace 40 such as a high-frequency induction melting furnace using a crucible 41 to obtain a molten metal 42. Next, as shown on the lower left side of FIG. 3, the molten metal 42 is directly jetted onto the rotating quenching roll 44 through the molten metal supply nozzle 43, and rapidly cooled and solidified to form a ribbon 45 made of a composite amorphous material. (Single roll method: roll is made of Cu, for example). On the other hand, as shown on the lower right side of FIG. 3, a twin roll method may be employed in which the molten metal 42 is ejected into the gap between the two quenching rolls 44, 44 to obtain the ribbon 45.

次に、図4に示すように、得られた薄帯45を、予熱炉50により、材料のガラス遷移温度Tgより高く結晶化温度Txより30℃以上低い過冷却液体温度域に加熱し、カッター53にて切断した後、プレス用金型51,51を有したプレス装置へ移送して、温間プレス加工を行なう。プレス加工は以下のようにして行なう。まず、図5の工程1に示すように、転写すべき凹凸パターン51aを有するプレス用金型51,51の間に切断した薄帯45を配置する。そして、工程2に示すように、金型51,51を相対的に接近させ、薄帯45を両金型51,51間にて加圧する。材料は、過冷却液体温度域に加熱されることで粘性が低くなっており、該加圧により、金型の凹凸パターン51aに沿って容易に塑性流動し、凹凸パターンが転写される。そして、工程3に示すようにプレス用金型51,51を離間させればセパレータ10a(10b)が得られる。なお、急冷上がりの薄帯45の表面は、工程1に拡大して示すように、算術平均粗さRaにて1μmを超える程度に面荒れしていることもある。しかし、金型51のプレス面をRaにて1μm以下に平滑仕上げしておくと、過冷却液体温度域への加熱により塑性流動が極めて良好となった薄帯45の表面も金型表面に倣う形で平滑化し、工程3に拡大して示すように、セパレータ10a(10b)の表面を、算術平均粗さRaにて1μm以下に平滑に仕上げることができる。   Next, as shown in FIG. 4, the obtained ribbon 45 is heated by the preheating furnace 50 to a supercooled liquid temperature range that is higher than the glass transition temperature Tg of the material and lower than the crystallization temperature Tx by 30 ° C. or more. After cutting at 53, it is transferred to a press apparatus having press dies 51, 51 to perform warm press work. Pressing is performed as follows. First, as shown in step 1 of FIG. 5, the cut ribbon 45 is disposed between the press dies 51, 51 having the uneven pattern 51a to be transferred. Then, as shown in step 2, the molds 51 and 51 are moved relatively close to each other, and the ribbon 45 is pressed between the molds 51 and 51. The material has a low viscosity by being heated to the supercooled liquid temperature range, and the pressurization easily causes plastic flow along the concave / convex pattern 51a of the mold, thereby transferring the concave / convex pattern. Then, as shown in step 3, the separators 10a (10b) can be obtained by separating the pressing dies 51, 51 from each other. Note that the surface of the rapidly cooled ribbon 45 may be roughened to an arithmetic average roughness Ra exceeding 1 μm, as shown in enlarged view in step 1. However, if the pressing surface of the mold 51 is smoothed to 1 μm or less with Ra, the surface of the ribbon 45 whose plastic flow becomes extremely good by heating to the supercooled liquid temperature range also follows the mold surface. The surface of the separator 10a (10b) can be smoothed to 1 μm or less with an arithmetic average roughness Ra, as shown in FIG.

また、図6は、溶湯鍛造加工を採用する場合の例である。この場合、工程1に示すように、溶湯42を、形成すべき凹凸に対応したキャビティ61aを有する鍛造用金型の雌型61fに流し込む。その後、直ちに雄型61mを接近させ、鍛造を行なう。溶湯42は、雌型61f及び雄型61mとの接触により急冷凝固してアモルファス化し、さらに、凝固後のアモルファス材料の温度が過冷却液体温度域にある間に、雌型61f及び雄型61mによる加圧を継続すれば(工程2)、キャビティ61aに対応した形状の凹凸を有するセパレータ10a(10b)が得られる(工程3)。   Moreover, FIG. 6 is an example in the case of employing a molten metal forging process. In this case, as shown in step 1, the molten metal 42 is poured into a female die 61f of a forging die having a cavity 61a corresponding to the unevenness to be formed. Then, the male die 61m is immediately approached and forging is performed. The molten metal 42 is rapidly solidified by contact with the female mold 61f and the male mold 61m, and becomes amorphous. Further, while the temperature of the amorphous material after solidification is in the supercooled liquid temperature range, the molten metal 42 is formed by the female mold 61f and the male mold 61m. If the pressurization is continued (step 2), a separator 10a (10b) having irregularities having a shape corresponding to the cavity 61a is obtained (step 3).

上記のようにして得られたセパレータ10a(10b)は、これを構成する複合アモルファス材料が、マトリックス中にTiN粒子が分散した組織を有し、電極層2,4(図1)との接触抵抗が低減される。   The separator 10a (10b) obtained as described above has a structure in which the composite amorphous material constituting the separator 10a has a structure in which TiN particles are dispersed in a matrix, and the contact resistance with the electrode layers 2 and 4 (FIG. 1). Is reduced.

本発明の効果を確認するために、以下の実験を行った。まず、表1に示す各組成(比較例7のステンレス鋼(SUS316L)は、市販の板材を使用)が得られるように、原料を秤量・配合し、ボタンアーク溶解炉でAr雰囲気中溶解してインゴット(約10mm×40mm、50g)を作製した。なお、NはTiN(試薬)の形で添加し、該TiNからの寄与を差し引いたTi組成の残部はスポンジTiの形で配合した。こうして得られたインゴットより単ロール急冷装置により薄帯を製造した。実際の工程は、インゴット50gを先端に0.3×20mmのスリットがついたφ30mmの石英製ノズルに入れ、高周波誘導加熱により加熱・溶解し、その後スリット部分より、周速度15m/sで回転している直径400mm幅50mmの銅ロール上に噴出し、厚み50μm程度、幅20mmの薄帯を作製した。なお、溶解時の溶湯温度はおよそ1450℃であり、添加したTiNは溶湯中に完全に溶解する。   In order to confirm the effect of the present invention, the following experiment was conducted. First, raw materials were weighed and blended so as to obtain each composition shown in Table 1 (stainless steel (SUS316L) of Comparative Example 7 uses a commercially available plate material) and dissolved in an Ar atmosphere in a button arc melting furnace. An ingot (about 10 mm × 40 mm, 50 g) was produced. Note that N was added in the form of TiN (reagent), and the remainder of the Ti composition minus the contribution from TiN was blended in the form of sponge Ti. A ribbon was produced from the ingot thus obtained by a single roll quenching apparatus. In the actual process, an ingot 50 g is put into a φ30 mm quartz nozzle with a slit of 0.3 × 20 mm at the tip, heated and melted by high frequency induction heating, and then rotated at a peripheral speed of 15 m / s from the slit portion. It was ejected onto a copper roll having a diameter of 400 mm and a width of 50 mm to produce a ribbon having a thickness of about 50 μm and a width of 20 mm. In addition, the molten metal temperature at the time of melting is about 1450 ° C., and the added TiN is completely dissolved in the molten metal.

この薄帯を使って、耐食性、硬さ、靭性及び表面抵抗値を調査した。耐食性は、長さ100mmに切断した材料を、1mass%硫酸水溶液400ml中に入れ、沸騰状態で1週間保持し、重量減少量を測定して求まる腐食速度により評価した。材料の硬さ(強度を表す尺度ともなる)は、薄帯の断面にて微小硬度計により50g荷重で測定したビッカース硬さにより評価した。材料の靭性の評価は、薄帯を180°曲げ試験により、破断が生ずるか否かにより判断した。   Using this ribbon, the corrosion resistance, hardness, toughness and surface resistance value were investigated. Corrosion resistance was evaluated based on the corrosion rate obtained by placing a material cut to a length of 100 mm in 400 ml of 1 mass% sulfuric acid aqueous solution, holding it in a boiling state for one week, and measuring the weight loss. The hardness of the material (which also serves as a measure for strength) was evaluated by the Vickers hardness measured at a 50 g load with a microhardness meter on the cross section of the ribbon. The evaluation of the toughness of the material was made by judging whether or not fracture occurred in the ribbon by a 180 ° bending test.

次に、表面抵抗は、薄帯を所定の大きさ(20mm角の正方形状)に切り出し、その上下にカーボンクロスを置き、さらにその上に金箔を乗せて、上部から1MPaの圧力をかけつつ直流電流を通電し、その電圧と電流の値から求めた接触抵抗の値にて評価した。図7に測定装置の概略図を示した。この方法では材料を貫通する全抵抗が求まるが、材料の抵抗に比べ表面の接触抵抗はけた違いに大きいため、材料の抵抗を無視して、表面の接触抵抗値とした。以上の結果を表1に示す。   Next, as for surface resistance, a thin ribbon is cut into a predetermined size (20 mm square shape), a carbon cloth is placed on the top and bottom, a gold foil is placed thereon, and a direct current is applied while applying a pressure of 1 MPa from the top. A current was applied, and the contact resistance value obtained from the voltage and current value was evaluated. FIG. 7 shows a schematic diagram of the measuring apparatus. In this method, the total resistance penetrating the material can be obtained, but since the contact resistance of the surface is much larger than the resistance of the material, the resistance of the material is ignored and the contact resistance value of the surface is taken. The results are shown in Table 1.

Figure 2006339045
Figure 2006339045

また、図8は、実施例2に係る複合アモルファス材料の、断面の光学顕微鏡による観察画像である(スケールを図中に示している)。結晶粒界のない一様なマトリックス中に、TiNの粒子が多数分散しているのが認められる。マトリックス中にTiN粒子を分散させた複合アモルファス材料で金属セパレータを構成することにより、電極層との接触抵抗が低減され、電池の内部抵抗の上昇を抑制することができ、電池負荷が大きくなった場合にも出力電圧の低下を生じにくくなる。表1の実験結果によると、TiNを分散させた実施例の複合アモルファス材料の採用により、過冷却液体温度幅、腐食速度、硬さ(強度)、接触抵抗値及び靭性の全てに渡って良好な結果が得られていることがわかる。   FIG. 8 is a cross-sectional observation image of the composite amorphous material according to Example 2 using an optical microscope (scale is shown in the figure). It can be seen that a large number of TiN particles are dispersed in a uniform matrix without grain boundaries. By configuring the metal separator with a composite amorphous material in which TiN particles are dispersed in a matrix, the contact resistance with the electrode layer is reduced, the increase in the internal resistance of the battery can be suppressed, and the battery load is increased. Even in this case, the output voltage is hardly lowered. According to the experimental results of Table 1, the adoption of the composite amorphous material of the example in which TiN is dispersed is favorable over the supercooled liquid temperature range, corrosion rate, hardness (strength), contact resistance value, and toughness. It turns out that the result is obtained.

本発明の燃料電池を積層形態にて模式的に示す図。The figure which shows the fuel cell of this invention typically in a lamination | stacking form. 図1の燃料電池に使用する本発明の金属セパレータの実施形態を示す平面図及び拡大断面図。The top view and expanded sectional view which show embodiment of the metal separator of this invention used for the fuel cell of FIG. 本発明の金属セパレータの製造工程の第一例を示す説明図。Explanatory drawing which shows the 1st example of the manufacturing process of the metal separator of this invention. 図3に続く工程説明図。Process explanatory drawing following FIG. 図4に続く工程説明図。Process explanatory drawing following FIG. 本発明の金属セパレータの製造工程の第二例を示す説明図。Explanatory drawing which shows the 2nd example of the manufacturing process of the metal separator of this invention. 接触抵抗の測定装置の概念図。The conceptual diagram of the measuring apparatus of contact resistance. 実施例2の複合アモルファス材料の、断面組織の光学顕微鏡観察画像。The optical microscope observation image of the cross-sectional structure | tissue of the composite amorphous material of Example 2. FIG.

符号の説明Explanation of symbols

1 燃料電池
2 第一電極層
3 高分子固体電解質膜
4 第二電極層
10a 第一セパレータ
10b 第二セパレータ
1 Fuel Cell 2 First Electrode Layer 3 Polymer Solid Electrolyte Membrane 4 Second Electrode Layer 10a First Separator 10b Second Separator

Claims (6)

結晶化温度が500℃以上であって、該結晶化温度よりも低温側にガラス遷移温度を有したNi基アモルファス相からなるマトリックス中にTiN粒子を分散させた組織を有してなる複合アモルファス材料により板状に形成され、燃料電池の高分子固体電解質膜を覆う電極層上に片側の板面を積層したとき、前記電極層との間にガス拡散層を形成する凹部が当該板面に形成されてなることを特徴とする燃料電池用金属セパレータ。 A composite amorphous material having a structure in which TiN particles are dispersed in a matrix composed of a Ni-based amorphous phase having a crystallization temperature of 500 ° C. or higher and a glass transition temperature lower than the crystallization temperature. When a plate surface on one side is laminated on the electrode layer that covers the polymer solid electrolyte membrane of the fuel cell, a recess that forms a gas diffusion layer is formed on the plate surface. A metal separator for a fuel cell. 前記複合アモルファス材料は、前記結晶化温度と前記ガラス遷移温度との差が30℃以上である請求項1記載の燃料電池用金属セパレータ。 The fuel cell metal separator according to claim 1, wherein the composite amorphous material has a difference between the crystallization temperature and the glass transition temperature of 30 ° C. or more. 前記複合アモルファス材料は、
Ni含有率が40原子%以上60原子%以下、
Nb含有率が15原子%以上25原子%以下、
Ti含有率が10原子%以上30原子%以下、
N含有率が0.05原子%以上5原子%以下、
Zr、Co、Cu、Al、Fe、Si及びCrから選ばれる1種又は2種以上からなる任意金属成分Mの合計含有率が0原子%以上20原子%以下であり、
かつ、Nb、Ti、N及びMの合計含有率が40原子%以上60原子%以下とされてなる請求項2記載の燃料電池用金属セパレータ。
The composite amorphous material is:
Ni content is 40 atomic% or more and 60 atomic% or less,
Nb content is 15 atomic% or more and 25 atomic% or less,
Ti content is 10 atomic% or more and 30 atomic% or less,
N content is 0.05 atomic% or more and 5 atomic% or less,
The total content of the optional metal component M composed of one or more selected from Zr, Co, Cu, Al, Fe, Si and Cr is 0 atomic% or more and 20 atomic% or less,
The metal separator for a fuel cell according to claim 2, wherein the total content of Nb, Ti, N and M is 40 atomic% or more and 60 atomic% or less.
前記複合アモルファス材料は、Ti含有率がN含有率の3倍以上100倍以下である請求項3記載の燃料電池用金属セパレータ。 The metal separator for a fuel cell according to claim 3, wherein the composite amorphous material has a Ti content of 3 to 100 times the N content. 結晶化温度が500℃以上であって、該結晶化温度よりも低温側にガラス遷移温度を有したNi基アモルファス相からなるマトリックス中にTiN粒子を分散させた組織を有してなる複合アモルファス材料により板状に形成された金属素材に、前記ガラス遷移温度以上であって前記結晶化温度よりも低い過冷却液体温度域にて塑性加工を施すことにより、燃料電池の高分子固体電解質膜を覆う電極層上に片側の板面を積層したとき、前記電極層との間にガス拡散層を形成する凹部を前記金属素材の前記板面に形成することを特徴とする燃料電池用金属セパレータの製造方法。 A composite amorphous material having a structure in which TiN particles are dispersed in a matrix composed of a Ni-based amorphous phase having a crystallization temperature of 500 ° C. or higher and a glass transition temperature lower than the crystallization temperature. The metal material formed into a plate shape by the above is subjected to plastic working in a supercooled liquid temperature range that is higher than the glass transition temperature and lower than the crystallization temperature, thereby covering the polymer solid electrolyte membrane of the fuel cell Producing a metal separator for a fuel cell, wherein when a plate surface on one side is laminated on an electrode layer, a recess for forming a gas diffusion layer between the electrode layer is formed on the plate surface of the metal material. Method. 高分子固体電解質膜と、その第一主表面を覆う第一電極層と、同じく第二主表面を覆う第二電極層と、請求項1ないし請求項4のいずれか1項に記載の燃料電池用金属セパレータとして構成され、前記第一電極層上に積層されるとともに、前記凹部により燃料ガス用のガス拡散層を形成する第一セパレータと、請求項1ないし請求項4のいずれか1項に記載の燃料電池用金属セパレータとして構成され、前記第二電極層上に積層されるとともに、前記凹部により酸化剤ガス用のガス拡散層を形成する第二セパレータと、
を有することを特徴とする燃料電池。
5. The fuel cell according to claim 1, a polymer solid electrolyte membrane, a first electrode layer covering the first main surface, a second electrode layer covering the second main surface, and the fuel cell according to claim 1. 5. A first separator configured as a metal separator for a fuel cell, stacked on the first electrode layer, and forming a gas diffusion layer for fuel gas by the recess, 5. And a second separator that is laminated on the second electrode layer and forms a gas diffusion layer for an oxidant gas by the recess,
A fuel cell comprising:
JP2005162955A 2005-06-02 2005-06-02 Metal separator for fuel cell, manufacturing method of the same, and fuel cell Pending JP2006339045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162955A JP2006339045A (en) 2005-06-02 2005-06-02 Metal separator for fuel cell, manufacturing method of the same, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162955A JP2006339045A (en) 2005-06-02 2005-06-02 Metal separator for fuel cell, manufacturing method of the same, and fuel cell

Publications (1)

Publication Number Publication Date
JP2006339045A true JP2006339045A (en) 2006-12-14

Family

ID=37559425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162955A Pending JP2006339045A (en) 2005-06-02 2005-06-02 Metal separator for fuel cell, manufacturing method of the same, and fuel cell

Country Status (1)

Country Link
JP (1) JP2006339045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189749A (en) * 2009-02-20 2010-09-02 Neomax Material:Kk Alloy for solid polymer type fuel cell member, clad material thereof, and battery separator thereof formed from the same
KR20150027103A (en) * 2012-05-28 2015-03-11 가부시키가이샤 나카야마 아몰퍼스 Separator material for solid polymer fuel cells having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
CN111727526A (en) * 2018-02-23 2020-09-29 株式会社村田制作所 Solid-state battery
WO2020214115A3 (en) * 2019-04-19 2020-12-03 Afyon Kocatepe Universitesi Rektorlugu Nickel based metallic glass composites

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189749A (en) * 2009-02-20 2010-09-02 Neomax Material:Kk Alloy for solid polymer type fuel cell member, clad material thereof, and battery separator thereof formed from the same
KR20150027103A (en) * 2012-05-28 2015-03-11 가부시키가이샤 나카야마 아몰퍼스 Separator material for solid polymer fuel cells having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
EP2858154A4 (en) * 2012-05-28 2016-05-11 Nakayama Amorphous Co Ltd Separator material for solid polymer fuel cells having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
CN104521048B (en) * 2012-05-28 2017-02-22 株式会社中山非晶质 Separator material for solid polymer fuel cells having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
US9959950B2 (en) 2012-05-28 2018-05-01 Nakayama Amorphous Co., Ltd. Thin plate having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
US10032537B2 (en) 2012-05-28 2018-07-24 Nakayama Amorphous Co., Ltd. Separator material for polymer electrolyte fuel cell having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
KR102089021B1 (en) * 2012-05-28 2020-03-13 가부시키가이샤 야마나카 고킨 Separator material for solid polymer fuel cells having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
CN111727526A (en) * 2018-02-23 2020-09-29 株式会社村田制作所 Solid-state battery
CN111727526B (en) * 2018-02-23 2023-08-18 株式会社村田制作所 Solid-state battery
WO2020214115A3 (en) * 2019-04-19 2020-12-03 Afyon Kocatepe Universitesi Rektorlugu Nickel based metallic glass composites

Similar Documents

Publication Publication Date Title
JP5639003B2 (en) Conductor and device
JP3857873B2 (en) FUEL CELL SEPARATOR, ITS MANUFACTURING METHOD, AND FUEL CELL
KR101548064B1 (en) Fuel cell separator
KR101107862B1 (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
EP2858154B1 (en) Separator material for solid polymer fuel cells having excellent corrosion resistance, conductivity and formability, and method for manufacturing same
JP2014205886A (en) Aluminum alloy foil for electrode collector and manufacturing method therefor
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP2006339045A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell
JP2019197667A (en) Bipolar plate
JP2004273314A (en) Fuel cell metal separator, manufacturing method of the same, and fuel cell
CA2469410C (en) Metal separator for fuel cell and its production method
JP2007005120A (en) Metallic separator for fuel cell, manufacturing method of metallic separator for fuel cell, and fuel cell
JP2006253089A (en) Metal separator for fuel cell and its manufacturing method
JP4566864B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP2005093391A (en) Metal separator for fuel cell, manufacturing method of metal separator for fuel cell, and fuel cell
JP2010189749A (en) Alloy for solid polymer type fuel cell member, clad material thereof, and battery separator thereof formed from the same
JP2006252854A (en) Manufacturing method for metallic glass separator
JP2005190968A (en) Metal separator for fuel cell, its manufacturing method, and fuel cell
JP2005100933A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell
JP3864771B2 (en) Corrosion-resistant Ni-base alloy separator plate for high-strength polymer electrolyte fuel cells that can be thinned
JP2005171333A (en) Metal glass alloy
JP2004232070A (en) Member for fuel cell separator and separator
JP2005317479A (en) Metal separator for fuel cell, its manufacturing method, metallic material for fuel cell and fuel cell
JP5880799B1 (en) Metal material and current-carrying parts using this metal material
JPS5990366A (en) Sulfuric-acid-electrolyte-type fuel cell